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I. Abstract

The X-ray free-electron laser XFEL that is being planned at the DESY research 

center in cooperation with European partners will produce high-intensity ultra-short X-

ray flashes with the properties of laser light. This new light source, which can only be 

described in terms of superlatives, will open up a whole range of new perspectives for 

the natural sciences. It could also offer very promising opportunities for industrial users.

SIMCON (SIMulator and  CONtroller)  is  the project of the fast,  low latency 

digital controller dedicated for LLRF system in VUV FEL experiment based on modern 

FPGA chips It is being developed by ELHEP  group in Institute of Electronic Systems 

at Warsaw University of Technology. The main purpose of the project is to create a 

controller for stabilizing the vector sum of fields in cavities of one cryomodule in the 

experiment. The device can be also used as the simulator of the cavity and testbench for 

other devices. Flexibility and computation power of this device allow implementation of 

fast mathematical algorithms.

This  paper  describes  the  concept,  implementation  and  tests  of  universal 

mathematical  library for  FPGA algorithm implemetation.  It  consists  of  many useful 

components such as IQ demodulator, division block, library for complex and floating 

point operations, etc. It is able to speed up implementation time of many complicated 

algorithms. Library have already been tested  using real  accelerator signals  and the 

performance achieved is satisfactory.
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II. Abstract in Polish

Projekt  XFEL,  który  planowany  jest  w  instytucie  badawczym  DESY  w 

Hamburgu będzie w stanie dostarczyć krótkie impulsy promieniowania X o wysokim 

natężeniu  z  właściwościami  światła  laserowego.  Jego  świetlność  moży  być  nawet 

milion  razy  większa  od  najbardziej  nowoczesnych  źródeł  promieniowania  X. 

Międzynarodowa grupa  badawcza  o  nazwie  'TESLA collaboration'   testuje  obecnie 

nowatorski technologie w ośrodku DESY. Osiągnęła ona już wiele z kluczowych celów 

postawionych przed nimi.  XFEL umożliwi  wykonywanie zaawansowanych badań w 

Europie. Stworzy również wiele mozliwości dla ośrodkó przemysłowych. Pilotowym 

odcinkiem dla XFEL jest akcelerator VUV-FEL, w którym odbywaja się testy.

Jedną z nowatorskich technologi wporowadzonych w użycie przy VUV-FELu są 

programowalne układy FPGA. W ciągu ostatnich lat zaobserwowano szybki rozwój na 

tym rynku.  Obecnie  moc obliczeniowa tych  układów może być porównana z  mocą 

obliczeniową procesorów DSP. Ponadto architektura tych chipów jest otwarta – może 

być optymalizowana razem z algorytmem matematycznym. Wiele układów FPGA ma 

możliwość  użycia  procesorów  osadzonych  takich  jak  PowerPC,  Nios,  Microblaze. 

Programy  pisane  na  te  procesory  mogą  zostać  połączone  ze  sprzętowymi  blokami 

rownoległego przetwarzania sygnału.

W chwili obecnej w użyciu znajduje się  oparty na ukłądzie FPGA kontroler 

opracowany przez grupę ELHEP.  Jest to kolejna generacja płyty z rodziny SIMCON. 

Bazuje ona na chipie  FPGA XC2VP30 firmy Xilinx.  Bogate peryferia  oferują  duże 

możliwości komunikacyjno-obliczeniowe. Może ona stać się bazą wielu implementacji 

algorytmów matematycznych. 

Szybki  rozwój możliwości  technicznych pociąga  za sobą rozwój algorytmów 

matematycznych. Ich implementacja przy użyciu języka opisu sprzętu ( VHDL ) staje 

się skomplikowana i czasochłonna. Rośnie czas dostarczenia gotowego produktu. Na 

wprost  tego  wychodzą  producenci  oprogramowania  używanego  do  implementacji. 

Interfejsy  tych  programów  są  coraz  bardziej  uproszczane.  Oferują  one  graficzne 

narzędzia do tworzenia opisów sprzętu. Przyspiesza to znacznie proces implementacji. 

4



Pociąga za soba równiez jedną wade – maleje kontrola nad szczegółami implementacji 

w sprzęcie. Praca ta prezentuje inne z możliwych rozwiązań tego problemu. Jej celem 

jest stworzenie koncepcji oraz implementacja uniwersalnej i parametrycznej biblioteki 

matematycznej  wspierającej  implementację  i  rozwój algorytmów matematycznych w 

układach FPGA.

Biblioteka została podzielona na następujące części:

– moduły wejściowe

w skład tej grupty wchodzą moduły takie jak demodulator IQ oraz blok obliczający 

amplitude  i  faze  liczby  zespolonej.  Użyte  mogą  zostać  do  wstępnej  konwersji 

sygnału  z  akceleratora  do  wymaganej  reprezentacji.  Dostarczają  one  sygnał  do 

komponentów z kolejnej grupy.

– moduły obliczeniowe

są to główne moduły wykonujące konkretne obliczenia matematyczne. W ich skład 

wchodzą  bloki  takie  jak:  dzielenie  stalo  pozycyjne,  obliczanie  funkcji 

trygonometrycznych,  operatory  operacji  na  liczbach  zespolonych,  macierzowe 

operacje  arytmetyczne,regulowane  filtry  oraz  jednostka  do  obliczen  zmienno 

pozycyjnych. 

– wsparcie dla systemów osadzonych

w  tej  grupie  znajduje  sie  moduł  'OPB  wrapper'  mapujący  zbiór  rejestrów 

zdefiniowanych w strukturze FPGA w przestrzeń adresową systemu osadzonego. 

Umożliwia to miesznae podjeście do implementacji algorytmów – mniej krytyczne 

częsci mogą zostać zaimplementowane w języku wyższego poziomu ( na przykład 

C ) i komunikować sie z krytycznymi sekcjami obliczanymi przez sprzęt. Moduł ten 

umożliwia  również  dołączenie  wymienionej  wyżej  jednostki  zmiennopozycyjnej 

jako koprocesora dla PowerPC.

– moduły niskopoziomowe
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są to biblioteki podstawowe użyte do zaimplementowania pozostałych modułów. 

Udostępnione  są  one  uzytkownikowi,  aby  mógł  użyć  je  w  przypadku  kiedy 

wymagana  jest  funkcjonalność  nieuwzględniona  w  bibliotece.  Implementują  one 

podstawowe  koncepty  operacji  arytmetycznych  takie  jak  arytmetyga  nasycona, 

operatory  arytmetyczne  dla  macierzy,  liczb  zespolonych,  liczb 

zmiennopozycyjnych. 

Architektura  bibliotek  jest  otwarta.  Dzięki  temu  istnieje  wiele  możliwości 

dodawania nowych komponentów i ulepszania starych. Nowe komponenty mogą zostać 

dodane do biblioteki  nawet  przez zwykłych użytkowników. Wszystkie bloki  zostały 

zoptymalizowane  aby  zapewnic  rozsądny  wybór  między  użytymi  zasobami  a 

szybkością działania. Jednak w miarę rozwoju rynku FPGA – rosnących możliwości 

technicznych  –  konieczne  będzie  dostosowywanie  biblioteki  do  zmieniających  sie 

warunków.

Wszystkie użyte w niej algorytmy obliczeniowe są algorytmami dobrze znanymi 

w przetwarzaniu DSP.  Przykładem może być tu  algorytm demodulacji  IQ używany 

obecnie w kontrolerze FPGA dla moduły ACC1 akceleratora VUV-FEL lub algorytm 

dzielenia SRT uzywany w procesorach firmy Intel.

Szczegóły implementacji  –  interfejsy i  parametry -  poszczególnych modułów 

pokazane zostały w rozdziale 4 tej pracy. 

Rozdział 5 przedstawia testy  biblioteki w środowisku akceleratorowym. W tym 

celu  zaimplementowany  został  algorytm  matematyczny  pomiaru  odstrojenia  wneki 

rezonansowej  podczas  pojedynczego  pulsu  pola  elektromagnetycznego  wewnątrz 

wneki. Uzyskana implementacje spełnia wszystkie oczekiwania – wejdzie ona w skład 

planowanego  systemu  kontroli.  Przetestowany  został  również  blok  operacji 

zmiennopozycyjnych. Przyspieszenie obliczeń procesora osadzonego w porównaniu z 

emulacją  programową  wynosi  około  1000%.  Rezultaty  uzyskane  dla  mnożenia 

macierzy 20 na 20 elementów również są  bardzo ciekawe. Czas wykonania takiego 

mnożenia wynosi około 80 us. 

