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ABSTRACT 
The note describes integrated system of hardware controller and simulator of the 

resonant superconducting, narrowband niobium cavity, originally considered for the TTF and 
TESLA in DESY, Hamburg (now predicted for the VUV and X-Ray FEL). The controller 
bases on a programmable circuit Xilinx VirtexII V3000 embedded on a PCB XtremeDSP 
Development Kit by Nallatech. The FPGA circuit configuration was done in the VHDL 
language. The internal hardware multiplication components, present in Virtex II chips, were 
used, to improve the floating point calculation efficiency. The implementation was achieved 
of a device working in the real time, according to the demands of the LLRF control system for 
the TESLA Test Facility. The device under consideration will be referred to as 
superconducting cavity (SCCav) SIMCON throughout this work. 

This document is intended to be used by end users and operators. It describes step by 
step how to install SIMCON in specific configuration, how and what software to copy to 
computer. There is described set of basic Matlab functions for developers of control 
algorithms.  

This paper also contains brief description how to use Matlab function of one algorithm 
with its graphic user panels. 
  
 
Keywords: Super conducting cavity, cold option, cavity simulator, cavity controller, linear 
accelerators, FPGA, FPGA-DSP enhanced, VHDL, FEL, TESLA, TTF, UV-FEL, Xilinx, 
FPGA based systems, LLRF control system of third generation, electronics for UV-FEL, X-
Ray FEL and TESLA. 
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1. Introduction  (SIMCON release policy) 
 

The SIMCON hardware and software ver.2.1. is designed to control and simulate a single, 
TESLA technology based, superconducting cavity. The difference with ver.1.1. is that it can 
be used with a standard PC, via the LPT interface. This approach opens a path to control the 
system using standard web technologies. 

The SIMCON hardware and software is a unity and is not provided by the designers 
separately or in parts. The reason is fast development of the next versions of the SIMCON 
system and not full compatibility between the versions. This kind of release policy is a must 
because there exist numerable versions of the test software for SIMCON, which are used 
internally for the development purposes. The designers are not able to support different 
products at the premises of different users of the SIMCON system. The system is in a 
developmental stage and not yet fully user friendly. In particular it has not got a fail safe 
mode of work.  

Apart from this specific confinement the designers are eager to cooperate with potential 
SIMCON users and are ready to provide the whole system in a closed and fully supported  
form ready to be implemented at the user’s premises.  
  

2. Hardware and software installation of SIMCON system 
 

The SIMCON system is predicted to work either in the VME crate or as a stand alone 
device. It can work with two VME controllers:  

a) EPP-VME controller designed by ELHEP Group which can work in slot 0 of the VME 
crate. One side of the EPP-VME controller is terminated with a VME interface, while 
the other side is terminated with LPT port. The latter interface can be connected to a 
standard or embedded PC; 

b) SUN Spark controller with the VME interface and Solaris operating system. 
The SIMCON itself contains also the LPT port which can be directly connected to a PC. 

Due to this useful feature the SIMCON user does not need the VME crate to install the 
system. It can work as an independent device outside the VME crate. While working outside a 
crate, the SIMCON needs another source of power. The communication between the  
SIMCON and the possible system assembly configurations are shown in figure 1. 

In reference to the above hardware configuration schemes there are possible different 
software configurations.  

The lower layers of the software are dedicated libraries for FPGA solutions. One of these 
libraries (II Engine) parses “iid” (Internal Interface Definition) file, the others are responsible 
for communication between the channels.  

Figure 2 presents the software configuration appropriate for hardware configuration from 
figure 1.a). In this case, the SUN station is used as a VME and software controller for the 
SIMCON. Only this configuration can be used with the DOOCS. The DOOCS software for 
the SIMCON is described in short in the following chapters. 
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controller and PC, c) with local EPP interface, d) with independent power source  
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2.1. SIMCON system configuration with SUN controller 
 

2.1.1. Hardware installation 
 

This is the most required type of hardware configuration, because it is used now 
commonly in the experiment.  

Before installing the SIMCON in VME crate it is necessary to specify its base address. 
The SIMCON also needs 26624 bytes (hex 0x6800) of its address space within the SUN 
address space. The SUN uses VME address modifier 57 to communicate with devices. It 
means that the address has 24 bits and 16777216 bytes of address space. The developer 
should know the address space configuration, in particular of the VME crate, to make the  
address allocation for the SIMCON.  

Figure 2 contains an example of exemplary address configuration. To set the  base 
address, there is a dedicated switch SW1 on the SIMCON motherboard. It has 8 micro-
switches which allow to set the eight most significant bits of the address (from 23rd down to 
15th). In this case, there are used only four switches from S4 to S8 and only the address lines 
from 23rd to 20 on the VME bus are used.  

For example, figure 3 presents how to set the base address 0xC00000 for SIMCON. It 
means that the SIMCON will react for each address from 0xC00000 to 0xC06800. When the 
address is asserted on the VME address bus by VME controller, the address monitor 
component inside Altera chip compares the four most significant lines from the bus with the 
four most significant switches from the address switches. 
 
