
TESLA Report 2006-08 

1 

Control system modeling for superconducting accelerator 
 
 

Tomasz Czarski, Krzysztof Pozniak, Ryszard Romaniuk,  
Institute of Electronic Systems, Warsaw University of Technology 

Stefan Simrock 
DESY, Hamburg 

 
ABSTRACT 

A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio 
Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system 
was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for 
the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of 
the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set-
Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned 
by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback 
modes. Experimental results are presented for a cavity representative operation. 

Keywords: superconducting cavity control, system identification, LLRF control. 

1. INTRODUCTION 
LLRF control system is under development in order to improve regulation of accelerating fields in the resonators [1] [4] 
(fig. 1). Control section, powered by one klystron, may consist of many cavities. Fast amplitude and phase control of 
the cavity field is accomplished by modulation of a signal driving the klystron through a vector modulator. Cavities are 
driven with 1.3 ms pulses to an average accelerating gradient of 25 MV/m. The cavity RF signal is down-converted to 
an intermediate frequency of 250 KHz, while preserving the amplitude and phase information. ADC and DAC 
converters link the analog and digital parts of the system with a sampling interval of 1 µs. Digital signal processing is 
executed in the FPGA system to obtain field vector detection, calibration and filtering. Control feedback system 
regulates the vector sum of the pulsed accelerating fields in multiple cavities. The FPGA based controller stabilizes the 
detected real (in-phase) and imaginary (quadrature) components of the incident wave according to a given set point. 
Adaptive feed-forward is applied to improve the compensation of repetitive perturbations induced by the beam loading 
and by dynamic Lorentz force detuning. Control block applies the value of the cavity parameters, estimated in the 
identification system, and generates the required data for the controller. A system model was developed for 
investigating the optimal control method of the cavity. The control system was experimentally introduced in the first 
cryo-module with 8 cavities - ACC1 of the VU-FEL TTF (FLASH) in DESY. 

2. CAVITY CONTROL SYSTEM MODELING  
2.1. Single channel modeling and calibration procedure 
A discrete-time model in complex domain is introduced to analyze the LLRF digital control system (fig. 2) [2]. A signal 
is modeled by a complex envelope called “phasor”. It is represented by real (in-phase) and imaginary (quadrature) 
components or alternatively by amplitude and phase, related to the reference frequency of 1.3 GHz of the carrier signal. 
Complex modules of the system form a phasor according to their dynamic or static and linear or nonlinear 
characteristics. The considerations are for a single cavity without a beam. 

Electrical model of the cavity is assumed as the only dynamic part. The discrete model is based on a difference equation 
of first order for the output phasor v’, driven with the input phasor u. The recursive equation of the cavity model, with 
sampling interval T, is expressed by the complex form, for a step k:  

v’k+1 = Ek·v’k + A·uk,                                                                    (1)      

where the linear input factor is A, and the non linear system factor is Ek = (1- Tω1/2) + T∆ωk·i,  with cavity parameters: 

constant half-bandwidth = ω1/2 and detuning = ∆ωk, time varying during a pulse.  
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The internal cavity output v’k is not available directly for the control purpose. Cavity environment is divided for two 
static parts represented by the linear output unit B and the non linear klystron unit with time varying factor Dk. A 
calibration of the linear path, characterized by factor A and B, is essential for a cavity control, and is required in a multi-
channel case. Scaling and phasing of a single channel is accomplished by means of a calibrator unit C implemented 
inside the FPGA controller area. 

 
Fig 1. Functional block diagram of LLRF control system for one cavity 

The resulting, external cavity model driven with a klystron phasor uk, seen by actual controller for a substituted cavity 
phasor vk = B·C·v’k, is expressed for step k: 

vk+1 = Ek·vk + F·uk,                                                                        (2) 

where the substituted factor F = A·B·C represents a static and linear characteristic of a single channel. 