Przedstawiona biblioteka spełnia wszystkie wymagania postawione przez system 

sterowania  LLRF  i  ma  szanse  stać  sie  popularnym  narzędziem  implementacji 

algorytmów matematycznych. 
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1. Introduction

 The X-Ray Free-Electron Laser, which is planned at the DESY research center 

[15] will  produce high-intensity ultra-short X-ray pulses with the properties of laser 

light. At peak values, its brilliance is a billion times higher than that of the most modern 

X-ray light sources, and its average brilliance is 10 000 times higher. An international 

research  team,  the  TESLA  collaboration,  is  currently  demonstrating  the  facility's 

pioneering technology at the DESY research center in Hamburg. It has already achieved 

the key milestones it has been aiming for. The free-electron X-ray laser will make it 

possible  to  do  leading-edge  research  in  Europe  and  will  also  offer  very  promising 

opportunities for industrial users

The layout of the accelerator and laser facility is shown on Figure 1.
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Main parameters of XFEL facility are [15]:

Total length of the facility approx. 3.4 km 
Accelerator tunnel approx. 2.1 km 
Depth underground 6 - 38 m 
Experimental hall 10 experimental stations at 5 beamlines, 
Scope for expansion Second hall with an 10 experimental stations 
Wavelength of X-ray radiation 6 to 0.085 nanometers (nm) 
Length of radiation pulses below 100 femtoseconds (fs)

Table 1: X-FEL main parameters

The planned facility will include a superconducting linear accelerator that brings 

tightly bundled “bunches” of electrons to energies of several billion electron volts. At 

that point, the electrons race at almost the speed of light along a slalom course through a 

special arrangement of magnets called the “undulator.” As they go, they emit X-ray 

radiation that amplifies itself during the flight. The results are brilliant: Extremely short 

and intense X-ray flashes with laser properties. For such an X-ray laser to work, an 

electron beam of extremely high quality is required. And the TESLA superconducting 

accelerator technology is already making it possible to generate this kind of electron 

beam today.

Before the electrons can emit X-ray flashes, they must first be accelerated to 

energies  of  several  billion  electronvolts.  That's  exactly  what  happens  inside  the 

resonators,  where  electromagnetic  fields  accelerate  the  particles.  The  resonators  are 

made of niobium and are superconducting: When they are cooled to a temperature of 

-271 °C, they loose their electrical resistance. Electrical current then flows through the 

resonators with almost  no losses whatsoever  -  and that's  an extremely efficient  and 

energy-saving method of acceleration. Nearly the entire rf power is transferred to the 

particles. Moreover, the superconducting resonators deliver an extraordinarily fine and 

even electron beam of extremely high quality. In the X-ray laser, each of several billion 

electrons needs to have the same energy and direction. They also need to be combined 

into bunches with a diameter of no more than one tenth of a millimeter to achieve the 

necessary  peak  current  of  5kA.  Unless  the  electron  beam meets  these  very  special 
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requirements, the X-ray laser does not work.

The new free-electron laser VUV-FEL - the pilot facility for the XFEL - , which 

generates  vacuum  ultraviolet  (VUV)  and  soft  X-ray  radiation  in  a  range  down  to 

wavelengths  of  six  nanometers,  was  commissioned  in  2004,  making  possible 

groundbreaking experiments.  To accommodate  the  new free-electron laser,  the  100-

meter-long  TESLA  test  facility  was  modified  to  a  total  length  of  260  meters  and 

extended  to  the  VUV-FEL.  Both  VUV-FEL  and  XFEL  are  based  on  the  same 

superconducting technology.

In the VUV-FEL cavities are grouped into cryomodules which contain 8 cavities 

each.  The  cavities  are  powered  by  klystrons  (  32  per  klystron  ).  In  order  to  get 

appropriate beam acceleration  two conditions must be met:

1. the electromagnetic field inside resonators must be stabilized ( to ensure stable 

beam energy )

2. it must have appropriate phase ( for bunch compression and acceleration )

The  regulation  of  the  field  is  performed  by  the  LLRF –  Low Level  Radio 

Frequency control  system. It  controls  I  and  Q components  of  resonator  field.  They 

correspond to real and imaginary part of the field vector.  The control section, powered 

by one klystron, may consist of many cavities, so the LLRF system is used to control 

vector sum of up to 32 cavity fields. The system consists of many devices such as: 

downconverters,  digital  feedback  controllers,vector  modulators,  piezo  controllers, 

timing modules, and many ADC boards for monitoring the signals in the system.
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1.1 Control algorithm

The main control loop in the LLRF system starts at the cavity probe. The signals 

(1.3GHz)  are  downconverted  to  an  intermediate  frequency  of  250KHz.  Eight 

downconverted signals  are  connected to   inputs  of  digital  controller.  It  samples  the 

probe signal with a frequency of 1MHz.  Inside the controller (currently it  is a DSP 

based system) after initial calibration (scaling and leveling), the digital processing is 

performed in I/Q detector applying the signal v_m of the intermediate frequency at 250 

kHz. The resultant cavity voltage envelope (I, Q) is calibrated, so to compensate the 

phase offset for an individual measurement channel. The vector sum of up to 32 signals 

is needed for the actual control processing.  Feedforward and Feedback algorithms can 

be used to control the system.

The Set-Point table delivers the required signal level, which is compared to the 

actual average value of the cavities voltage envelope. Then the proportional controller 

amplifies  the  signal  error  according  to  data  from  the  GAIN  table  and  closes  the 

feedback  loop.  Additionally  the  Feed-Forward  Table  is  applied  to  improve 

compensation of the repetitive perturbations induced by the beam loading and by the 

dynamic Lorentz force detuning.  I and Q signals are produced to drive the klystron. 

These two signals are used by the vector modulator to reconstruct the complex signal. 

The output of this vector modulator drives the klystron. When using 1MHz sampling 

rate, the probe samples are updated every 1μs. High gain must be used to stabilize the 

field using feedback algorithm. This may cause unstability in the system if the feedback 

latency is to high. The maximum latency for the feedback algorithm has been estimated 

to about 1μs  (for the whole control  loop including latency of system and controller 

board). The estimated system delay is about 500ns. It means that maximum delay of the 

controller can not exceed 500ns. The requirements for the stability of the amplitude and 

phase of the field are tight: for the amplitude 3*10−4 and for the phase 0.1 degree. The 

main problem is noise which comes from microphonics, Lorentz force detuning and 

beam loading. In addition lots of elements in the control loop are nonlinear, for example 

klystron, vector modulator or preamplifiers. Every conversion from analog to digital 

signal adds noise to the system. Moreover the temperature changes cause phase drifts in 
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cables. All these distortion are added to the control signal and force the controller to 

compensate using sophisticated algorithms. This requires a big computation power of 

the controller and wide data throughput.
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Figure 3: Control system schematic



The current solution is based on the system with DSP processor (TMS320C67 

from Texs Instruments). The controller is divided into three boards - ADC board with 

14-bit analog to digital converters sampling with a frequency of 1MHz, the DSP board 

with  TMS320C67  processors  and  DAC  board  (14  bit,  1MHz).  All  the  boards  are 

connected to each other using gigalink interface. Actual computation power is close to 

the limit, the algorithm is performed in a time longer than 1μs. Moreover, during last 

months  there  are  additional  needs  for  some new features.  The  only  way to  extend 

current system with new features is to add more DSP processors. This solution requires 

integration  of  new  DSP  board  into  existing  system.  It  may  cause  some  additional 

problems and delays in machine operations. 

To increase computation power and the delay of LLRF control system, both the 

algorithm and hardware must be optimized. Unfortunately DSP processors have fixed 

architecture so only the software can be processed. This will not grant the flexibility 

required for further system developement.

1.2 Modern solutions

During  past  years  very  fast  progress  on  the  FPGA  market  was  observed. 

Nowadays FPGA chips have reached computation power that can be compared with 

DSP processors. Moreover the architecture of those chips is not fixed. Just like software 

algorithm it can be optimized to achieve optimal speed or resources usage ( depends on 

requirements ). FPGA chips offer variety of the embedded solutions such as PowerPC, 

Microblaze,  Nios  which  can  be  easily  used  in  addition  to  fast,  parallel   signal 

processing. 

Typical low level architecture of FPGA chip is shown on Figure 4

It consists of an array of logic blocks and routing channels. Multiple I/O pads 

may fit into the height of one row or the width of one column. Generally, all the routing 

channels have the same width. A logic block consists of a LookUp Table with 4 inputs 

and a FlipFlop as shown on Figure 5.
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In the modern solutions there are  many functional  blocks embedded into the 

chip's architecture. These functional blocks are:

– RAM memory which can be used in data acquisition process
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Figure 4: Low level architecture of FPGA chip
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– dedicated DSP blocks for arithmetic operations

– digital clock managers ( PLLs ) for clock conversions

– Gigabit serializers that can connected to optical transcievers

– embedded processors which can run higher level software

Usage of these block simplifies the structure required for the algorithms, reduces 

delays and increases computation power. Moreover each of these blocks can be used in 

parallel.

The block RAM memory resources embedded into Xilinx FPGA [17] chips such 

as Virtex 2 are 18 Kb of true Dual-Port RAM, programmable from 16K x 1 bit to 512 x 

36 bit, in various depth and width configurations. Each port is totally synchronous and 

independent,  offering  three  "read-during-write"  modes.  Block  RAM  memory  is 

cascadable  to  implement  large  embedded  storage  blocks.  Supported  memory 

configurations for dual-port and single-port modes are shown in Table 2.

16K x 1 bit 4K x 4 bits 1K x 18 bits
8K x 2 bits 2K x 9 bits 512 x 36 bits

Table 2: internal memory configurations

A multiplier block is associated with each RAM memory block. The multiplier 

block is a dedicated 18 x 18-bit 2s complement signed multiplier, and is optimized for 

operations based on the block RAM content on one port. The 18 x 18 multiplier can be 

used independently of the block RAM resource. Read/multiply/accumulate operations 

and DSP filter structures are extremely efficient.

Both the RAM memory and the multiplier resource are connected to four switch 

matrices to access the general routing resources.

