
Warsaw University of Technology
Department of Electronics and Information Technologies

Institute of Electronic Systems

Wojciech Jałmużna (index no 180896)
Warsaw ELEHP Group and DESY LLRF Team

Thesis for Master of Science in Electronics Engineering

Design and implementation of universal
mathematical library supporting

algorithm development for FPGA based
systems in high energy physics

experiments

The work done under supervision of
prof. nzw. dr hab. Ryszard Romaniuk and dr Krzysztof Pozniak, in cooperation with dr Stefan Simrock

Warsaw, February 2006

1

rrom
TESLA REPORT 2006-01DESY THESIS 2006-001

Contents

I. Abstract..3
II. Abstract in Polish ... 4
1. Introduction...7

1.1 Control algorithm... 10
1.2 Modern solutions..12
1.3 FPGA based controller (SIMCON)..15
1.4 Algorithm development... 20

2.System reqirements..23
3.Concept of a synchronous mathematical library for FPGA chips........................... 24

3.1 math_basic_signed and math_basic_unsigned modules.................................. 26
3.2 math_complex module... 27
3.3 math_matrix module.. 28
3.4 IQ estimator..29
3.5 CORDIC stage... 30
3.6 Magnitude and Phase detector..31
3.7 Sin/Cos calculation...32
3.8 SRT stage... 34
3.9 Fixed point divider... 37
3.10 Floating point unit.. 37
3.11 OPB wrapper..38
3.12 Summary.. 38

4. Implementation... 40
4.1 math_basic_unsigned... 40
4.2 math_basic_signed... 42
4.3 math_complex.. 44
4.4 math_matrix... 45
4.5 IQ demodulator.. 47
4.6 CORDIC...48
4.7 SRT.. 51
4.8 Floating point unit.. 53
4.9 FIR filter...55
4.10 OPB wrapper..57
4.11 Summary.. 58

5.Tests of designed system... 59
5.1 Cavity detuning measurment – algorithm and implementation....................... 61
5.2 Floating point unit tests..72
5.3 Matrix multiplication tests... 73

6.Summary and conclusions... 75
References...77
Acknowledgments...79
7.Appendixes.. 80

2

I. Abstract

The X-ray free-electron laser XFEL that is being planned at the DESY research

center in cooperation with European partners will produce high-intensity ultra-short X-

ray flashes with the properties of laser light. This new light source, which can only be

described in terms of superlatives, will open up a whole range of new perspectives for

the natural sciences. It could also offer very promising opportunities for industrial users.

SIMCON (SIMulator and CONtroller) is the project of the fast, low latency

digital controller dedicated for LLRF system in VUV FEL experiment based on modern

FPGA chips It is being developed by ELHEP group in Institute of Electronic Systems

at Warsaw University of Technology. The main purpose of the project is to create a

controller for stabilizing the vector sum of fields in cavities of one cryomodule in the

experiment. The device can be also used as the simulator of the cavity and testbench for

other devices. Flexibility and computation power of this device allow implementation of

fast mathematical algorithms.

This paper describes the concept, implementation and tests of universal

mathematical library for FPGA algorithm implemetation. It consists of many useful

components such as IQ demodulator, division block, library for complex and floating

point operations, etc. It is able to speed up implementation time of many complicated

algorithms. Library have already been tested using real accelerator signals and the

performance achieved is satisfactory.

3

II. Abstract in Polish

Projekt XFEL, który planowany jest w instytucie badawczym DESY w

Hamburgu będzie w stanie dostarczyć krótkie impulsy promieniowania X o wysokim

natężeniu z właściwościami światła laserowego. Jego świetlność moży być nawet

milion razy większa od najbardziej nowoczesnych źródeł promieniowania X.

Międzynarodowa grupa badawcza o nazwie 'TESLA collaboration' testuje obecnie

nowatorski technologie w ośrodku DESY. Osiągnęła ona już wiele z kluczowych celów

postawionych przed nimi. XFEL umożliwi wykonywanie zaawansowanych badań w

Europie. Stworzy również wiele mozliwości dla ośrodkó przemysłowych. Pilotowym

odcinkiem dla XFEL jest akcelerator VUV-FEL, w którym odbywaja się testy.

Jedną z nowatorskich technologi wporowadzonych w użycie przy VUV-FELu są

programowalne układy FPGA. W ciągu ostatnich lat zaobserwowano szybki rozwój na

tym rynku. Obecnie moc obliczeniowa tych układów może być porównana z mocą

obliczeniową procesorów DSP. Ponadto architektura tych chipów jest otwarta – może

być optymalizowana razem z algorytmem matematycznym. Wiele układów FPGA ma

możliwość użycia procesorów osadzonych takich jak PowerPC, Nios, Microblaze.

Programy pisane na te procesory mogą zostać połączone ze sprzętowymi blokami

rownoległego przetwarzania sygnału.

W chwili obecnej w użyciu znajduje się oparty na ukłądzie FPGA kontroler

opracowany przez grupę ELHEP. Jest to kolejna generacja płyty z rodziny SIMCON.

Bazuje ona na chipie FPGA XC2VP30 firmy Xilinx. Bogate peryferia oferują duże

możliwości komunikacyjno-obliczeniowe. Może ona stać się bazą wielu implementacji

algorytmów matematycznych.

Szybki rozwój możliwości technicznych pociąga za sobą rozwój algorytmów

matematycznych. Ich implementacja przy użyciu języka opisu sprzętu (VHDL) staje

się skomplikowana i czasochłonna. Rośnie czas dostarczenia gotowego produktu. Na

wprost tego wychodzą producenci oprogramowania używanego do implementacji.

Interfejsy tych programów są coraz bardziej uproszczane. Oferują one graficzne

narzędzia do tworzenia opisów sprzętu. Przyspiesza to znacznie proces implementacji.

4

Pociąga za soba równiez jedną wade – maleje kontrola nad szczegółami implementacji

w sprzęcie. Praca ta prezentuje inne z możliwych rozwiązań tego problemu. Jej celem

jest stworzenie koncepcji oraz implementacja uniwersalnej i parametrycznej biblioteki

matematycznej wspierającej implementację i rozwój algorytmów matematycznych w

układach FPGA.

Biblioteka została podzielona na następujące części:

– moduły wejściowe

w skład tej grupty wchodzą moduły takie jak demodulator IQ oraz blok obliczający

amplitude i faze liczby zespolonej. Użyte mogą zostać do wstępnej konwersji

sygnału z akceleratora do wymaganej reprezentacji. Dostarczają one sygnał do

komponentów z kolejnej grupy.

– moduły obliczeniowe

są to główne moduły wykonujące konkretne obliczenia matematyczne. W ich skład

wchodzą bloki takie jak: dzielenie stalo pozycyjne, obliczanie funkcji

trygonometrycznych, operatory operacji na liczbach zespolonych, macierzowe

operacje arytmetyczne,regulowane filtry oraz jednostka do obliczen zmienno

pozycyjnych.

– wsparcie dla systemów osadzonych

w tej grupie znajduje sie moduł 'OPB wrapper' mapujący zbiór rejestrów

zdefiniowanych w strukturze FPGA w przestrzeń adresową systemu osadzonego.

Umożliwia to miesznae podjeście do implementacji algorytmów – mniej krytyczne

częsci mogą zostać zaimplementowane w języku wyższego poziomu (na przykład

C) i komunikować sie z krytycznymi sekcjami obliczanymi przez sprzęt. Moduł ten

umożliwia również dołączenie wymienionej wyżej jednostki zmiennopozycyjnej

jako koprocesora dla PowerPC.

– moduły niskopoziomowe

5

są to biblioteki podstawowe użyte do zaimplementowania pozostałych modułów.

Udostępnione są one uzytkownikowi, aby mógł użyć je w przypadku kiedy

wymagana jest funkcjonalność nieuwzględniona w bibliotece. Implementują one

podstawowe koncepty operacji arytmetycznych takie jak arytmetyga nasycona,

operatory arytmetyczne dla macierzy, liczb zespolonych, liczb

zmiennopozycyjnych.

Architektura bibliotek jest otwarta. Dzięki temu istnieje wiele możliwości

dodawania nowych komponentów i ulepszania starych. Nowe komponenty mogą zostać

dodane do biblioteki nawet przez zwykłych użytkowników. Wszystkie bloki zostały

zoptymalizowane aby zapewnic rozsądny wybór między użytymi zasobami a

szybkością działania. Jednak w miarę rozwoju rynku FPGA – rosnących możliwości

technicznych – konieczne będzie dostosowywanie biblioteki do zmieniających sie

warunków.

Wszystkie użyte w niej algorytmy obliczeniowe są algorytmami dobrze znanymi

w przetwarzaniu DSP. Przykładem może być tu algorytm demodulacji IQ używany

obecnie w kontrolerze FPGA dla moduły ACC1 akceleratora VUV-FEL lub algorytm

dzielenia SRT uzywany w procesorach firmy Intel.

Szczegóły implementacji – interfejsy i parametry - poszczególnych modułów

pokazane zostały w rozdziale 4 tej pracy.

Rozdział 5 przedstawia testy biblioteki w środowisku akceleratorowym. W tym

celu zaimplementowany został algorytm matematyczny pomiaru odstrojenia wneki

rezonansowej podczas pojedynczego pulsu pola elektromagnetycznego wewnątrz

wneki. Uzyskana implementacje spełnia wszystkie oczekiwania – wejdzie ona w skład

planowanego systemu kontroli. Przetestowany został również blok operacji

zmiennopozycyjnych. Przyspieszenie obliczeń procesora osadzonego w porównaniu z

emulacją programową wynosi około 1000%. Rezultaty uzyskane dla mnożenia

macierzy 20 na 20 elementów również są bardzo ciekawe. Czas wykonania takiego

mnożenia wynosi około 80 us.

Przedstawiona biblioteka spełnia wszystkie wymagania postawione przez system

sterowania LLRF i ma szanse stać sie popularnym narzędziem implementacji

algorytmów matematycznych.

