
TESLA Report 2005-06

DSP Integrated, Parameterized, FPGA Based
Cavity Simulator & Controller for VUV-FEL

SIMCON ver.2.1. Installation and Configuration Procedures

USER'S MANUAL

Waldemar Koprek, Piotr Pucyk, Tomasz Czarski,
Krzysztof T. Pozniak, Ryszard S. Romaniuk

wkoprek@ntmail.desy.de; ppucyk@ntmail.desy.de; tczarski@ntmail.desy.de;

 pozniak@mail.desy.de; rrom@mail.desy.de

Institute of Electronic Systems, Warsaw University of Technology
ELHEP Group

Nowowiejska 15/19, 00-665 Warsaw, Poland

ABSTRACT
The note describes integrated system of hardware controller and simulator of the

resonant superconducting, narrowband niobium cavity, originally considered for the TTF and
TESLA in DESY, Hamburg (now predicted for the VUV and X-Ray FEL). The controller
bases on a programmable circuit Xilinx VirtexII V3000 embedded on a PCB XtremeDSP
Development Kit by Nallatech. The FPGA circuit configuration was done in the VHDL
language. The internal hardware multiplication components, present in Virtex II chips, were
used, to improve the floating point calculation efficiency. The implementation was achieved
of a device working in the real time, according to the demands of the LLRF control system for
the TESLA Test Facility. The device under consideration will be referred to as
superconducting cavity (SCCav) SIMCON throughout this work.

This document is intended to be used by end users and operators. It describes step by
step how to install SIMCON in specific configuration, how and what software to copy to
computer. There is described set of basic Matlab functions for developers of control
algorithms.

This paper also contains brief description how to use Matlab function of one algorithm
with its graphic user panels.

Keywords: Super conducting cavity, cold option, cavity simulator, cavity controller, linear
accelerators, FPGA, FPGA-DSP enhanced, VHDL, FEL, TESLA, TTF, UV-FEL, Xilinx,
FPGA based systems, LLRF control system of third generation, electronics for UV-FEL, X-
Ray FEL and TESLA.

 1

mailto:wkoprek@ntmail.desy.de
mailto:ppucyk@ntmail.desy.de
mailto:tczarski@ntmail.desy.de
mailto:pozniak@mail.desy.de
mailto:rrom@mail.desy.de

DSP Integrated, Parameterized, FPGA Based
Cavity Simulator & Controller for VUV-FEL

Abstract………………………………………………………………………………...1
1. Introduction (SIMCON release policy).. 3
2. Hardware and software installation.. 3

2.1. Configuration with SUN controller.. 6
2.1.1. Hardware installation ... 6
2.1.2. Software for Matlab installation on SUN... 8
2.1.3. Booting FPGA.. 8

2.2. Configuration with EPP-VME controller and PC-Windows 9
2.2.1. Hardware installation ... 9
2.2.2. Software for Matlab installation on PC-Windows ... 9
2.2.3. Booting FPGA from PC ... 9

3. FPGA configuration Matlab files – manual ... 10
3.1. Functional parameters of SIMCON ... 11

3.1.1. Timing system.. 11
3.1.2. SIMCON function selection... 11
3.1.3. DAC output signals .. 13
3.1.4. Loading and exchanging of control tables ... 14
3.1.5. Loading and exchanging of beam table.. 15
3.1.6. Settings of calibration parameters .. 15
3.1.7. Setting of IQ detection start point .. 16

3.2. Readouts ... 17
4. Algorithm files in Matlab... 20
5. Matlab graphic user interfaces ... 21

5.1. Controller ... 21
5.2. Simulator .. 22
5.3. Readouts ... 26

6. DOOCS graphic user interfaces ... 27
6.1. Controller ... 27
6.2. Simulator .. 28
6.3. Readouts ... 29

7. Attachments.. 30
 7.1. List of MatLab files……………………………………………………………………28
 7.2. List of signals available for DAQ system and for DACs……………………………...29
8. References …………………...…………………………………………………………….29

This TESLA Report is in close relations with the following TESLA Reports published
previously: 2005-05, 2005-02, 2004-10. Together, these Reports make a full SIMCON
manual.

 2

1. Introduction (SIMCON release policy)

The SIMCON hardware and software ver.2.1. is designed to control and simulate a single,
TESLA technology based, superconducting cavity. The difference with ver.1.1. is that it can
be used with a standard PC, via the LPT interface. This approach opens a path to control the
system using standard web technologies.

The SIMCON hardware and software is a unity and is not provided by the designers
separately or in parts. The reason is fast development of the next versions of the SIMCON
system and not full compatibility between the versions. This kind of release policy is a must
because there exist numerable versions of the test software for SIMCON, which are used
internally for the development purposes. The designers are not able to support different
products at the premises of different users of the SIMCON system. The system is in a
developmental stage and not yet fully user friendly. In particular it has not got a fail safe
mode of work.

Apart from this specific confinement the designers are eager to cooperate with potential
SIMCON users and are ready to provide the whole system in a closed and fully supported
form ready to be implemented at the user’s premises.

2. Hardware and software installation of SIMCON system

The SIMCON system is predicted to work either in the VME crate or as a stand alone
device. It can work with two VME controllers:

a) EPP-VME controller designed by ELHEP Group which can work in slot 0 of the VME
crate. One side of the EPP-VME controller is terminated with a VME interface, while
the other side is terminated with LPT port. The latter interface can be connected to a
standard or embedded PC;

b) SUN Spark controller with the VME interface and Solaris operating system.
The SIMCON itself contains also the LPT port which can be directly connected to a PC.

Due to this useful feature the SIMCON user does not need the VME crate to install the
system. It can work as an independent device outside the VME crate. While working outside a
crate, the SIMCON needs another source of power. The communication between the
SIMCON and the possible system assembly configurations are shown in figure 1.

In reference to the above hardware configuration schemes there are possible different
software configurations.

