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Abstract

Transient signals in strings of resonators consist of regimes with different time con-
stants: high frequency oscillations, beat signals and exponentials. If one is interested
only in the signals envelope one can transform the system of second order differen-
tial equations into a system of first order differential equations. The later carries
fast varying terms, which are averaged out, and slowly varying terms. The resulting
equations are well behaving and can be integrated numerically. Results are shown
for the filling process under beam loading of the superconducting nine—cell TESLA
cavity,

1 Introduction

Transients i strings of resonators are usually calculated by means of a Laplace transform
in matrix notation or by a discrete Laplace transform (see for instance [1]). Both
approaches become quite awkward if the string is not homogenous and/or has branches.
Also, one is often not interested in the full time response but only the signals envelope.
Then, 1t may be convenient to take advantage of the fact that the system consists of
three regimes with normally very different time constants: First, the high frequency
oscillations with the time constant Trp of one period. Second, beating signals with
time constants Trr/k where k is the coupling between resonators. Third, signals which
are related to the filling time Q/wgp.

In the following it is shown how to transform the system of second order differential
equations (DE) describing the individual resonators into a system of first order DE’s
of twice the size. The system is written in a way that the fast varying terms can be
averaged out and only slowly varying terms remain. The left over system of DE’s is
integrated numerically yielding the signal envelopes.

The method is applied to the filling process of the superconducting TESLA cavity
consisting of nine resonators. Due to the high @ of the cavity the filling time is of the
order of one ms whereas the RF period is less than one ns. The coupling between cells
1s in the percent region. Thus, the time constants are well separated and the proposed
method is ideally suited.
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2 Filling of a Single Resonator

Let us assume a single resonator which is driven by a generator via some coupling device,
Fig. 1.
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Figure 1: Single resonator driven by a generator with transformed current :* and internal

impedance R*.

i* and R* are the generators current and impedance transformed by the coupling
device. The loop equation of the circuit can be written as

g+ -Qw-i-d + wlq = fosinwgt (1)
= [idt,wo=—=.Q fo="oiy
q= y Wo = \/—-— y WL = R+ R* y JO =
For ¢ we try an ansatz called variation of constants
g(t) = a(t) coswet + b(t) sinwet . (2)

(1), (2) are two equations for three unknown functions ¢, a, b. Hence, we can impose a
third condition which we choose as

i coswyt + b sinwet =0 . (3)

Differentiation of (2) while considering (3) and substituting into (1) gives

7 wOb . wo . _ fﬂ .
(b+ QL ) cos wot — (a + oL )smwot = p” sin wot . (4)

Now, multiplying (4) with sinwet and (3) with coswot we can eliminate b through
substraction. In a similar way we eliminate a and obtain a system of first order DE’s

. Wo fo Wo . Jo
= 2wt + b 2wyt — 2wt
a+2QLa+2w0 2QL(a cos 2wt + b sin 0)+2w0 cos 2wy
bt b= — (@ sin 2wet — b cos 2uwot) + o sin 2wgt . (5)
2QL 2QL 2(4)0

So far, equ. (5) is still exact. We only have transformed the second order DE (1) for
q into two first order DE’s for a and b. Not much seems to be gained. But (5) is well
suited to determine approximately a and b if they are slowly varying, i.e. if they do not
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change much over one period Ty = 27/wy. Then, we can average the equs. (5) over T
and the right sides become zero. The solutions of the remaining left sides are straight
forward

a=2Lf (e =1) , r=2Qufwo, b=0 6)
Wy

where we have used the initial conditions ¢(t = 0) = ¢(t = 0) = 0.

For a single resonator we could have derived the envelope equations (6) easily in dif-
ferent ways. So, it is hardly worth mentioning it, if it were not to explain the procedure
for the moré complicated cases of strings of resonators.

3 Transients in a Chain of Coupled Resonators

Next, we consider a chain of N coupled resonators, Fig 2.

Figure 2: Chain of N coupled resonators driven by generator currents i}, and beam
currents 2p,.