6

1. Introduction

 The X-Ray Free-Electron Laser, which is planned at the DESY research center

[15] will produce high-intensity ultra-short X-ray pulses with the properties of laser

light. At peak values, its brilliance is a billion times higher than that of the most modern

X-ray light sources, and its average brilliance is 10 000 times higher. An international

research team, the TESLA collaboration, is currently demonstrating the facility's

pioneering technology at the DESY research center in Hamburg. It has already achieved

the key milestones it has been aiming for. The free-electron X-ray laser will make it

possible to do leading-edge research in Europe and will also offer very promising

opportunities for industrial users

The layout of the accelerator and laser facility is shown on Figure 1.

7

Figure 1: X-FEL facility layout

Main parameters of XFEL facility are [15]:

Total length of the facility approx. 3.4 km
Accelerator tunnel approx. 2.1 km
Depth underground 6 - 38 m
Experimental hall 10 experimental stations at 5 beamlines,
Scope for expansion Second hall with an 10 experimental stations
Wavelength of X-ray radiation 6 to 0.085 nanometers (nm)
Length of radiation pulses below 100 femtoseconds (fs)

Table 1: X-FEL main parameters

The planned facility will include a superconducting linear accelerator that brings

tightly bundled “bunches” of electrons to energies of several billion electron volts. At

that point, the electrons race at almost the speed of light along a slalom course through a

special arrangement of magnets called the “undulator.” As they go, they emit X-ray

radiation that amplifies itself during the flight. The results are brilliant: Extremely short

and intense X-ray flashes with laser properties. For such an X-ray laser to work, an

electron beam of extremely high quality is required. And the TESLA superconducting

accelerator technology is already making it possible to generate this kind of electron

beam today.

Before the electrons can emit X-ray flashes, they must first be accelerated to

energies of several billion electronvolts. That's exactly what happens inside the

resonators, where electromagnetic fields accelerate the particles. The resonators are

made of niobium and are superconducting: When they are cooled to a temperature of

-271 °C, they loose their electrical resistance. Electrical current then flows through the

resonators with almost no losses whatsoever - and that's an extremely efficient and

energy-saving method of acceleration. Nearly the entire rf power is transferred to the

particles. Moreover, the superconducting resonators deliver an extraordinarily fine and

even electron beam of extremely high quality. In the X-ray laser, each of several billion

electrons needs to have the same energy and direction. They also need to be combined

into bunches with a diameter of no more than one tenth of a millimeter to achieve the

necessary peak current of 5kA. Unless the electron beam meets these very special

8

requirements, the X-ray laser does not work.

The new free-electron laser VUV-FEL - the pilot facility for the XFEL - , which

generates vacuum ultraviolet (VUV) and soft X-ray radiation in a range down to

wavelengths of six nanometers, was commissioned in 2004, making possible

groundbreaking experiments. To accommodate the new free-electron laser, the 100-

meter-long TESLA test facility was modified to a total length of 260 meters and

extended to the VUV-FEL. Both VUV-FEL and XFEL are based on the same

superconducting technology.

In the VUV-FEL cavities are grouped into cryomodules which contain 8 cavities

each. The cavities are powered by klystrons (32 per klystron). In order to get

appropriate beam acceleration two conditions must be met:

1. the electromagnetic field inside resonators must be stabilized (to ensure stable

beam energy)

2. it must have appropriate phase (for bunch compression and acceleration)

The regulation of the field is performed by the LLRF – Low Level Radio

Frequency control system. It controls I and Q components of resonator field. They

correspond to real and imaginary part of the field vector. The control section, powered

by one klystron, may consist of many cavities, so the LLRF system is used to control

vector sum of up to 32 cavity fields. The system consists of many devices such as:

downconverters, digital feedback controllers,vector modulators, piezo controllers,

timing modules, and many ADC boards for monitoring the signals in the system.

9

Figure 2: VUV-FEL structure schematic

1.1 Control algorithm

The main control loop in the LLRF system starts at the cavity probe. The signals

(1.3GHz) are downconverted to an intermediate frequency of 250KHz. Eight

downconverted signals are connected to inputs of digital controller. It samples the

probe signal with a frequency of 1MHz. Inside the controller (currently it is a DSP

based system) after initial calibration (scaling and leveling), the digital processing is

performed in I/Q detector applying the signal v_m of the intermediate frequency at 250

kHz. The resultant cavity voltage envelope (I, Q) is calibrated, so to compensate the

phase offset for an individual measurement channel. The vector sum of up to 32 signals

is needed for the actual control processing. Feedforward and Feedback algorithms can

be used to control the system.

The Set-Point table delivers the required signal level, which is compared to the

actual average value of the cavities voltage envelope. Then the proportional controller

amplifies the signal error according to data from the GAIN table and closes the

feedback loop. Additionally the Feed-Forward Table is applied to improve

compensation of the repetitive perturbations induced by the beam loading and by the

dynamic Lorentz force detuning. I and Q signals are produced to drive the klystron.

These two signals are used by the vector modulator to reconstruct the complex signal.

The output of this vector modulator drives the klystron. When using 1MHz sampling

rate, the probe samples are updated every 1μs. High gain must be used to stabilize the

field using feedback algorithm. This may cause unstability in the system if the feedback

latency is to high. The maximum latency for the feedback algorithm has been estimated

to about 1μs (for the whole control loop including latency of system and controller

board). The estimated system delay is about 500ns. It means that maximum delay of the

controller can not exceed 500ns. The requirements for the stability of the amplitude and

phase of the field are tight: for the amplitude 3*10−4 and for the phase 0.1 degree. The

main problem is noise which comes from microphonics, Lorentz force detuning and

beam loading. In addition lots of elements in the control loop are nonlinear, for example

klystron, vector modulator or preamplifiers. Every conversion from analog to digital

signal adds noise to the system. Moreover the temperature changes cause phase drifts in

10

cables. All these distortion are added to the control signal and force the controller to

compensate using sophisticated algorithms. This requires a big computation power of

the controller and wide data throughput.

11

Figure 3: Control system schematic

The current solution is based on the system with DSP processor (TMS320C67

from Texs Instruments). The controller is divided into three boards - ADC board with

14-bit analog to digital converters sampling with a frequency of 1MHz, the DSP board

with TMS320C67 processors and DAC board (14 bit, 1MHz). All the boards are

connected to each other using gigalink interface. Actual computation power is close to

the limit, the algorithm is performed in a time longer than 1μs. Moreover, during last

months there are additional needs for some new features. The only way to extend

current system with new features is to add more DSP processors. This solution requires

integration of new DSP board into existing system. It may cause some additional

problems and delays in machine operations.

To increase computation power and the delay of LLRF control system, both the

algorithm and hardware must be optimized. Unfortunately DSP processors have fixed

architecture so only the software can be processed. This will not grant the flexibility

required for further system developement.

1.2 Modern solutions

During past years very fast progress on the FPGA market was observed.

Nowadays FPGA chips have reached computation power that can be compared with

DSP processors. Moreover the architecture of those chips is not fixed. Just like software

algorithm it can be optimized to achieve optimal speed or resources usage (depends on

requirements). FPGA chips offer variety of the embedded solutions such as PowerPC,

Microblaze, Nios which can be easily used in addition to fast, parallel signal

processing.

Typical low level architecture of FPGA chip is shown on Figure 4

It consists of an array of logic blocks and routing channels. Multiple I/O pads

may fit into the height of one row or the width of one column. Generally, all the routing

channels have the same width. A logic block consists of a LookUp Table with 4 inputs

and a FlipFlop as shown on Figure 5.

12

In the modern solutions there are many functional blocks embedded into the

chip's architecture. These functional blocks are:

– RAM memory which can be used in data acquisition process

13

Figure 4: Low level architecture of FPGA chip

Figure 5: Logic block structure

4 input LUT
D Flip
Flop

output

clock

i
n
p
u
t
s

– dedicated DSP blocks for arithmetic operations

– digital clock managers (PLLs) for clock conversions

– Gigabit serializers that can connected to optical transcievers

– embedded processors which can run higher level software

Usage of these block simplifies the structure required for the algorithms, reduces

delays and increases computation power. Moreover each of these blocks can be used in

parallel.

The block RAM memory resources embedded into Xilinx FPGA [17] chips such

as Virtex 2 are 18 Kb of true Dual-Port RAM, programmable from 16K x 1 bit to 512 x

36 bit, in various depth and width configurations. Each port is totally synchronous and

independent, offering three "read-during-write" modes. Block RAM memory is

cascadable to implement large embedded storage blocks. Supported memory

configurations for dual-port and single-port modes are shown in Table 2.

16K x 1 bit 4K x 4 bits 1K x 18 bits
8K x 2 bits 2K x 9 bits 512 x 36 bits

Table 2: internal memory configurations

A multiplier block is associated with each RAM memory block. The multiplier

block is a dedicated 18 x 18-bit 2s complement signed multiplier, and is optimized for

operations based on the block RAM content on one port. The 18 x 18 multiplier can be

used independently of the block RAM resource. Read/multiply/accumulate operations

and DSP filter structures are extremely efficient.

Both the RAM memory and the multiplier resource are connected to four switch

matrices to access the general routing resources.

Processors embedded into FPGA chips have become very popular during past

years. The main vendors of embedded solutions are Altera and Xilinx companies

[17,18]. Altera introduced Nios and Nios II soft processor core which is built using user

logic during configuration process. The similar solution comes from Xilinx company

and is called Microblaze. Both companies made a big effort to optimize their cores to

achieve high performance. These cores can easily be integrated with other user logic

14

and peripherials, therefore the hardware implementation of an algorithm can be

supported by calculations described in higher level programming language such as C or

C++.

The most important and unique embedded solution was introduced by Xilinx

company. It is PowerPC 405 hardware core placed directly into silicon structure of

FPGA chip. The main advantages of such approach are:

– user logic can be completely independent from processor

– it uses minimal number of FPGA resources

– it offers superior performance in comparison with soft cores

The most known FPGA vendors are Altera and Xilinx companies. Comparison

of different chips is shown in Table 3.

FPGA
chip

Logic cells RAM Hardware
multipliers

gigalinks PowerPCs Max user
IO

XC2V3000 32,256 1,728 96 0 0 720
XC2V400 51,840 2,160 120 0 0 912
XC2VP30 30,816 2,448 136 8 2 644
XC2VP50 53,136 4,176 232 16 2 852
EP1S30 32,470 3,317 96 0 0 726

EP1SGX40 41,250 3,423 112 20 0 624

Table 3: parameters of Xilinx and Altera chips

Although DSP processors are more flexible for complex algorithms, the

structural flexibility of FPGA chips together with parallel calculations and integrated

peripherials make more powerful unit for general purpose and arithmetic operations.