The lower layers of the software are dedicated libraries for FPGA solutions. One of these
libraries (II Engine) parses “iid” (Internal Interface Definition) file, the others are responsible
for communication between the channels.

Figure 2 presents the software configuration appropriate for hardware configuration from
figure 1.a). In this case, the SUN station is used as a VME and software controller for the
SIMCON. Only this configuration can be used with the DOOCS. The DOOCS software for
the SIMCON is described in short in the following chapters.

 3

a) b)
VME crate VME crate

Ethernet cable

SUN

SIMCON
ADC1
ADC2
CLKIN
DAC1
DAC2

LED 1
LED 2

EPP-
VME

SIMCON
ADC1
ADC2
CLKIN
DAC1
DAC2

LED 1
LED 2

L
P
T

PC

LPT cable

Ethernet cable

d)

12 V5 V

POWER SUPPLY

LPT cable

PC

L
P
T

LED
LED

ADC1
ADC2
CLKIN
DAC1
DAC2

SIMCON

Ethernet cable

c)

LPT cable

PC

L
P
T

LED
LED

ADC1
ADC2
CLKIN
DAC1
DAC2

VME crate

SIMCON

Ethernet cable

Figure 1. Hardware configuration for the SIMCON a) with SUN controller, b) with EPP-VME
controller and PC, c) with local EPP interface, d) with independent power source

 4

VME crate

Figure 2. Software configuration with SIMCON and SUN controller

MATLAB DOOCS

INTERNAL INTERFACE ENGINE

VME CHANNEL LIBRARY VME COMMUNICATION COMPONENT

INTERNAL INTERFACE

CONTROLLER

SIMULATOR

S I M C O N

S U N

V M E B u s

V M E B u s

E P P – V M E CONTROLLER

S I M C O N

SIMULATOR

CONTROLLER

INTERNAL INTERFACE

VME COMMUNICATION COMPONENT EPP - VME TRANSCEIVER

MATLAB

INTERNAL INTERFACE ENGINE

EPP CHANNEL LIBRARY

PC with Windows

VME crate

Figure 3. Software configuration with SIMCON and EPP-VME controller

 5

2.1. SIMCON system configuration with SUN controller

2.1.1. Hardware installation

This is the most required type of hardware configuration, because it is used now
commonly in the experiment.

Before installing the SIMCON in VME crate it is necessary to specify its base address.
The SIMCON also needs 26624 bytes (hex 0x6800) of its address space within the SUN
address space. The SUN uses VME address modifier 57 to communicate with devices. It
means that the address has 24 bits and 16777216 bytes of address space. The developer
should know the address space configuration, in particular of the VME crate, to make the
address allocation for the SIMCON.

Figure 2 contains an example of exemplary address configuration. To set the base
address, there is a dedicated switch SW1 on the SIMCON motherboard. It has 8 micro-
switches which allow to set the eight most significant bits of the address (from 23rd down to
15th). In this case, there are used only four switches from S4 to S8 and only the address lines
from 23rd to 20 on the VME bus are used.

For example, figure 3 presents how to set the base address 0xC00000 for SIMCON. It
means that the SIMCON will react for each address from 0xC00000 to 0xC06800. When the
address is asserted on the VME address bus by VME controller, the address monitor
component inside Altera chip compares the four most significant lines from the bus with the
four most significant switches from the address switches.

0#FFFFFFF

0#C06800
SIMCON address space

0#C00000

Other devices

0#010000
SUN address space

0#000000

Figure 4. Exemplary configuration of address space

 6

S1 S2 S3 S4 S6 S7S5 S8

1

0

A16 A17 A18 A19 A21 A22A20 A23
Figure 5. Setting for SIMCON base address 0xC00000 with the switch

SW 1 (switch is positioned on SIMCON board).

After this introductory technical step, the SIMCON board can be installed in the VME

crate in an arbitrary free slot, except the first one. The whole SIMCON module is 3 slots
wide.

The SIMCON board consists of two sub-boards:
- VME-MB – carrier mother board with Altera chip and internal interface to the VME;
- Nallatech board – the evaluation DSP processing board with Xilinx chip (consisting of

MB and DB).
Both boards have FPGA chips with internal logic and internal space of addresses. There is

a need for a method to distinguish between these two addressing spaces. For this purpose,
there are used lines from 19 to 16 on the VME address bus. The Altera chip has the address
0xF0000 and the Xilinx chip has the address 0x00000. In order to address the specific chip,
the address of this chip should be added to the base address of the whole board. Therefore, for
the base address 0xC00000 the chips have the following addresses:

- Altera - 0xC00000 + 0xF0000 = 0xCF0000;
- Xilinx - 0xC00000 + 0x00000 = 0xC00000.
The above addresses of the chips are also addresses of the first registers inside the specific

FPGA chip. The principles of the usage of VME address bus are presented in figure 6.

23 20 19 16 15 1 VME address bus line number

Board
base address
in VME crate

Address of the
FPGA chip

Addresses of Internal Interface elements inside specific
FPGA chip

Figure 6. Usage of address lines on VME address bus

 7

2.1.2. Software installation for Matlab on SUN

To install the software for Matlab it is necessary to copy only several files. The files

can be divided into a few groups. The list of theses files can be found in attachment A. These
files, except for GUI files, can work in Matlab version 6.5 or 7. The GUI files are appropriate
only for Matlab 7, because they are incompatible with Matlab 6.5.

Functions providing direct access to FPGA registers

This kind of function works as MEX-type functions in the Matlab. They are the basis
for all other m-files described in the following chapters. There is only one way to get access
to the FPGA registers and memories through these functions. They are used to operate on the
physical elements of FPGA system (i.e. bits, registers, memories). Direct access functions are
described in details in TESLA Report [1].