 

 

0#FFFFFFF

0#C06800
SIMCON address space 

0#C00000

Other devices 

0#010000
SUN address space 

0#000000

Figure 4. Exemplary configuration of address space  
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Figure 5. Setting for SIMCON base address 0xC00000 with the switch 

SW 1 (switch is positioned on SIMCON board).  
 
 
 
After this introductory technical step, the  SIMCON board can be installed in the VME 

crate in an arbitrary free slot, except the first one. The whole SIMCON module is 3 slots 
wide.  

The SIMCON board consists of two sub-boards: 
- VME-MB – carrier mother board with Altera chip and internal interface to the VME; 
- Nallatech board – the evaluation DSP processing board with Xilinx chip (consisting of 

MB and DB). 
Both boards have FPGA chips with internal logic and internal space of addresses. There is 

a need for a method to distinguish between these two addressing spaces. For this purpose, 
there  are used lines from 19 to 16 on the VME address bus. The Altera chip has the address 
0xF0000 and the Xilinx chip has the address 0x00000. In order to address the specific chip, 
the address of this chip should be added to the base address of the whole board. Therefore, for 
the base address 0xC00000 the chips have the following addresses: 

- Altera - 0xC00000 + 0xF0000 = 0xCF0000; 
- Xilinx - 0xC00000 + 0x00000 = 0xC00000. 
The above addresses of the chips are also addresses of the first registers inside the specific 

FPGA chip. The principles of the usage of VME address bus are presented in figure 6. 
 
 
 

 

23 20 19 16 15  1 VME address bus line number 

Board 
base address 
in VME crate 

Address of the 
FPGA chip 

Addresses of Internal Interface elements inside specific 
FPGA chip 

Figure 6. Usage of address lines on VME address bus 
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2.1.2. Software installation for Matlab on SUN 
 
To install the software for Matlab it is necessary to copy only several files. The files 

can be divided into a few groups. The list of theses files can be found in attachment A. These 
files, except for GUI files, can work in Matlab version 6.5 or 7. The GUI files are appropriate 
only for Matlab 7, because they are incompatible with Matlab 6.5. 
 
Functions providing direct access to FPGA registers 
  

This kind of function works as MEX-type functions in the Matlab. They are the basis 
for all other m-files described in the following chapters. There is only one way to get access 
to the FPGA registers and memories through these functions. They are used to operate on the 
physical elements of FPGA system (i.e. bits, registers, memories). Direct access functions are 
described in details in TESLA Report [1].  
 
Configuration files 

 
Configuration files are used to perform the basic operation on the sets of FPGA 

registers. For example, to write a new version of the Feed-Forward table, there have to be 
performed many operation on the FPGA chip using direct access functions. In order to 
simplify such kind of operations, there were prepared m-functions. These m-functions can be 
used to operate on the functional blocks of FPGA controller and simulator (i.e. operating 
tables, rotation matrixes, IQ detector parameters, etc.). The system developers who have 
worked out their own control algorithms in Matlab can use these functions to download 
control tables and parameters to FPGA and make the result readouts. 

 
Algorithm files 
  

This set of m-files contains one version of worked out algorithm for FPGA controller. 
Details of this algorithm for simulator and controller are presented in TESLA Reports [3], [4] 
and [5].  
 
GUI files 
  

All files described above are used in the graphical user interfaces. The GUI were made 
using Matlab tool the“GUI Builder”. There are several GUI windows: for the simulator, the 
controller and for the readouts. These panels are described in further chapters. 
 

The files listed in attachment A can be copied to one folder. Some files are different 
for different platform, therefore only files for proper platform should be copied. 
 

2.1.3. Booting FPGA 
 
There are two FPGA chips in the SIMCON 2.1. system. The Altera chip is placed on the 

VME mother board and is booted from the EPROM on the board automatically after the 
power on. Thanks to that, the VME interface is ready to work after a few milliseconds after 
the power is on. 
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The second FPGA chip is the Xilinx one on the Nallatech board. It can be programmed 
from external system like SUN or PC through the VME Bus and Altera chip on the mother 
board using JTAG standard. 

In order to boot the Xilinx chip, there are used the files listed in attachment A. The base 
address in file vme.conf should have the value: BootAddress = BaseAddress + AlteraAddress 
(see chapter 1.1.1). For example, the base address of the board is 0xC00000, the 
AlteraAddress has address with value 0xF0000. Thus, the BootAddress should have the value 
0xC00000 + 0xF0000 = 0xCF0000. The next step is to run the file ‘run.sh’ from the console. 
The program should show some messages about the progress of booting. The booting process 
takes about 1 minute and 40 seconds. When the program finishes the booting, the Xilinx and 
the whole SIMCON system are ready to use. The green configuration LED D1 on the 
Nallatech board should blink to indicate the successful configuration. 
 

2.2. SIMCON system configuration with EPP-VME controller 
and PC-Windows 

 

2.2.1. Hardware installation 
The hardware installation in this configuration differs only in installation procedure of 

the VME bus controller. The installation of the SIMCON board is the same and it is described 
in chapter 1.1.1. The EPP-VME controller should be installed in slot 0 of the VME crate. 
There is LPT port in front panel of the controller which is used to connect a PC with the LPT 
cable. The corresponding hardware configuration is shown in figure 1 b). The software 
configuration is presented in figure 3. The LPT port of the PC must be configured to the EPP 
protocol in BIOS. 
 