LLRF control system based on FPGAs can be smaller, faster and more extensible than

DSP based one.

1.3 FPGA based controller (SIMCON)

SIMCON (SIMulator and CONtroller) [2,5] is the project of the fast, low latency

15

digital controller dedicated for LLRF system in VUV FEL experiment It is being

developed by ELHEP group in Institute of Electronic Systems at Warsaw University of

Technology. The purpose of the project is to create a controller that can stabilize the

vector sum of fields in resonators driven by one klystron and gather experience and

knowledge for future XFEL control system development. It can also be also used as the

simulator of the cavity, test bench for other devices and algorithm development studio.

SIMCON design is based on FPGA technology. It allows to create fast hardware

devices inside the chip, each dedicated for the particular purpose. Therefore it is faster

than currently used controller based on DSP processors. Moreover the flexibility of

FPGA chips allows to extend existing controllers with new features without any

changes in current implementation and architecture of the PCBs. FPGA technology

offers integrated peripherals for the fast communication (optical links) and calculations

(embedded PPC or DSP blocks). All these features create powerful platform for control

system development. The flexibility of FPGA technology used in SIMCON makes this

device multipurpose system which can perform many sophisticated algorithms. Its

capabilities are limited by the board architecture which includes size of the FPGA chip

used. The basic structure of the SIMCON system is shown on Figure 6.

16

Figure 6: Structure of FPGA based controller

SIMCON family consists of many different boards with different possibilities:

– SIMCON 2.1

two channel version of the controller, two subversions are available – with VME

interface and EPP interface. It was mainly used to control a single cavity (for

example test in the CHECHIA module)

– SIMCON 3.0

eight channel version of the controller, this board is mainly used to control the

vector sum of eight cavities (most test were done in the ACC1 module of the

VUV-FEL accelerator)

17

Figure 7: SIMCON 2.1 board

The current version of SIMCON (3.1) was designed for controlling the vector

sum of fields in one cryo-module (8 cavities). The main features of the board are:

– Xilinx Virtex II Pro FPGA chip.

– Ten 14-bit ADCs (up to 105 Msps) and four 14-bit DACs (up to 160Msps).

– 2 inputs for external clock and trigger signals

– 2 outputs for providing the clock and trigger signal

– Additional digital inputs and outputs

– 16MB of SDRAM for embedded sytem use

– 8MB of SRAM for FPGA use

– Ethernet connector

– 2 Gigabit optical channels

– VME interface

18

Figure 8: SIMCON 3.0 board

Table 4 presents parameters of SIMCON boards.

Simcon 2.1 Simcon 3.0 Simcon 3.1
FPGA chip Virtex II 3000 Virtex II 4000 Virtex 2 Pro 50
ADC channels 1 8 10
DAC channels 2 4 4
Digital Outputs 2 2 2
Digital Inputs 2 2 2
Optical links - - 2
PPC - - 2
Interface EPP/VME VME/ETH/RS232 VME/ETH/RS232

Table 4: SIMCON family parameters

19

Figure 9: SIMCON 3.1 board

1.4 Algorithm development

Powerful FPGA platform such as the SIMCON 3.1 board opens a new

posibilities for algorithm development. In the DSP processor, the user has fixed

architecture and decides about its functionality and program flow using higher level

programming language. Therefore DSP is easier to program than FPGA chips.

Unfortunately it is only capable of serial processing with very limited parallel

possibilities. On the other hand FPGA chips are dedicated for parallel processing. In

FPGA, architecture of the chip must be described using hardware description language

such as VHDL (Very-High-Speed Integrated Circuit Hardware Description Language),

Verilog etc. User decides which calculations are going to be performed in parallel and

in serial, which functional blocks and peripherials to use. Program flow control is

achieved by defining state machines. Then, if neccesary, the user must integrate

described structure with embedded processor and create higher level software.

The described process is much more complicated than traditional DSP

programming and requires a lot of knowledge about binary operations, FPGA structure

and logical systems. Therefore algorithm development for FPGA chips may take much

more time than for DSP processors. To overcome this flaw different vendors of FPGA

chips and external companies have proposed many software solutions which enable

rapid algorithm development.

This software can be splited into following categories:

– schematic tools

– IP cores

Schematic tools allow programmer to describe even complicated system structures

using a simple graphical interface. The system is built using closed functional blocks

connected with each other. Then the VHDL code or netlist file is generated. Most

advanced schematic tools such as Xilinx System Generator offer high level

mathematical operations and integration with popular algorithm development software.

These tools give an easy way to describe functionality of the FPGA system, but it is

almost impossible to control the hardware architecture of the code. Nowadays, all the

design software provided by the manufacturers includes schematic tools for program

development.

20

The second category are IP cores. These are specialized functional block

prepared in a form of netlist or VHDL code which can be included and used in a user

program. Usage of IP cores gives an ability to describe the whole system using the

VHDL code without need to describe complicated mathematical operations etc. These

solution gives better control over FPGA resources and architecture. Unfortunately IP

cores are highly specialized and usually patented so there is practically no influence on

the interior of blocks – no user modification can be made therefore only small control

over their functionality is possible.

Both solutions can be combined – implemented algorithm may be the result of

using schematic tool together with VHDL programming and IP cores. Unfortunately

these solutions are quite expensive. Moreover LLRF control system requires some

functional blocks that are not commonly used, therefore they are not avaiable as IP

cores. An excellent example of a combined solution is the Xilinx Embedded

Development Kit which allows to build embedded system using a graphical schematic

21

Figure 10: Altera Quartus II schematic tool

tool to add IP cores as system's peripherals.

Algorithm development for the LLRF control system requires more flexibility

than one offered by described tools. Programming should be done using VHDL

language in addition with flexible IP cores and low level libraries developed for this

system. The source of the IP cores and libraries should be open to allow users to extend

them when needed or modify existing ones according to the needs.

22

Figure 11: Xilinx EDK for embedded systems

2. System reqirements

Fast development of electronic systems causes the parallel development of many

different mathematical algorithms. FPGAs possibilities are constantly expanding,

therefore the structural complexity of hardware is also rising. More work,time and skill

is required for algorithm implementation and usage. The aim of this thesis is:

- to design and implement universal mathematical library supporting algorithm

development for FPGA based systems in accelerator subsystem design

The main requirements for the project are:

1. the components must be synchronous – maximum working frequency is rising, it

is important to have extended control over all delays. It is hard to achieve in

asynchronous systems. Moreover it allows to synchronize many independent

channels (for example 8 for SIMCON 3.1) and different components.

2. pipelining – it increases the maximum frequency and system bandwidth. The

signal samples can be gathered and processed without need to wait for the end of

the previous calculations. This speeds up algorithm execution time.

3. flexibility - components can work on many different boards with many FPGA

chips and variable channel number and can be modified to fit to particular user

needs.

4. choice between speed and resource usage - it allows to use components even

when hardware resources are critical, but speed is less important. This approach

causes that this library can be used in many offline measurement algorithms with

low resource usage

5. platform independence

6. support for popular VHDL synthesizers

7. easy to use

8. easy to maintain and change code

23

3. Concept of a synchronous mathematical library
for FPGA chips

The concept of the library is based on the hierarchical tree of components. The

library must fulfill all the requirements for LLRF control system algorithm

development. Synchronous mathematical library allows easy latency control versus

hardware resources used. Each component is meant to be compatible with existing

solutions (if available). Moreover functional components are completely hermetical

and can be used separately (providing that libraries in the same tree branch are

available), and most important, can be used in any combination of serial and parallel

connections.

Most signals from the accelerator modules come as vectors in IQ representation.

Therefore the first module in almost every algorithm for this sytsem will be IQ

demodulator which converts raw data sampled from ADC to a complex representation.

A good example is SIMCON controller algorithm in which the processing starts using

such block. This functional block should be included in this library to allow use in

other algorithms. After demodulation, the complex signals are calibrated (scaled,

rotated). It means that arithmetical operations on complex numbers are made. This task

is performed by the complex operation module. In some cases signals are filtered. That

is why the programmable digital finite impulse response filter was implemented. Both

modules can be used in the SIMCON algorithm and many others for rotation matrix

multiplication and signal filtering. In some algorithms it is neccesary to obtain

additional informations about the signal (for example the magnitude of complex vector

or its phase – it was done in Cavity Detuning measurement algorithm). For this reason

a module for magnitude and phase calculation has become part of this library. The

algorithm used in this module can be also used to calculate functions such as sine and

cosine when latency is not critical.

The only basic arithmetical operation without hardware support in FPGA is the

division. Lack of this operation can be major problem in some cases (for example it is

needed in the Cavity Detuning measurement algorithm). Therefore division block is

24

included in this library.

To extend the flexibility of this library, in addition to fixed point arithmetics,

floating point units were added. This feature is valuable especially in connection with

embedded system development.

Moreover a special wrapper for the PowerPC embedded processor was added. It

allows to connect every component included in this library to Onboard Peripherial Bus

(OPB) [17]. This approch allows to combine the algorithm development process

between low level hardware description and higher level C programs executed on

embedded system.

The tree of components is shown on the Figure 12.

25

Figure 12: Structure of designed library

math_basic
unsigned

math_complexMath_basic
signed

OPB wrapper

Fixed point
divider

FLOAT
divider

AP detector

SIN/COS
calculation

FIR
Filter

FLOAT
multiplier

FLOAT
adder

SRT
stage

CORDIC
stage

IQ
demodulator

math_matrix

3.1 math_basic_signed and math_basic_unsigned modules

These modules provide basic functions for arithmetical operations used in other

modules. They are optimized to use dedicate hardware resources embedded into a

FPGA array such as hardware multipliers. Functions are meant to be easily used in user

applications – their interface is minimal.

The Math_basic_signed library provides functions that can operate on signed

values using two’s complement representation, which is the most popular and intuitive

method of representing negative integers. In the two's complement representation, the

most significant bit of a signed binary numeral indicates the sign. To obtain the absolute

value of the negative number, all the bits are inverted then 1 is added to the result. As

one can notice ‘0’ value has only one representation (no negative ‘0’ and problems

associated with it). Moreover all arithmetic operations are simple binary operations.

