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Abstract

At the 1 GeV electron linac of the DESY vacuum-ultraviolet free-electron laser
an electro-optic (EO) sampling experiment has been installed permitting to measure
the time structure of the bunches with high resolution. The transient electric field
of the relativistic bunch corresponds to a sub-picosecond THz pulse which induces a
birefringence in an electro-optic crystal. The sampling of the resulting polarization
anisotropy by femtosecond laser pulses is studied in detailed numerical calculations.
The THz and the laser pulses are treated as wave packets which propagate in the
zinc telluride resp. gallium phosphide crystals. Using experimental data on the
material properties of ZnTe and GaP the effects of signal broadening and distortion
are explicitely taken into account. The most severe limitation on the time resolution
is given by the transverse optical (TO) lattice oscillation in the EO crystal. The
lowest TO frequency is 5.3 THz in ZnTe and 11 THz in GaP. The shortest bunch
length which can be resolved with moderate distortion amounts to about 200 fs
(FWHM) in ZnTe and 100 fs in GaP. The influence of the crystal thickness on the
amplitude and width of the EO signal is studied. The optimum thickness is in the
range from 100 to 300 µm. Multiple internal reflections can be suppressed by using
a wedge-shaped EO crystal.

1 Introduction

The Vacuum Ultraviolet Free-Electron Laser (FEL) at DESY has recently been upgraded
to an electron energy of 1 GeV, allowing to cover the wavelength range from about 10
to 100 nm. The FEL is based on the principle of Self Amplified Spontaneous Emission
(SASE) which opens the way to powerful lasers in the X-ray regime. Electron bunches
of extremely high local charge density are needed to achieve laser saturation in the 27 m
long undulator magnet. The 1 nC electron bunches are generated in a radio frequency
photocathode, accelerated to relativistic energies and then longitudinally compressed to
an rms pulse length of σz = 50 µm in a two-stage bunch compression scheme. Precise
measurements of the temporal profile of the compressed electron bunches are essential
for the optimization of the linac and a proper understanding of the bunch compression
mechanism including subtle effects such as coherent synchrotron radiation.
Time measurements with a resolution in the 100 femtosecond regime are at the limit of the
best streak cameras available. The electro-optic sampling (EOS) technique [1, 2, 3, 4, 5, 6]
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has the potential of eventually reaching this resolution. The principle of EOS is as fol-
lows: the electric field co-propagating with the relativistic electron bunch induces a bire-
fringence in an optically active crystal like zinc telluride or gallium phosphide, and this
optical anisotropy is sampled by an ultrashort polarized laser pulse. Alternatively, the
coherent transition radiation pulses produced by the bunches upon crossing a metallized
screen can be coupled out of the beam pipe and focused onto the EO crystal.

In this paper we present detailed numerical studies on the electro-optic effect in zinc tel-
luride (ZnTe) and gallium phosphide (GaP). The frequency dependence of the complex
index of refraction in the THz and the optical regime is taken into account and also the
frequency dependence of the electro-optic coefficient. The transient electric field of the
electron bunch corresponds to an electromagnetic pulse in the THz regime whose time
structure is essentially identical to the time structure of the electron bunch itself if the
electrons are highly relativistic (typically for a Lorentz factor γ > 1000). Using the avail-
able experimental data on the refractive index n(f) and the extinction coefficient κ(f)
in the THz regime, we calculate the coupling of this ultrashort THz pulse into the EO
crystal and its propagation in the material. The frequency dependence of the complex
refractive index n(f) + iκ(f) leads to a pulse broadening and to distortions of the pulse
shape which may become severe for very short bunches. In particular high-frequency os-
cillations develop in the EO crystal. The propagation and broadening of the laser pulse
is also considered. Ideally, both pulses should move with the same speed through the EO
crystal to obtain the best time resolution and a maximum signal in the EOS system. The
group velocity mismatch constitutes a strong limitation and is investigated in some detail.

The main limitation for the shortest time structure which can be resolved is given by
transverse optical (TO) lattice oscillations. The lowest TO frequency amounts to 5.3
THz for ZnTe and 11 THz for GaP. Near a resonance the refractive index is rapidly
changing and it is basically impossible to achieve equal group velocities of the THz and
the laser pulse. Obviously, GaP is better suited to measure very short pulses owing to its
higher TO frequency. The disadvantage is that the electro-optic coefficient of GaP is a
factor of eight lower than that of ZnTe.

The paper is organized as follows. The theoretical background of the EO effect is presented
in Sect. 2 which has been adapted from a previous report [7]. In Sect. 3 we collect the
available experimental data on the relevant material properties of ZnTe and GaP. The
principles of the mathematical and numerical treatment are explained in Sect 4. The
studies on the reconstruction of electron bunches of various length and shape are presented
in Sect. 5. The influence of material parameter variations is studied in Appendix A.
The comparison between the conventional approach to compute the EO signal by means
of an electro-optic response function and the pulse propagation method is presented in
Appendix B.
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2 Electro-Optic Effects in Anisotropic Crystals

For a homogeneous medium the electric displacement vector is given by

D = ε0εE (1)

where the (relative) dielectric permittivity ε is a scalar quantity (independent of direction).
In a crystal the polarization may depend on the direction of the electric field with respect
to the crystallographic axes. In this case the permittivity is a symmetric tensor ε̂ and D
is in general not parallel to the electric field. It is always possible to carry out a principal-
axis transformation to an orthogonal coordinate system in which E and D are related by
a diagonal matrix  D1

D2

D3

 = ε0

 ε1 0 0
0 ε2 0
0 0 ε3

 ·
 E1

E2

E3

 . (2)

If the εi are not all identical the crystal exhibits birefringence (double refraction).
The energy density of the electric field is we = 1

2
E ·D. Using Eq. (2) we can show that

the surfaces of constant energy density are ellipsoids in the D space:

ε0we = D·ε̂−1 ·D =
D2

1

ε1

+
D2

2

ε2

+
D2

3

ε3

. (3)