2.2.2. Software for Matlab installation on PC-Windows 
The software files can be copied to one folder on the PC. The Windows version of 

communication files should be taken into account. The explanation of groups of files is in the 
chapter 1.1.2. 
 

2.2.3. Booting FPGA from PC 
The method of booting the SIMCON in the PC-Windows configuration is the same 

like for the SUN configuration and it is explained in chapter 1.1.2. The only difference is in 
the names of the booting files. The configuration file has name vmeii.ini and the boot file has 
name boot_simcon2.1-3000.bat for the Nallatech board with Xilinx xc2v3000 and 
boot_simcon2.1-2000.bat for Nallatech board with Xilinx xc2v2000. 

The booting process takes much more time in this configuration than in the SUN 
configuration because of the speed of the LPT port. 

 9



 

3. FPGA configuration – Matlab files – manual 
This chapter describes some sets of Matlab functions which allow to get access to the 

functional parts of the SIMCON or just to its functionalities. The TESLA note [1] deals with 
hardware description of SIMCON. It presents a detailed description of all registers and 
switches inside the FPGA. To set configuration of some working modes, there is a need to 
load many different values to different registers in the FPGA using basic MEX-functions like 
ii_set_word(), ii_set_bits or ii_set_area(). These tasks are quite 
complicated, because the user needs knowledge of all configuration registers and their 
configuration values. That is why there has appeared the need to create some set of higher 
level Matlab functions which would allow the user to set some modes of work. For example, 
in order to set the controller mode or cavity simulator mode, the user does not need to know 
how many and which registers should be set. He only needs to use one simple Matlab function 
FPGASetMode(mode) with one argument. The same method is used for the readouts. In 
order to read some signals from the FPGA, there should be done quite complicated 
combination of setting and reading registers and memories. Instead of this, there is a simple 
function FPGAReadDAQ(Signals).  

Many of these functions are described below, but there still appear new functions, 
which allow, in easy way, to perform some actions on the SIMCON. This set of functions can 
be used for Matlab control algorithms development or by programmers, like to create the GUI 
interfaces for the SIMCON.  

This chapter described only several basic functions, because the number of these new 
functions changes quite fast and it depends on the requirements of new prepared algorithms 
based on the SIMCON. 

Figure 7 presents block diagram of the SIMCON. It will be useful during the 
description of the details of the following functions.  

 

 
Figure 7. Block diagram of the SIMCON system 
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3.1. Functional parameters of SIMCON 
 

This chapter presents the basic functions which can be used to set parameters and 
functionalities  which read the status of different components of the SIMCON system. 
 

3.1.1. Timing system 
 

The timing system is used to provide 1MHz clock and trigger signal. Timing signals 
can be delivered from the internal clock system or from external system through the digital 
inputs. A single simple function is used for this purpose 
 

FPGASetTiming(mode) 
 

mode   –   0: timing signals from internal clock system;  
mode – 1: timing signals from external clock system; 
 
 
result = FPGAReadTiming() 
 
result – number, which indicates mode of timing system 

 
When the internal source clock system is set, the two LEDs (name: 1MHz, TRG), 

which are located on the SIMCON front panel, should blink.  
When the external source timing signals is set, then the same LEDs should blink if the 

timing signals are connected to digital inputs described as 1MHz and TRG on the front panel. 
More about the timing system can be found in [1] chapter 4. 

 

3.1.2. SIMCON function selection 
 
The SIMCON system can work in three main modes: 
 

- controller mode – in this mode, the FPGA controller is used to receive modulated 
signal from the real cavity and to drive klystron through the vector modulator. It 
means, that ADCs are connected to the input of the controller. Modulated signal from 
the cavity probe should be connected to ADC1. Output of the controller (I and Q 
control signals) are connected to DACs. 
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SIMCON 
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DAQ1 

Probe FPGA CONTROLLER 
Q ADC1 

DAQ2 

Figure 8. Block diagram of SIMCON in the controller mode -  
 
- cavity simulator mode – in this case, the ADCs are connected to the input of cavity 

simulator. The control signals from external control system (I and Q signals) drive the 
cavity simulator. The output of cavity (modulated signal) is connected to DAC1 and 
the detuning signal is connected to DAC2. 

 

 

SIMCON 

I Probe 
ADC1 DAQ1 

FPGA CAVITY 
SIMULATOR Q Detuning 

ADC2 DAQ2 

Figure 9. Block diagram of SIMCON in the cavity simulator mode 

- internal loop mode – this mode allows to use the cavity simulator and controller 
together. It means that the output of cavity simulator is connected to the input of 
controller and outputs of controller are connected to the input of cavity simulator. All 
these connections are implemented inside the FPGA. No additional connections are 
required from outside of the FPGA. The ADCs are not used in this mode.  The DACs 
can be used to provide any one from  22 internal signals from the FPGA structure as 
the analog signals.  
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Setting one of these modes needs configuration of many internal registers of the 
SIMCON. In order to do that there is used one function: 
 

FPGASetMode(mode) 
 

mode – 0: controller mode; 1: cavity simulator mode; 2: internal loop; 
 
 
 result = FPGAReadMode() 
 

result – number, which indicates mode of SIMCON 
 

Read function at the end of configuration process starts the work of selected block like 
controller and/or cavity simulator. 