Configuration files

Configuration files are used to perform the basic operation on the sets of FPGA

registers. For example, to write a new version of the Feed-Forward table, there have to be
performed many operation on the FPGA chip using direct access functions. In order to
simplify such kind of operations, there were prepared m-functions. These m-functions can be
used to operate on the functional blocks of FPGA controller and simulator (i.e. operating
tables, rotation matrixes, IQ detector parameters, etc.). The system developers who have
worked out their own control algorithms in Matlab can use these functions to download
control tables and parameters to FPGA and make the result readouts.

Algorithm files

This set of m-files contains one version of worked out algorithm for FPGA controller.
Details of this algorithm for simulator and controller are presented in TESLA Reports [3], [4]
and [5].

GUI files

All files described above are used in the graphical user interfaces. The GUI were made
using Matlab tool the“GUI Builder”. There are several GUI windows: for the simulator, the
controller and for the readouts. These panels are described in further chapters.

The files listed in attachment A can be copied to one folder. Some files are different
for different platform, therefore only files for proper platform should be copied.

2.1.3. Booting FPGA

There are two FPGA chips in the SIMCON 2.1. system. The Altera chip is placed on the

VME mother board and is booted from the EPROM on the board automatically after the
power on. Thanks to that, the VME interface is ready to work after a few milliseconds after
the power is on.

 8

The second FPGA chip is the Xilinx one on the Nallatech board. It can be programmed
from external system like SUN or PC through the VME Bus and Altera chip on the mother
board using JTAG standard.

In order to boot the Xilinx chip, there are used the files listed in attachment A. The base
address in file vme.conf should have the value: BootAddress = BaseAddress + AlteraAddress
(see chapter 1.1.1). For example, the base address of the board is 0xC00000, the
AlteraAddress has address with value 0xF0000. Thus, the BootAddress should have the value
0xC00000 + 0xF0000 = 0xCF0000. The next step is to run the file ‘run.sh’ from the console.
The program should show some messages about the progress of booting. The booting process
takes about 1 minute and 40 seconds. When the program finishes the booting, the Xilinx and
the whole SIMCON system are ready to use. The green configuration LED D1 on the
Nallatech board should blink to indicate the successful configuration.

2.2. SIMCON system configuration with EPP-VME controller
and PC-Windows

2.2.1. Hardware installation
The hardware installation in this configuration differs only in installation procedure of

the VME bus controller. The installation of the SIMCON board is the same and it is described
in chapter 1.1.1. The EPP-VME controller should be installed in slot 0 of the VME crate.
There is LPT port in front panel of the controller which is used to connect a PC with the LPT
cable. The corresponding hardware configuration is shown in figure 1 b). The software
configuration is presented in figure 3. The LPT port of the PC must be configured to the EPP
protocol in BIOS.

2.2.2. Software for Matlab installation on PC-Windows
The software files can be copied to one folder on the PC. The Windows version of

communication files should be taken into account. The explanation of groups of files is in the
chapter 1.1.2.

2.2.3. Booting FPGA from PC
The method of booting the SIMCON in the PC-Windows configuration is the same

like for the SUN configuration and it is explained in chapter 1.1.2. The only difference is in
the names of the booting files. The configuration file has name vmeii.ini and the boot file has
name boot_simcon2.1-3000.bat for the Nallatech board with Xilinx xc2v3000 and
boot_simcon2.1-2000.bat for Nallatech board with Xilinx xc2v2000.

The booting process takes much more time in this configuration than in the SUN
configuration because of the speed of the LPT port.

 9

3. FPGA configuration – Matlab files – manual
This chapter describes some sets of Matlab functions which allow to get access to the

functional parts of the SIMCON or just to its functionalities. The TESLA note [1] deals with
hardware description of SIMCON. It presents a detailed description of all registers and
switches inside the FPGA. To set configuration of some working modes, there is a need to
load many different values to different registers in the FPGA using basic MEX-functions like
ii_set_word(), ii_set_bits or ii_set_area(). These tasks are quite
complicated, because the user needs knowledge of all configuration registers and their
configuration values. That is why there has appeared the need to create some set of higher
level Matlab functions which would allow the user to set some modes of work. For example,
in order to set the controller mode or cavity simulator mode, the user does not need to know
how many and which registers should be set. He only needs to use one simple Matlab function
FPGASetMode(mode) with one argument. The same method is used for the readouts. In
order to read some signals from the FPGA, there should be done quite complicated
combination of setting and reading registers and memories. Instead of this, there is a simple
function FPGAReadDAQ(Signals).

Many of these functions are described below, but there still appear new functions,
which allow, in easy way, to perform some actions on the SIMCON. This set of functions can
be used for Matlab control algorithms development or by programmers, like to create the GUI
interfaces for the SIMCON.

This chapter described only several basic functions, because the number of these new
functions changes quite fast and it depends on the requirements of new prepared algorithms
based on the SIMCON.

Figure 7 presents block diagram of the SIMCON. It will be useful during the
description of the details of the following functions.

Figure 7. Block diagram of the SIMCON system

 10

3.1. Functional parameters of SIMCON

This chapter presents the basic functions which can be used to set parameters and
functionalities which read the status of different components of the SIMCON system.

3.1.1. Timing system

The timing system is used to provide 1MHz clock and trigger signal. Timing signals
can be delivered from the internal clock system or from external system through the digital
inputs. A single simple function is used for this purpose

FPGASetTiming(mode)

mode – 0: timing signals from internal clock system;
mode – 1: timing signals from external clock system;

result = FPGAReadTiming()

result – number, which indicates mode of timing system

When the internal source clock system is set, the two LEDs (name: 1MHz, TRG),

which are located on the SIMCON front panel, should blink.
When the external source timing signals is set, then the same LEDs should blink if the

timing signals are connected to digital inputs described as 1MHz and TRG on the front panel.
More about the timing system can be found in [1] chapter 4.

3.1.2. SIMCON function selection

The SIMCON system can work in three main modes:

- controller mode – in this mode, the FPGA controller is used to receive modulated
signal from the real cavity and to drive klystron through the vector modulator. It
means, that ADCs are connected to the input of the controller. Modulated signal from
the cavity probe should be connected to ADC1. Output of the controller (I and Q
control signals) are connected to DACs.