Defining a dimensionless vector along the direction of D by u = D/
√

2ε0we we get the
equation of the refractive index ellipsoid

u2
1

n2
1

+
u2

2

n2
2

+
u2

3

n2
3

= 1 (4)

where as usual ni =
√
εi for a nonmagnetic material. Defining the impermeability tensor

by
η̂ = ε̂−1 (5)

the ellipsoid equation can be written as

u·η̂·u = 1 . (6)

2.1 Electro-optic effect in zinc telluride and gallium phosphide

ZnTe and GaP have a cubic crystal lattice and are optically isotropic at vanishing electric
field which means that the impermeability tensor can be replaced by the scalar quantity
ε−1, multiplied with the unit matrix I. In the presence of an electric field the imperme-
ability tensor becomes

η̂(E) = ε−1 I + r ·E . (7)

The second term describes the Pockels effect. The Kerr effect which is quadratic in the
electric field is neglected here. The ellipsoid equation is now

u·η̂(E)·u =
∑

i,j=1,2,3

(
ε−1δij +

∑
k=1,2,3

rijkEk

)
uiuj = 1 . (8)
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The tensor η̂ is symmetric, hence rijk = rjik. It is convention to replace the first two
indices i, j of the tensor r by a single index:

(1, 1) → 1 r11k → r1k

(2, 2) → 2 r22k → r2k

(3, 3) → 3 r33k → r3k

(2, 3) → 4 r23k = r32k → r4k

(1, 3) → 5 r13k = r31k → r5k

(1, 2) → 6 r12k = r21k → r6k

ZnTe and GaP crystallize in the zincblende structure (two face-centered cubic lattices
which are shifted against each other by one quarter of the spatial diagonal). Owing to
the high degree of symmetry, the ZnTe (GaP) crystal is optically isotropic at vanishing
electric fields, i.e. n1 = n2 = n3 = n0. In addition, the tensor r contains only one
independent element: r41 = r52 = r63. Hence the equation of the refractive index ellipsoid
assumes the form

1

n2
0

(u2
1 + u2

2 + u2
3) + 2r41(E1u2u3 + E2u3u1 + E3u1u2) = 1 . (9)

To obtain the modified refractive indices one has to perform a principal-axis transforma-
tion.

2.2 Determination of the main refractive indices

The ZnTe (GaP) crystals used in EOS experiments are cut in the (110) plane as shown in
Fig. 1. The THz pulse and the laser pulse impinge perpendicular to this plane along the
direction [−1, −1, 0], their electric vectors lie therefore in the (110) plane. We define a
two-dimensional coordinate system (X, Y ) in this plane where X points along the [-1,1,0]
direction and Y along the [0,0,1] direction.

U3

[001]

[010]

(110) plane

[100]

Y = [0, 0, 1]

X = [–1, 1, 0]

Figure 1: Left: The (110) plane in the cubic zinc telluride crystal. Right: The coordinate

system (X,Y ) in the (110) plane. The THz and laser pulses impinge along the direction U3

which is the normal to this plane.

Let the electric vector Ea of the THz pulse enclose an angle α with the X axis (the
[−1, 1, 0] axis of the ZnTe resp. GaP crystal). Its components in the base system of the
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cubic crystal lattice are

Ea = Ea

 − cosα/
√

2

cosα/
√

2
sinα

 . (10)

Equation (9) reads in this special case

u·η̂(Ea)·u = 1

with the field-dependent impermeability tensor

η̂(Ea) =
1

n2
0

 1 0 0
0 1 0
0 0 1

+ r41Ea

 0 sinα cosα/
√

2

sinα 0 − cosα/
√

2

cosα/
√

2 − cosα/
√

2 0

 . (11)

The eigenvalues of the tensor are

λ1,2 =
1

n2
0

− r41Ea

2

(
sinα±

√
1 + 3 cos2 α

)
, λ3 =

1

n2
0

+ r41Ea sinα , (12)

and the normalized eigenvectors

U 1 =
1

2

√
1 +

sinα√
1 + 3 cos2 α

 −1
1

2
√

2 cos α√
1+3 cos2 α +sin α


U 2 =

1

2

√
1− sinα√

1 + 3 cos2 α

 1
−1

2
√

2 cos α√
1+3 cos2 α−sin α

 (13)

U 3 =
1√
2

 −1
−1
0

 .

The principal axes point in the direction of the eigenvectors. The main refractive indices
are given by

ni = 1/
√
λi .

Considering that r41Ea � 1/n2
0 this yields in good approximation

n1 = n0 +
n3

0r41Ea

4

(
sinα+

√
1 + 3 cos2 α

)
n2 = n0 +

n3
0r41Ea

4

(
sinα−

√
1 + 3 cos2 α

)
(14)

n3 = n0 −
n3

0r41Ea

2
sinα .

From Eq. (13) it is obvious that the third principal axis is perpendicular to the (110)
crystal plane1. This is also the direction of incidence of the THz pulse and the Ti:Sa Laser

1The normal to this plane is the unit vector U3.
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pulse. The vector U 1 lies in the (110) plane and encloses an angle ψ with the [-1,1,0] axis
which can be calculated using the scalar product. Using the relation cos(2ψ) = 2 cos2 ψ−1
one gets

cos 2ψ =
sinα√

1 + 3 cos2 α
. (15)

The second principal axis is parallel to the vector U 2 and of course perpendicular to U 1.
Note that some care is needed to evaluate the vector U 2 in the limit α → π/2 since the
normalization factor vanishes here while the third component tends to infinity. One finds

U 2

(π
2

)
=

 0
0
1

 .

So for α = π/2 the principal axis U 1 points in the X direction, and the axis U 2 in the Y
direction.
The principal refractive indices corresponding to the first two principal axes are n1 and
n2. The refractive index ellipse is shown in Fig. 2.