More about functional modes of the SIMCON  can be found in [1] chapters 8 and 9. 
 

3.1.3. DAC output signals 
 

In the internal loop mode, the DACs can be used to observe (on the scope) the analog 
version of digital internal signals from the FPGA. Selected signal is provided to the input of 
DAC and then converted to analog signal. There can be observed 22 signals at the output of 
the DACs. In order to do that, there can be used the following function: 
 

FPGASetDAC(dac1, dac2) 
 

dac1, dac2 – number of internal signals, which can be observed at the output of 
DAC; 
 
result = FPGAReadDAC() 
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result – it is a vector of two elements. First number indicates signal on DAC1, the 
second one current signal on DAC2. 

 
More about DAC can be found in [1] chapter 12. 

3.1.4. Loading and exchanging of control tables 
 

There can be specified 3 pairs of control tables for the controller: 
FEEDFORWARD_I, FEEDFORWARD_Q, SETPOINT_I, SETPOINT_Q, GAIN_I and 
GAIN_Q. Each table can be loaded independently. In this case, the tables are always loaded 
in “exchanging tables’ mode”. It means that the controller, simulator or both can work and the 
control tables can be replaced by new tables between pulses without disturbing the work of 
the system. That is why the table should be exchanged in pairs i.e. always I and Q of specific 
table. However, not all of these tables are required when the exchanging function is invoked.  
 

result = FPGASetCtrlTables(tables) 
 

tables – this is matrix which contains new data for the tables which will be 
replaced. The matrix consists of tables in the following order: FEEDFORWARD_I, 
FEEDFORWARD_Q, SETPOINT_I, SETPOINT_Q, GAIN_I and GAIN_Q. 

 
This function can be execute even during the pulse, because the data is loaded to spare 

parallel tables, which correspond to the control tables. These parallel tables are inactive until 
the pulse finishes and then, before the next pulse, the current control tables are replaced by the 
parallel tables with new data. 

The method of reading of control tables is described in the next chapter. 
 

 

TAB_SWITCH_ENA

GAIN_I BEAM_I 

GAIN_Q BEAM_Q 

SETPOINT_I DAQ1 

SETPOINT_Q DAQ2 

FEEDFORWARD_I DAQ3 

FEEDFORWARD_Q DAQ4 

MAIN CONTROL TABLES AUXILIARY TABLES 

Figure 11. Scheme of control tables exchange mechanism 
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More about the architecture of SIMCON tables can be found in [1]. 
 

3.1.5. Loading and exchanging of beam table 
 

The exchange mechanism of the beam table works in the same way like the control 
table exchanging. The difference is that the beam table can be changed in the cavity simulator 
mode and the function has only one parameter. 
 
 result = FPGASetBeam(tables) 
 

tables – this is matrix which consists of two rows – BEAM_I and BEAM_Q, each 
one of 2048 samples. 

 
As it was mentioned earlier, this table can be replaced only between the pulses. 
The method of reading of the  beam table is described in the further chapter. 
More about the beam table can be found in [1] chapter 8. 

 

3.1.6. Settings of calibration parameters 
 
 The SIMCON contains some blocks which are responsible for calibration of the output 
signals from the DACs and for calibration of the input signals going into the ADCs.  
 

2.1.6.1 Setting of output rotation matrix D 
  

This square matrix is situated right before the DACs and is used for adjusting the 
amplitude and phase of output control signals. It is used all the time. The matrix has the 
following coefficients [1 0; 0 1] as default values. It means that it does not have any influence 
on the output signals. The phase rotation and scaling of amplitude make sense when the 
output signals are I and Q from the controller. To set and read the matrix coefficient there are 
used the following functions: 
 
 FPGASetOutputMatrix(amplitude, phase) 
 

amplitude – value can be within range <0;2), value ‘1’ doesn’t influence the output 
signals; 
phase – value in radians  and range from -П to П, value ‘0’ doesn’t influence the 
output signals. 
 
result = FPGAReadOutputMatrix() 
 
result – it is vector which consists of four numbers – coefficients of output rotation 
matrix, which has the following form [cos(x) –sin(x); sin(x) cos(x)]. 

 
Settings of D-matrix coefficients impacts the output signals immediately. 
More about output the calibration matrix can be found in [1] chapter 6. 
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2.1.6.2 Setting of input calibration blocks 
 
There are two input calibration blocks – one block per one ADC. They are located 

right after the ADCs outputs. One functionality of these blocks is used to compensate the 
offset of the input signals. Another functionality is to fit the amplitude of the input signals to 
the range of FPGA registers.  
 