 11

SIMCON

I
DAQ1

Probe FPGA CONTROLLER
Q ADC1

DAQ2

Figure 8. Block diagram of SIMCON in the controller mode -

- cavity simulator mode – in this case, the ADCs are connected to the input of cavity

simulator. The control signals from external control system (I and Q signals) drive the
cavity simulator. The output of cavity (modulated signal) is connected to DAC1 and
the detuning signal is connected to DAC2.

SIMCON

I Probe
ADC1 DAQ1

FPGA CAVITY
SIMULATOR Q Detuning

ADC2 DAQ2

Figure 9. Block diagram of SIMCON in the cavity simulator mode

- internal loop mode – this mode allows to use the cavity simulator and controller
together. It means that the output of cavity simulator is connected to the input of
controller and outputs of controller are connected to the input of cavity simulator. All
these connections are implemented inside the FPGA. No additional connections are
required from outside of the FPGA. The ADCs are not used in this mode. The DACs
can be used to provide any one from 22 internal signals from the FPGA structure as
the analog signals.

 12

FPGA CAVITY
SIMULATOR

DAQ2

DAQ2

Figure 10. Block diagram of the SIMCON system in internal loop mode

FPGA CONTROLLER

SIMCON

Q I

Detuning

Probe

Setting one of these modes needs configuration of many internal registers of the
SIMCON. In order to do that there is used one function:

FPGASetMode(mode)

mode – 0: controller mode; 1: cavity simulator mode; 2: internal loop;

 result = FPGAReadMode()

result – number, which indicates mode of SIMCON

Read function at the end of configuration process starts the work of selected block like
controller and/or cavity simulator.

More about functional modes of the SIMCON can be found in [1] chapters 8 and 9.

3.1.3. DAC output signals

In the internal loop mode, the DACs can be used to observe (on the scope) the analog
version of digital internal signals from the FPGA. Selected signal is provided to the input of
DAC and then converted to analog signal. There can be observed 22 signals at the output of
the DACs. In order to do that, there can be used the following function:

FPGASetDAC(dac1, dac2)

dac1, dac2 – number of internal signals, which can be observed at the output of
DAC;

result = FPGAReadDAC()

 13

result – it is a vector of two elements. First number indicates signal on DAC1, the
second one current signal on DAC2.

More about DAC can be found in [1] chapter 12.

3.1.4. Loading and exchanging of control tables

There can be specified 3 pairs of control tables for the controller:
FEEDFORWARD_I, FEEDFORWARD_Q, SETPOINT_I, SETPOINT_Q, GAIN_I and
GAIN_Q. Each table can be loaded independently. In this case, the tables are always loaded
in “exchanging tables’ mode”. It means that the controller, simulator or both can work and the
control tables can be replaced by new tables between pulses without disturbing the work of
the system. That is why the table should be exchanged in pairs i.e. always I and Q of specific
table. However, not all of these tables are required when the exchanging function is invoked.

result = FPGASetCtrlTables(tables)

tables – this is matrix which contains new data for the tables which will be
replaced. The matrix consists of tables in the following order: FEEDFORWARD_I,
FEEDFORWARD_Q, SETPOINT_I, SETPOINT_Q, GAIN_I and GAIN_Q.

This function can be execute even during the pulse, because the data is loaded to spare

parallel tables, which correspond to the control tables. These parallel tables are inactive until
the pulse finishes and then, before the next pulse, the current control tables are replaced by the
parallel tables with new data.

The method of reading of control tables is described in the next chapter.

TAB_SWITCH_ENA

GAIN_I BEAM_I

GAIN_Q BEAM_Q

SETPOINT_I DAQ1

SETPOINT_Q DAQ2

FEEDFORWARD_I DAQ3

FEEDFORWARD_Q DAQ4

MAIN CONTROL TABLES AUXILIARY TABLES

Figure 11. Scheme of control tables exchange mechanism

 14

More about the architecture of SIMCON tables can be found in [1].

3.1.5. Loading and exchanging of beam table

The exchange mechanism of the beam table works in the same way like the control
table exchanging. The difference is that the beam table can be changed in the cavity simulator
mode and the function has only one parameter.

 result = FPGASetBeam(tables)

tables – this is matrix which consists of two rows – BEAM_I and BEAM_Q, each
one of 2048 samples.

As it was mentioned earlier, this table can be replaced only between the pulses.
The method of reading of the beam table is described in the further chapter.
More about the beam table can be found in [1] chapter 8.

3.1.6. Settings of calibration parameters

 The SIMCON contains some blocks which are responsible for calibration of the output
signals from the DACs and for calibration of the input signals going into the ADCs.

2.1.6.1 Setting of output rotation matrix D

This square matrix is situated right before the DACs and is used for adjusting the
amplitude and phase of output control signals. It is used all the time. The matrix has the
following coefficients [1 0; 0 1] as default values. It means that it does not have any influence
on the output signals. The phase rotation and scaling of amplitude make sense when the
output signals are I and Q from the controller. To set and read the matrix coefficient there are
used the following functions:

 FPGASetOutputMatrix(amplitude, phase)

amplitude – value can be within range <0;2), value ‘1’ doesn’t influence the output
signals;
phase – value in radians and range from -П to П, value ‘0’ doesn’t influence the
output signals.

result = FPGAReadOutputMatrix()

result – it is vector which consists of four numbers – coefficients of output rotation
matrix, which has the following form [cos(x) –sin(x); sin(x) cos(x)].

Settings of D-matrix coefficients impacts the output signals immediately.
More about output the calibration matrix can be found in [1] chapter 6.

 15

2.1.6.2 Setting of input calibration blocks

There are two input calibration blocks – one block per one ADC. They are located

right after the ADCs outputs. One functionality of these blocks is used to compensate the
offset of the input signals. Another functionality is to fit the amplitude of the input signals to
the range of FPGA registers.