X  = [–1, 1, 0]

Y  = [0, 0, 1]

U1

E a
n2

n1

α

Ψ

U2

Figure 2: The refractive index ellipsoid projected onto the (110) plane of the zinc telluride

crystal. The difference between the refractive indices n1 and n2 is strongly exaggerated. The

electric vector Ea encloses an angle α with the X = [−1, 1, 0] axis of the ZnTe crystal while

the angle between the long half axis of the ellipse and the X axis is given by ψ(α). Both the

THz and laser pulses impinge along the normal to the (110) plane, given by the unit vector

U3 = (−1/
√

2,−1/
√

2, 0).

The Ti:Sa laser beam is incident on the ZnTe (GaP) crystal along the direction U 3 =
[−1/

√
2,−1/

√
2, 0]. Its electric vector Eb lies therefore in the (110) plane. In the crystal

of thickness d the two components of Eb along the principal axes U 1 and U 2 receive a
relative phase shift

Γ =
ω0 d

c
(n1 − n2) =

πd

λ0

n3
0 r41Ea

√
1 + 3 cos2 α , (16)
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Figure 3: Left: The angle ψ between the first principal axis of the refractive index ellipsoid

and the X axis as a function of the angle α between the electric vector Ea of the THz field and

the X axis. Right: The retardation parameter Γ, i.e. the relative phase shift between the two

orthogonal components of the laser field Eb, plotted as a function of α. The curve is computed

for a ZnTe crystal of d = 500 µm thickness and a THz field Ea = 106 V/m.

where ω0 is the angular frequency of the laser light and λ0 its wavelength in vacuum. The
rotation angle ψ of the index ellipse in the (X, Y ) plane and the relative phase shift Γ,
called retardation parameter in the following, are plotted in Fig. 3 as a function of the
angle α between the electric vector Ea of the THz field and the X axis.

2.3 Principle of signal detection

Here we give only a short summary of the signal detection scheme, for a detailed treatment
we refer to [7]. A high sensitivity can be achieved with a balanced diode detector. For
that purpose the laser beam leaving the ZnTe (GaP) crystal passes through a quarter
wave plate whose main axes are oriented at ±45◦ with respect to the horizontal direction
(i.e. the X axis). A Wollaston prism separates the two polarization components and
guides them to the two diodes of a balanced detector. The arrangement is sketched in
Fig. 4.

If the electric field of the bunch (Terahertz field) is absent the Ti:Sa laser pulse remains
unaffected by the ZnTe resp. GaP crystal and leaves it with horizontal polarization. The
quarter wave plate transforms this to circular polarization. The Wollaston prism guides
the two orthogonal components of the circular wave to the two diodes which record then
of course the same intensity. Hence the difference signal vanishes. In the presence of
a Terahertz field, however, the radiation behind the ZnTe (GaP) crystal is elliptically
polarized leading to an imbalance between the two diode signals. The difference signal is
proportional to the sine of the retardation parameter [7]

|A1|2 − |A2|2 ∝ sin(Γ) (17)

where A1 and A2 are the light amplitudes in detector 1 resp. detector 2.
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Figure 4: Simplified view of electro-optic signal detection using a quarter wave plate, a Wollas-

ton prism and a balanced diode detector. The laser is polarized horizontally. The quarter wave

plate is rotated by 45◦ with respect to the horizontal plane.

3 Electro-Optic Properties of ZnTe and GaP

3.1 Refractive index

3.1.1 Visible and infrared light

The index of refraction for visible and infrared light has been measured both for ZnTe [8, 9]
and GaP [10]. A useful parametrization for ZnTe is [8]

n(λ) =

√
4.27 +

3.01λ2

λ2 − 0.142
(18)

where λ is the photon wavelength in µm. The optical refractive index of GaP is described
by a similar expression2

n(λ) =

√
2.680 +

6.40λ2

λ2 − 0.0903279
. (19)

The refractive indices of ZnTe and GaP are respectively plotted in Fig. 5 and Fig. 6 as a
function of the wavelength in µm.

3.1.2 THz range

For frequencies far below the optical regime the complex dielectric function ε(f) of a
non-conducting crystal can be written in the form [13]

ε(f) = εel +
∑

j

Sjf
2
j

f 2
j − f 2 − iΓjf

(20)

2A parametrization in terms of the photon energy has been published by Pikhtin et al. [10].
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Figure 5: The refractive index of ZnTe for visible and infrared light. Squares: experimental

data [9], triangles: experimental data [8], solid curve: fit according to Eq. (18).
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Figure 6: Refractive index of GaP. The experimental data are indicated by squares [11] resp.

triangles [12], solid curve: fit according to Eq. (19).
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where the first term is the contribution from the bound electrons and the second term the
contribution from lattice oscillations which are treated as damped harmonic oscillators.
The coefficient εel is constant in the THz frequency range. The sum extends over all
lattice oscillations which couple to the electromagnetic field. The quantities fj, Γj and Sj

are the eigenfrequency, damping constant and oscillator strength of the lattice oscillation
j. For the electro-optic crystals ZnTe and GaP, a good description of ε(f) in the THz
regime is obtained by restricting the sum to the lowest transverse-optical (TO) lattice
oscillation:

ε(f) = εel +
S0f

2
0

f 2
0 − f 2 − iΓ0f

. (21)

The complex index of refraction is given by taking the square root:

n(f) + iκ(f) =
√
ε(f) (22)

In Fig. 7 and in Fig. 8 we plot the published experimental data for ZnTe resp. GaP on
the real and imaginary part of the refractive index as a function of frequency. For ZnTe
we observe a variation up to 25% between the data from Ref. [14] and those from Ref. [9].
Thus, we have used two different sets of fitting parameters. For Ref. [14] we use:

ZnTe : εel = 7.4 , f0 = 5.3 THz, S0 = 2.7, Γ0 = 0.09 THz

while for Ref. [9]:

ZnTe : εel = 6.5 , f0 = 5.35 THz. S0 = 2.0, Γ0 = 0.09 THz .