FPGASetInputCal(adc, amplitude, offset) 
 

adc – values ‘0’ or ‘1’ indicate, which ADC will be adjusted; 
amplitude – value in the range <0;2) allows to attenuate or to amplify the input 
signal; too big value can cause saturation of the input signal; 
offset – value in the range <-217; 217-1> and it is measured in bits; 
 
 
result = FPGAReadInputCal(adc) 
 
adc – values ‘0’ or ‘1’ indicate, which ADC will be adjusted; 
result – it is a vector which consists of two numbers, first one is the calibration 
amplitude, the second one is offset calibration. 

 
Settings of the input calibration block impacts the output signals immediately. 
More about the input calibration can be found in [1] chapter 5. 
 

2.1.6.3 Setting of input rotation matrix C 
 
This square matrix is positioned right after the IQDetection block and is used for 

adjusting the amplitude and phase of the input signal from cavity. The I and Q signals from 
the output of IQ detector block are multiplied by matrix C. It is used all the time when the 
controller is running. As a default, the matrix has the following coefficients [1 0; 0 1]. It 
means that it does not have any influence on the incoming signal. To set and read the matrix 
coefficient there are used the following functions: 
 
 FPGASetInputMatrix(amplitude, phase) 
 

amplitude – value can be within the range <0;2), value ‘1’ does not influence the 
output signals; 
phase – value in radians  and range from -П to П, value ‘0’ does not influence the 
output signals. 

 
Settings of C-matrix coefficients impacts the output signals immediately. 
More abut the input calibration matrix C can be found in [1] chapter 7.2.4. 
 

3.1.7. Setting of IQ detection start point 
 
As it was described in the previous documents [1-5], there is an IQ detection block, 

which uses the samples of modulated signal from the cavity every 1µs. These samples 
represent the in phase I and quadrature Q part of the complex signal and they appear in the 
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following order I, Q, -I, -Q. The parameter DRV_START shows what means the first sample 
of input signal, whether it is I, Q, -I or –Q.  
 

FPGASetIQStart(start) 
 

start – parameter accepts the values: 0, 1, 2, 3 which correspond to I, Q, -I, -Q 
samples. Changing of this parameter by 1 causes the change of phase of the input 
signal by 90 degrees; 
 
 
result = FPGAReadIQStart() 
 
result – it is the value of start point of IQ detector. 

 
More about the IQ detection can be found in [1] chapter 9. 
 

3.2. Readouts 
 

The SIMCON system contains a special mechanism which allows to read many 
different signals from its internal structure. Figure 12 shows a block diagram of SIMCON and 
the points which can be monitored by the internal DAQ system. As it was mentioned in [1], 
the DAQ system consists of four parallel areas of memory with 2048 words each. Each word 
of the DAQ memory has 18-bit resolution and includes one sample. The samples are collected 
every 1µs. This mechanism allows to gather simultaneously four signals from 10 different 
points of the SIMCON during a single cavity pulse.  
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Figure 12. Signal points in the cavity controller for readout system 
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[Z, err] = FPGAReadDAQ(s
 

signals – vector, which can hav
and names are gathered  in the table
Z – matrix, which contains from 1
samples; 
err – value ‘0’ indicates that the
was time out. 

 
 

This Matlab function can read fro
signals to be read depends on the size of an
matrix Z depends on the size of signal
ReadDAQ, the SIMCON waits for the trig
collect samples every microsecond. The 
samples. After 2048 µs the data are read 
matrix Z. The function finishes its work. 
 
Example:  

[Z, err] = FPGAReadDAQ( 
if (err==0) then 

plot(Z(1,:)) 
hold on 
plot(Z(2,:)) 

end 
 
Result of this example is presented in figur
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Figure 14. Plots achieved with readout systems of the SIMCON system 
 

The values of readout samples of all data are calibrated in bits and its range is 
extending from -217 to 217-1 except for the tables GAIN and BEAM, which range is  -211 to 
211-1. 
More about the readouts and the DAQ system can be found in [1] chapter 10. 
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4. Algorithm files in Matlab 
 
The architecture of SIMCON is based on the algorithm of cavity simulator and controller. 

These algorithms were elaborated in Matlab. Matlab functions take as the input arguments 
several parameters, which define the condition of work of cavity simulator and controller. 
These algorithms return parameters and control tables for FPGA devices. 

The principles of algorithm were described in [3], [4] and [5]. There are listed Matlab files 
which are used for controller and simulator. Each file has detailed description there. 
 
INPUT_D=INPUT_INIT() – this function is used to initialize the structure of input 
parameters. There are several parameters, which define the condition of work of controller 
and cavity simulator. The output of this function is the pointer to the  structure of parameters. 
 
[U,Y,W]=INITT(INPUT_D) – this function prepares all parameters to initialize FPGA. 
The input parameters from structure INPUT_D are recalculated and rescaled. The results of 
this function are: 

- U - vector of scalars, which are loaded to FPGA, 
- V – matrix of tables, which are loaded to FPGA, 
- W – structure of local variables, which are used by other functions in this algorithm. 

 
FPGAINIT(U, Y) – this function loads all necessary parameters from vector U and tables 
from Y into FPGA. This function also sets up the mode of work of SIMCON. 
 