The library defines functions for number multiplication, addition and subtraction.

Moreover it allows to calculate absolute value and negation of a number. There are

functions that allow to resize a value to a specified number of bits and to shift it left or

right by specified number of bits. Each function has an intuitive interface and can be

easily used.

The Math_basic_unsigned library provides similar functions that can operate on

unsigned binary numbers. As signed library it defines functions for multiplication,

addition and subtraction of unsigned binary numbers. Functions for shifting and resizing

binary vectors are also included.

In the real time arithmetic operations, overflow is a big problem. When the big

values overflow, they suddenly become small or negative. It may lead the whole system

to undefined states. Such a situation is not allowed, it can be dangerous for the

accelerator and electronic hardware. Therefore, arithmetic operations in both libraries

use so called saturation arithmetic. Saturation arithmetic is a version of arithmetic in

which all operations such as addition and multiplication are limited to a fixed range

between a minimum and maximum value. If the result of an operation is above the

maximum it is set to the maximum, while if it is below the minimum it is set to the

minimum. In this case, the minimum and maximum values are defined by the length of

vectors used to represent numbers.

26

3.2 math_complex module

This module includes functions needed for complex number operations. It allows

to multiply, add and subtract complex numbers represented as real and imaginary parts.

Moreover it allows to calculate conjugation and rotate the number by 180 degrees.

When resizing complex number, both real and imaginary parts are resized to required

number of bits. The base for this module is math_signed library.

Arithmetic operations on complex number are more complicated than operations

on normal numbers. Addition (or subtraction) of two numbers requires two additions of

signed values.

z1 = a+jb

z2 = c+jd

The result of an addition is

z1+z2 = (a+c) + j(b+d)

The result of a multiplication is

z1*z2 = (a*c - b*d) + j(a*d + b*c)

As one can see multiplication of two complex numbers uses six binary

operations (4 multiplications and 2 additions/subtractions). It will take 4 hardware

multipliers.

27

3.3 math_matrix module

This module defines basic components for matrix operations such as addition,

subtraction and multiplication. Matrix operations are simple arithmetic operations. The

only problem is an amount of data to be processed. Simple 4 by 4 matrix addition

requires 16 binary additions. Multiplication of such matrix requires 64 multiplications

and 48 additions of binary numbers. This takes a big amount of time when done in

series. Each component in this library can be used to calculate one or more matrix

elements, therefore calculations can be made in parallel. It reduces the time, but

increases the number of FPGA resources used.

Proposed structure for matrix multiplication is shown on Figure 12.

The Element shown is capable of single matrix element calculation.

The matrix representation in a FPGA logic is also very problematic. Large

matrices stored in the internal logic of FPGA take a huge amount of space. Using

internal memory reduces it, unfortunately it doesn’t allow to gain access to more than

one matrix element at the same time. The representation should be chosen according to

particular needs for user application.

28

Figure 13: matrix multiplication basic module

ro
w

pi
pe

co
lu

mn
 p

ip
e

ad
de

r

mu
lt

ip
li

er

ac
cu

mu
la

to
r

ma
tr

ix
 e

le
me

nt
ou

tp
ut

3.4 IQ estimator

Output data of ADC can be interpreted as real part (xk)of analitic signal u(t) =

u(kT) = uk with unknow imaginary part (yk) for series of samples (k).

u(k) = v(kT) exp(i 2pi f kT) = xk + i yk

where vk is decoded complex envelope of signal (with I and Q part)

Presented algorithm linearizes changes of envelop and eliminates offsets during

period of carrier wave (4 us). Estimation schematic for 4 steps is shown in table. Each

row in the table defines Ik and Qk parts for given algorithm phase. In each phase 3 parts

of the same part are estimated for following times: k-1, k, k+1

for k-1 – linar interpolation using xk and xk-2

for k – calculation for current sample xk with offset elimination

for k+1 – prediction using xk and xk-1

phase Est. for k-1 Est. For k Pred. For k+1 Est. For k
0 Ik-1 = (xk-xk-2)/2 Ik = (xk-offset) Ik+1 = 2Ik-Ik-1 Qk = 2Qk-1-Qk-2

1 Qk-1 = -(xk-xk-2)/2 Qk = -(xk-offset) Qk+1 = 2Qk-Qk-1 Ik = 2Ik-1-Ik-2

2 Ik-1 = -(xk-xk-2)/2 Ik = -(xk-offset) Ik+1 = 2Ik-Ik-1 Qk = 2Qk-1-Qk-2

3 Qk-1 = (xk-xk-2)/2 Qk = (xk-offset) Qk+1 = 2Qk-Qk-1 Ik = 2Ik-1-Ik-2

Table 5: IQ demodulation steps

Offset error for each pahse is calculated using 3 samples:

offsetk = (xk-4+2xk-2+xk)/4

The result of the algoritm is I and Q part of an input signal which can be used in

user algorithms.

29

3.5 CORDIC stage

The CORDIC [11] module executes a single iteration of the CORDIC

algorithm, which is used to calculate magnitude and phase of a complex number. It also

can be used to calculate values of cosine and sine functions. A single iteration is able to

rotate a complex vector by a fixed angle using small amount of resources. It is done by

multiplying a given vector by a fixed vector. The input vector is rotated left or right

according to the sign of its imaginary part. Then the rotation angle is either added or

subtracted form cumulative angle. Both the new vector and the updated cumulative

angle are returned from the stage. The algorithm of single stage is shown on Figure 14.

A single CORDIC stage uses no hardware multipliers, all rotations are done

using only adders and shifters. Each stage adds the magnitude error to final result. This

30

Figure 14: Algorithm executed by single CORDIC iteration

if Q < 0

rotate vector
left

rotate vector
right

add base
angle to

cumulative
angle

subtract base
angle to

cumulative
angle

return new I
and Q

error is called CORDIC GAIN. The size of this error depends on the rotation angle used

by the stage and can be compensated after the last iteration.

3.6 Magnitude and Phase detector

Magnitude and phase calculation requires calculation of square root and arctan

function. These functions are numerically complicated. FPGA chips have no hardware

support for such operations. Fortunately both values can be calculated using multiple

iterations of CORDIC algorithm. Each iteration of the algorithm performs rotation of a

given vector towards zero. The rotation angle is cumulated, therefore the final phase

result is the cumulated angle output from last iteration of the algorithm. The magnitude

of an input vector equals the real part of an output vector from the last iteration of the

algorithm (after CORDIC GAIN compensation). The angles of rotation and CORDIC

GAIN for given iteration are shown in Table 6.

L K = 2^-L B = 1 + jK angle
Magnit

ude

CORDIC

GAIN
0 1.0 1 + j 1.0 45.0000 1.4142 1.4142
1 0.5 1 + j 0.5 26.5650 1.1180 1.5811
2 0.25 1 + j 0.25 14.0362 1.0307 1.6298
3 0.125 1 + j 0.125 7.1250 1.0077 1.6424
4 0.0625 1 + j 0.0625 3.5763 1.0019 1.6456
5 0.03125 1 + j 0.031250 1.7899 1.0004 1.6464
6 0.015625 1 + j 0.015625 0.8951 1.0001 1.6466
7 0.007813 1 + j 0.007813 0.4476 1.0000 1.6467

...

Table 6: CORDIC parameters for iterations

To calculate the magnitude and the phase of a complex number, the following

steps must be executed:

a) The sign of the imaginary part of the vector is checked and a rotation by +/-90

degrees is made. It moves the vector to the I or IV quarter of complex plane. The

first rotation allows to calculate the vector’s phase in a range from -180 to 180

31

degrees.

b) Additional vector rotations are made by the angles show in Table 6. The

direction of the rotation depends on the sign of the imaginary part of current

vector

c) After N iterations the imaginary part of a vector is close to 0. After CORDIC

GAIN correction, the real part of the vector is the magnitude and phase of the

vector equals cumulated angle form last iteration.

3.7 Sin/Cos calculation

The problem of calculating sin and cos values for a given angle φ, can be reduced

to search of a complex number with magnitude of 1 and phase φ.

|A| exp(jφ) = |A| (cos(φ) + j sin(φ))

Then the real part of such number equals cos of the angle and imaginary part equals

sin of the angle. The procedure of the calculation for both functions is shown on Figure

16.

32

Figure 15: Procedure of magnitude and phase calculation using CORDIC

Im

Re

1

2

3

4

5

1. Vector is rotated by 45 degrees towards 0.
Cumulative angle is set to 45

2. Next rotation by ~26 degrees is made.
Cumulative angle is set to 71

3.Next rotation by ~14 sets cumulative angle to 85

4. Rotation by -7 is done (towards 0) Cumulative
angle equals 78

5. Final vector. Phase error after 4 iterations was
~4 degrees.

1. The starting point for the algorithm is A:

 j > 90φ 0

A = -j < -90φ 0

 1 when others

2. In the next steps, rotations of the vector are made according to Table. The

rotation is executed towards the angle φ. After N iterations the vector A’ close

to the searched vector is calculated:

A’ = Ia’ +jQa’ = |A’|(cos(φ) + jsin(φ))

After CORDIC GAIN compensation:

cos(φ) = Ia’
sin(φ) = Qa’

33

Figure 16: Procedure of sin/cos calculation

Im

Re1

2

3
4

5

1. Vector is rotated by 45 degrees towards target
vector (green) Cumulative angle is set to 45

2. Next rotation by ~26 degrees is made.
Cumulative angle is set to 71

3.Next rotation by -14 sets cumulative angle to 57

4. Rotation by -7 is done (towards green vector)
Cumulative angle equals 50

5. Final vector. Phase error after 4 iterations was
~3 degrees

 cos(φ)

sin
(φ

)

3.8 SRT stage

The SRT [12] algorithm is an iterative algorithm used for integer division. It

was discovered at about the same time by Sweeny, Robertson and Tocher (SRT). It

is used in many popular microprocessors such as Intel Pentium. This module

executes the single iteration of the SRT algorithm. The algorithm can be described

by the following equation:

ri = βri-1 - qi D

where

ri – partial remainder calculated in this iteration

ri-1 - partial remainder form previous iteration

β – radix (2m)

D – divisor

qi – quotient digit for this iteration

The choice of the radix determines the complexity of the whole algorithm. A higher

radix reduces the latency but increases the quotient digit set which leads to a high

logical complexity of a single stage (therefore reduces maximum frequency). For

higher radix division it is possible to use look up tables instead of logical comparators,

but the size of this table increases exponentially.