Each resonator is coupled to a generator with transformed current z}, and impedance
R:. The beam currents 2,, are assumed to be é—function like, so they can be taken into
account as a jump in ¢, at any instant ¢. Then the second order DE’s for each loop can
be written in a matrix notation

- &y . -
Q+Q—Z(I+ﬁ)q+w§q—qu=f (7)
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q=| %2 |,8=10 A

f] sin wmt
= fasinweot
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In order to solve the system (7) we try an ansatz
q = Q[Ca + Sb], q = Q[Ca + Sb — wSa + wCb] (8)

where P
a;(t) by () 4 a

a=|a®) |, b=|bl)| Q=] &

and w, C, S are diagonal matrices with elements w;, cosw;t, sinw;t, respectively. a;(2),
b;(t) are the slowly varying amplitudes in each cell and w;, q{*) are the eigenfrequencies
and eigenvectors of the steady-state, loss—free, homogenous system respectively. The
latter are derived in the appendix. Similar to the case of a single resonator, we impose
the condition

Ca+Sb=0 (9)

in order to reduce the degree of freedom for the functions in (8). After differentiating
(8) and making use of (9) we substitute into (7) and find

A(Ch — Sa) + =2(I + 8)Qw(Cb — Sa) + M(Ca + Sb) = f (10)

Qo
with A=(I-fK)Qw , M=wjQ-Aw=0.
M is the system matrix of the steady-state, loss—free, homogenous case and thus vanis-

hes.

Because of the unitarian character of Q, Q~! = Q!, we can invert A and obtain for
(10)
. w 1
Cb — Sa+ ——(w + Pw){(Cb — Sa) = —wQ'f 11
S(w+ Pw)(Ch— Sa) = 5wQ v
with P = Q’ﬂQ. Successive elimination of 4 and b from (9) and (11) yields
1
w*(S’a — SCb) + wSP(Swa — Cwb)| = ——wSQ'f
ono [ ( ) ( )] wg Q
b+ —— [w*(C?b — CSa) + wCP(Cwb — Swa)] = —wCQY  (12)
woldo Wo

In (12) we find again products of sine— and cosine—functions which we decompose into
slowly and fast varying terms, e.g.

sin(w;t) cos(w;t) = [sin(w; — w;)t + sin(w; + w;)t]/2.

Now, we average the system over a time span approximately equal to the period of the
fast varying signals and obtain, finally, the system of first order DE’s for the slowly

varying signals

1
2w Q swb] = —mec
. 1
b+ Ww(I+P)wb+wP,wa] = ——wR, 13
g+ P | = 5 (3)
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where
In P12 cos(w; — wy)t P13 005(‘01 - wz)t
P.= | puncos(wa—w)t  pn P23 cos{wy — w3 )t
0  psin(w; —wy)t  pizsin(w; —ws)t

P, = | pnsin(wz —w; )t 0 P sin(wy — w3t

[ fh(l)fl cos(w; — wor )t + fh(z])fz cos(wr — wog)t + ...
R, = | ¢ fi cos(w; — wor)t + ¢4 fz cos(wz — wea)t + ...

[ q,m Sisin(w, — wer )t + qgl) fasin(w) — w2}t + ...
R_, = qgg)fl sin(uz — W )t ’+" qu)fg Si]l(h)g -— wgz)t + ‘e

pi; are the elements of the matrix P defined in (11). The system (13) yields non-
oscillating solutions and is very stable. It can easily be integrated over 10° periods
T = 2n/(w; — w;), for instance with a fifth order Runge-Kutta method. The initial
conditions are normally given in q and ¢ and define a(0) and b(0) through (8) and (9).