For the simulations in the following sections we consider the first set of parameters. We
will discuss the second set of parameters in appendix A where we analyze the influence
of parameter uncertainties on the simulated EOS signal.
The corresponding parameters used for GaP are:

GaP : εel = 8.7 , f0 = 10.98 THz, S0 = 1.8, Γ0 = 0.02 THz .
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Figure 7: a) Real part n(f) and b) imaginary part κ(f) of the refractive index of ZnTe in the

THz range. The resonance at 5.3 THz is due to the excitation of a transverse optical (TO) lattice

oscillation. The square symbols � are experimental data taken from Ref. [14], the triangles 4
from Ref. [9], the diamonds � from Ref. [15] and the circles ◦ from Ref. [16]. The curves are fits

of the experimental data using the formulas and the parameters shown in the text.
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Figure 8: a) n(f) and b) κ(f) for GaP. Here the lowest TO resonance is at 11 THz. The triangles

4 are experimental data taken from Ref. [17], the squares � from Ref. [18]. The curves are fits

of the experimental data using the formulas and the parameters shown in the text.
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3.2 Electro-optic coefficient

The electro-optic coefficient r41 is also influenced by lattice oscillations. It can be written
as a function of frequency in the form [19]

r41(f) = dE

(
1 +

Cf 2
0

f 2
0 − f 2 − iΓ0f

)
(23)

with the following parameters for ZnTe:

ZnTe : dE = 4.25 · 10−12 m/V , C = −0.07 , f0 = 5.3 THz , Γ0 = 0.09 THz .

The value of C has been taken from Ref. [20]. In Fig. 9 we show published data on
r41 as a function of frequency for ZnTe. The curve shows the frequency dependence
given by Eq. (23). The very small value of r41 at 30 THz, reported in Ref. [21], is in
gross disagreement with other data [22] and the values found in the visible range [23]. A
possible reason for this discrepancy might be the low resistivity value of ρ ≈ 103 Ω m of
the sample of Ref. [21] while ρ ≈ 4× 106 Ω m in Ref. [23] and of ρ ≈ 107 Ω m in Ref. [22].
For this reason we disregard the data point from Ref. [21]. The experimental data are too
scarce and imprecise to derive a frequency dependence of r41. On the other hand, due to
the low piezoelectric constant of ZnTe [24, 23], the value of the constant C is expected to
be small, so that the high frequency value r41(∞) should not differ appreciably from the
low frequency value r41(0). For our simulations we therefore assume a constant value of
r41(f) = 4.0 ·10−12 m/V. We have verified that no significant change in the simulated EO
signal is observed if instead of a constant r41 the frequency dependence given by Eq. (23)
is used.
The literature values on r41 for GaP are collected in Fig. 10. In the following sections we
use for GaP the frequency dependence given in Eq. (23) with the following parameters:

GaP : dE = 1 · 10−12 m/V , C = −0.53 , f0 = 10.98 THz , Γ0 = 0.02 THz .
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Figure 9: The EO coefficient r41(f) of ZnTe. The square symbols � are experimental data

taken from Ref. [23] (ρ ≈ 4× 106Ω m), the circles ◦ from Ref. [22] (ρ ≈ 107Ω m), the triangle 4
from Ref. [21] (ρ ≈ 103Ω m). The curve is obtained using Eq. (23) with the parameters shown

in the text.
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Figure 10: r41(f) for GaP. The square symbols � are experimental data taken from Ref. [19],

the triangles 4 from Ref. [25]. The curve is a fit of the experimental data using Eq. (23) with

the parameters shown in the text.
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4 Propagation of the THz and Laser Pulses

4.1 Phase and group velocities

The refractive index n of ZnTe (GaP) decreases with increasing wavelength in the optical
regime. In the THz region below the TO resonance n increases with the frequency. The
short THz and Ti:Sa laser pulses propagate with the group velocity

vg =
c

n

(
1 +

λ

n

dn

dλ

)
=

c(
n+ f dn

df

) (24)

which is in both cases lower than the phase velocity of the contributing harmonic waves.
The phase and group velocities of ZnTe and GaP are shown in Fig. 11 as functions of
frequency. For comparison also the optical group velocity at λ = 0.8 µm is plotted.
While at low frequency the THz pulse propagates with a somewhat higher speed than the
laser pulse, there is a growing mismatch in the velocities when one approaches the TO
resonance of of 5.3 THz in ZnTe and 11 THz in GaP.
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 v g
 v p h
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G a P

Figure 11: a) Phase velocity and group velocity of ZnTe in the THz range. The velocities have

been divided by c. The group velocity of optical radiation at 0.8 µm is shown as a dotted line.

b) Phase and group velocity of GaP.

4.2 Electro-optic response function

For ideal electro-optic sampling conditions the THz pulse and the laser pulse should
propagate at the same speed. The difference in speed leads to a reduced time resolution.
It is customary to characterize the electro-optic efficiency by a response function which

14



depends on the THz frequency f and the crystal thickness d:

G(f, d) =
2

1 + n(f) + iκ(f)

1

d

∫ d

0

∫ ∞

−∞
exp[i(kz − 2πf t]δ(z − vgt) dt dz

=
2

1 + n(f) + iκ(f)

1

d

∫ d

0

exp

[
i 2πf z

(
1

vph(f)
− 1

vg

)]
dz (25)

where vph(f) is the phase velocity at the THz frequency f and vg the optical group velocity
at the laser wavelength. The factor

Atrans(f) =
2

1 + n(f) + iκ(f)
(26)

is the frequency-dependent transmission coefficient for the transition of the THz electric
field from vacuum into the EO crystal 3. The EO response function of ZnTe is shown in
Fig. 12 for different crystal thicknesses from 100 µm to 1 mm. It is obvious that high

0 1 2 3 4 5 6 7 8 9 1 00 . 0

0 . 2

0 . 4

1 0 0 0  µm
3 0 0  µm

 

 

G 
( f 

)

f  [  T H z  ]

d = 1 0 0  µm

Z n T e

Figure 12: EO response function of ZnTe for crystal thickness of 100 µm, 300 µm and 1000 µm.

THz frequencies can only be reached in sufficiently thin crystals. The TO resonance sets
an upper limit of about 4.5 THz to the accessible frequency range.