Processors embedded into FPGA chips have become very popular during past 

years.  The  main  vendors  of  embedded  solutions  are  Altera  and  Xilinx  companies 

[17,18]. Altera introduced Nios and Nios II soft processor core which is built using user 

logic during configuration process. The similar solution comes from Xilinx company 

and is called Microblaze. Both companies made a big effort to optimize their cores to 

achieve high performance. These cores can easily be integrated with other user logic 
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and  peripherials,  therefore  the  hardware  implementation  of  an  algorithm  can  be 

supported by calculations described in higher level programming language such as C or 

C++. 

The most important and unique embedded solution was introduced by Xilinx 

company.  It  is  PowerPC 405 hardware core placed directly  into silicon structure of 

FPGA chip. The main advantages of such approach are:

– user logic can be completely independent from processor

– it uses minimal number of FPGA resources

– it offers superior performance in comparison with soft cores

The most known FPGA vendors are Altera and Xilinx companies. Comparison 

of different chips is shown in Table 3.

FPGA
chip

Logic cells RAM  Hardware 
multipliers

gigalinks PowerPCs Max user 
IO

XC2V3000 32,256 1,728 96 0 0 720
XC2V400 51,840 2,160 120 0 0 912
XC2VP30 30,816 2,448 136 8 2 644
XC2VP50 53,136 4,176 232 16 2 852
EP1S30 32,470 3,317 96 0 0 726

EP1SGX40 41,250 3,423 112 20 0 624

Table 3: parameters of Xilinx and Altera chips 

Although  DSP  processors  are  more  flexible  for  complex  algorithms,  the 

structural flexibility of FPGA chips together with parallel calculations and integrated 

peripherials make more powerful unit for general purpose and arithmetic operations. 

LLRF control system based on FPGAs can be smaller, faster and more extensible than 

DSP based one.

1.3 FPGA based controller ( SIMCON )

SIMCON (SIMulator and CONtroller) [2,5] is the project of the fast, low latency 
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digital  controller  dedicated  for  LLRF system in  VUV  FEL experiment  It  is  being 

developed by ELHEP group in Institute of Electronic Systems at Warsaw University of 

Technology. The purpose of the project is to create a controller that can stabilize the 

vector sum of fields in resonators driven by one klystron and gather experience and 

knowledge for future XFEL control system development. It can also be also used as the 

simulator of the cavity, test bench for other devices and algorithm development studio. 

SIMCON  design  is  based  on  FPGA  technology.  It  allows  to  create  fast  hardware 

devices inside the chip, each dedicated for the particular purpose. Therefore it is faster 

than currently  used controller  based on DSP processors.  Moreover  the flexibility  of 

FPGA  chips  allows  to  extend  existing  controllers  with  new  features  without  any 

changes  in  current  implementation and architecture  of  the  PCBs.  FPGA technology 

offers integrated peripherals for the fast communication (optical links) and calculations 

(embedded PPC or DSP blocks). All these features create powerful platform for control 

system development. The flexibility of FPGA technology used in SIMCON makes this 

device  multipurpose  system  which  can  perform  many  sophisticated  algorithms.  Its 

capabilities are limited by the board architecture which includes size of the FPGA chip 

used. The basic structure of the SIMCON system is shown on Figure 6.
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SIMCON family consists of many different boards with different possibilities:

– SIMCON 2.1

two channel version of the controller, two subversions are available – with VME 

interface and EPP interface. It was mainly used to control a single cavity ( for 

example test in the CHECHIA module )

– SIMCON 3.0

eight channel version of the controller, this board is mainly used to control the 

vector sum of eight cavities ( most test were done in the ACC1 module of the 

VUV-FEL accelerator ) 
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Figure 7: SIMCON 2.1 board



The current version of SIMCON (3.1) was designed for controlling the vector 

sum of fields in one cryo-module (8 cavities). The main features of the board are:

– Xilinx Virtex II Pro FPGA chip.

– Ten 14-bit ADCs (up to 105 Msps) and four 14-bit DACs (up to 160Msps).

– 2 inputs for external clock and trigger signals

– 2 outputs for providing the clock and trigger signal

– Additional digital inputs and outputs

– 16MB of SDRAM for embedded sytem use

– 8MB of SRAM for FPGA use

– Ethernet connector

– 2 Gigabit optical channels

– VME interface
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Figure 8: SIMCON 3.0 board



Table 4 presents parameters of SIMCON boards.

Simcon 2.1 Simcon 3.0 Simcon 3.1
FPGA chip Virtex II 3000 Virtex II 4000 Virtex 2 Pro 50
ADC channels 1 8 10
DAC channels 2 4 4
Digital Outputs 2 2 2
Digital Inputs 2 2 2
Optical links - - 2
PPC - - 2
Interface EPP/VME VME/ETH/RS232 VME/ETH/RS232

Table 4: SIMCON family parameters
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Figure 9: SIMCON 3.1 board



1.4 Algorithm development

Powerful  FPGA  platform  such  as  the  SIMCON  3.1  board  opens  a  new 

posibilities  for  algorithm  development.  In  the  DSP  processor,  the  user  has  fixed 

architecture and decides about its functionality and program flow using higher level 

programming  language.  Therefore  DSP  is  easier  to  program  than  FPGA  chips. 

Unfortunately  it  is  only  capable  of  serial  processing  with  very  limited  parallel 

possibilities. On the other hand FPGA chips are dedicated for parallel processing. In 

FPGA, architecture of the chip must be described using hardware description language 

such as VHDL ( Very-High-Speed Integrated Circuit Hardware Description Language ), 

Verilog etc. User decides which calculations are going to be performed in parallel and 

in  serial,  which  functional  blocks  and  peripherials  to  use.  Program flow control  is 

achieved  by  defining  state  machines.  Then,  if  neccesary,  the  user  must  integrate 

described structure with embedded processor and create higher level software. 

The  described  process  is  much  more  complicated  than  traditional  DSP 

programming and requires a lot of knowledge about binary operations, FPGA structure 

and logical systems. Therefore algorithm development for FPGA chips may take much 

more time than for DSP processors. To overcome this flaw different vendors of FPGA 

chips  and external  companies have proposed many software solutions  which enable 

rapid algorithm development. 

This software can be splited into following categories:

– schematic tools

– IP cores

Schematic  tools  allow  programmer  to  describe  even  complicated  system  structures 

using a simple graphical interface. The system is built using closed functional blocks 

connected  with  each  other.  Then the  VHDL code or  netlist  file  is  generated.  Most 

advanced  schematic  tools  such  as  Xilinx  System  Generator  offer  high  level 

mathematical operations and integration with popular algorithm development software. 

These tools give an easy way to describe functionality of the FPGA system, but it is 

almost impossible to control the hardware architecture of  the code. Nowadays, all the 

design software provided by the manufacturers includes schematic tools for program 

development. 
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The  second  category  are  IP  cores.  These  are  specialized  functional  block 

prepared in a form of netlist or VHDL code which can be included and used in a user 

program. Usage of IP cores gives an ability to describe the whole system using the 

VHDL code without need to describe complicated mathematical operations etc. These 

solution gives better control over FPGA resources and architecture. Unfortunately IP 

cores are highly specialized and usually patented so there is practically no influence on 

the interior of blocks – no user modification can be made therefore only small control 

over their functionality is possible. 

Both solutions can be combined – implemented algorithm may be the result of 

using schematic tool together with VHDL programming and IP cores. Unfortunately 

these solutions  are  quite  expensive.   Moreover  LLRF control  system requires  some 

functional blocks that are not commonly used, therefore they are not avaiable as IP 

cores.  An  excellent  example  of  a  combined  solution  is  the  Xilinx  Embedded 

Development Kit which  allows to build embedded system using a graphical schematic 
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Figure 10: Altera Quartus II schematic tool



tool to add IP cores as system's peripherals.

Algorithm development for the LLRF control system requires more flexibility 

than  one  offered  by  described  tools.  Programming  should  be  done  using  VHDL 

language in addition with flexible IP cores and low level libraries developed for this 

system. The source of the IP cores and libraries should be open to allow users to extend 

them when needed or modify existing ones according to the needs. 
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Figure 11: Xilinx EDK for embedded systems



2. System reqirements

Fast development of electronic systems causes the parallel development of many 

different  mathematical  algorithms.  FPGAs  possibilities  are  constantly  expanding, 

therefore the structural complexity of hardware is also rising. More work,time and skill 

is required for algorithm   implementation and usage. The aim of this thesis is:

- to design and implement universal mathematical library supporting algorithm 

development  for FPGA based systems in accelerator subsystem design

The main requirements for the project are:

1. the components must be synchronous – maximum working frequency is rising, it 

is important to have extended control over all delays. It is hard to achieve in 

asynchronous  systems.  Moreover  it  allows  to  synchronize  many independent 

channels ( for example 8 for SIMCON 3.1 ) and different components.

2. pipelining – it increases the maximum frequency and system bandwidth. The 

signal samples can be gathered and processed without need to wait for the end of 

the previous calculations.  This speeds up algorithm execution time.

3. flexibility - components can work on many different boards with many FPGA 

chips and variable channel number and can be modified to fit to particular user 

needs.

4. choice between speed and resource usage - it allows to use components even 

when hardware resources are critical, but speed is less important. This approach 

causes that this library can be used in many offline measurement algorithms with 

low resource usage

5. platform independence

6. support for popular VHDL synthesizers

7. easy to use

8. easy to maintain and change code
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3. Concept of a synchronous mathematical library 
for FPGA chips

The concept of the library is based on the hierarchical tree of components. The 

library  must  fulfill  all  the  requirements  for  LLRF  control  system  algorithm 

development.  Synchronous  mathematical  library  allows  easy  latency  control  versus 

hardware resources used.   Each component  is  meant to be compatible  with existing 

solutions ( if available ). Moreover functional components are completely hermetical 

and  can  be  used  separately  (  providing  that  libraries  in  the  same  tree  branch  are 

available), and most important, can be used in any combination of serial and parallel 

connections.