Calibration procedure applies the cavity field gradient |v’k| to fulfill the scaling condition: |vk| = |v’k|. A phase 
calibration fulfills the condition: arg(F) = 0, when arg(vk) → arg(uk) for k→0. Careful estimation of cavity phasor vk 
and klystron phasor uk is required for a small gradient in a beginning of pulse. The phase calibration can be verified, if 
arg(vk) = arg(uk) in a resonance condition for two cases: 

1. in a flattop steady state: vk = const. and ∆ωk = 0  

2. in a filling range for modulated phase: φk = φk-1 + T·∆ωk , where φk = arg(uk).  

Actually, the calibration procedure is coupled with parameters identification (chapter 3) and control algorithm (chapter 
4), which are performed adaptively. 

 

 

DOWN -
CONVERTER

250 kHz1.3 GHz 
MODULATOR ANALOG    SYSTEM   of CAVITY    ENVIRONS 

I/Q  
DETECTOR 

CONTROL  BLOCK     &     PARAMETERS     IDENTIFICATION     SYSTEM 

PARTICLE 

FIELD 
SENSOR 

COUPLER 

KLYSTRON 

1.3 GHz

CAVITY    RESONATOR   and   
ELECTRIC   FIELD distribution 

CALIBRATOR 

ADC 

F P G A SYSTEM 

C O N T R O L L E R 

M  A  T  L  A  B 

I Q 

Gain

Waveguide 

DAC 

S_P F_F 

I_Q 



 

3 

2.2 Multi channel system modeling 
In a practical application of a linear accelerator one klystron drives many cavities. Therefore, parallel multi-channel 
system, driven with a common klystron phasor uk, for vector sum control is considered. Each single cavity i-th channel 
with a cavity phasor vi

k, is modeled according to the equation (2), for step k: 

vi
k+1 = Ei

k·vi
k + Fi·uk,                                                                            (3) 

where the calibrated factor Fi has a scalar value and  system factor is Ei
k = (1- Tωi

1/2) + T∆ωi
k·i for i-th cavity. 

 

 
Fig 2. Algebraic model of LLRF control system 

 
Summarizing equation (3) for all channels and introducing new variables (but familiar notation) yields, for step k: 

vk+1 = Ek·vk + F·uk,                                                                           (4) 

where resultant cavity phasor is vk = ∑i(vi
k), resultant input factor is F = ∑i(Fi), and equation: Ek·vk = ∑i(Ei

k·vi
k) defines 

a weighted average system factor Ek = (1- Tω1/2) + T∆ωk·i, with resultant half-bandwidth = ω1/2 and resultant detuning = 
∆ωk. Consequently, the multi-cavity model introduced by equation (4) has the same structure like calibrated single 
channel model (2), but with new parameters in the case of diverse operational condition for cavities. 

Including the klystron unit (fig. 2) to the cavity system (4), the ultimate model, driven with the controller phasor xk, is 
given by: 

vk+1 = Ek·vk + Hk·xk,                                                                           (5) 

where total factor Hk = F·Dk. 
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2.3 Controller modeling 
FPGA based controller executes procedure of feed-forward driving supported by feedback according to prearranged 
control tables: FFk, SPk, Gk (fig. 2). A cavity phasor vk is compared to the reference phasor SPk (set point) creating an 
error phasor. An error phasor is multiplied by a complex gain Gk of the corrector unit, producing a feedback phasor. A 
superposition of a feedback phasor and a compensating phasor FFk (feed-forward) results in a controller phasor xk. 
Consequently, the controller model is expressed for step k: 

xk+1 = FFk + Gk·(SPk – vk).                                                                                             (6) 

Control tables are determined for required cavity performance, according to the control algorithm described in chapter 
4. 