The beam currents can be taken into acount by jumps in ¢; and continuous g¢;, i.e.
by éq(t;) only. Then, from (8), (9) follows

ba(t;) = C(t;)Q'éq(t;) , 6b(t;) = S(¢;)Q'6q(t;) . (14)

Having solved for a, b we are still left to find reasonable envelopes from (8). Since,
typically, the resonator chain is driven by a single generator with frequency wy, and
the particles to be accelerate have to stay in phase with wg,t it is best to develop all
frequencies around wy,, €.g.

coswit = cos dw;t - cos wp,t — sin dw;t - sinwp,t .
then, (8) can be written as
q = Q[(6Ca + §Sb) coswp,t + (§Cb — éSa) sin wp,t] =

= Q[a” coswont + b” sinwgyt] (15)

where §C, 6S are diagonal matrices of cos §w;t and sin éw;t respectively. (Qa*); is now
the envelope signal in cell 1 which is relevant for particles in phase with coswg,t. (Qb*);
is a signal which decays and which rings with sinwg,?, i.e. it 1s out of phase with the
particles.



TESLA-Report 1993-26

4 Filling of the TESLA Cavity

As an example we choose the filling process of the superconducting cavity for the TESLA
linear collider study. The cavity is a nine—cell, flat—tuned, w-mode structure. It is driven
by a generator in the first cell. We assume that the beam induced voltage 1s half of the
voltage generated by the driver. Then, the cavity voltage stays constant after the time
to = 71n2 when the beam is switched on. 7 is the filling time
T = 2Q 5 = 0.832ms
ww(l + b )q%Q)

The parameters used are

fr = foo =1.3GHz, Q, =3-10°, R/Qy = 112.3 2/cell

By =9 - 882 = 7938 generator coupling constant

L =115.4 mm cell length

k = 0.0185 cell-to—cell coupling

T, = 1 us bunch distance, N; = 800 # bunches

N, =5-10"" # e /bunch (16)

In Fig. 3a we see the envelopes in cells one and nine when cell one is shock excited by
a voltage step. The time delay in cell nine of AT = 130 ns corresponds exactly to the
travelling time which a wave front needs to travel through the structure with a group
velocity vy = 0.02¢o equal to the one in the center of the pass band, see Fig. 3b.

The normal filling of the cavity with a switched—on sine signal is shown in Fig. 4a.
It shows the exponential increase of the cavity voltage and its flat top under beamn
loading. The curve is an overlay of the voltage envelopes in the first and the nineth cell.
A zoom of the curve for very short times, Fig. 4b, and for the first and last bunches
of the beam, Fig. 5, resolve the different signals in the cells. Evaluating the time
delay between the filling of the 1st and 9th cell, see Fig. 4b, clearly proves again that
the wavefront in an empty cavity travels with the average group velocity in the pass~
band, i.e. with essentially the group velocity at the m/2-mode. The same is true for
the refilling of the cavity when a bunch has taken out a certain amount of the energy.
From Fig. 5 it can be seen that field levels are different in every cell and that the
differences are larger at the beginning of the beam. But averaging over all cells results
in a maximum voltage variation of only 0.5 °/,, for the bunches. Finally, a study of
the voltage sensitivity AV at the end of the beam against changes in the bunch charge
AN, gives AV/V =2 0.4 AN./N,, i.e. the mean deviation in N, has to be less than 2.5
times the allowable voltage variation.
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Figure 3: a) Envelopes in cell one and nine of the TESLA cavity for shock excitation of
cell-one. b) Dispersion digramm of the cavity.
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Figure 4: Filling process of the TESLA cavity with beam for ¢ > #,. a) Voltage envelopes

in the 1st and 9st cell, b) zoom for small times.
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Figure 5: Blown-up curve of Fig. 4 for the a) first and b) last bunches of the beam.