Most signals from the accelerator modules come as vectors in IQ representation. 

Therefore  the  first  module  in  almost  every  algorithm  for  this  sytsem  will  be  IQ 

demodulator which converts raw data sampled from ADC to a complex representation. 

A good example is SIMCON controller algorithm in which the processing starts using 

such block. This functional block  should be included in this library to allow use in 

other  algorithms.  After  demodulation,  the  complex  signals  are  calibrated  (  scaled, 

rotated ). It means that arithmetical operations on complex numbers are made. This task 

is performed by the complex operation module. In some cases signals are filtered. That 

is why the programmable digital finite impulse response filter was implemented. Both 

modules can be used in the SIMCON algorithm and many others for rotation matrix 

multiplication  and  signal  filtering.   In  some  algorithms  it  is  neccesary  to  obtain 

additional informations about the signal ( for example the magnitude of complex vector 

or its phase – it was done in Cavity Detuning measurement algorithm ). For this reason 

a  module for  magnitude and phase calculation has become part  of  this  library.  The 

algorithm used in this module can be also used to calculate functions such as sine and 

cosine when latency is not critical.

The only basic arithmetical operation without hardware support in FPGA is the 

division. Lack of this operation can be major problem in some cases ( for example it is 

needed in the Cavity Detuning measurement algorithm).  Therefore division block is 
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included in this  library.

To extend the flexibility of this library, in addition to fixed point arithmetics, 

floating point units were added. This feature is valuable especially in connection with 

embedded system development. 

Moreover a special wrapper for the PowerPC embedded processor  was added. It 

allows to connect every component included in this library to Onboard Peripherial Bus 

(OPB)  [17].  This  approch  allows  to  combine  the  algorithm  development  process 

between  low  level  hardware  description  and  higher  level  C  programs  executed  on 

embedded system. 

The tree of components is shown on the Figure 12.
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Figure 12: Structure of designed library
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3.1 math_basic_signed and math_basic_unsigned modules

These modules provide basic functions for arithmetical operations used in other 

modules.  They  are  optimized  to  use  dedicate  hardware  resources  embedded  into  a 

FPGA array such as hardware multipliers. Functions are meant to be easily used in user 

applications – their interface is minimal.   

The Math_basic_signed library provides functions that can operate on signed 

values using two’s complement representation, which is the most popular and intuitive 

method of representing negative integers. In the two's complement representation, the 

most significant bit of a signed binary numeral indicates the sign. To obtain the absolute 

value of the negative number, all the bits are inverted then 1 is added to the result. As 

one can notice ‘0’ value has only one representation ( no negative ‘0’ and problems 

associated with it ). Moreover all arithmetic operations are simple binary operations. 

The  library  defines  functions  for  number  multiplication,  addition  and  subtraction. 

Moreover it  allows to calculate absolute value and negation of a number. There are 

functions that allow to resize a value to a specified number of bits and to shift it left or 

right by specified number of bits. Each function has an intuitive interface and can be 

easily used.

The Math_basic_unsigned library provides similar functions that can operate on 

unsigned  binary  numbers.  As  signed  library  it  defines  functions  for  multiplication, 

addition and subtraction of unsigned binary numbers. Functions for shifting and resizing 

binary vectors are also included.  

In the real time arithmetic operations, overflow is a big problem. When the big 

values overflow, they suddenly become small or negative. It may lead the whole system 

to  undefined  states.  Such  a  situation  is  not  allowed,  it  can  be  dangerous  for  the 

accelerator and electronic hardware. Therefore, arithmetic operations in both libraries 

use so called saturation arithmetic. Saturation arithmetic is a version of arithmetic in 

which all operations such as addition and multiplication are limited to a fixed range 

between a minimum and maximum value. If the result  of an operation is above the 

maximum it is set to the maximum, while if it is below the minimum it is set to the 

minimum. In this case, the minimum and maximum values are defined by the length of 

vectors used to represent numbers.
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3.2 math_complex module

This module includes functions needed for complex number operations. It allows 

to multiply, add and subtract complex numbers represented as real and imaginary parts. 

Moreover  it  allows to  calculate  conjugation and rotate  the number  by 180 degrees. 

When resizing complex number, both real and imaginary parts are resized to required 

number of bits. The base for this module is math_signed library. 

Arithmetic operations on complex number are more complicated than operations 

on normal numbers. Addition ( or subtraction) of two numbers requires two additions of 

signed values.

z1 = a+jb

z2 = c+jd

The result of an addition is

z1+z2 = (a+c) + j(b+d)

The result of a multiplication is

 

z1*z2 = (a*c - b*d) + j(a*d + b*c)

As  one  can  see  multiplication  of  two  complex  numbers  uses  six  binary 

operations ( 4 multiplications and 2 additions/subtractions ).  It  will  take 4 hardware 

multipliers.
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3.3 math_matrix module

This module defines basic components for matrix operations such as addition, 

subtraction and multiplication. Matrix operations are simple arithmetic operations. The 

only problem is  an amount  of data  to be processed.  Simple 4 by 4 matrix addition 

requires 16 binary additions. Multiplication of such matrix requires 64 multiplications 

and 48 additions of binary numbers. This takes a big amount of time when done in 

series.  Each component in this  library can be used to calculate one or more matrix 

elements,  therefore  calculations  can  be  made  in  parallel.  It  reduces  the  time,  but 

increases the number of FPGA resources used.

Proposed structure for matrix multiplication  is shown on Figure 12.

The Element shown is capable of single matrix element calculation.

The  matrix  representation  in  a  FPGA logic  is  also  very  problematic.  Large 

matrices  stored in  the internal  logic  of  FPGA take a  huge  amount  of  space.  Using 

internal memory reduces it, unfortunately it doesn’t allow to gain access to more than 

one matrix element at the same time. The representation should be chosen according to 

particular needs for user application. 
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Figure 13: matrix multiplication basic module
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3.4 IQ estimator

Output data of ADC can be interpreted as real part ( xk )of analitic signal u(t) = 

u(kT) = uk with unknow imaginary part ( yk ) for series of samples (k). 

u(k) = v(kT) exp(i 2pi f kT ) = xk + i yk ......

where vk is decoded complex envelope of signal ( with  I and Q part )

Presented algorithm linearizes changes of envelop and eliminates offsets during 

period of carrier wave ( 4 us ). Estimation schematic for 4 steps is shown in table. Each 

row in the table defines Ik and Qk parts for given algorithm phase. In each phase 3 parts 

of the same part  are estimated for following times: k-1, k, k+1

for k-1 – linar interpolation using xk and xk-2

for k – calculation for current sample xk with offset elimination

for k+1 – prediction using xk and xk-1

phase Est. for k-1 Est. For k Pred. For k+1 Est. For k
0 Ik-1 = (xk-xk-2)/2 Ik = (xk-offset) Ik+1 = 2Ik-Ik-1 Qk = 2Qk-1-Qk-2

1 Qk-1 = -(xk-xk-2)/2 Qk = -(xk-offset) Qk+1 = 2Qk-Qk-1 Ik = 2Ik-1-Ik-2

2 Ik-1 = -(xk-xk-2)/2 Ik = -(xk-offset) Ik+1 = 2Ik-Ik-1 Qk = 2Qk-1-Qk-2

3 Qk-1 = (xk-xk-2)/2 Qk = (xk-offset) Qk+1 = 2Qk-Qk-1 Ik = 2Ik-1-Ik-2

Table 5: IQ demodulation steps

Offset error for each pahse is calculated using 3 samples:

offsetk = ( xk-4+2xk-2+xk)/4

The result of the algoritm is I and Q part of an input signal which can be used in 

user algorithms.
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3.5 CORDIC stage

The  CORDIC  [11]  module  executes  a  single  iteration  of   the  CORDIC 

algorithm, which is used to calculate magnitude and phase of a complex number. It also 

can be used to calculate values of cosine and sine functions. A single iteration is able to 

rotate a  complex vector by a fixed angle using small amount of resources. It is done by 

multiplying a given vector by a fixed vector. The input vector is rotated left or right 

according to the sign of its imaginary part. Then the rotation angle is either added or 

subtracted form cumulative angle.  Both the new vector and the updated cumulative 

angle are returned from the stage. The algorithm of single stage is shown on Figure 14. 

A single  CORDIC stage uses no hardware multipliers,  all  rotations are  done 

using only adders and shifters. Each stage adds the magnitude error to final result. This 
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Figure 14: Algorithm executed by single CORDIC iteration
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error is called CORDIC GAIN. The size of this error depends on the rotation angle used 

by the stage and can be compensated after the last iteration.

3.6 Magnitude and Phase detector

Magnitude and phase calculation requires calculation of square root and arctan 

function. These functions are numerically complicated. FPGA chips have no hardware 

support for such operations. Fortunately both values can be calculated using multiple 

iterations of CORDIC algorithm. Each iteration of the algorithm performs rotation of a 

given vector towards zero. The rotation angle is cumulated, therefore the final phase 

result is the cumulated angle output from last iteration of the algorithm. The magnitude 

of an input vector equals the real part of an output vector from the last iteration of the 

algorithm ( after CORDIC GAIN compensation ). The angles of rotation and CORDIC 

GAIN for given iteration are shown in Table 6.