[Y,W]=RE_CONTROL1(W) – this function is used by Adaptive Feed Forward algorithm to 
recalculate new control tables for controller. It uses as input argument the structure W and 
returns the same structure with modified parameters and the tables in Y with new control 
tables. 
 
FPGAEPPReloadTables(Y,W) - the function loads to FPGA new control tables from 
variable Y and exchanges them with existing control tables between pulses. 
 
Z = FPGAReadDAQ(Sig) – this function was described in chapter 2.2. In this case, it is 
used to read signal CTRL_I, CTRL_Q and CTRL_DET_I, CTRL_DET_Q – see chapter 2.2. 
The matrix Z consists of four rows, which correspond to specific signals. After this function 
the matrix Y is updated by signals from matrix Z. 
 
[Y,W]=RE_CONTROL2(Y,W) – this function is the second part of Adaptive Feed Forward 
algorithm. It is used to estimate the half bandwidth and the detuning of cavity. These are 
crucial parameters, which are used to recalculate new control tables in function 
RE_CONTROL1. 
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5. Matlab graphical user interfaces  
There are a few graphical user interfaces, which are used to work with the SIMCON for 

dedicated windows. The functionality of these panels is based on Matlab files from chapter 3 
and algorithms described in [3], [4] and [5]. 
 

5.1. Controller 
The control panel for the cavity controller consists of two files. FPGACTRL.m contains 

Matlab code of events called from the panel. The file FPGACTRL.fig contains definition of 
appearance of the control panel. 
 

 
 

Figure 15. Control panel for cavity controller 
 

The cavity controller can work in three modes. The mode can be chosen from the combo 
box ‘Mode’. The possible configurations are: Calibration, Simulator and Controler. 

The calibration mode is used to find the offset of DACs and to find the minimum value of 
the signal at the output of the vector modulator. It is very important to calibrate the offset, 
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because due to that the level of the signal from the vector modulator and the power going out 
from the klystron will be the lowest possible.  

This mode is used to generate special signals at the output of SIMCON on DACs. When 
the ‘Calibration’ mode is chosen, one of two ‘Generate slope’ checkboxes should be checked 
in section I or Q in the frame ‘Controller Output’. Only one of these checkboxes can be 
checked in the same time. When the checkbox is set, the slope will be generated on the output 
of DACs. Depending on I or Q checkbox the slope is generated and loaded into the table 
FEEDFORWARD_I or FEEDFORWARD_Q. The slope changes from the minimum to the 
maximum value, what means from -217 to 217-1 in two complementary codes and looks like 
the first graph in figure 16 (upper one).  

This signal drives the vector modulator and the envelope of the signal at the output of VM 
looks like the second graph in figure 16 (lower one). This signal can be observed on the 
scope. Using the scope and cursor on the screen the point of the minimum can be determined. 
This point, measured in microseconds, is the number of the samples from FEEDFORWARD 
table and the value of this specific probe is the offset of the output. When the offset is 
determined, the user should write the number of the samples to the field ‘Sample’ 
corresponding to I or Q slope. The program automatically calculates the value of the offset 
and this calculated value is written to the appropriate offset register in FPGA. The method of 
adjusting the offset is identical for I and Q output (DAC1, DAC2) and must be done 
successively one after the other (in turn). 

 

 

DAC1-CTRL_I 
max 

offset t [us]
700 1300 

min 

envelope 
VM 

min 
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 Figure 16. The method of calibration of the outputs of DACs offset
 
There are also other parameters of calibration. These parameters can be set in each mode 

of work. The frame ‘Output’ in section ‘Calibration’ is used to set coefficients of the output 
matrix. This matrix, as was mentioned above, is used to rotate and change the amplitude of 
the output signals CTRL_I and CTRL_Q. The user specifies the rotation phase and the 
amplification index and the program automatically calculates the coefficients of the matrix. 
This is done in the same way like in the function FPGASetOutputMatrix (see chapter 
2.1.6.1).  
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The other calibration parameters are in the frame ‘Input’ in the section ‘Calibration’. 
These parameters are used to calibrate the signals just after the ADCs. There are two 
parameters Gain and Offset for each converter. These parameters can be changed in every 
mode of work. The parameters of section ‘Input’ and ‘Output’ can be changed any time but 
they are applied only by pushing the  button ‘Init’. 

The other modes of work of control panel are: ‘Controller’ and ‘Simulator’. The 
‘Controller’ mode is used for work with the real cavity and works with the external timing 
system. The configuration of this mode is presented in figure 8. In the ‘Simulator’ mode, the 
controller works with internal cavity simulator and the timing signals are taken from the 
internal timing module. The configuration of this mode is presented in figure 10. The 
parameters of the cavity simulator are set automatically with default values. To set other 
values of parameters, the cavity simulator panel should be used.  

In both modes of the ‘Controller’ and the ‘Simulator’ the usage of control panel is the 
same.  