Gallium phosphide permits to double the frequency range. From Fig. 13 one can see that
a fairly thin crystal (d ≤ 100 µm) should be used to exploit this capability. At too large

3Some authors include the EO coefficient r41(f) in the definition of the response function, given then
by G(f, d) · r41(f). This is discussed in the appendix.
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a thickness, for example d = 300 µm, GaP reaches only about 3 THz and is therefore
inferior to ZnTe with its much larger EO coefficient r41. The figures 12 and 13 suggest
to use a ZnTe crystal thickness d ≈ 300µm as a compromise between high-frequency
response and signal amplitude. For GaP the thickness should be about 100 µm if one
wants to detect signals with frequencies up to 10 THz. The small EO signal amplitude is
then an unavoidable consequence. The simulations discussed below are mainly based on
these crystal thicknesses.
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Figure 13: EO response function of GaP for a crystal thickness of 50 µm, 100 µm and 300 µm.

4.3 Propagation and distortion of a Gaussian THz pulse in the
EO crystal

Instead of using the EO response function we prefer a more physical approach in which
both the THz pulse and the optical laser pulse are propagated as wave packets through
the EO crystal. The best insight into the physics of electro-optic sampling is provided
by studying Gaussian bunches of well-defined width. Realistic bunch shapes will be
discussed in Sect. 5. We use a cylindrical coordinate system (r =

√
x2 + y2, θ, z) with

the relativistic beam moving in the z direction. The longitudinal charge distribution in
the electron bunch is described by a Gaussian of variance σz = cσt. The line charge
density is then

ρ(z, t) =
Q√
2πσz

exp

(
−(z − ct)2

2σ2
z

)
(27)
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For highly relativistic electrons with a Lorentz factor γ > 1000 the electric field of the
bunch is concentrated in a flat disk perpendicular to the direction of motion. The field
has mainly a radial component and can be written as

Er(r, z, t) =
ρ(z, t)

2πε0r
. (28)

Let the EO crystal be located at z = 0 at a distance r0 from the beam axis. The electric
field at the position of the crystal has the time dependence

Er(t) = E0 exp

(
− t2

2σ2
t

)
with E0 =

Q

2πε0r0
√

2πcσt

. (29)

We call FE(f) the Fourier transform of the electric field pulse, which in this special case
can be computed analytically or, for more complicated charge distributions, by an FFT
(Fast Fourier Transform) algorithm. At the interface between the accelerator vacuum
and the EO crystal, some fraction of the incident wave is reflected, the remaining part
is transmitted into the dielectric crystal. The amplitude transmission coefficient depends
on frequency and is given by the expression

Atrans(f) =
2

n(f) + iκ(f) + 1
. (30)

The Fourier component of the transmitted electric field pulse is

Ftrans(f) = FE(f)
2

n(f) + iκ(f) + 1
. (31)

To propagate the THz pulse inside the EO material we subdivide the crystal into ten thin
slices of thickness δ = d/10. The Fourier component at slice j is given by

Fslice j(f) = Ftrans(f) exp

(
i
2πf

c
n(f)dj −

2πf

c
κ(f)dj

)
(32)

where dj = (j + 0.5)δ is the depth of slice j. The phase propagation is determined by the
refractive index n(f), the attenuation by the extinction coefficient κ(f). The time profile
of the pulse at slice j is then simply obtained by applying the inverse FFT to Eq. (32):

ETHz
j (t) = IFFT

[
Ftrans(f) exp

(
i
2πf

c
n(f)dj −

2πf

c
κ(f)dj

)]
. (33)

As an illustration we show in Fig. 14 the time profile of the THz pulse at 10 positions
inside a 300 µm thick ZnTe crystal. One can easily see that the pulse width increases
with increasing depth in the crystal, and that oscillations gradually develop. These high
frequency oscillations lag behind the main pulse since the THz refractive index grows
approaching the TO resonance at 5.3 THz (see Fig. 7).
Also the Ti:Sa laser pulse changes its shape when it traverses the EO crystal because the
optical refractive index has a nonlinear dependence on the wavelength, see Figures 5 and
6. Assuming a Gaussian distribution for the intensity

Ilas(t) ∝ exp

(
− t2

2σ2
0

)
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Figure 14: Left: The propagation of a Gaussian THz pulse with initial variance of σz = 20 µm

in a 300 µm thick ZnTe crystal. Plotted are the time profiles in the ten 30 µm thick slices of the

crystal. Right: The propagation of a Gaussian THz pulse and of a Gaussian Ti:Sa laser pulse in

a 300 µm thick ZnTe crystal. Plotted are the time profiles at selected positions in the crystal.

with a bandwidth-limited FWHM (full width at half maximum) of ∆t = 2
√

2 ln 2σ0 = 15 fs
for the Ti:Sa laser (Femtosource COMPACT, Femtolasers, Vienna) used in our EOS
experiment we expect a growth of the variance with increasing depth in the EO crystal [26]

σ(z) = σ0

√
1 +

(
z

Lchar

)2

(34)

with a characteristic length [26]

Lchar =
∆t2

4 ln 2 d
dω

(v−1
g )

.

One gets Lchar = 30 µm in ZnTe and Lchar = 42 µm in GaP. Figure 14 shows the THz
and laser pulses at selected positions inside the 300 µm thick ZnTe crystal. The laser
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pulse moves at a lower speed than the THz pulse4 and due to the nonlinear dispersion its
width increases.
The detrimental effects of group velocity mismatch and pulse distortion are of course
reduced by choosing a thinner crystal, but at the price of a lower detector signal. A
quantitative analysis will be presented in the next section.