L K = 2^-L B = 1 + jK angle
Magnit

ude

CORDIC 

GAIN
0      1.0  1 + j 1.0   45.0000 1.4142 1.4142
1 0.5  1 + j 0.5 26.5650 1.1180 1.5811
2 0.25  1 + j 0.25 14.0362 1.0307 1.6298
3 0.125  1 + j 0.125 7.1250 1.0077 1.6424
4 0.0625  1 + j 0.0625 3.5763 1.0019 1.6456
5 0.03125  1 + j 0.031250 1.7899 1.0004 1.6464
6 0.015625  1 + j 0.015625 0.8951 1.0001 1.6466
7 0.007813  1 + j 0.007813 0.4476 1.0000 1.6467

... ... ... ... ...

Table 6: CORDIC parameters for iterations

To calculate the magnitude and the phase of a complex number, the following 

steps must be executed:

a) The sign of the imaginary part of the vector is checked and a rotation by +/-90 

degrees is made. It moves the vector to the I or IV quarter of complex plane. The 

first rotation allows to calculate the vector’s phase in a range from -180 to 180 
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degrees.

b) Additional  vector  rotations  are  made  by  the  angles  show  in  Table  6.  The 

direction of the rotation depends on the sign of the imaginary part of current 

vector

c) After N iterations the imaginary part of a vector is close to 0. After CORDIC 

GAIN correction, the real part of the vector is the magnitude and phase of the 

vector equals cumulated angle form last iteration.  

3.7 Sin/Cos calculation

The problem of calculating sin and cos values for a given angle  φ, can be reduced 

to search of a complex number with magnitude of 1 and phase φ. 

|A| exp(jφ ) = |A| ( cos( φ ) + j sin(  φ ) )

Then the real part of such number equals cos of the angle and imaginary part equals 

sin of the angle. The procedure of the calculation for both functions is shown on Figure 

16.
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Figure 15: Procedure of magnitude and phase calculation using CORDIC
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1. The starting point for the algorithm is A:

 j  > 90φ 0

A =  -j  < -90φ 0

  1 when others

2. In the next steps, rotations of the vector are made according to Table. The 

rotation is executed towards the angle φ. After N iterations  the vector A’ close 

to the searched vector is calculated:

A’ = Ia’ +jQa’ = |A’|( cos(φ) + jsin(φ) )

After CORDIC GAIN compensation:

cos(φ) = Ia’
sin(φ) = Qa’
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Figure 16: Procedure of sin/cos calculation
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3.8 SRT stage

The SRT [12] algorithm is an iterative algorithm used for integer division. It 

was discovered at about the same time by Sweeny, Robertson and Tocher (SRT). It 

is  used  in  many  popular  microprocessors  such  as  Intel  Pentium. This  module 

executes the single iteration of the SRT algorithm. The algorithm can be described 

by the following equation:

ri = βri-1 - qi D 

where

ri – partial remainder calculated in this iteration

ri-1  - partial remainder form previous iteration

β – radix ( 2m )

D – divisor

qi – quotient digit for this iteration

The choice of the radix determines the complexity of the whole algorithm. A higher 

radix reduces the latency but  increases the quotient  digit  set  which leads  to  a  high 

logical  complexity  of  a  single  stage (  therefore  reduces maximum frequency ).  For 

higher radix division it is possible to use look up tables instead of logical comparators, 

but the size of this table increases exponentially. 

The quotient digit set  for a radix 2 SRT  algorithm is fairly simple:

{ -1,0,1 }

Therefore the logic required for a single stage is simple and works with high 

frequency. Unfortunately the latency is also very high – number of clock cycles required 

to get the result equals to the bit width of the dividend. The general rule for quotient 

digit selection for single stage is:
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The  decision  can  be  made  using  only  two  most  significant  bits  of  partial 

reminder.

One of possible quotient digit sets for radix 4 SRT algorithm  is:

{ -2,-1,0,1,2 }

Logic required for quotient digit selection is complicated, but in this case look 

up table has reasonable size. The latesncy introduced by this  approach is two times 

smaller than for radix 2.

The measure of redundancy for this set can be calculated using formula:

k ≤ α/(β-1)

Where β is radix of algorithm and α is absolute maximum value from digit set. 

In this case k = 2/3. The values of k closer to 1 mean greater redundancy in digit set. 

Regions for digit selection can be described as:

 -2/3 +q ≤ 4ri-1/D ≤ 2/3 +q 

This regions are shown on Figure 17
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Figure 17: Quotient selection regions for SRT algorithm



As one can see regions are overlapping. This is caused by the redundancy in 

digit set. Higher redundancy means more overlapping and a logic reduction for digit 

selection. 

Partial  remainder  vs.  divisor  plot  is  shown  on  Figure  18.  This  plot  shows 

overlapped quotient digit selection regions together with decision lines for each digit.

It  can be used for look up table generation. The index for the table are most 

significant digits of the partial remainder and divisor. The values in the table are digits 

for each region. 
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Figure 18: Partial remainder vs. divisor plot for SRT radix 4 algorithm



3.9 Fixed point divider

Using modules the described in the previous chapter, a fixed point divider was 

created. The modules are cascaded. The theoretical latency of the divider equals N clock 

cycles for N bit integers ( using SRT radix 2 module ) and N/2 clock cycles ( using SRT 

radix 4  module) 

3.10 Floating point unit

A floating-point number a can be represented by two numbers m and e, such that 

a = m × be. In any such system a base b is picked (called the base of numeration, also 

the  radix)  and  a  precision  p  (how  many  digits  to  store).  m  (which  is  called  the 

significand or, informally, mantissa) is a p digit number of the form ±d.ddd...ddd (each 

digit being an integer between 0 and b−1 inclusive). If the leading digit of m is non-zero 

then the number is said to be normalized. Some descriptions use a separate sign bit (s, 

which represents −1 or +1) and require m to be positive. e is called the exponent. This 

scheme allows a large range of magnitudes to be represented within a given size of 

field, which is not possible in a fixed-point notation. The floating-point representation is 

regulated by the IEEE 754 [20] standard. 

This unit can perform basic arithmetical operation on a single precision floating 

point number ( 32 bits – 1 bit sign, 23 bit significand and 8 bit exponent ). 

The basic structure of multiplication and division is 

1. significands  of  both  numbers  are  multiplied/divided  and  exponents  are 

added/subtracted

2. normalization of result is made 

3. rounding of final result is made and result's sign is calculated

The structure of an adder/subtracter is more complicated:
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1. Numbers are denormalized to have the same exponents

2. significands are added/subtracted, an exponent decision is made

3. the result is normalized

4. rounding of final result is made and result's sign is calculated

IEEE754  defines  four  rounding  schemes.  In  this  library  only  one  was 

implemented. All arithmetic operation use 'round towards zero' scheme.

3.11 OPB wrapper

The 'Onboard Peripherial Bus' is one of communication busses for embedded 

PowerPC used by Xilinx company. Each device connected to this bus can be mapped 

into embedded system's address space and then referenced from software. This wrapper 

provides an easy to use interfeace between the described components (  or any user 

component ) and OPB bus. This approach provides a completely new procedure for the 

algorithm development. At first, algorithms can be implementad using a programming 

language such as C or C++. Then, when the functionality is checked, all time critical 

parts can be easily moved into the hardware. This speeds up algorithm development and 

tests.

3.12 Summary

Some of the described library blocks (such as division,matrix operations) solve 

problems which were hard to overcome during the implementation process. Operations 

like division are difficult to implement. Other components allow users to simplify their 

implementation and reduce implementation time. Moreover each of the modules can 

become basis for further library development. User can design his own problem specific 
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components and include them in extension library. Modular library provides easy way 

for possible updates. It is only necessary to change component inside library. Changes 

will be visible in every implementation.

Moreover all used algorithms and concepts are well known in DSP processing. 

They were tested in a long period of time. A good example is the IQ demodulation 

algorithm which is currently used in the FPGA controller for the ACC1 module and the 

RF_GUN  at  the  VUV-FEL.  The  SRT  algorithm  is  commonly  used  as  a  division 

algorithm in  many  modern  microprocessors  such  as  Intel  Pentium.  The  concept  of 

saturated  arithmetics  is  also  well  known  and  implemented  in  many  programming 

languages.  

Chapter 4 describes implementation of each module – its  interface and basic 

functionality. Described modules were grouped into libraries and implemented to meet 

performance goals set by target environment.

39



4.  Implementation

Described modules were implemented using the VHDL description language. 

The code is prepared to be synthesized using most common compilers. It is VHDL'93 

standard compliant. 

The code is based on three packages from the IEEE library:

– std_logic_1164

– std_logic_signed

– std_logic_unsigned

This  packages  provide  a  basic  interface  for  arithmetical  operations  and type 

conversions.  In  some  modules  it  was  necessary  to  use  std_logic_arith  for  some 

additional functions for variable conversions. In this chapter the implementation of each 

of the modules will be described

4.1 math_basic_unsigned

This module provides a basic interface for unsigned arithmetical operations for 

other modules. It consists of following functions:

Vcreate(arg : natural ; length : integer ) return std_logic_vector

Function Vcreate is a wrapper for  CONV_STD_LOGIC_VECTOR function 

from IEEE library. It converts integer value to its binary representation. 