The three fields called ‘Presumed detuning’ are used to determine the detuning of the 
cavity (real one or simulator). The first value determines the detuning in the point of 0, the 
second one – at the beginning of the flattop and the third one – at the end of the flattop. The 
example of the presumed detuning is presented in figure 17 on the fourth graph (lower right) – 
the red curve. This presumed detuning is used in the algorithm to calculate the first control 
tables for the Adaptive Feed Forward algorithm.  
 

 
 

Figure 17. The result of the PLOTs function for cavity parameters 
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The ‘FeedForward’ section is used to set parameters of the work of the cavity (real one or 
simulator). The slider is used to set the gradient of the field during the flattop and the ‘Phase’ 
field is used to set the phase of the field during the flattop. The values of gradient and phase 
are taken into account by the algorithm files only when the checkbox ‘FeedForward’ is 
marked. Otherwise the FeedForward tables are zero.  

The ‘FeedBack’ section is used to set the gain in fast feedback loop and the field phase is 
used to calibrate the phase of the feedback signal from the probe. The assumption is that, the 
phase of the signal from the probe is calibrated when the phase curve of the controller output 
and phase of the cavity output (probe signal) start from the same point. This situation is on the 
third graph in figure 17 (lower left). The phase of the controller (blue curve) and phase of the 
cavity (red curve) start from the same point.  

When the all parameters are set in the control pane,l the button ‘Init’ is used to apply 
them. The function INITT.m is invoked. It calculates all control parameters for the 
configuration registers inside FPGA and loads them to the chip. All the control tables like 
gain, set point and feedforward are also calculated and loaded to FPGA. After loading all 
parameters and tables, the controller is started and can work. 

This control system is based on the Adaptive Feed Forward (AFF) algorithm. The button 
‘Recontrol’ can be used to invoke the next step of loop of the AFF algorithm. The system 
makes readout from FPGA. It reads signals CTRL_DET_I and CTRL_DET_Q from FPGA. 
These are the signals after the IQ Detector block, which detects I and Q signal from probe 
signal from the cavity. These signals are used by the algorithm to calculate half bandwidth 
and detuning of the cavity. These two parameters: half bandwidth and detuning are the main 
parameters of the cavity equations, which are used to calculate the new control tables. After 
the calculation of new control tables they are loaded again to FPGA. The new tables are 
loaded to FPGA using a  special exchange method between the pulses (see chapter 2.1.4). 

To see the results of work of the controller and the cavity, there is a special function 
PLOTs.m, which is invoked by pushing the button ‘PLOT’. The window looks exactly like in 
the figure 17. The legend explains the meaning of the curves. 

In order to make the plots every time after pushing the button ‘Init’ or ‘Recontrol’, the 
checkbox ‘Plot’ should be marked. 
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5.2. Cavity simulator 
 
Control panel for the cavity simulator is presented in figure 18. This screenshot is made 

from Solaris system and, like other panels, works either in Solaris or in Windows. 
Usage of this window is very simple. Most of these parameters are self explaining or can 

be found in [3], [4] and [5]. After setting all the parameters, the button ‘Run’ should be 
pressed. The program recalculates all parameters using the input parameters and loads them 
into FPGA. 

 

 
 

Figure 18. Cavity simulator control panel 
 

This control panel can be used in parallel with panel for the controller in the mode 
‘Simulator’. When the SIMCON works in the mode ‘Controller’, the cavity simulator panel 
should not be used, because when the button ‘Run’ is pushed, the program sets the SIMCON 
in the ‘Simulator’ mode. 
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5.3. Readouts 
 
The readouts panel is graphic presentation of the function FPGAReadDAQ, which was 

described in chapter 2.2. Every chart has its own combo box with a list of all available signals 
inside the FPGA. The signal can be chosen independently for each chart. The numbers of 
signals are the input parameters for the function FPGAReadDAQ and the result is plotted in 
these four charts. The readout is invoked by pushing the button ‘Readout’. To make readout 
one after another there is a checkbox ‘Loop’ next to the button ‘Readout’. When the checkbox 
is marked, the readouts are made in infinite loop until the checkbox will be unmarked. 

 

 
 

Figure 19. Window of program for readouts from cavity simulator and controller in the 
SIMCON system 
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6. DOOCS graphical user interfaces 
 

The DOOCS software for SIMCON consists of two separated server application dedicated 
for the controller and simulator. This software is meant to be the operation environment 
instead of the developer software (mainly MATLAB). The detailed description of DOOCS 
environment will be soon presented in a separate Tesla Report in 2005. Graphical panels 
presented below were prepared with the DDD (Data DOOCS Display) – the tool dedicated for 
creating GUI for DOOCS servers. 
 

6.1. Controller  
 

The picture below presents the panel for DOOCS based controller software. It provides 
almost the same functionality as the Matlab environment. The only difference is the lack of 
the calibration mode in this version of server. It will be implemented in the future. The 
present implementation of the controller server works only in the step mode, it means that the 
RECONTROL function is called by the user by pressing RECONTROL button. All operation 
procedures in this system are the same as in the Matlab version. 
 

 
 

Figure 20. DOOCS based controller panel prepared in DDD. 
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6.2. Simulator 
 

The simulator panel created in DDD also provides functionality equal to the Matlab 
version. The important difference is that it does not work in the step mode. Every change of 
any parameter on the panel triggers needed calculations and tables reloading.  
 