FPGASetInputCal(adc, amplitude, offset)

adc – values ‘0’ or ‘1’ indicate, which ADC will be adjusted;
amplitude – value in the range <0;2) allows to attenuate or to amplify the input
signal; too big value can cause saturation of the input signal;
offset – value in the range <-217; 217-1> and it is measured in bits;

result = FPGAReadInputCal(adc)

adc – values ‘0’ or ‘1’ indicate, which ADC will be adjusted;
result – it is a vector which consists of two numbers, first one is the calibration
amplitude, the second one is offset calibration.

Settings of the input calibration block impacts the output signals immediately.
More about the input calibration can be found in [1] chapter 5.

2.1.6.3 Setting of input rotation matrix C

This square matrix is positioned right after the IQDetection block and is used for

adjusting the amplitude and phase of the input signal from cavity. The I and Q signals from
the output of IQ detector block are multiplied by matrix C. It is used all the time when the
controller is running. As a default, the matrix has the following coefficients [1 0; 0 1]. It
means that it does not have any influence on the incoming signal. To set and read the matrix
coefficient there are used the following functions:

 FPGASetInputMatrix(amplitude, phase)

amplitude – value can be within the range <0;2), value ‘1’ does not influence the
output signals;
phase – value in radians and range from -П to П, value ‘0’ does not influence the
output signals.

Settings of C-matrix coefficients impacts the output signals immediately.
More abut the input calibration matrix C can be found in [1] chapter 7.2.4.

3.1.7. Setting of IQ detection start point

As it was described in the previous documents [1-5], there is an IQ detection block,

which uses the samples of modulated signal from the cavity every 1µs. These samples
represent the in phase I and quadrature Q part of the complex signal and they appear in the

 16

following order I, Q, -I, -Q. The parameter DRV_START shows what means the first sample
of input signal, whether it is I, Q, -I or –Q.

FPGASetIQStart(start)

start – parameter accepts the values: 0, 1, 2, 3 which correspond to I, Q, -I, -Q
samples. Changing of this parameter by 1 causes the change of phase of the input
signal by 90 degrees;

result = FPGAReadIQStart()

result – it is the value of start point of IQ detector.

More about the IQ detection can be found in [1] chapter 9.

3.2. Readouts

The SIMCON system contains a special mechanism which allows to read many
different signals from its internal structure. Figure 12 shows a block diagram of SIMCON and
the points which can be monitored by the internal DAQ system. As it was mentioned in [1],
the DAQ system consists of four parallel areas of memory with 2048 words each. Each word
of the DAQ memory has 18-bit resolution and includes one sample. The samples are collected
every 1µs. This mechanism allows to gather simultaneously four signals from 10 different
points of the SIMCON during a single cavity pulse.

TSET_POINT_I,
TSET_POINT_Q

+ - Gain

D-1

C-1

M

U

X

ADC1, ADC2

CTRL_DET_I, CTRL_DET_Q

TGAIN_I,
TGAIN_Q

TCTRL_I,
TCTRL_Q

TFF_I,
TFF_Q

FPGA CONTROLLER Initial

I/Q
detector

I Q GAIN
Table

Feed-Forward
Table

Set-Point
Table

Figure 12. Signal points in the cavity controller for readout system

 17

Input
register v0

Electrical model

v = E*v + v0 – Beam
‌ v ‌ 2 = vv

v_m

Mechanical model

w = A*w + B*vv
∆ω = w0+w(1)+w(3)+w(5)

IF modulator:
I, -Q, -I, Q...

vv

∆ω

Beam Table w0

Output
register

Figure 13. Signal points

B

CAV_V D

CAV_D

C
w

CAV_MODE1
CAV_MODE1D
CAV_MODE2

CAV_MODE2D
CAV_MODE3

CAV_MODE3D

[Z, err] = FPGAReadDAQ(s

signals – vector, which can hav
and names are gathered in the table
Z – matrix, which contains from 1
samples;
err – value ‘0’ indicates that the
was time out.

This Matlab function can read fro
signals to be read depends on the size of an
matrix Z depends on the size of signal
ReadDAQ, the SIMCON waits for the trig
collect samples every microsecond. The
samples. After 2048 µs the data are read
matrix Z. The function finishes its work.

Example:

[Z, err] = FPGAReadDAQ(
if (err==0) then

plot(Z(1,:))
hold on
plot(Z(2,:))

end

Result of this example is presented in figur

v CAV_OUT_I
AV_OUT_Q
 in cavity simulato

ignals)

e from 1 to 4 num
 in attachment B.
 to 4 rows, each r

 readout has been

m 1 to 4 signals
 argument signals

s argument as we
ger. When the trigg
ReadDAQ is sus
out from the mem

7, 8);

e 14.

18
ETUN

MO
BEAM_I
EAM_Q

r for readout system

ber of signals. Signals numbers

ow means one signal with 2048

 completed, ‘1’ means that there

 simultaneously and number of
. The number of rows of returned
ll. After invoking the function
er comes, the SIMCON starts to

pended during the collecting of
ories DAQ1-4 and put into the

Figure 14. Plots achieved with readout systems of the SIMCON system

The values of readout samples of all data are calibrated in bits and its range is
extending from -217 to 217-1 except for the tables GAIN and BEAM, which range is -211 to
211-1.
More about the readouts and the DAQ system can be found in [1] chapter 10.

 19

4. Algorithm files in Matlab

The architecture of SIMCON is based on the algorithm of cavity simulator and controller.

These algorithms were elaborated in Matlab. Matlab functions take as the input arguments
several parameters, which define the condition of work of cavity simulator and controller.
These algorithms return parameters and control tables for FPGA devices.

The principles of algorithm were described in [3], [4] and [5]. There are listed Matlab files
which are used for controller and simulator. Each file has detailed description there.

INPUT_D=INPUT_INIT() – this function is used to initialize the structure of input
parameters. There are several parameters, which define the condition of work of controller
and cavity simulator. The output of this function is the pointer to the structure of parameters.