The quotient digit set for a radix 2 SRT algorithm is fairly simple:

{ -1,0,1 }

Therefore the logic required for a single stage is simple and works with high

frequency. Unfortunately the latency is also very high – number of clock cycles required

to get the result equals to the bit width of the dividend. The general rule for quotient

digit selection for single stage is:

34

The decision can be made using only two most significant bits of partial

reminder.

One of possible quotient digit sets for radix 4 SRT algorithm is:

{ -2,-1,0,1,2 }

Logic required for quotient digit selection is complicated, but in this case look

up table has reasonable size. The latesncy introduced by this approach is two times

smaller than for radix 2.

The measure of redundancy for this set can be calculated using formula:

k ≤ α/(β-1)

Where β is radix of algorithm and α is absolute maximum value from digit set.

In this case k = 2/3. The values of k closer to 1 mean greater redundancy in digit set.

Regions for digit selection can be described as:

 -2/3 +q ≤ 4ri-1/D ≤ 2/3 +q

This regions are shown on Figure 17

35

Figure 17: Quotient selection regions for SRT algorithm

As one can see regions are overlapping. This is caused by the redundancy in

digit set. Higher redundancy means more overlapping and a logic reduction for digit

selection.

Partial remainder vs. divisor plot is shown on Figure 18. This plot shows

overlapped quotient digit selection regions together with decision lines for each digit.

It can be used for look up table generation. The index for the table are most

significant digits of the partial remainder and divisor. The values in the table are digits

for each region.

36

Figure 18: Partial remainder vs. divisor plot for SRT radix 4 algorithm

3.9 Fixed point divider

Using modules the described in the previous chapter, a fixed point divider was

created. The modules are cascaded. The theoretical latency of the divider equals N clock

cycles for N bit integers (using SRT radix 2 module) and N/2 clock cycles (using SRT

radix 4 module)

3.10 Floating point unit

A floating-point number a can be represented by two numbers m and e, such that

a = m × be. In any such system a base b is picked (called the base of numeration, also

the radix) and a precision p (how many digits to store). m (which is called the

significand or, informally, mantissa) is a p digit number of the form ±d.ddd...ddd (each

digit being an integer between 0 and b−1 inclusive). If the leading digit of m is non-zero

then the number is said to be normalized. Some descriptions use a separate sign bit (s,

which represents −1 or +1) and require m to be positive. e is called the exponent. This

scheme allows a large range of magnitudes to be represented within a given size of

field, which is not possible in a fixed-point notation. The floating-point representation is

regulated by the IEEE 754 [20] standard.

This unit can perform basic arithmetical operation on a single precision floating

point number (32 bits – 1 bit sign, 23 bit significand and 8 bit exponent).

The basic structure of multiplication and division is

1. significands of both numbers are multiplied/divided and exponents are

added/subtracted

2. normalization of result is made

3. rounding of final result is made and result's sign is calculated

The structure of an adder/subtracter is more complicated:

37

1. Numbers are denormalized to have the same exponents

2. significands are added/subtracted, an exponent decision is made

3. the result is normalized

4. rounding of final result is made and result's sign is calculated

IEEE754 defines four rounding schemes. In this library only one was

implemented. All arithmetic operation use 'round towards zero' scheme.

3.11 OPB wrapper

The 'Onboard Peripherial Bus' is one of communication busses for embedded

PowerPC used by Xilinx company. Each device connected to this bus can be mapped

into embedded system's address space and then referenced from software. This wrapper

provides an easy to use interfeace between the described components (or any user

component) and OPB bus. This approach provides a completely new procedure for the

algorithm development. At first, algorithms can be implementad using a programming

language such as C or C++. Then, when the functionality is checked, all time critical

parts can be easily moved into the hardware. This speeds up algorithm development and

tests.

3.12 Summary

Some of the described library blocks (such as division,matrix operations) solve

problems which were hard to overcome during the implementation process. Operations

like division are difficult to implement. Other components allow users to simplify their

implementation and reduce implementation time. Moreover each of the modules can

become basis for further library development. User can design his own problem specific

38

components and include them in extension library. Modular library provides easy way

for possible updates. It is only necessary to change component inside library. Changes

will be visible in every implementation.

Moreover all used algorithms and concepts are well known in DSP processing.

They were tested in a long period of time. A good example is the IQ demodulation

algorithm which is currently used in the FPGA controller for the ACC1 module and the

RF_GUN at the VUV-FEL. The SRT algorithm is commonly used as a division

algorithm in many modern microprocessors such as Intel Pentium. The concept of

saturated arithmetics is also well known and implemented in many programming

languages.

Chapter 4 describes implementation of each module – its interface and basic

functionality. Described modules were grouped into libraries and implemented to meet

performance goals set by target environment.

39

4. Implementation

Described modules were implemented using the VHDL description language.

The code is prepared to be synthesized using most common compilers. It is VHDL'93

standard compliant.

The code is based on three packages from the IEEE library:

– std_logic_1164

– std_logic_signed

– std_logic_unsigned

This packages provide a basic interface for arithmetical operations and type

conversions. In some modules it was necessary to use std_logic_arith for some

additional functions for variable conversions. In this chapter the implementation of each

of the modules will be described

4.1 math_basic_unsigned

This module provides a basic interface for unsigned arithmetical operations for

other modules. It consists of following functions:

Vcreate(arg : natural ; length : integer) return std_logic_vector

Function Vcreate is a wrapper for CONV_STD_LOGIC_VECTOR function

from IEEE library. It converts integer value to its binary representation.

Vresize (arg : std_logic_vector ; length : natural) return
std_logic_vector

Function Vresize is a function for vector resizing. It is basic function for

40

saturation control in the whole library. The algorithm executed by this function is

shown on Figure 19.

VShiftLeft(arg : std_logic_vector ; shift : natural) return
std_logic_vector
VShiftRight(arg : std_logic_vector ; shift : natural) return
std_logic_vector
VShift (arg : std_logic_vector ; shift : integer) return
std_logic_vector

The function Vshift uses VshiftRight and VshiftLeft functions to shift it's

argument by N bits left or right (when -N given as shift). Shift must be a static

expression – fixed shifters are synthesized during compilation process.

VSum (arg1,arg2 : std_logic_vector ; length : natural) return
std_logic_vector
VSub (arg1,arg2 : std_logic_vector ; length : natural) return
std_logic_vector
VMult(arg1,arg2 : std_logic_vector ; length : natural) return
std_logic_vector

41

Figure 19: Saturation control algorithm

if length >
vector’len

gth

return
extended

vector

if there is
‘1’ in

removed
bits

return
maximal

value

return short
vector

false true

cut most
significant

bits

falsetrue

Vsum,Vsub and Vmult functions are wrappers for operators '+','-' and '*' defined

in std_logic_unsigned package with additional saturation control. Algorithms executed

by these functions are shown on Figure 20.

4.2 math_basic_signed

The module provides a basic interface for signed arithmetical operations for

other modules. The following functions are defined:

SVCreate(arg : integer ; length : integer) return SV ;
SVResize(arg : SV ; length : natural) return SV;

SVShiftLeft (arg : SV ; shift : natural) return SV ;
SVShiftRight (arg : SV ; shift : natural) return SV ;
SVShift (arg : SV ; shift : integer) return SV ;

SVSum (arg1,arg2 : SV ; length : natural) return SV ;
SVSub (arg1,arg2 : SV ; length : natural) return SV ;
SVMult(arg1,arg2 : SV ; length : natural) return SV ;

where SV is an alias for a std_logic_vector.

The main difference between modules is that signed module is based on

ieee.std_logic_signed while unsigned is based on ieee.std_logic_unsigned. Functions

redefined for this library perform the same function as similar functions in unsigned

library. The major difference is in SVResize function. It is base for saturation control for

 signed arguments. The algorithm executed by this function is shown on Figure 21.

42

Figure 20: Structure of arithmetic operations

op
er

at
io

n

VR
es

iz
e

result

operand A

operand B

Two additional functions:

SVNeg(arg : SV) return SV ;
SVAbs(arg : SV) return SV ;

are directly connected to signed representation

SVNeg function executes following code:

result := not arg ;

return result+1 ;

This formula is directly taken from two's complement definition.

The function SVAbs executes the function SVNeg conditionally (when the sign

of an argument is '-').

43

Figure 21: Saturation control for signed vectors

if length >
vector’len

gth

return
extended

vector

if there is
‘0’ in

removed
bits

return
minimal value

return short
vector

false true

cut most
significant

bits

falsetrue if number
is negative

if there is
‘1’ in

removed
bits

falsefalse

return
maximal

value

true true

4.3 math_complex

This module provides complex number signed arithmetic operators. The

representation of complex number was chosen to simplify operations. It is shown

below:

The following functions are defined in this module:

SCCreate(re,im : TSV) return TSC ;
SCCreate(re,im,length : integer) return TSC ;

The functions SCCreate create complex number in representation shown using

two signed vectors or two integers using length bits.
SCResize(arg : TSC ; length : integer) return TSC ;

The function SCResize provides tool for both imaginary and real part resizing

using saturation control presented earlier.

SCReal(arg : TSC) return TSV ;
SCImag(arg : TSC) return TSV ;

Functions SCReal and SCImag return real and imaginary part from vector

representation of a complex number

SCSum(arg1,arg2 : TSC ; length : natural) return TSC ;
SCSub(arg1,arg2 : TSC ; length : natural) return TSC ;
SCMult(arg1,arg2 : TSC ; length : natural) return TSC ;

The arithmetical operations are executed according to the algorithms presented

on Figure 22 and Figure 23.

44

Single bit vector – 2N bits.

N bits for real part N bits for imaginary part

SCNeg(arg : TSC) return TSC ;

The Function SCNeg inverts the sign of both real and imaginary part of complex

vector. It rotates the signal by 180 degrees.

4.4 math_matrix

This library defines basic components for matrix operations such as

multiplication and addition.