 
 
 

Figure 21. DOOCS based simulator panel prepared in DDD. 
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6.3. Readouts 
 

Below, an example of readout from the simulator panel was presented. The server can 
present the raw data (i.e. I and Q components) as well as the pre-calculated plots (amplitude 
and phase). 

 
 

Figure 22. An example of readout performed in DOOCS SIMCON server. 
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7. Attachments 
 

A. List of files for Matlab 
 
List of files for Matlab on SUN 
Window Solaris 

Files used to boot SIMCON 2.1 
jambo.exe jambo 
simcon3000.jam simcon3000.jam 
boot_simcon2.1-3000.bat run.sh 

Direct access to FPGA registers files from Matlab 
ii_get_area.dll ii_get_area.mexsol 
ii_get_bits.dll ii_get_bits.mexsol 
ii_get_items.dll ii_get_items.mexsol 
ii_get_word.dll ii_get_word.mexsol 
ii_lock.dll ii_lock.mexsol 
ii_merge_bits.dll ii_merge_bits.mexsol 
ii_set_area.dll ii_set_area.mexsol 
ii_set_bits.dll ii_set_bits.mexsol 
ii_set_merged_bits.dll ii_set_merged_bits.mexsol 
ii_set_word.dll ii_set_word.mexsol 
ii_unlock.dll ii_unlock.mexsol 
channel.txt channel.txt 
vmeii.dll libvme.so 
vmeii.ini vme.conf 
libxiid.so libxiid.so 
source.txt source.txt 
LLRF_simcon_vdsp_vme.iid LLRF_simcon_vdsp_vme.iid 
LLRF_simcon_vdsp_config.iid LLRF_simcon_vdsp_config.iid 
Inpout32.dll - 

Configuration files in Matlab 
FPGASetTiming.m 
FPGAReadTiming.m 
FPGASetMode.m 
FPGAReadMode.m 
FPGASetDAC.m 
FPGAReadDAC.m 
FPGASetCtrlTables.m 
FPGASetBeam.m 
FPGASetOutputMatrix.m 
FPGASetInputCal.m 
FPGASetInputMatrix.m 
FPGASetIQStart.m 
FPGAReadIQStart.m 
FPGAReadDAQ.m 

Algorithm files in Matlab 
INPUT_INIT.m 
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INITT.m 
FPGAINIT.m 
RE_CONTROL1.m 
RE_CONTROL2.m 
FPGAReloadTables.m 

GUI files in Matlab (only for version 7) 
FPGACAVITY.fig 
FPGACAVITY.m 
FPGACTRL.fig 
FPGACTRL.m 
HARDMON.fig 
HARDMON.m 
FPGAReadout.fig 
FPGAReadout.m 
 
 
 
B. List of signal available in DAQ system and for DACs 
 
• channel 0: test signal from module TEST GENERATOR, 
• channel 1: external signal CAV_ OUT_I ([1] - compare chapter 8.1), 
• channel 2: internal signal CAV_ OUT_Q ([1] - compare chapter 8.1), 
• channel 3: internal signal CAV_ DETUN ([1] - compare chapter 8.1), 
• channel 4: internal signal CAV_VMOD ([1] - see chapter 8.1), 
• channel 5: internal signal CTRL_DET_I ([1] - compare chapter 9.1), 
• channel 6: internal signal CTRL_DET_Q ([1] - compare chapter 9.1), 
• channel 7: internal signal CTRL_I ([1] - compare chapter 9.1), 
• channel 8: internal signal CTRL_Q ([1] - compare chapter 9.1), 
• channel 9: internal signal TGAIN_I ([1] - compare chapter 7.1), 
• channel 10: internal signal TGAIN_Q ([1] - compare chapter 7.1), 
• channel 11: internal signal TSETPOINT_I ([1] - compare chapter 7.1), 
• channel 12: internal signal TSETPOINT_Q ([1] - compare chapter 7.1), 
• channel13 : internal signal TFEEDFORWARD _I ([1] - compare chapter 7.1), 
• channel 14: internal signal TFEEDFORWARD _Q ([1] - compare chapter 7.1), 
• channel 15: internal signal TBEAM _I ([1] - compare chapter 7.1), 
• channel 16: internal signal TBEAM _Q ([1] - compare chapter 7.1), 
• channel 17: internal signal CAV_MODE1 ([1] - compare chapter 8.1), 
• channel 18: internal signal CAV_MODE1D ([1] - compare chapter 8.1), 
• channel 19: internal signal CAV_MODE2 ([1] - compare chapter 8.1), 
• channel 20: internal signal CAV_MODE2D ([1] - compare chapter 8.1), 
• channel 21: internal signal CAV_MODE3 ([1] - compare chapter 8.1), 
• channel 22: internal signal CAV_MODE3D ([1] - compare chapter 8.1), 
• channel 23: input signal ADC1 ([1] - compare chapter 5.1 ), 
• channel 24: input signal ADC2 ([1] - compare chapter 5.1), 
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