[U,Y,W]=INITT(INPUT_D) – this function prepares all parameters to initialize FPGA.
The input parameters from structure INPUT_D are recalculated and rescaled. The results of
this function are:

- U - vector of scalars, which are loaded to FPGA,
- V – matrix of tables, which are loaded to FPGA,
- W – structure of local variables, which are used by other functions in this algorithm.

FPGAINIT(U, Y) – this function loads all necessary parameters from vector U and tables
from Y into FPGA. This function also sets up the mode of work of SIMCON.

[Y,W]=RE_CONTROL1(W) – this function is used by Adaptive Feed Forward algorithm to
recalculate new control tables for controller. It uses as input argument the structure W and
returns the same structure with modified parameters and the tables in Y with new control
tables.

FPGAEPPReloadTables(Y,W) - the function loads to FPGA new control tables from
variable Y and exchanges them with existing control tables between pulses.

Z = FPGAReadDAQ(Sig) – this function was described in chapter 2.2. In this case, it is
used to read signal CTRL_I, CTRL_Q and CTRL_DET_I, CTRL_DET_Q – see chapter 2.2.
The matrix Z consists of four rows, which correspond to specific signals. After this function
the matrix Y is updated by signals from matrix Z.

[Y,W]=RE_CONTROL2(Y,W) – this function is the second part of Adaptive Feed Forward
algorithm. It is used to estimate the half bandwidth and the detuning of cavity. These are
crucial parameters, which are used to recalculate new control tables in function
RE_CONTROL1.

 20

5. Matlab graphical user interfaces
There are a few graphical user interfaces, which are used to work with the SIMCON for

dedicated windows. The functionality of these panels is based on Matlab files from chapter 3
and algorithms described in [3], [4] and [5].

5.1. Controller
The control panel for the cavity controller consists of two files. FPGACTRL.m contains

Matlab code of events called from the panel. The file FPGACTRL.fig contains definition of
appearance of the control panel.

Figure 15. Control panel for cavity controller

The cavity controller can work in three modes. The mode can be chosen from the combo
box ‘Mode’. The possible configurations are: Calibration, Simulator and Controler.

The calibration mode is used to find the offset of DACs and to find the minimum value of
the signal at the output of the vector modulator. It is very important to calibrate the offset,

 21

because due to that the level of the signal from the vector modulator and the power going out
from the klystron will be the lowest possible.

This mode is used to generate special signals at the output of SIMCON on DACs. When
the ‘Calibration’ mode is chosen, one of two ‘Generate slope’ checkboxes should be checked
in section I or Q in the frame ‘Controller Output’. Only one of these checkboxes can be
checked in the same time. When the checkbox is set, the slope will be generated on the output
of DACs. Depending on I or Q checkbox the slope is generated and loaded into the table
FEEDFORWARD_I or FEEDFORWARD_Q. The slope changes from the minimum to the
maximum value, what means from -217 to 217-1 in two complementary codes and looks like
the first graph in figure 16 (upper one).

This signal drives the vector modulator and the envelope of the signal at the output of VM
looks like the second graph in figure 16 (lower one). This signal can be observed on the
scope. Using the scope and cursor on the screen the point of the minimum can be determined.
This point, measured in microseconds, is the number of the samples from FEEDFORWARD
table and the value of this specific probe is the offset of the output. When the offset is
determined, the user should write the number of the samples to the field ‘Sample’
corresponding to I or Q slope. The program automatically calculates the value of the offset
and this calculated value is written to the appropriate offset register in FPGA. The method of
adjusting the offset is identical for I and Q output (DAC1, DAC2) and must be done
successively one after the other (in turn).

DAC1-CTRL_I
max

offset t [us]
700 1300

min

envelope
VM

min
t [us]

 Figure 16. The method of calibration of the outputs of DACs offset

There are also other parameters of calibration. These parameters can be set in each mode

of work. The frame ‘Output’ in section ‘Calibration’ is used to set coefficients of the output
matrix. This matrix, as was mentioned above, is used to rotate and change the amplitude of
the output signals CTRL_I and CTRL_Q. The user specifies the rotation phase and the
amplification index and the program automatically calculates the coefficients of the matrix.
This is done in the same way like in the function FPGASetOutputMatrix (see chapter
2.1.6.1).

 22

The other calibration parameters are in the frame ‘Input’ in the section ‘Calibration’.
These parameters are used to calibrate the signals just after the ADCs. There are two
parameters Gain and Offset for each converter. These parameters can be changed in every
mode of work. The parameters of section ‘Input’ and ‘Output’ can be changed any time but
they are applied only by pushing the button ‘Init’.

The other modes of work of control panel are: ‘Controller’ and ‘Simulator’. The
‘Controller’ mode is used for work with the real cavity and works with the external timing
system. The configuration of this mode is presented in figure 8. In the ‘Simulator’ mode, the
controller works with internal cavity simulator and the timing signals are taken from the
internal timing module. The configuration of this mode is presented in figure 10. The
parameters of the cavity simulator are set automatically with default values. To set other
values of parameters, the cavity simulator panel should be used.

In both modes of the ‘Controller’ and the ‘Simulator’ the usage of control panel is the
same.

The three fields called ‘Presumed detuning’ are used to determine the detuning of the
cavity (real one or simulator). The first value determines the detuning in the point of 0, the
second one – at the beginning of the flattop and the third one – at the end of the flattop. The
example of the presumed detuning is presented in figure 17 on the fourth graph (lower right) –
the red curve. This presumed detuning is used in the algorithm to calculate the first control
tables for the Adaptive Feed Forward algorithm.

Figure 17. The result of the PLOTs function for cavity parameters

 23

The ‘FeedForward’ section is used to set parameters of the work of the cavity (real one or
simulator). The slider is used to set the gradient of the field during the flattop and the ‘Phase’
field is used to set the phase of the field during the flattop. The values of gradient and phase
are taken into account by the algorithm files only when the checkbox ‘FeedForward’ is
marked. Otherwise the FeedForward tables are zero.