3. PARAMETERS IDENTIFICATION OF CAVITY SYSTEM  
Control algorithm (chapter 4), based on the cavity system model (5), requires identification of the process parameters 
[3]. Therefore, two complex, time varying factors Ek and Hk, should be recognized in the equation (5). The LS - least 
square method is proposed for parameters estimation in a noisy and non stationary condition. This method is efficient 
for uncorrelated variables and for the model structure fitting to the reality. 
The first stage of the estimation procedure engages linear part of the model expressed by equation (4), where factor F 
has constant scalar value. Complex equation (4) is expanded to a scalar form, applying the real (vr, ur) and imaginary 
(vi, ui) components of the cavity and klystron phasor respectively, for step k and k+1, as follows: 

               (vr)k+1 =  (1- Tω1/2)·(vr)k - T∆ωk·(vi)k + F·(ur)k                                                                (7) 

 (vi)k+1 = (1- Tω1/2)·(vi)k + T∆ωk·(vr)k + F·(ui)k.                                                               (8) 

Three scalar unknowns include two stable parameters: half-bandwidth ω1/2 and factor F, and step varying detuning ∆ωk. 
These parameters should be estimated for each k-th step of the process, described by two equations (7) and (8), 
involving measured input and output data. Time varying detuning ∆ωk can be approximated for each k-th step by L-
order series of base functions fj with unknown, but constant coefficients αj, as follows: 

T∆ωk = )k(f j

L

1j
j∑

=

α = fk·α,                                                                           (9)  

where α – column vector of L coefficients,  fk – row vector of L values of chosen base functions for k-th step. 
Substituting equation (9) to (7) and (8), all unknowns are extracted to the vector form and matrix equation with 
MATLAB convention is introduced, as follows: 

vk+1 = wk·z,                                                                                         (10) 

where z = [(1- Tω1/2); α; F] is resultant column vector of unknown L+2 values, 

vk = [(vr)k; (vi)k],   wk = [vk, v“
k·fk, uk]    for   v“

k = [-(vi)k; (vr)k] and  uk = [(ur)k; (ui)k]. 

In a practical application of LS method, equation (10) is considered for N steps of an approximation range, creating 2N 
over-determined equations (2N>>L+2), expressed by the matrix form, as follows: 

V = W·z,                                                                                      (11) 

where,      V – total output vector (dim = 2N x 1),  W – total matrix of model structure (dim = 2N x L+2). 
Multiplying two sides of equation (11) by matrix transposition WT, the solution for the vector z is given by:  
 

z = (WT*W)-1*WT*V.                                                                          (12) 
 
It is the unique and optimal solution, according to the LS method for the measured data of vector V and structure matrix 
W. Algorithm for the identification of cavity parameters was implemented in Matlab system applying cubic B-spline set 
of functions for linear decomposition of step-varying detuning [3]. 
Second stage of the estimation procedure engages non linear part of the model described by the complex equation uk = 
Dk·xk for the klystron unit (fig 2). Finally the factor Hk from equation (5) is estimated, as follows: Hk = F·uk/xk. The 
prior estimation (filtering) for measured data - cavity, controller and klystron phasor, was performed for of-line 
identification of the parameters presented in this chapter. 
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4. CONTROL of CAVITY SYSTEM 
4.1 Feed-forward and feedback driving 
The required cavity performance is: driving in resonance during filling and field stabilization for flattop range. A cavity 
is driven in feed-forward and feedback mode to fulfill desired operation condition. Combining equation (5) and (6), 
yield resulting equation for the cavity control system, as follows:  

vk+1 = Ek·vk + Hk·[FFk-1 + Gk-1·(SPk-1 – vk-1)].                                                           (13) 

Recognition of the cavity system factors: Ek and Hk, allows determining the control tables: feed-forward - FFk, set point 
- SPk and complex gain - Gk. The required cavity phasor vk can be achieved by ideal feed-forward compensation 
according to the recognized system model. However, feedback mode compensates a stochastic disturbances and a 
model discrepancy. 

Let’s consider equation (13) separately for two modes of operation, reduced as 

 vk+1 = Ek·vk + Uk                                                                          (14) 

where Uk = Hk·FFk-1 for feed-forward or Uk = Hk·Gk-1·(SPk-1 – vk-1) for feedback. 