Vresize    (arg : std_logic_vector ; length : natural ) return 
std_logic_vector

Function Vresize is a function for vector resizing. It is basic function for 
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saturation control in the whole library.  The algorithm executed by this function is 

shown on Figure 19.

VShiftLeft(arg : std_logic_vector ; shift  : natural ) return 
std_logic_vector
VShiftRight(arg : std_logic_vector ; shift  : natural ) return 
std_logic_vector
VShift     (arg : std_logic_vector ; shift  : integer ) return 
std_logic_vector

The  function  Vshift uses  VshiftRight and  VshiftLeft functions  to  shift  it's 

argument  by N bits  left  or  right  (  when -N given as shift  ).  Shift  must  be a  static 

expression – fixed shifters are synthesized during compilation process.

VSum (arg1,arg2 : std_logic_vector ; length : natural ) return 
std_logic_vector
VSub (arg1,arg2 : std_logic_vector ; length : natural ) return 
std_logic_vector
VMult(arg1,arg2 : std_logic_vector ; length : natural ) return 
std_logic_vector
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Figure 19: Saturation control algorithm
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Vsum,Vsub and Vmult functions are wrappers for operators '+','-' and '*' defined 

in std_logic_unsigned package with additional saturation control. Algorithms executed 

by these functions are shown on Figure 20.

4.2 math_basic_signed

The module provides a basic interface for signed arithmetical operations for 

other modules. The following functions are defined:

SVCreate(arg : integer ; length : integer) return SV ;
SVResize(arg : SV ; length : natural ) return SV;

SVShiftLeft  (arg : SV ; shift : natural ) return SV ;
SVShiftRight (arg : SV ; shift : natural ) return SV ;
SVShift  (arg : SV ; shift : integer ) return SV ;

SVSum (arg1,arg2 : SV ; length : natural ) return SV  ;
SVSub (arg1,arg2 : SV ; length : natural ) return SV  ;
SVMult(arg1,arg2 : SV ; length : natural ) return SV  ;

where SV is an alias for a std_logic_vector.

The  main  difference  between  modules  is  that  signed  module  is  based  on 

ieee.std_logic_signed while unsigned is based on ieee.std_logic_unsigned.  Functions 

redefined for this library perform the same function as similar functions in unsigned 

library. The major difference is in SVResize function. It is base for saturation control for

 signed arguments. The algorithm executed by this function is shown on Figure 21.
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Figure 20: Structure of arithmetic operations
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Two additional functions:

SVNeg(arg : SV ) return SV  ;
SVAbs(arg : SV ) return SV  ;

are  directly connected to signed representation

SVNeg function executes following code:

result := not arg ;

return result+1 ;

This formula is directly taken from two's complement definition. 

The function SVAbs executes the function SVNeg conditionally ( when the sign 

of an argument is '-'). 
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Figure 21: Saturation control for signed vectors
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4.3 math_complex

This module provides complex number signed arithmetic operators. The 

representation of complex number was chosen to simplify operations. It is shown 

below:

The following functions are defined in this module:

SCCreate( re,im : TSV) return TSC ;
SCCreate( re,im,length : integer ) return TSC ;

The functions  SCCreate create complex number in representation shown using 

two signed vectors or two integers using length bits.
SCResize( arg : TSC ; length : integer ) return TSC ;

The function  SCResize provides tool for both imaginary and real part resizing 

using saturation control presented earlier. 

SCReal( arg : TSC ) return TSV ;
SCImag( arg : TSC ) return TSV ;

Functions  SCReal and  SCImag return  real  and  imaginary  part  from  vector 

representation of a complex number

SCSum( arg1,arg2 : TSC ; length : natural ) return TSC ;
SCSub( arg1,arg2 : TSC ; length : natural ) return TSC ;
SCMult( arg1,arg2 : TSC ; length : natural ) return TSC ;

The arithmetical operations are executed according to the algorithms presented 

on Figure 22 and Figure 23.
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SCNeg( arg : TSC ) return TSC ;

The Function SCNeg inverts the sign of both real and imaginary part of complex 

vector. It  rotates the signal  by 180 degrees.

4.4 math_matrix

This  library  defines  basic  components  for  matrix  operations  such  as 

multiplication and addition.

The main component for a matrix multiplication is a multiplier with accumulator. The 

interface to the component is shown below.

component matrix_mult_base is
generic (

INPUT_WIDTH : natural := 18 ;
INTERNAL_WIDTH : natural := 32 ;
OUTPUT_WIDTH : natural := 18 ;
BASE : natural := 0 

) ;
port (  

resetN : in  std_logic ;
clk : in  std_logic ;
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Figure 22: Complex add/sub
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r_in : in  std_logic_vector( INPUT_WIDTH-1 downto 0) ;
c_in : in  std_logic_vector( INPUT_WIDTH-1 downto 0) ;

i_out : out std_logic_vector(OUTPUT_WIDTH-1 downto 0) 
) ;

end component ;

Parameters:
INPUT_WIDTH defines width of single matrix element
INTERNAL_WIDTH defines width of internal accumulator
OUTPUT_WIDTH defines witdh of output result
ITEM_COUNT Number of items in single matrix row/column
BASE defines number of fractional bits in output data. 

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
r_in vectors conected to pipes/memories with row  elements
c_in vectors conected to pipes/memories with column elements
i_out output element of result matrix

This component can be used to calculate a single element of the matrix C where

C = A*B

both A and B are matrices of sizes which allow multiplication

When  the  data  pipe  provides  more  than  one  row/column  of  matrix,  this 

component  can  calculate  several  elements  of  matrix  C.   Latency of  the  component 

equals size of matrix row in clock cyles and for more than one element calculation it is 

multiplied by number of elements.

The second component  defined in this  library is  component  which allows to 

calculate one or more elements of matrix C where:

C = A+B or C = A-B
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The interface of the component is:

component matrix_sum_base is
generic (

INPUT_WIDTH : natural := 18 ;
OUTPUT_WIDTH : natural := 18 

) ;
port (  

resetN : in  std_logic ;
clk : in  std_logic ;

rA_in : in  std_logic_vector( INPUT_WIDTH-1 downto 0) ;
rB_in : in  std_logic_vector( INPUT_WIDTH-1 downto 0) ;

r_out : out std_logic_vector( OUTPUT_WIDTH-1 downto 0)
 ; 

op : in std_logic 
) ;

end component ;

Parameters:
INPUT_WIDTH defines width of a single matrix element
OUTPUT_WIDTH defines witdh of the output result

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
rA_in vectors conected to pipes/memories with A row  elements
rA_in vectors conected to pipes/memories with B row elements
r_out output element of result matrix
op Defines operation: '0' – A+B, '1' – A-B

4.5 IQ demodulator

This library defines the module for IQ demodulation. The interface of the 

component is shown below:
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component IQdet is   
generic (

DSP_WIDTH : natural := 18 
) ;
port (

resetN : in  std_logic ;
lclk : in  std_logic ;
adc_sample : in  TSV(DSP_WIDTH-1 downto 0) ;
I : out TSV(DSP_WIDTH-1 downto 0) ;
Q : out TSV(DSP_WIDTH-1 downto 0) 

) ;
end component ;

Parameters:
DSP_WIDTH defines width of input elements

Ports:
resetN port used to reset internal registers such as accumulator
lclk clocking port
adc_sample Raw signal for I and Q calculation
I,Q I and Q outputs

This component is capable of IQ demodulation. It was implemented according to 

the mathematical formulas described in chapter 3.4.

4.6 CORDIC

This library defines modules for cordic algorithm. Two functions defined in this 

module are:
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function complex_rotate_I( tI,tQ : TSV ; N : TN ) return TSV ;
function complex_rotate_Q( tI,tQ : TSV ; N : TN ) return TSV ;

They are used to calculate coordinate of vector after rotation. Rotations are made 

according to CORDIC definition for N th iteration. The following component is able to 

perform a single step of the CORDIC algorithm. Its interface is shown below.

component cordic is
generic (

IQ_WIDTH : natural  := 18 ;
IQ_LEVEL : natural  := 0

) ;
port (

clk : in std_logic ;
resetN : in std_logic ;

I : in TSV(IQ_WIDTH-1 downto 0) ;
Q : in TSV(IQ_WIDTH-1 downto 0) ;

newI : out TSV(IQ_WIDTH-1 downto 0) ;
newQ : out TSV(IQ_WIDTH-1 downto 0) ;

phase_in : in  TSV(IQ_WIDTH-1 downto 0) ;
phase_out : out TSV(IQ_WIDTH-1 downto 0) ;

BASE_ANGLE : in  TSV( IQ_WIDTH-1 downto 0 ) 
) ;
end component ;

Parameters:
IQ_WIDTH defines width of input elements
IQ_LEVEL defines iteration number executed by this component ( rotation 

functions depend on this parameter )

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
I,Q I and Q input vector coordinates
newI,newQ coordinates of rotated vector
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Ports:
BASE_ANGLE value of rotation angle executed by this stage
phase_in cumulativ phase input
phase_out cumulative phase output ( phase_in + BASE_ANGLE or 

phase_in - BASE_ANGLE )

In  this  approach  a  BASE_ANGLE  can  be  changed  during  operation  which 

allows extended algorithm control.  When it  is not necessary BASE_ANGLE can be 

moved  to  parameters  list  to  reduce  resources   consumption.  The  general  rule  of 

operation is described in chapter 3.5

Second component defined in this library is component for amplitude and phase 

calculation. Its interface is:

component cordicAP is
generic (

IQ_WIDTH : natural  := 18 ;
CORDIC_LEVELS : natural  := 0

) ;
port (

clk : in std_logic ;
resetN : in std_logic ;