The ‘FeedBack’ section is used to set the gain in fast feedback loop and the field phase is
used to calibrate the phase of the feedback signal from the probe. The assumption is that, the
phase of the signal from the probe is calibrated when the phase curve of the controller output
and phase of the cavity output (probe signal) start from the same point. This situation is on the
third graph in figure 17 (lower left). The phase of the controller (blue curve) and phase of the
cavity (red curve) start from the same point.

When the all parameters are set in the control pane,l the button ‘Init’ is used to apply
them. The function INITT.m is invoked. It calculates all control parameters for the
configuration registers inside FPGA and loads them to the chip. All the control tables like
gain, set point and feedforward are also calculated and loaded to FPGA. After loading all
parameters and tables, the controller is started and can work.

This control system is based on the Adaptive Feed Forward (AFF) algorithm. The button
‘Recontrol’ can be used to invoke the next step of loop of the AFF algorithm. The system
makes readout from FPGA. It reads signals CTRL_DET_I and CTRL_DET_Q from FPGA.
These are the signals after the IQ Detector block, which detects I and Q signal from probe
signal from the cavity. These signals are used by the algorithm to calculate half bandwidth
and detuning of the cavity. These two parameters: half bandwidth and detuning are the main
parameters of the cavity equations, which are used to calculate the new control tables. After
the calculation of new control tables they are loaded again to FPGA. The new tables are
loaded to FPGA using a special exchange method between the pulses (see chapter 2.1.4).

To see the results of work of the controller and the cavity, there is a special function
PLOTs.m, which is invoked by pushing the button ‘PLOT’. The window looks exactly like in
the figure 17. The legend explains the meaning of the curves.

In order to make the plots every time after pushing the button ‘Init’ or ‘Recontrol’, the
checkbox ‘Plot’ should be marked.

 24

5.2. Cavity simulator

Control panel for the cavity simulator is presented in figure 18. This screenshot is made

from Solaris system and, like other panels, works either in Solaris or in Windows.
Usage of this window is very simple. Most of these parameters are self explaining or can

be found in [3], [4] and [5]. After setting all the parameters, the button ‘Run’ should be
pressed. The program recalculates all parameters using the input parameters and loads them
into FPGA.

Figure 18. Cavity simulator control panel

This control panel can be used in parallel with panel for the controller in the mode
‘Simulator’. When the SIMCON works in the mode ‘Controller’, the cavity simulator panel
should not be used, because when the button ‘Run’ is pushed, the program sets the SIMCON
in the ‘Simulator’ mode.

 25

5.3. Readouts

The readouts panel is graphic presentation of the function FPGAReadDAQ, which was

described in chapter 2.2. Every chart has its own combo box with a list of all available signals
inside the FPGA. The signal can be chosen independently for each chart. The numbers of
signals are the input parameters for the function FPGAReadDAQ and the result is plotted in
these four charts. The readout is invoked by pushing the button ‘Readout’. To make readout
one after another there is a checkbox ‘Loop’ next to the button ‘Readout’. When the checkbox
is marked, the readouts are made in infinite loop until the checkbox will be unmarked.

Figure 19. Window of program for readouts from cavity simulator and controller in the
SIMCON system

 26

6. DOOCS graphical user interfaces

The DOOCS software for SIMCON consists of two separated server application dedicated
for the controller and simulator. This software is meant to be the operation environment
instead of the developer software (mainly MATLAB). The detailed description of DOOCS
environment will be soon presented in a separate Tesla Report in 2005. Graphical panels
presented below were prepared with the DDD (Data DOOCS Display) – the tool dedicated for
creating GUI for DOOCS servers.

6.1. Controller

The picture below presents the panel for DOOCS based controller software. It provides
almost the same functionality as the Matlab environment. The only difference is the lack of
the calibration mode in this version of server. It will be implemented in the future. The
present implementation of the controller server works only in the step mode, it means that the
RECONTROL function is called by the user by pressing RECONTROL button. All operation
procedures in this system are the same as in the Matlab version.

Figure 20. DOOCS based controller panel prepared in DDD.

 27

6.2. Simulator

The simulator panel created in DDD also provides functionality equal to the Matlab
version. The important difference is that it does not work in the step mode. Every change of
any parameter on the panel triggers needed calculations and tables reloading.

Figure 21. DOOCS based simulator panel prepared in DDD.

 28

6.3. Readouts

Below, an example of readout from the simulator panel was presented. The server can
present the raw data (i.e. I and Q components) as well as the pre-calculated plots (amplitude
and phase).

Figure 22. An example of readout performed in DOOCS SIMCON server.

 29

7. Attachments

A. List of files for Matlab

List of files for Matlab on SUN
Window Solaris

Files used to boot SIMCON 2.1
jambo.exe jambo
simcon3000.jam simcon3000.jam
boot_simcon2.1-3000.bat run.sh

Direct access to FPGA registers files from Matlab
ii_get_area.dll ii_get_area.mexsol
ii_get_bits.dll ii_get_bits.mexsol
ii_get_items.dll ii_get_items.mexsol
ii_get_word.dll ii_get_word.mexsol
ii_lock.dll ii_lock.mexsol
ii_merge_bits.dll ii_merge_bits.mexsol
ii_set_area.dll ii_set_area.mexsol
ii_set_bits.dll ii_set_bits.mexsol
ii_set_merged_bits.dll ii_set_merged_bits.mexsol
ii_set_word.dll ii_set_word.mexsol
ii_unlock.dll ii_unlock.mexsol
channel.txt channel.txt
vmeii.dll libvme.so
vmeii.ini vme.conf
libxiid.so libxiid.so
source.txt source.txt
LLRF_simcon_vdsp_vme.iid LLRF_simcon_vdsp_vme.iid
LLRF_simcon_vdsp_config.iid LLRF_simcon_vdsp_config.iid
Inpout32.dll -