The main component for a matrix multiplication is a multiplier with accumulator. The

interface to the component is shown below.

component matrix_mult_base is
generic (

INPUT_WIDTH : natural := 18 ;
INTERNAL_WIDTH : natural := 32 ;
OUTPUT_WIDTH : natural := 18 ;
BASE : natural := 0

) ;
port (

resetN : in std_logic ;
clk : in std_logic ;

45

Figure 22: Complex add/sub

sum/sub

SVResize

sum/sub

SVResize

operand A operand B

real
parts

imaginary
parts

result

Figure 23: Complex multiplication

sub

SVResize SVResize

operand A operand B

result

SVmult SVmult

sum

SVmult SVmult

r_in : in std_logic_vector(INPUT_WIDTH-1 downto 0) ;
c_in : in std_logic_vector(INPUT_WIDTH-1 downto 0) ;

i_out : out std_logic_vector(OUTPUT_WIDTH-1 downto 0)
) ;

end component ;

Parameters:
INPUT_WIDTH defines width of single matrix element
INTERNAL_WIDTH defines width of internal accumulator
OUTPUT_WIDTH defines witdh of output result
ITEM_COUNT Number of items in single matrix row/column
BASE defines number of fractional bits in output data.

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
r_in vectors conected to pipes/memories with row elements
c_in vectors conected to pipes/memories with column elements
i_out output element of result matrix

This component can be used to calculate a single element of the matrix C where

C = A*B

both A and B are matrices of sizes which allow multiplication

When the data pipe provides more than one row/column of matrix, this

component can calculate several elements of matrix C. Latency of the component

equals size of matrix row in clock cyles and for more than one element calculation it is

multiplied by number of elements.

The second component defined in this library is component which allows to

calculate one or more elements of matrix C where:

C = A+B or C = A-B

46

The interface of the component is:

component matrix_sum_base is
generic (

INPUT_WIDTH : natural := 18 ;
OUTPUT_WIDTH : natural := 18

) ;
port (

resetN : in std_logic ;
clk : in std_logic ;

rA_in : in std_logic_vector(INPUT_WIDTH-1 downto 0) ;
rB_in : in std_logic_vector(INPUT_WIDTH-1 downto 0) ;

r_out : out std_logic_vector(OUTPUT_WIDTH-1 downto 0)
 ;

op : in std_logic
) ;

end component ;

Parameters:
INPUT_WIDTH defines width of a single matrix element
OUTPUT_WIDTH defines witdh of the output result

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
rA_in vectors conected to pipes/memories with A row elements
rA_in vectors conected to pipes/memories with B row elements
r_out output element of result matrix
op Defines operation: '0' – A+B, '1' – A-B

4.5 IQ demodulator

This library defines the module for IQ demodulation. The interface of the

component is shown below:

47

component IQdet is
generic (

DSP_WIDTH : natural := 18
) ;
port (

resetN : in std_logic ;
lclk : in std_logic ;
adc_sample : in TSV(DSP_WIDTH-1 downto 0) ;
I : out TSV(DSP_WIDTH-1 downto 0) ;
Q : out TSV(DSP_WIDTH-1 downto 0)

) ;
end component ;

Parameters:
DSP_WIDTH defines width of input elements

Ports:
resetN port used to reset internal registers such as accumulator
lclk clocking port
adc_sample Raw signal for I and Q calculation
I,Q I and Q outputs

This component is capable of IQ demodulation. It was implemented according to

the mathematical formulas described in chapter 3.4.

4.6 CORDIC

This library defines modules for cordic algorithm. Two functions defined in this

module are:

48

function complex_rotate_I(tI,tQ : TSV ; N : TN) return TSV ;
function complex_rotate_Q(tI,tQ : TSV ; N : TN) return TSV ;

They are used to calculate coordinate of vector after rotation. Rotations are made

according to CORDIC definition for N th iteration. The following component is able to

perform a single step of the CORDIC algorithm. Its interface is shown below.

component cordic is
generic (

IQ_WIDTH : natural := 18 ;
IQ_LEVEL : natural := 0

) ;
port (

clk : in std_logic ;
resetN : in std_logic ;

I : in TSV(IQ_WIDTH-1 downto 0) ;
Q : in TSV(IQ_WIDTH-1 downto 0) ;

newI : out TSV(IQ_WIDTH-1 downto 0) ;
newQ : out TSV(IQ_WIDTH-1 downto 0) ;

phase_in : in TSV(IQ_WIDTH-1 downto 0) ;
phase_out : out TSV(IQ_WIDTH-1 downto 0) ;

BASE_ANGLE : in TSV(IQ_WIDTH-1 downto 0)
) ;
end component ;

Parameters:
IQ_WIDTH defines width of input elements
IQ_LEVEL defines iteration number executed by this component (rotation

functions depend on this parameter)

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
I,Q I and Q input vector coordinates
newI,newQ coordinates of rotated vector

49

Ports:
BASE_ANGLE value of rotation angle executed by this stage
phase_in cumulativ phase input
phase_out cumulative phase output (phase_in + BASE_ANGLE or

phase_in - BASE_ANGLE)

In this approach a BASE_ANGLE can be changed during operation which

allows extended algorithm control. When it is not necessary BASE_ANGLE can be

moved to parameters list to reduce resources consumption. The general rule of

operation is described in chapter 3.5

Second component defined in this library is component for amplitude and phase

calculation. Its interface is:

component cordicAP is
generic (

IQ_WIDTH : natural := 18 ;
CORDIC_LEVELS : natural := 0

) ;
port (

clk : in std_logic ;
resetN : in std_logic ;

I : in TSV(IQ_WIDTH-1 downto 0) ;
Q : in TSV(IQ_WIDTH-1 downto 0) ;

magnitude : out TSV(IQ_WIDTH-1 downto 0) ;
phase : out TSV(IQ_WIDTH-1 downto 0)

) ;
end component ;

Parameters:
IQ_WIDTH defines width of input elements
CORDIC_LEVELS defines number of iterations executed by component

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
I,Q I and Q input vector coordinates

50

Ports:
magnitude magnitude result of input vector
phase phase result for IQ vector

This component creates multiple instances of CORDIC stage entity to execute

several iterations of CORDIC algorithm. The description can be found in chapter 3.6

4.7 SRT

This library consists of the following components with the same interface, which

execute a single iteration of the SRT algorithm

First component executes single step of radix-2 srt algorithm:

component srt_stage2 is
generic (

WORD_WIDTH : natural := 18
) ;

port (
clk : in std_logic ;
resetN : in std_logic ;

Pin : in TSV(WORD_WIDTH-1 downto 0) ;
Pout : out TSV(WORD_WIDTH-1 downto 0) ;

D : in std_logic_vector(WORD_WIDTH-1 downto 0) ;
Dout : out std_logic_vector(WORD_WIDTH-1 downto 0) ;

i_result : in TSV(WORD_WIDTH-1 downto 0) ;
o_result : out TSV(WORD_WIDTH-1 downto 0)
);

end component;

The second one executes single step of radix-4 srt algorithm

component srt_stage4 is
generic (

WORD_WIDTH : natural := 18
) ;

51

port (
clk : in std_logic ;
resetN : in std_logic ;

Pin : in TSV(WORD_WIDTH-1 downto 0) ;
Pout : out TSV(WORD_WIDTH-1 downto 0) ;

D : in std_logic_vector(WORD_WIDTH-1 downto 0) ;
Dout : out std_logic_vector(WORD_WIDTH-1 downto 0) ;

i_result : in TSV(WORD_WIDTH-1 downto 0) ;
o_result : out TSV(WORD_WIDTH-1 downto 0)
);

end component;

Parameters:
WORD_WIDTH defines width of input elements

Ports:
resetN port used to reset internal registers such as accumulator
clk clocking port
Pin,Pout input partial remainder and output partial remainder after

iteration
Din,Dout pipeline for divisor
i_result result calculated in previous iteration

o_result result updated in this iteration

The component is described in chapter 3.8. These components were used to

create a fixed point divisor which can execute a fixed point divison of numbers

normalized to the [0.5,1) range. Multiple instances of the SRT stage were used. Each

stage is capable of one (SRT2) or 2 (SRT4) digits of quotient calculation. It is defined

as follows:

component srt2/srt4 is
generic (

WORD_WIDTH : natural := 18
) ;

port (
clk : in std_logic ;
resetN : in std_logic ;

52

D : in std_logic_vector(WORD_WIDTH-1 downto 0) ;
C : in std_logic_vector(WORD_WIDTH-1 downto 0) ;

W : out std_logic_vector(WORD_WIDTH-1 downto 0) ;
R : out TSV(WORD_WIDTH downto 0)
);

end component;

Parameters:
WORD_WIDTH defines width of input elements and number of iterations

needed to get full result

Ports:
resetN port used to reset internal registers
clk clocking port
D divisor input
C dividend input
W result

R remainder

4.8 Floating point unit

The floating point unit consists of 3 components capable of arithmetic operations

on floating point numbers (compatible with IEEE 784 standard). The interface of the

components is shown below.

component mult[div/sum]_float is
port (

clk : in std_logic ;
resetN : in std_logic ;

S1 : in std_logic ;
S2 : in std_logic ;

E1 : in std_logic_vector(7 downto 0) ;
E2 : in std_logic_vector(7 downto 0) ;

M1 : in std_logic_vector(22 downto 0) ;
M2 : in std_logic_vector(22 downto 0) ;

53

S3 : out std_logic ;
E3 : out std_logic_vector(7 downto 0) ;
M3 : out std_logic_vector(22 downto 0)

);
end component ;

Ports:
resetN port used to reset internal registers
clk clocking port
S1,S2 signs of operands
S3 sign of the result
E1,E2 exponents of operands

E3 exponent of result

M1,M2 mantisas of operands

M3 mantisa of reult

The components are fully pipelined therefore processing of the operands can

start before the result of the previous ones is ready. The structure of the components is

shown on Figure 24 and Figure 25.

54

Figure 24: Floating point multiplication/division structure

M1 M2

x or /

normalization

E1 E2

+

exponent correction

rounding

S1 S2

XOR

M3 E3 S3

A functional description of the floating point arithmetic operations can be found

in chapter 3.10.

4.9 FIR filter

This FIR filter is a flexible, programmable filter. Modifications of filter

parameters and filter order do not require program recompilation. The following

declaration shows component's interface.