4.4 Phase retardation and balanced detector signal

4.4.1 Without laser pulse broadening

In the previous section we have computed the shape of the THz pulse in the 10 thin slices
of the EO crystal and the relative timing with respect to the laser pulse5. Equation (16)
will now be applied to calculate the retardation parameter Γ for each slice. The angle
between the electric vector of the THz field and the crystallographic axis [-1,1,0] is chosen
as α = 0. To be accurate, also the frequency dependence of the EO coefficient r41 must
be considered. This is done by multiplying the Fourier component of the propagated
THz pulse (Eq. (32)) with r41(f), and by applying then the inverse FFT. The “effective”
electric THz pulse in slice j is therefore given by

Eeff
j (t) = IFFT

[
Ftrans(f) exp

(
i
2πf

c
n(f)dj −

2πf

c
κ(f)dj

)
· r41(f)

]
(35)

Since for ZnTe we disregard the frequency dependence of r41 these pulses have the same
shapes as shown in Fig. 14. In case of GaP the propagation of an “effective” Gaussian
THz pulse (see Eq.(35)) with initial variance of σz = 10 µm in a 100 µm thick crystal is
shown in Fig. 15. Approximating for the time being the laser pulse by a delta function we
see immediately from the above figures that the phase retardation Γj generated in slice
j is proportional to the electric field amplitude Ej(tj,laser) at the arrival time of the laser
pulse in slice j,

Γj =
2π

λ0

n3
0 δ E

eff
j (tj,laser) .

This time is

tj,laser = dj/vgroup + τ

where we have allowed for a variable time delay τ between THz and laser pulse. The
total phase retardation accumulated in the EO crystal can be computed as a sum over
the contributions of each slice:

Γ(τ) =
∑

j

Γj(τ) =
2π

λ0

n3
0 δ
∑

j

Eeff
j (dj/vgroup + τ) . (36)

In the actual EOS experiment the delay τ is varied in small steps to scan the THz pulse.

4The frequency components of a THz pulse with σz = 20 µm are predominantly below 2 THz. Ac-
cording to Fig. 11 the THz pulse has therefore a higher group velocity than the laser pulse.

5The slice thickness has to be chosen small enough, so that the shift between THz and laser pulse
within a slice can be neglected. Increasing the number of slices from 10 to 20 has a negligible effect on
the computed EO signal.

19



Figure 15: Left: The propagation of a Gaussian THz pulse (variance σz = 10 µm) in a 100 µm

thick GaP crystal at selected positions. Right: Same as in the left plot, but the frequency

dependence of r41 is taken into account according to Eq.( 35). Shown is also the broadening of

a Gaussian Ti:Sa laser pulse.

4.4.2 With laser pulse broadening

The next refinement is to incorporate the laser pulse broadening. According to Eq. (34)
the rms width of the laser pulse in slice j is:

σj = σ0

√
1 +

(
dj

Lchar

)2

.

The overlap of the THz and laser pulses in each slice is computed by a convolution integral.

Γ(τ) =
2π

λ0

n3
0 δ
∑

j

[∫
Eeff

j (dj/vgroup + t)
1√

2π σj

exp

(
−(t− τ)2

2σ2
j

)
dt

]
. (37)

The signal in the balanced diode detector is proportional to sin Γ(τ), see Eq. (17). In
Fig. 16 we show the expected balanced diode detector signal as a function of the relative
delay τ between the THz and the laser pulse. The computations have been made for a
500 µm thick ZnTe crystal and a THz pulse with σz = 20 µm . The influence of laser
pulse broadening in the rather thick EO crystal is visible but not very significant. For
thinner crystals it can be neglected so it is legitimate to use Eq. (??) to compute the
phase retardation parameter Γ.

5 Quality of Bunch Shape Determination by EOS

In this section we assume various longitudinal profiles for the electron bunches: Gaussian,
Gaussian with exponential tail, sum of two Gaussians, and study how well the initial
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Figure 16: Signal in the balanced diode detector for a 500 µm thick ZnTe crystal which is

placed at a distance r0 = 14 mm from the electron beam. Bunch charge Q = 0.2 nC, rms bunch

length σz = 20 µm. Plotted is sin Γ(τ) as a function of the relative delay τ between the THz

and the laser pulse. Continuous blue curve: delta-function like laser pulse, Eq. (??). Crosses:

laser pulse broadening taken into consideration, Eq. (37).

charge distribution can be recovered by the EO sampling technique. As mentioned above,
the electrons are taken as highly relativistic so that the electromagnetic field pulse im-
pinging on the EO crystal has essentially the same time profile as the charge density in
the bunch.

5.1 Gaussian bunch shape

5.1.1 Pulse broadening

The analysis procedure for a Gaussian THz pulse has been explained in the previous
section. Here we summarize the simulation results for ZnTe and GaP crystals for THz
pulses of various width. The bunch charge is chosen as Q = 0.5 nC, the distance between
the electron beam and the spot on the EO crystal which is scanned by the laser is taken
as r0 = 14 mm. First we look at a rather thick ZnTe crystal with d = 300 µm and
compare a long THz pulse with σz = 100 µm and a short pulse with σz = 20 µm. The
long pulse traverses the ZnTe crystal with almost unmodified shape while the short pulse
suffers a significant broadening and shape distortion, see Fig. 17. The expected signal
in the balanced detector, proportional to sin(Γ), is compared in Fig. 18 with the original
THz pulse shape. In the case of a long pulse the detector signal reproduces the Gaussian
charge distribution very well. For the short bunch, however, the FWHM of the main
peak is a factor of 1.9 larger. Moreover, the main peak is followed by oscillations whose
frequency spectrum is peaked at around 4 THz, i.e. in the region where the refractive
index shows a strong rise towards the TO resonance at 5.3 THz.
Now we study a GaP crystal of 100 µm thickness. The balanced detector signal expected
from a pulse with σz = 20 µm is shown in Fig. 19. The original pulse shape is almost
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Figure 17: Left: The shape of a long THz pulse (σz = 100 µm) at selected positions in a 300 µm

thick ZnTe crystal. Right: The shape of a short pulse (σz = 20 µm) at the same positions.

reproduced, the broadening factor amounts to only 1.15. Note that no oscillations are
observed in the tail of the detector signal. This is easily understood since the 20 µm
bunch has very small Fourier components near the TO resonance of GaP at 11 GHz. A
shorter bunch, however, leads to oscillations in the detector signal, and a significant pulse
stretching (the FWHM is a factor 1.6 wider), see Fig. 19.