I : in TSV(IQ_WIDTH-1 downto 0) ;
Q : in TSV(IQ_WIDTH-1 downto 0) ;

magnitude : out TSV(IQ_WIDTH-1 downto 0) ;
phase : out TSV(IQ_WIDTH-1 downto 0) 

) ;
end component ;

Parameters:
IQ_WIDTH defines width of input elements
CORDIC_LEVELS defines number of iterations executed by component

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
I,Q I and Q input vector coordinates
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Ports:
magnitude magnitude result of input vector
phase phase result for IQ vector

This component creates multiple instances of CORDIC stage entity to execute 

several iterations of CORDIC algorithm. The description can be found in chapter 3.6 

4.7 SRT

This library consists of the following components with the same interface, which 

execute a single iteration of the SRT algorithm

First component  executes single step of radix-2 srt algorithm:

component srt_stage2 is
generic (

WORD_WIDTH : natural := 18
) ;

port (    
clk : in  std_logic ;
resetN : in  std_logic ;

Pin : in  TSV(WORD_WIDTH-1 downto 0) ;
Pout : out TSV(WORD_WIDTH-1 downto 0) ;

D : in  std_logic_vector(WORD_WIDTH-1 downto 0) ;
Dout : out std_logic_vector(WORD_WIDTH-1 downto 0) ;

i_result  : in  TSV(WORD_WIDTH-1 downto 0) ;
o_result  : out TSV(WORD_WIDTH-1 downto 0)
);

end component; 

The second one executes single step of radix-4 srt algorithm

component srt_stage4 is
generic (

WORD_WIDTH : natural := 18
) ;
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port (    
clk : in  std_logic ;
resetN : in  std_logic ;

Pin : in  TSV(WORD_WIDTH-1 downto 0) ;
Pout : out TSV(WORD_WIDTH-1 downto 0) ;

D : in  std_logic_vector(WORD_WIDTH-1 downto 0) ;
Dout : out std_logic_vector(WORD_WIDTH-1 downto 0) ;

i_result  : in  TSV(WORD_WIDTH-1 downto 0) ;
o_result  : out TSV(WORD_WIDTH-1 downto 0)
);

end component; 

Parameters:
WORD_WIDTH defines width of input elements

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
Pin,Pout input partial remainder and output partial remainder after 

iteration
Din,Dout pipeline for divisor
i_result result calculated in previous iteration

o_result result updated in this iteration

The component  is  described in  chapter  3.8.  These  components  were  used to 

create  a  fixed  point  divisor  which  can  execute  a  fixed  point  divison  of  numbers 

normalized to the [0.5,1) range. Multiple instances of the SRT stage were used. Each 

stage is capable of one ( SRT2 ) or 2 ( SRT4 ) digits of quotient calculation. It is defined 

as follows:

component srt2/srt4 is
generic (

WORD_WIDTH   : natural := 18
) ;

port (    
clk : in  std_logic ;
resetN : in  std_logic ;
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D : in  std_logic_vector(WORD_WIDTH-1 downto 0) ;
C : in  std_logic_vector(WORD_WIDTH-1 downto 0) ;

W : out std_logic_vector(WORD_WIDTH-1 downto 0) ;
R : out TSV(WORD_WIDTH   downto 0)   
);

end component;  

Parameters:
WORD_WIDTH defines width of input elements and number of iterations 

needed to get full result

Ports:
resetN port used to reset internal registers
clk clocking port
D divisor input
C dividend input
W result

R remainder

4.8 Floating point unit

The floating point unit consists of 3 components capable of arithmetic operations 

on floating point numbers ( compatible with IEEE 784 standard ). The interface of the 

components is shown below.

component mult[div/sum]_float is
port (

clk : in std_logic ;
resetN : in std_logic ;

S1 : in std_logic ;
S2 : in std_logic ;

E1 : in std_logic_vector(7 downto 0) ;
E2 : in std_logic_vector(7 downto 0) ;

M1 : in std_logic_vector(22 downto 0) ;
M2 : in std_logic_vector(22 downto 0) ;
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S3 : out std_logic ;
E3 : out std_logic_vector( 7 downto 0) ;
M3 : out std_logic_vector(22 downto 0) 

);
end component ;

Ports:
resetN port used to reset internal registers
clk clocking port
S1,S2 signs of operands
S3 sign of the result
E1,E2 exponents of operands

E3 exponent of result

M1,M2 mantisas of operands

M3 mantisa of reult

The components are  fully pipelined therefore processing of the operands can 

start before the result of the previous ones is ready. The structure of the components is 

shown on Figure 24 and Figure 25.
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Figure 24: Floating point multiplication/division structure
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A functional description of the floating point arithmetic operations can be found 

in chapter 3.10. 

4.9 FIR filter

This  FIR  filter  is  a  flexible,  programmable  filter.  Modifications  of  filter 

parameters  and  filter  order  do  not  require  program  recompilation.  The  following 

declaration shows component's interface.

Type Tparray is array(31 downto 0) of natural ;

component filter is
  generic ( 

WORD_WIDTH : natural := 18 ;
MAX_ORDER  : natural := 32

  ) ;
  port(

clk :in  std_logic ;
int_clk :in  std_logic ;
resetN :in  std_logic ;

order :in  natural ;
coefficients :in  TParray 
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Figure 25: Floating point adder structure
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in_data : in   std_logic_vector(WORD_WIDTH-1 downto 0) ;
out_data : out  std_logic_vector(WORD_WIDTH-1 downto 0) 

);
end component; 

Parameters:
WORD_WIDTH defines width of input elements
MAX_ORDER defines maximum order of the filter ( set at compialtion time)

Ports:
resetN port used to reset internal registers
clk clocking port
int_clk clocking port used for internal calculations 
order Actual order of the filter
coefficients table of coeficients

data_in data input for the filter

data_out filtered data

The maximum value of  'order'  port  is  MAX_ORDER. When it  exceeds  this 

parameter it is treated as MAX_ORDER. CLK and INT_CLK can be connected to the 

same clock if the sampling speed needs to be exactly the same as processing speed. 

The structure of the implemented filter is shown on Figure 26.
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Figure 26: Structure of a programmable filter
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4.10 OPB wrapper

This component is based on a OPB peripheral template provided by XILINX. It 

provides the OPB interface for components defined in the mathematical library or for 

any user component. Typical transactions on the OPB bus is shown on Figure 27.

Wrapper defines a set of registers which are mapped into embedded system's 

address  space.  Register  can  be  connected  to  any  signal  in  the  VHDL  code.  The 

component is compatible with the Xilinx EDK IP core definition so it can be added 

to embedded system using a graphical tool. Internal structure of this wrapper is shown 

in Figure 27.
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Figure 27: OPB wrapper structure connected to OPB logic
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4.11 Summary

As the result of the implementation of the concept shown in chapter 3, a flexible 

mathematical  library  was  created.  It  fulfills  all  the  requirements  for  the  system 

described in chapter 2. The functional blocks such as IQ demodulator or magnitude and 

phase calculation provide scalable and simple means to implement input stages of many 

algorithms. Blocks for matrix multiplication, division and sine calculation can be used 

in  many  different  places  inside  the  algorithm implementation  (  for  example  inside 

detuning  algorithm implementation  or  controller  structures  ).  The  rest  of  the  basic 

blocks  such  as  math_basic_signed  or  math_matrix  modules  can  be  used  when 

functionality  not  inluded  in  this  library  is  needed.  They  allow low level  algorithm 

implementation.

All blocks were optimized to provide a resonable choice between performance 

and resource usage according to possibilities in the target accelerator environment. After 

and during implementation all  modules were completly  tested.  Descriptions and the 

results of tests are shown in chapter 5.
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5. Tests of designed system

All parts of presented system were tested during implementation using VHDL 

simulation environment ( Aldec ActiveHDL ). The test procedure is shown using  the 

matrix_mult_base component as example. The first step was the implementation of 

the module. The layout of ActiveHDL design environment is shown on Figure 28.

The compilation  process  was  initiated  and  completed  successfully.  Then  the 

input vectors were defined amd simulation started. The results are shown below.
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Figure 28: VHDL simulation environment



In this case the parameters INPUT_WIDTH and ITEM_COUNT were set to 5. 

The analysis of the simulation results shows that the component is working as planned:

The input  column element  was  set  to  1  for  the  whole  simulation.  The  row 

element was changing during 5 clock cycles: 1,10,1,11,1. According to the chapter 3.3 

the result  on the output  should be: 1*1+10*1+11*1+1*1+1*1 = 24.  This result  was 

received after 7 clock cycles from the beginning of operation. Two additional delay 

cycles are caused by internal pipelined structure of the component. In the next step of 

verification each module was synthesized and the maximum working frequency was 

measured.

Moreover   most  of  described  modules  were  used  and  tested  during  the 

implementation  process  of  the  cavity  detuning   measurement  algorithm.  The  final 

product  was  connected to  real  accelerator  signals  and  real-time measurements  were 

made. 
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Figure 29: Simulation results



This chapter presents a sample process of algorithm development and the results 

of measurements. The board used was the SIMCON3.1 board presented in Chapter 1. 