Type Tparray is array(31 downto 0) of natural ;

component filter is
 generic (

WORD_WIDTH : natural := 18 ;
MAX_ORDER : natural := 32

) ;
 port(

clk :in std_logic ;
int_clk :in std_logic ;
resetN :in std_logic ;

order :in natural ;
coefficients :in TParray

55

Figure 25: Floating point adder structure

M1 M2

+ or sub

normalization

E1 E2

exponent correction

rounding

M3 E3S3

exponent decision

exchange block

S1 S2

in_data : in std_logic_vector(WORD_WIDTH-1 downto 0) ;
out_data : out std_logic_vector(WORD_WIDTH-1 downto 0)

);
end component;

Parameters:
WORD_WIDTH defines width of input elements
MAX_ORDER defines maximum order of the filter (set at compialtion time)

Ports:
resetN port used to reset internal registers
clk clocking port
int_clk clocking port used for internal calculations
order Actual order of the filter
coefficients table of coeficients

data_in data input for the filter

data_out filtered data

The maximum value of 'order' port is MAX_ORDER. When it exceeds this

parameter it is treated as MAX_ORDER. CLK and INT_CLK can be connected to the

same clock if the sampling speed needs to be exactly the same as processing speed.

The structure of the implemented filter is shown on Figure 26.

56

Figure 26: Structure of a programmable filter

x x x x

coeficients

cascade of adders

...

coefficients
filter input

re
su

lt

4.10 OPB wrapper

This component is based on a OPB peripheral template provided by XILINX. It

provides the OPB interface for components defined in the mathematical library or for

any user component. Typical transactions on the OPB bus is shown on Figure 27.

Wrapper defines a set of registers which are mapped into embedded system's

address space. Register can be connected to any signal in the VHDL code. The

component is compatible with the Xilinx EDK IP core definition so it can be added

to embedded system using a graphical tool. Internal structure of this wrapper is shown

in Figure 27.

57

Figure 27: OPB wrapper structure connected to OPB logic

reg1_in reg1_out reg2_in reg2_out regN_in regN_out...

memory mapping OPB interface
O
P
B

user logic

4.11 Summary

As the result of the implementation of the concept shown in chapter 3, a flexible

mathematical library was created. It fulfills all the requirements for the system

described in chapter 2. The functional blocks such as IQ demodulator or magnitude and

phase calculation provide scalable and simple means to implement input stages of many

algorithms. Blocks for matrix multiplication, division and sine calculation can be used

in many different places inside the algorithm implementation (for example inside

detuning algorithm implementation or controller structures). The rest of the basic

blocks such as math_basic_signed or math_matrix modules can be used when

functionality not inluded in this library is needed. They allow low level algorithm

implementation.

All blocks were optimized to provide a resonable choice between performance

and resource usage according to possibilities in the target accelerator environment. After

and during implementation all modules were completly tested. Descriptions and the

results of tests are shown in chapter 5.

58

5. Tests of designed system

All parts of presented system were tested during implementation using VHDL

simulation environment (Aldec ActiveHDL). The test procedure is shown using the

matrix_mult_base component as example. The first step was the implementation of

the module. The layout of ActiveHDL design environment is shown on Figure 28.

The compilation process was initiated and completed successfully. Then the

input vectors were defined amd simulation started. The results are shown below.

59

Figure 28: VHDL simulation environment

In this case the parameters INPUT_WIDTH and ITEM_COUNT were set to 5.

The analysis of the simulation results shows that the component is working as planned:

The input column element was set to 1 for the whole simulation. The row

element was changing during 5 clock cycles: 1,10,1,11,1. According to the chapter 3.3

the result on the output should be: 1*1+10*1+11*1+1*1+1*1 = 24. This result was

received after 7 clock cycles from the beginning of operation. Two additional delay

cycles are caused by internal pipelined structure of the component. In the next step of

verification each module was synthesized and the maximum working frequency was

measured.

Moreover most of described modules were used and tested during the

implementation process of the cavity detuning measurement algorithm. The final

product was connected to real accelerator signals and real-time measurements were

made.

60

Figure 29: Simulation results

This chapter presents a sample process of algorithm development and the results

of measurements. The board used was the SIMCON3.1 board presented in Chapter 1.

5.1 Cavity detuning measurment – algorithm and
implementation

During accelerator operations the resonance frequency of superconducting

cavity changes. High energy field deforms the cavity's shape (Lorentz force detuning)

and surrounding environment (cooling system, ground motion, traffic) causes

excitation of mechanical models (microphonics). Frequency shift leads to cavity field

errors and should be detected and compensated.

In the general transfer function for one electrical mode in superconducting cavity

can be modeled as high Q bandpass described using following equation [7]:

ẍ2 1
2

ẋ0
2 x=0 1

2

y

The signals x and y can be represented as

x= x0e j t y= y0 e jt

where x0 and y0 are changing slowly (envelope) and exp function is changing

fast. Therefore the first order envelope equation is:

ẍ0 −1
2

−i x0 =
y

2i0
where =0 −1

2

The translation to the polar coordinates using:

x=r e j y=e j

gives following equations:

r ̇−r=1
2
sin − and ṙ1

2
r= 1

2
cos−

The first equation can be used to determine the frequency change as:

=
r ̇− 1

2
sin −

r

The final mathematical formula that was implemented is:

61

=−2

newdphase−2 1
2

∣calcomplex forward∣
∣complex probe∣

sin angle calcomplex forward−anglecomplex probe

newdphase – deriviate of probe signal phase

calcomplexforward - complex (IQ) signal representing calibrated forward power

complexprobe - complex (IQ) signal representing probe power

 The complexforward is the result of calibration between forward and reflected signals:

calcomplex forward=Acomplex forwardBcomplex reflected

The structure of implemented algorithm is shown on Figure 30.

62

Figure 30: Structure of cavity detuning measurment implementation

forward probereflected

IQ demodulator IQ demodulatorIQ demodulator

x x

+

Magnitude and
phase

Magnitude and
phase

processing block filter block

final detuning
result

external
calibration
parameters

signals are represented as IQ

The first blocks in the algorithm are IQ demodulators taken from the library.

Then the signal is connected to calibration block. Two libraries can be use there:

math_basic_signed – 8 multiplications and 4 additions/subtractions must be made or

math_complex – 2 complex multiplications and 2 additions must be made.

Signals are conected to magnitude and phase calculation block based on

CORDIC algorithm. After calculations, the phase output of the probe signal is

connected to derivate filter and all the signals are connected to the processing block

showed on Figure 31.

63

Figure 31: Structure of the processing block

forward magnitude forward phaseprobe magnitude

division

probe phase

-

sin

x

- filter input

result

sin table

Magnitudes of the probe and the forward signals are divided by the fixed point

divison block base on SRT modules and sine for the difference of the phases is

calculated. In this case table for sine function was used – delay is time critical so

CORDIC can not be used. Next divisor output and calculated sine is multiplied and

result of probe phase filtering i subtracted.

The algorithm was used to evaluate the performance of the basic functional

blocks:

a) IQ demodulator

The probe signal from the accelerator was sampled and connected to the IQ

demodulator block. The results are shown in Figure 32

64

Figure 32: Probe signal with I and Q signals

Sample numbers = time [us]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

-3000

-2000

-1000

0

1000

2000

sample number

va
lu

e

probe samples

I

Q

Sample numbers = time [us]

va
lue

The absolute error of calculations is shown on Figure 33. It is caused by fixed

point representation of data in the FPGA.

b) Magnitude and phase calculations

Calculated I and Q signal was connected to the input of Magnitude and phase

block. The results are shown on Figure 34 The absolute error of magnitude calculation

is shown on Figure 36. In this case it is sum of quantization error caused be fixed point

representation and CORDIC algorithm error.

65

Figure 33: Absolute error of calculations

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-60

-40

-20

0

20

40

60

sample number

er
ro

r
in

 q
ua

nt
s

Sample numbers = time [us]

er
ro

r

66

Figure 34: Magnitude result

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

sample number

va
lu

e
calculated magnitude

magnitude after CORDIC GAIN compensation

Figure 35: Absolute error of magnitude calculations

Sample numbers = time [us]

va
lue

Sample numbers = time [us]

er
ro

r

0 500 1000 1500 2000 2500
-3

-2

-1

0

1

2

3

4

5

6

7

sample number

er
ro

r

calculation error in quants

er
ro

r

Sample numbers = time [us]

The next figure shows phase output of CORDIC block. Y axis is scaled in

radians

The error of the phase calculations is shown on Figure 37 Again it is sum of

quantization error and CORDIC algorithm error.

67

Figure 36: Phase calculations

0 500 1000 1500 2000 2500
-3

-2

-1

0

1

2

3

4

sample number

ph
as

e
[

ra
d

]

calculated phase

Sample numbers = time [us]

ph
as

e
[ra

d]

c) division block

Calculated magnitudes are delivered to the input of division block. It was

configured to deliver values with 4.14 representation (4 bits for integer part of a

number, 14 bits for fractional part). Maximum value on division output is 7.9999.

Input magnitudes are shown on Figure 38. The result of the division is shown on Figure

39.

68

Figure 37: Absolute error of phase calculations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-6

-4

-2

0

2

4

x 10
-3

sample number

er
ro

r
[

ra
d

]

absolute error of phase calculation

Sample numbers = time [us]

er
ro

r [
ra

d]

69

Figure 38: Inputs of the division block

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

3500

4000

sample number

va
lu

e

forward magnitude

probe magnitude

Figure 39: Division result

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-5

0

5

10

15

20

25

sample number

va
lu

e

response of division block

real divison result

Sample numbers = time [us]

va
lue

Sample numbers = time [us]

va
lue

The division block output differs from real division result untill sample 190. It is

caused by chosen representation. When the real result is lower than 8, the response of

the block is valid. Absolute error of calculation is shown on Figure 40. It is caused by

quantization.

SIMCON 3.1 board was configured and connected to Cavity 5 in ACC4 VUV-

FEL module. Real time detuning measurements were taken. Sample results are shown

of Figures 41 and 42.