Solution of equation (14) gives estimated formulas presented in tab. 1, for two modes of operation within two ranges. 
Complex gain Gk is determined for the loop gain L assumed as constant scalar parameter for the steady state cavity 
phasor vk = L·(SPk – vk). The loop gain L value is limited due to the stability condition. 

• Filling range 
Equation (14) is driven with phasor Uk with a constant amplitude and modulated phase φk, so the RF signal tracks a 
step-varying resonance frequency of a cavity. In a response, the cavity phasor vk has the same phase and exponential 
raise of amplitude, according to the natural behavior in the resonance condition. Initial phase φ1 and asymptotic 
amplitude v are determined to fulfill condition for a final filling phasor vend , which equals to the required flattop phasor 
V.  

• Flattop range 
Equation (14) is driven with phasor Uk compensating step varying factor Ek, so the cavity phasor vk is stabilized. 
 

      Table 
Range FEEED-FORWARD SET-POINT GAIN 

 

Filling 

FFk =  Tω1/2·v·exp(iφk+1)/Hk+1 

φk+1 = φk + T∆ωk 

SPk = v·[1–exp(-k·Tω1/2)]·exp(iφk) 

 

Gk = L·Tω1/2/Hk+1 

L = const. 

Flattop FFk = V·T(ω1/2 - ∆ωk+1·i)/Hk+1 SPk = V = V·exp(iΦ) Gk = L·T(ω1/2 - ∆ωk+1·i)/Hk+1 

 

 4.2. Adaptive control process 
Superconducting cavity control is carried out according to the scheme of fig. 3. Control data, generated by Matlab 
system, is loaded to the internal FPGA memory and actuates the controller. The input and output data of the cavity is 
acquired to another area of the memory during a pulse operation. Subsequently, acquired data are conveyed to Matlab 
system for the parameters identification processing between pulses. Estimated cavity parameters are considered as 
actual values for the required cavity performance and are applied to create the control tables for a next pulse. But new 
control tables modify the trajectory of the nonlinear process and again new parameters are estimated. This iterative 
processing quickly converges to the desired state of the cavity, assuming repeatable conditions for successive pulses. 
Stochastic fluctuations of the required trajectory are reduced by averaging processing (filtering) for successive pulses.  
 
The experimental results of adaptive control in the real operation condition are presented in fig. 4 for feed-forward 
driving. The cavity is activated with pulse of 1.3 ms duration and repetition of 10 Hz. During the first stage of the 
operation (~0.5 ms) the cavity is filling with constant forward power resulting in exponential increase of EM field in the 
resonance condition. When cavity phasor has reached the required final value, the steady state is forced during flattop 
range (~0.8 ms). The initial predetuning attempts to compensate the Lorentz force detuning and balances the required 
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power consumption during pulse operation of the cavity. Switching off the klystron power yields an exponential decay 
of the cavity field. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Adaptive control process for cavity system driving  

5. CONCLUSIONS 

The cavity control system for superconducting linear accelerator project is preliminary introduced in this paper. Digital 
control of the superconductive cavity has been performed by applying FPGA technology system in DESY. These 
experiments focused attention on the general recognition of the cavity features and projected control methods. 
Calibration and correction of the signal path is considered for the efficient driving of a cavity. Identification of the 
resonator parameters has been proven to be a successful approach in achieving required performance, i.e. driving on 
resonance during filling and field stabilization during flattop time while requiring reasonable levels of power 
consumption. Feed-forward and feedback modes were successfully applied in operating the cavity. Representative 
results of the experiments are presented for the typical operational condition. Preliminary application tests of FPGA 
controller have been carried out using the superconducting cavities in ACC1 module of the VUV-FEL (FLASH) setup. 
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Figure 4.  Feed-forward driving for single cavity of ACC1 module: cavity and klystron phasor readout, cavity detuning 
estimation for 20 MV flattop level 
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