5.1 Cavity detuning measurment – algorithm and 
implementation

During  accelerator  operations  the  resonance  frequency  of  superconducting 

cavity changes. High energy field deforms the cavity's shape ( Lorentz force detuning ) 

and  surrounding  environment  (  cooling  system,  ground  motion,  traffic  )  causes 

excitation of mechanical models ( microphonics ). Frequency shift leads to cavity field 

errors  and should be detected and compensated. 

In the general transfer function for one electrical mode in superconducting cavity 

can be modeled as high Q bandpass described using following equation [7]:
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ẋ0
2 x=0 1 

2

y

The signals x and y can be represented as

x= x0e j t y= y0 e jt

where x0 and y0 are changing slowly ( envelope ) and exp function is changing 

fast. Therefore the first order envelope equation is:
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The translation to the polar coordinates using:

x=r e j y=e j

gives following equations:
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The first equation can be used to determine the frequency change as:

=
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The final mathematical formula that was implemented is:
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=−2 


newdphase−2 1 
2 

∣calcomplex forward∣
∣complex probe∣

sin angle calcomplex forward−anglecomplex probe

newdphase – deriviate of probe signal phase

calcomplexforward - complex ( IQ ) signal representing calibrated forward power 

complexprobe - complex ( IQ ) signal representing probe power 

 The complexforward  is the result of calibration between forward and reflected signals:

calcomplex forward=Acomplex forwardBcomplex reflected

The structure of implemented algorithm is shown on Figure 30.
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Figure 30: Structure of cavity detuning measurment implementation
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The first blocks in the algorithm are IQ demodulators taken from the library. 

Then  the  signal  is  connected  to  calibration  block.  Two  libraries  can  be  use  there: 

math_basic_signed – 8 multiplications and 4 additions/subtractions must be made or 

math_complex – 2 complex multiplications and 2 additions must be made.

Signals  are  conected  to  magnitude  and  phase  calculation  block  based  on 

CORDIC  algorithm.  After  calculations,  the   phase  output  of  the  probe  signal  is 

connected to derivate filter and all the signals are connected to the processing block 

showed on Figure 31.
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Figure 31: Structure of the processing block
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Magnitudes of the probe and the forward signals are divided by the fixed point 

divison  block  base  on  SRT  modules  and  sine  for  the  difference  of  the  phases  is 

calculated.  In  this  case  table  for  sine  function was used  –  delay is  time critical  so 

CORDIC can not be used. Next divisor output and calculated sine is multiplied and 

result of probe phase filtering i subtracted. 

The  algorithm was used to evaluate the performance of the basic functional 

blocks:

a) IQ demodulator

The probe signal from the accelerator was sampled and connected to the IQ 

demodulator block. The results are shown in Figure 32
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Figure 32: Probe signal with I and Q signals

Sample numbers = time [us]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

-3000

-2000

-1000

0

1000

2000

sample number

va
lu

e

probe samples

I

Q

Sample numbers = time [us]

va
lue



The absolute error of calculations is shown on Figure 33. It is caused by fixed 

point representation of data in the FPGA.

b) Magnitude and phase calculations

Calculated I and Q signal was connected to the input of Magnitude and phase 

block. The results are shown on Figure 34 The absolute error of magnitude calculation 

is shown on Figure 36. In this case it is sum of quantization error caused be fixed point 

representation and CORDIC algorithm error.

65

Figure 33: Absolute error of calculations
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Figure 34: Magnitude result
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The next  figure  shows phase  output  of  CORDIC block.  Y axis  is  scaled  in 

radians

The error of the phase calculations is shown on Figure 37 Again it is sum of 

quantization error and CORDIC algorithm error.
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Figure 36: Phase calculations
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c) division block

Calculated  magnitudes  are  delivered  to  the  input  of  division  block.  It  was 

configured  to  deliver  values  with  4.14  representation  (  4  bits  for  integer  part  of  a 

number, 14 bits for fractional part ). Maximum value on  division output is 7.9999. 

Input magnitudes are shown on Figure 38. The result of the division is shown on Figure 

39.
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Figure 37: Absolute error of phase calculations
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Figure 38: Inputs of the division block
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Figure 39: Division result
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The division block output differs from real division result untill sample 190. It is 

caused by chosen representation. When the real result is lower than 8, the response of 

the block is valid. Absolute error of calculation is shown on Figure 40. It is caused by 

quantization.

SIMCON 3.1 board was configured and connected to Cavity 5 in ACC4 VUV-

FEL module. Real time detuning measurements were taken. Sample results are shown 

of Figures 41 and 42.
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Figure 40: Absolute error of division block
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Figure 41: Detuning signal taken during measurments in VUV-FEL

Figure 42:  Detuning signal taken during measurments in VUV-FEL
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5.2 Floating point unit tests

The  OPB  wrapper  is  used  to  connect  floating  point  units  to  the  embedded 

PowerPC processor. A program for the performance evaluation was written. Inputs to 

the operation blocks were mapped to the address space. PowerPC performed following 

tasks:

1. 10000000 floating point add/subtracts were executed using software 

emulation provided by Xilinx PPC library. Mean time of single operation 

was measured.

2. The same task was performed but using hardware cores

3. The process was repeated for multiplication and division

The results from serial console on PPC are shown below:

Table 7 summarizes the results
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MULTIPLICATION STATS

software emulation
single operation: 2404.072998
hardware support
single operation: 289.000000

ADD/SUB STATS

software emulation
single operation: 2347.683838
hardware support
single operation: 286.000000

DIV STATS

software emulation
single operation: 4824.583496
hardware support
single operation: 407.000000



sum/sub mult div
software 2347.683838 2404.072998 4824.583496

hardware 286.000000 289.000000 407.000000

acceleration 8.2 8.31 11.85

Table 7: Floating point core evaluation

The times are shown in processor clock cycles ( PPC frequency is 300MHz, 

OPB bus frequency  is 100MHz). Most of hardware latency is caused by input/output 

operation delays in PPC system. 

5.3 Matrix multiplication tests

To evaluate performance of matrix_mult_base module, the following structure 

for 20x20 matrix multiplication was implemented. It allows to upload matrix data into 2 

input memories using the comunnication interface ( in this case Internal Interface ). 

Multiplication is executed and result matrix is stored in output memory.
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Figure 43: Implemented matrix multiplication
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The CLK/SYNCH block provides the clocking signal for mutiplication unit and 

memories.  Moreover  it  controls  adresses  delivered  to  the  memories  to  provide 

synchronization between rows and columns. The configuration of the multiplication unit 

is following:

INPUT_WIDTH = 18  INTERNAL_WIDTH = 24
OUTPUT_WIDTH= 18  ITEM_COUNT     = 20  BASE=0

Presented unit was implemented using Virtex 2 Pro XC2VP30 chip. Following 

performance was achieved.

Speed grade LUTs FlipFlops 18x18 mult Block RAM Maximum
freq.

-5 128 57 1 3 90 MHz
-6 128 57 1 3 100 MHz
-7 128 57 1 3 115 MHz

Table 8: Performance and resource usage of matrix multiplication unit

Resource usage does not include resources used by comunication interface. The 

calculation of one element takes 20 clock cycles. The whole result  matrix with 400 

element takes 8000 clock cycles. Additional 2 clock cycles are needed. The final result 

is known after 8002 clock cycles. For -6 speed grade when the clock period is 10ns it 

takes 80020 ns ( 80,02 us ). Table 9 shows multiplication time for a different number of 

used hardware multipliers

Number of multipliers Operation time [us]
1 80
2 40
4 20
8 10

Table 9: Matrix 20x20 multiplication time
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6. Summary and conclusions

Presented  library  is  now  in  testing  stage.  Initial  tests  and  first  algorithm 

implementations  showed that  the base concept  is  correct  and can be used in  future 

development. The following group of the system were implemented and tested – they 

are accessible for end-user:

– input  modules  -  (  they  include  IQ  demodulator  and  Magnitude  and  phase 

calculations  )  which  provide  easy  conversion  of  raw  data  into  neccessary 

representation. These modules execute input stages of many algorithms and provide 

data for core modules which execute main calculations

– core  modules  –  they  execute  specific  functionality  such  as  divison,  sin/cos 

calculation, data filtering. They can be conected to each other or to input modules to 

create structure neccessary for specific algorithm implementation.

– embedded systems support – they provide interface to the embedded system, which 

allows to connect and map any other module into embedded system's addres space 

and floating point module to provide floating point arithmetical operations. Future 

tests with embedded DOOCS servers that need fast floatng point operations may 

show the real value of these modules

– low  level  modules  (  they  include  libraries  such  as  math_basic_signed, 

math_complex,  etc.  )  which  allow to  implement  any  functionality  which  is  not 

included  into  other  modules.  They  implement  basic  concepts  of  mathematical 

library such as saturation arithmetic, complex numbers operation and so on. User 

can easily implement his own modules without special considerations

All blocks were optimized to provide resonable choice between performance and 

resource usage according to possibilities in target accelerator environment, but in future 

versions of this library they can be further optimized to fit to the changing needs of the 
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system.  Performance  will  change  together  with  FPGA  market  changes  and  some 

resource constraints may be dropped ( when the prices of FPGA chips decrease and 

available resources increase ). Moreover the functional blocks written by the author or 

end-users  may  be  added  to  fit  the  needs  of  other  groups  and  environments.  The 

proposed solution provides easy and fast way to implement algorithms, so it will easily 

be integrated with existing systems. Architecture of the library is open so, in future, 

components will be upgraded and new elements added. 
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