70

Figure 40: Absolute error of division block

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-20

-15

-10

-5

0

5

x 10
-3

sample number

er
ro

r

absolute error

Sample numbers = time [us]

er
ro

r

71

Figure 41: Detuning signal taken during measurments in VUV-FEL

Figure 42: Detuning signal taken during measurments in VUV-FEL

time [us]

D
et

un
ing

 v
alu

e
[V

]

time [us]

D
et

un
ing

 v
alu

e
[V

]

5.2 Floating point unit tests

The OPB wrapper is used to connect floating point units to the embedded

PowerPC processor. A program for the performance evaluation was written. Inputs to

the operation blocks were mapped to the address space. PowerPC performed following

tasks:

1. 10000000 floating point add/subtracts were executed using software

emulation provided by Xilinx PPC library. Mean time of single operation

was measured.

2. The same task was performed but using hardware cores

3. The process was repeated for multiplication and division

The results from serial console on PPC are shown below:

Table 7 summarizes the results

72

MULTIPLICATION STATS

software emulation
single operation: 2404.072998
hardware support
single operation: 289.000000

ADD/SUB STATS

software emulation
single operation: 2347.683838
hardware support
single operation: 286.000000

DIV STATS

software emulation
single operation: 4824.583496
hardware support
single operation: 407.000000

sum/sub mult div
software 2347.683838 2404.072998 4824.583496

hardware 286.000000 289.000000 407.000000

acceleration 8.2 8.31 11.85

Table 7: Floating point core evaluation

The times are shown in processor clock cycles (PPC frequency is 300MHz,

OPB bus frequency is 100MHz). Most of hardware latency is caused by input/output

operation delays in PPC system.

5.3 Matrix multiplication tests

To evaluate performance of matrix_mult_base module, the following structure

for 20x20 matrix multiplication was implemented. It allows to upload matrix data into 2

input memories using the comunnication interface (in this case Internal Interface).

Multiplication is executed and result matrix is stored in output memory.

73

Figure 43: Implemented matrix multiplication

matrix A
row

memory

matrix B
column
memory

matrix_mult_base

result
memory

A*B

communication interfce

clk
synch

The CLK/SYNCH block provides the clocking signal for mutiplication unit and

memories. Moreover it controls adresses delivered to the memories to provide

synchronization between rows and columns. The configuration of the multiplication unit

is following:

INPUT_WIDTH = 18 INTERNAL_WIDTH = 24
OUTPUT_WIDTH= 18 ITEM_COUNT = 20 BASE=0

Presented unit was implemented using Virtex 2 Pro XC2VP30 chip. Following

performance was achieved.

Speed grade LUTs FlipFlops 18x18 mult Block RAM Maximum
freq.

-5 128 57 1 3 90 MHz
-6 128 57 1 3 100 MHz
-7 128 57 1 3 115 MHz

Table 8: Performance and resource usage of matrix multiplication unit

Resource usage does not include resources used by comunication interface. The

calculation of one element takes 20 clock cycles. The whole result matrix with 400

element takes 8000 clock cycles. Additional 2 clock cycles are needed. The final result

is known after 8002 clock cycles. For -6 speed grade when the clock period is 10ns it

takes 80020 ns (80,02 us). Table 9 shows multiplication time for a different number of

used hardware multipliers

Number of multipliers Operation time [us]
1 80
2 40
4 20
8 10

Table 9: Matrix 20x20 multiplication time

74

6. Summary and conclusions

Presented library is now in testing stage. Initial tests and first algorithm

implementations showed that the base concept is correct and can be used in future

development. The following group of the system were implemented and tested – they

are accessible for end-user:

– input modules - (they include IQ demodulator and Magnitude and phase

calculations) which provide easy conversion of raw data into neccessary

representation. These modules execute input stages of many algorithms and provide

data for core modules which execute main calculations

– core modules – they execute specific functionality such as divison, sin/cos

calculation, data filtering. They can be conected to each other or to input modules to

create structure neccessary for specific algorithm implementation.

– embedded systems support – they provide interface to the embedded system, which

allows to connect and map any other module into embedded system's addres space

and floating point module to provide floating point arithmetical operations. Future

tests with embedded DOOCS servers that need fast floatng point operations may

show the real value of these modules

– low level modules (they include libraries such as math_basic_signed,

math_complex, etc.) which allow to implement any functionality which is not

included into other modules. They implement basic concepts of mathematical

library such as saturation arithmetic, complex numbers operation and so on. User

can easily implement his own modules without special considerations

All blocks were optimized to provide resonable choice between performance and

resource usage according to possibilities in target accelerator environment, but in future

versions of this library they can be further optimized to fit to the changing needs of the

75

system. Performance will change together with FPGA market changes and some

resource constraints may be dropped (when the prices of FPGA chips decrease and

available resources increase). Moreover the functional blocks written by the author or

end-users may be added to fit the needs of other groups and environments. The

proposed solution provides easy and fast way to implement algorithms, so it will easily

be integrated with existing systems. Architecture of the library is open so, in future,

components will be upgraded and new elements added.

76

References

[1] T. Czarski, K. Pozniak, R. Romaniuk S. Simrock: TESLA Cavity Modeling and

Digital Implementation with FPGA Technology Solution for Control System Purpose.

TESLA internal note 2003-28.

[2] W. Giergusiewicz,W. Koprek,W. Jalmuzna, K. T. Pozniak, R. S. Romaniuk FPGA

Based, DSP Integrated, 8-Channel SIMCON, ver. 3.0. Initial Results for 8-Channel

Algorithm. Tesla internal note 2005-14.

[3] T. Czarski, R. S. Romaniuk, K. T. Pozniak, S. Simrock: Cavity control system:

optimization methods for single cavity driving and envelope detection, Proceedings of

SPIE, Bellingham, WA, USA, Vol. 5484, 2004, pp. 99-110.

[4] Krzysztof T. Pozniak, Ryszard S. Romaniuk Modular and Reconfigurable Common

PCBPlatform of FPGA Based LLRF Control System for TESLA Test Facility, TESLA

Report 2005-04.

[5] W.M. Zabolotny, T. Czarski, T. Jezynski, K.T. Pozniak, P. Rutkowski, R.S.

Romaniuk,K. Bunkowski, FPGA Based Cavity Siumulator for TESLA Test Facility,

TESLA Report 2003-22.

[6] FPGA and Optical Network Based LLRF Distributed Control System for TESLA-

XFEL Linear Accelerator - Krzysztof T. Pozniak, Ryszard S. Romaniuk, Tomasz

Czarski, Wojciech Giergusiewicz, Wojciech Jalmuzna, Krzysztof Olowski, Karol

Perkuszewski, Jerzy Zielinski - Institute of Electronic Systems, Warsaw University of

Technology; Stefan Simrock – Tesla internal note 2004-09

[7] Thomas Schilcher ,Vector Sum Control of Pulsed Accelerating Fields in Lorentz

Force Detuned Superconducting Cavities

77

[8] Waldemar Koprek, Pawel Kaleta, Jaroslaw Szewinski, Krzysztof T.Pozniak,

Ryszard S. Romaniuk: Software Layer for SIMCON ver. 1.1., FPGA based TESLA

Cavity Control System; USER’S MANUAL. TESLA internal note 2005-05.

[9] 5.K. T. Pozniak, M. Bartoszek, M. Pietrusinski, Internal interface for RPC muon

trigger electronics at CMS experiment, Proceedings of SPIE, Bellingham, WA, USA,

Vol. 5484, 2004, pp. 269-282.

[10] Krzysztof Pozniak - INTERNAL INTERFACE, I/O Communication with FPGA

Circuits and Hardware Description Standard for Applications in HEP and FEL

Electronics ver. 1.0 - Tesla internal note 2005-22.

[11] Ray Andraka - A survey of CORDIC algorithms for FPGA based computers

[12] David L. Harris, Stuart F. Oberman, and Mark A. Horowitz- SRT Division

Architectures and Implementations

[13] J. Szabatin Podstawy teorii sygnałów, WKŁ 2003

[14] T. P. Zielińnski Od teorii do cyfrowego przetwarzania sygnałów,Wydawnictwo

AGH 2002.

[15] www.desy.de – DESY homepage.

[16] tesla.desy.de – TESLA homepage.

[17] www.xilinx.com – homepage of manufacturer of FPGA chips

[18] www.altera.com - homepage of manufacturer of FPGA chips

[19] www.opencores.org – FPGA resources webpage

[20] www.ieee.org – IEEE homepage

78

http://www.xilinx.com/
http://www.ieee.org/
http://www.opencores.org/
http://www.altera.com/

Acknowledgments

Author would like to thank everyone, who helped him during realisation of this

M.Sc.Thesis. Especially: Ph.D. Ryszard Romaniuk, Ph.D. Krzysztof Pozniak from

Warsaw University of Technology and Ph.D. Stefan Simrock and Alexander Brandt

from Deutches Electronen Synchrotron (Hamburg) for their supervision and opportunity

for projects to be started.

Author would like to thank ALDEC company for the opportunity to use their

ActiveHDL software for FPGA simulations.

Author would like to thank DESY Directorate, especially dr. Alexander Gamp,

for providing superb technical, financial and social conditions, for the TESLA LLRF

Group and the ELHEP Warsaw Group, to perform the work described in this paper.

79

7. Appendixes

80

	I. Abstract
	II. Streszczenie w języku polskim	
	1. Introduction
	1.1 Control algorithm
	1.2 Modern solutions
	1.3 FPGA based controller (SIMCON)
	1.4 Algorithm development

	2.System reqirements
	3.Concept of a synchronous mathematical library for FPGA chips
	3.1 math_basic_signed and math_basic_unsigned modules
	3.2 math_complex module
	3.3 math_matrix module
	3.4 IQ estimator
	3.5 CORDIC stage
	3.6 Magnitude and Phase detector
	3.7 Sin/Cos calculation
	3.8 SRT stage
	3.9 Fixed point divider
	3.10 Floating point unit
	3.11 OPB wrapper
	3.12 Summary

	4. Implementation
	4.1 math_basic_unsigned
	4.2 math_basic_signed
	4.3 math_complex
	4.4 math_matrix
	4.5 IQ demodulator
	4.6 CORDIC
	4.7 SRT
	4.8 Floating point unit
	4.9 FIR filter
	4.10 OPB wrapper
	4.11 Summary

	5.Tests of designed system
	5.1 Cavity detuning measurment – algorithm and implementation
	5.2 Floating point unit tests
	5.3 Matrix multiplication tests

	6.Summary and conclusions
	References
	Acknowledgments
	7.Appendixes