Configuration files in Matlab
FPGASetTiming.m
FPGAReadTiming.m
FPGASetMode.m
FPGAReadMode.m
FPGASetDAC.m
FPGAReadDAC.m
FPGASetCtrlTables.m
FPGASetBeam.m
FPGASetOutputMatrix.m
FPGASetInputCal.m
FPGASetInputMatrix.m
FPGASetIQStart.m
FPGAReadIQStart.m
FPGAReadDAQ.m

Algorithm files in Matlab
INPUT_INIT.m

 30

INITT.m
FPGAINIT.m
RE_CONTROL1.m
RE_CONTROL2.m
FPGAReloadTables.m

GUI files in Matlab (only for version 7)
FPGACAVITY.fig
FPGACAVITY.m
FPGACTRL.fig
FPGACTRL.m
HARDMON.fig
HARDMON.m
FPGAReadout.fig
FPGAReadout.m

B. List of signal available in DAQ system and for DACs

• channel 0: test signal from module TEST GENERATOR,
• channel 1: external signal CAV_ OUT_I ([1] - compare chapter 8.1),
• channel 2: internal signal CAV_ OUT_Q ([1] - compare chapter 8.1),
• channel 3: internal signal CAV_ DETUN ([1] - compare chapter 8.1),
• channel 4: internal signal CAV_VMOD ([1] - see chapter 8.1),
• channel 5: internal signal CTRL_DET_I ([1] - compare chapter 9.1),
• channel 6: internal signal CTRL_DET_Q ([1] - compare chapter 9.1),
• channel 7: internal signal CTRL_I ([1] - compare chapter 9.1),
• channel 8: internal signal CTRL_Q ([1] - compare chapter 9.1),
• channel 9: internal signal TGAIN_I ([1] - compare chapter 7.1),
• channel 10: internal signal TGAIN_Q ([1] - compare chapter 7.1),
• channel 11: internal signal TSETPOINT_I ([1] - compare chapter 7.1),
• channel 12: internal signal TSETPOINT_Q ([1] - compare chapter 7.1),
• channel13 : internal signal TFEEDFORWARD _I ([1] - compare chapter 7.1),
• channel 14: internal signal TFEEDFORWARD _Q ([1] - compare chapter 7.1),
• channel 15: internal signal TBEAM _I ([1] - compare chapter 7.1),
• channel 16: internal signal TBEAM _Q ([1] - compare chapter 7.1),
• channel 17: internal signal CAV_MODE1 ([1] - compare chapter 8.1),
• channel 18: internal signal CAV_MODE1D ([1] - compare chapter 8.1),
• channel 19: internal signal CAV_MODE2 ([1] - compare chapter 8.1),
• channel 20: internal signal CAV_MODE2D ([1] - compare chapter 8.1),
• channel 21: internal signal CAV_MODE3 ([1] - compare chapter 8.1),
• channel 22: internal signal CAV_MODE3D ([1] - compare chapter 8.1),
• channel 23: input signal ADC1 ([1] - compare chapter 5.1),
• channel 24: input signal ADC2 ([1] - compare chapter 5.1),

 31

 32

8. Acknowledgement

 We acknowledge the support of the European Community Research Infrastructure
Activity under the FP6 "Structuring the European Research Area" program (CARE, contract
number RII3-CT-2003-506395)

9. References

1. Krzysztof T. Pozniak, Tomasz Czarski, Waldemar Koprek, Ryszard S. Romaniuk -

Institute of Electronic Systems, Warsaw University of Technology, “SC Cavity SIMCON
ver. 2.1 rev. 1, 02.2005 – User’s Manual”, XFEL Report 2004-04;

2. Waldemar Koprek, Pawel Kaleta, Jaroslaw Szewinski, Krzysztof T. Pozniak, Tomasz
Czarski, Ryszard S. Romaniuk - Institute of Electronic Systems, Warsaw University of
Technology, “Software Layer for FPGA-Based TESLA Cavity Control System (Part I)“,
TESLA Report, 2004-10

3. T.Czarski, K.T.Pozniak, R.Romaniuk, S.Simrock: “TESLA Cavity Modeling and Digital
Implementation with FPGA Technology Solution For Control System Purpose”, TESLA
Technical Note, 2003-28

4. T.Czarski, R.S.Romaniuk, K.T.Pozniak S.Simrock “Cavity Control System Essential
Modeling For TESLA Linear Accelerator”, TESLA Technical Note, 2003-08

5. K.T.Poźniak, M.Bartoszek M.Pietrusiński: “Internal Interface for RPC Muon Trigger
electronics at CMS experiment”, Proceedings of SPIE, Photonics Applications II In
Astronomy, Communications, Industry and High Energy Physics Experiments, Vol.
5484, 2004, Bellingham, WA, USA;

6. http://www.mathworks.com

	ABSTRACT
	
	
	Cavity Simulator & Controller for VUV-FEL

	Introduction (SIMCON release policy)
	Hardware and software installation of SIMCON system
	SIMCON system configuration with SUN controller
	Hardware installation
	Software installation for Matlab on SUN
	Booting FPGA

	SIMCON system configuration with EPP-VME controller and PC-Windows
	Hardware installation
	Software for Matlab installation on PC-Windows
	Booting FPGA from PC

	FPGA configuration – Matlab fi�
	Functional parameters of SIMCON
	Timing system
	SIMCON function selection
	DAC output signals
	Loading and exchanging of control tables
	Loading and exchanging of beam table
	Settings of calibration parameters
	Setting of IQ detection start point

	Readouts

	Algorithm files in Matlab
	Matlab graphical user interfaces
	Controller
	Cavity simulator
	Readouts

	DOOCS graphical user interfaces
	Controller
	Simulator
	Readouts

	�
	Attachments
	
	
	Files used to boot SIMCON 2.1
	Direct access to FPGA registers files from Matlab
	Configuration files in Matlab
	Algorithm files in Matlab

	Acknowledgement
	References