In Fig. 20a we show the broadening factor as a function of the rms bunch length for
ZnTe and GaP. For rms THz pulse lengths above 30 µm both EO materials are suited to
reconstruct the shape without distortion. It is evident that GaP permits the measurements
of far shorter pulses than ZnTe. However, bunch lengths with σz ≤ 10 µm cannot be
resolved even with a GaP EO crystal. The FWHM of the EO signal is plotted in Fig. 20b
as a function of the FWHM of the incoming pulse. It is evident that the lowest measurable
FWHM is 200 fs in ZnTe and 100 fs in GaP. Note that we have neglected here any time
jitter between the THz and laser pulses.
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Figure 18: ZnTe crystal, d = 300 µm. a) The balanced-detector signal (solid curve) of a long

THz pulse (σz = 100 µm) in comparison with the original pulse shape (dashed curve). b) The

balanced-detector signal (solid curve) of a short THz pulse (σz = 20 µm) compared to the

original pulse shape (dashed curve).
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Figure 19: GaP crystal, d = 100 µm. a) The balanced-detector signal (solid curve) of a

(σz = 20 µm) THz pulse in comparison with the original pulse shape (dashed curve). b) The

balanced-detector signal (solid curve) of a shorter THz pulse (σz = 10 µm) compared to the

original pulse shape (dashed curve).

5.1.2 Limits on the time resolution

For short bunches GaP is superior to ZnTe owing to the factor of two higher TO frequency.
An important question is how far one can go down in bunch length and still get a reliable
EO signal. An astonishing result of our calculations is that decreasing the GaP crystal
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Figure 20: Pulse broadening in ZnTe (triangles) and in GaP (circles). The EO crystal has a

thickness 100 µm. a) Pulse broadening factor as a function of the initial rms bunch length.

b) FWHM of the EO signal as a function of the FWHM of the electron bunch.

thickness helps only very little to improve the resolution for bunches with σz ≤ 10 µm.
This is illustrated by Fig. 21 where we compare the incoming THz pulse shape (in vac-
uum) with the THz pulse at a depth of only 5 µm in the GaP crystal. Already at such

Figure 21: GaP crystal of 50 µm thickness. The incident pulse with σz = 10 µm is shown as a

dashed curve. Dotted curve: shape of the THz pulse at a depth of 5 µm. Solid curve: balanced

detector signal.
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a small depth the propagated THz pulse has acquired a pronounced oscillatory structure
and is significantly wider than the incident pulse. In fact, it has about the same width as
the balanced detector signal produced by the entire 50 µm thick GaP crystal, see Fig. 21.
This calculation shows that a reduction of the crystal thickness far below 100 µm yields
only a marginal improvement in time resolution but has the disadvantage of a lower signal
amplitude.

The TO resonance puts indeed a rather severe limit on the shortest pulse length which
can be resolved. Figure 22 shows the propagation of extremely short THz pulses in
GaP. One observes very strong oscillations, especially in the first few microns of the
crystal, and the original pulse shape is hardly discernable. This indicates that rms bunch
lengths below 10 µm are basically inaccessible with GaP as an electro-optic sensor, and
even less so with ZnTe. The oscillations are generated by resonant amplification of the
Fourier compononents of the bunch in the vicinity of the TO crystal oscillation frequency.
A remarkable observation is that the strongest oscillations are introduced by the EO
coefficient r41(f).

Figure 22: Extremely short pulses in a GaP crystal of 100 µm thickness. Left: Shape of a

Gaussian THz pulse with initial σz = 5 µm at selected positions in the crystal. Right: Shape of

the “effective” pulse, taking into account the contribution of r41(f) according to Eq. (35).

5.1.3 Dependence of the EO signal on the crystal thickness

Ideally the amplitude of the EO signal should be directly proportional to the thickness d
of the EO crystal. In reality, the THz pulse distortion leads to a slower than linear rise of
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the balanced detector signal with d and eventually to a saturation. This is demonstrated
in Fig. 23. Another disadvantage is that the FWHM of the signal grows considerably
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Figure 23: Dependence of the electro-optic signal on the thickness d of the EO crystal. Top

graphs: signal amplitude sin(Γ) vs. the thickness d. Left: a pulse with σz = 20 µm in ZnTe;

right: a pulse with σz = 20 µm (squares) and with σz = 10 µm (diamonds) pulse in GaP. Bottom

graphs: FWHM of the detector signal as a function of d. Left: ZnTe, right: GaP. The FWHM

of the incident pulse is shown as a solid line (σz = 20 µm) and as a dashed line (σz = 10 µm).

towards larger thickness. In order to preserve a good time resolution the crystal thickness
should therefore not exceed d = 100 µm by a large factor. On the other hand, going to
d = 50 µm or less does not really improve the resolution but only leads to much smaller
signals.
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5.2 Other bunch shapes

In Figure 24 we compare the balanced-detector signal from a 100 µm thick ZnTe resp.
GaP crystal for a pulse shape that is expected in the present bunch compression scheme
at the linac of the VUV FEL. The pulse consists of a Gaussian (σz = 20 µm) with an
exponential tail [27, 28]:

E(t) =

exp(− t2

2σ2
t
) for t < t1

A exp (−t/τ1)√
(t+t0)/τ1

for t > t1
(38)

where the following parameters are used:

A = 0.47, σt = 66.7 fs, t1 = 8.9fs, τ1 = 500fs, t0 = 100 fs.

As shown in Fig. 25 we have also studied the response of 100 µm thick ZnTe and GaP
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Figure 24: A Gaussian bunch with exponential tail from Eq.(38) (dashed curve) and its

reconstruction (solid curve) in an EO experiment with a 100µm thick ZnTe (a) and GaP (b)

crystal.

crystals for a double Gaussian given by:

E(t) = exp (− t2

2σ2
t

) + A exp (−(t− t1)
2

2t20
) (39)

with the following parameters:

A = 0.2, σt = 66.7 fs, t1 = 200 fs, t0 = 500 fs.