Appendix

The eigenfrequencies w; and eigenvectors q; of the steady-state, loss~free, homogenous
system can easily be derived with standard matrix algebra as for instance treated in {2].
Starting with the loop equations for time-harmonic signals

(= T+ w3+ w*kK)q =0

we can write

M-q=0 (Al)
1 o 1 PP 1 Wo 2 1
M= 0 1 a --- ) a=£[(;) —1] ’ woz—ﬁ--

The eigensolutions w;, qt*) of (A1) follow from det(M) = 0. If we call py the determinant
of the (N x N} matrix M and p; the determinant obtained from M after removing the

last N - k rows and columns we obtain

a 1 0
1l aa 1 ---
k=10 1 « --- = UPg-1 — Pk-2 - (A2)

Y lkxk

(A2) is a recursion formula for the determinant py with initial conditions p; = a,
P2 = o — 1. Again, we can formulate (A2) in matrix notation

2 =[2 D] =[] [2] - @

8
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In order to perform P*-? we transform P into diagonal form
D = S'PS (A4)
where D is the diagonal matrix of the eigenvalues of P
Moad+1=0 — XMy=-—e¥* | a=-2cosp (A5)

and S is the matrix of the column eigenvectors

elel2 o -ief2
S = —_e /2 _giel/2 (A6)
Having determined D and S we get from (A4)
- —2a— 1 —sin(k — 1)p —sin(k — 2)yp
k-2 _ amyk-2q-1 __
P=8DTsT = sin ¢ [ sin(k — 2)¢  sin(k — 3)y ) (A7)
Substituting (A7) into (A3) it follows for k = N
in(N 41
py = 22 e (48)
sin
with zeros for .
i .
vi=Ni1 i=12,...,N (A9)
and therefore for
1| /wo
«; —[ —) —1] —2 cos p;
k[ \w;
' i i=1,2...,N . (A10)

wi:‘\/l—QEcosgo,- ’ ‘P’.=N+1 ’

The eigenvectors can be calculated in a similar way. Writing one line of (A1) we obtain
again a recursion formula

QI(:) aql(c)l Q}c'l ? k:3$)N

which can be written

B 1= 3 )=l =[]
qs)l B 1 ‘IJ(:)z Qk 2 ‘h

with initial conditions qf) = ), qg’.) = —a;c?. Now, we proceed in the same way as

for the calculation of the eigenvalues and find

O L L R S

Sin ;
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The constant c) we choose such that qt¥. q) is normalized to one and obtain

—sm(k(p,)/ stmz(k(p, @; = N+1 , Lk=1,...,N . (A12)

(A10) and (A12) give the steady-state eigenfrequencies and eigenvectors of a string of
N loss~free resonators.

As can be checked easily the amplitudes (A12) of every mode ¢ are unevenly distri-
buted over the resonators. But often, as for our example of the TESLA cavity, every
resonator represents an accelerating cell of an RF structure and one normally wants
equal amplitudes and a 7 phase—shift from cell to cell. This is called a flat—tuned n-
mode structure. The flat tuning i1s achieved by tuning for instance the inductance of
the end—cells such that ¢; = —gq;_,. From the loop equations

L
Wo 2
_kq,+[1_(_)]q2_kq?._o
Wy
follows then
% =k (A13)

in order to fulfill ¢; = —¢;..;. Deviding the loop equations by —k we end up with the
system matrix of the flat—-tuned m—mode equal to

(@a=11 0 --- 0 0
1 a1l--0 0
0 1 a--0 0 1 [/wo)?
" S A N ’“k[(w)] (A14)
0 0 0 --- o 1
| 0 0 0 -~ 1 a—1

Eigenfrequencies and eignvectors are now found in the same way as above. The only
difference beeing in the first and last row of M, which have to be treated separately.
Then the determinant of M, becomes

squo

det(M,) = —(2— a)py_1 = —2(1 + cos qo) Y (A15)
yielding eigenfrequencies of
i = 3% , t=1, y N
w; = 0 (A16)
1 — 2k cos p;

10
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For the eigenvectors we obtain

(') _ ) sin(k —1)p —sin(k — 2)p 1+ 2cosey
ql(:‘)l " sin @ sin(k - 2)(,0 — Sin(k - 3)(,0 1

COS ; 2 ; 1
g = gSosPif2 vall (ku.ﬁ) 0

sin @;

or

and after normalization

o =sn (k- 5) ] [ e (e 5)] (a0
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