For both bunch shapes the signal is far better reproduced with GaP instead of ZnTe
as an EO sensor. The oscillations on the tail which are prominent in the ZnTe data are
largely suppressed using GaP because of the larger TO resonance frequency of 11 THz
compared to 5.3 THz in ZnTe.
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Figure 25: A double Gaussian bunch according to Eq.(39) (dashed curve) and its reconstruction

(solid curve) in an EO experiment with a 100 µm thick EO crystal. (a) ZnTe, (b) GaP.

5.3 Multiple reflections in the EO crystal

The THz pulse can undergo a reflection at the exit surface of the crystal, move back, and
after a second reflection at the front surface, move again through the crystal in forward
direction. This is sometimes referred to as the Fabry-Perot effect. The double-reflected
pulse will be scanned by the laser if the laser pulse is delayed by the travel time 2d/vTHz.
The Fourier transform of the double-reflected THz pulse, just behind the front surface of
the EO crystal, is given by

Fdouble(f) = Ftrans(f)A2
ref exp

(
i
2πf

c
n(f) (2d)− 2πf

c
κ(f) (2d)

)
, (40)

where Aref = [1− n(f)− iκ(f)]/[1 + n(f) + iκ(f)] is the amplitude reflection coefficient.
These Fourier components are propagated to the ten slices of the crystal in the same
manner as was applied for the direct THz pulse, see Sect. 3. The phase retardation
signal in Fig. 26 shows the direct signal, and after the delay of 2d/vTHz, the signal from
the double-reflected THz pulse. This second signal is much weaker, about 20% of the
first peak, mainly due to the reflection coefficient which enters quadratically. The next
reflection will produce a pulse at twice the delay but with a signal amplitude of only a
few per cent of the main peak. This and even higher-order reflections will be easily lost
in the noise, so we refrain from summing up the Fabry-Perot effect in a geometric series.
Also the laser pulse will undergo multiple reflections in the EO crystal. If the double-
reflected laser pulse coincides with the double-reflected THz pulse one gets a contribution
to the balanced detector signal at the position of the first main peak. This contribution
is small since not only the THz pulse but also the laser pulse is attenuated by the double
reflection. The effect can be avoided altogether if one uses a wedge-shaped EO crystal.
The EO crystal then acts like a prism and deflects the direct laser beam by an angle
of (n − 1)α where α is the wedge angle and n the refractive index for laser light. The
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Figure 26: The balanced detector signal of a Gaussian THz pulse with σz = 20µm in a 100 µm

thick ZnTe crystal. Both the direct and the double-reflected pulse are shown.

double-reflected laser beam will leave the EO crystal at a deflection angle of (3n − 1)α
and can therefore be easily separated from the direct laser beam. Note, however, that the
wedge angle does not eliminate the multiple reflections of the THz pulse. The reason is
that the electric field carried by the electron bunch is not well collimated like the Ti:Sa
laser beam, but extends on the whole EO crystal.

6 Summary

Using the available experimental data on the material properties of ZnTe and GaP
(frequency-depenent complex refractive index and electro-optic coefficient) we have stud-
ied the effects of pulse broadening, pulse shape distortion and group velocity mismatch in
EOS experiments. Only the standard case has been considered where both the THz and
the femtosecond laser pulse impinge perpendicular to the surface of the EO crystal. Our
conclusion is that the shortest pulse length which can be recovered without significant
distortion amounts to 200 fs (FWHM) in ZnTe and to 100 fs in GaP. Any time jitter
between the THz and the laser pulse has been disregarded. In this paper we have not
considered more advanced EO techniques such as temporal decoding [6] which permit
high-resolution single-shot electron bunch diagnostics.

We want to thank Frank Ludwig for useful discussions.
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Appendix A

Influence of Parameters Uncertainties on the EO Signals

In the literature, as seen in section 2, there are differences up to few percent in the values
of the material parameters needed for the simulations of the EO signal. In this section we
investigate the effect of these uncertainties on the signal shape. By using the following
parameters for ZnTe [9]:

ZnTe : εel = 6.5 , f0 = 5.35 THz, S0 = 2.0, Γ0 = 0.09 THz

for a crystal with thickness d = 100 µm and a Gaussian THz pulse with σz = 10 µm
we obtain the balanced detector signal shown in Fig. 27. For comparison the signal
obtained with the parameters used in the previous sections [14] is also shown. A difference
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Figure 27: ZnTe crystal, d = 100 µm. a) The balanced detector signal of a Gaussian THz pulse

(σz = 10 µm) obtained with the parameters from Ref. [9] (solid curve) and with the ones from

Ref. [14] (crosses). Shown is also the original pulse shape (dashed curve). b) The balanced-

detector signal of a THz pulse with an initial shape given by Eq. (38) (dashed curve), computed

for the parameter sets [9] (solid curve) and [14] (crosses).

of 7% is observed in the FWHM of the balanced detector signals. For longer bunches
with σz > 15 µm no appreciable difference is observed. The comparison has been also
performed with the bunch shape given by Eq. (38). The FWHM of the signal of the
balanced detector obtained with the two different sets of parameters differs by less than
2%.
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Appendix B

THz pulse reconstruction with the electro-optic response func-
tion

The total phase retardation can be computed from the EO response function (Figs. 12,
13) in the following way:

Γ(τ) =
2π

λ0

n3
0 δ · IFFT [FE(f)G(f, d)r41(f)] . (41)

A comparison with the pulse propagation method is made in Fig. 28. There is very good
agreement at small crystal thickness6. Differences are only visible for thick crystals, and
these are mainly caused by the laser pulse broadening which has been taken into account
in the pulse propagation method but not in the response function method.
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Figure 28: The balanced detector signal of ZnTe computed with the pulse propagation method

(squares), taking into account the laser pulse broadening, in comparison with the response

function method (crosses). Bunch charge Q = 0.2 nC, rms bunch length σz = 20 µm. a) Crystal

thickness of 100 µm. b) Crystal thickness of 800 µm.

6When the number of slices tends to infinity, the sum in Eq. (36) goes over into an integral. Then
the pulse propagation method is mathematically equivalent to the response function method. The laser
pulse broadening can also be incorporated in the response function method.
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