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ABSTRACT

In this paper we examine the oscillation of electron-beam density perturbations
(longitudinal plasma oscillations) produced at the exit of a high-gain free-electron laser
(FEL) by the action of the FEL instability. These oscillations, which are analyzed in the
case of both a free-space drift and a dispersive section, can degrade the bunching of the
beam in the drift between undulator sections in multi-stage FELs. The impact of these
oscillations on thé gain of an FEL in an undulator fbilowing .sucﬁ a drift, as well as the case

of an optical klystron is studied.
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I. LONGITUDINAL SPACE-CHARGE

In space-charge dominated beams derived from rf photoinjectors such as typically
drive moderate energy (few tens of MeV) free-electron lasers (FELSs), the collective
transverse motion is characterized by single-component plasma behavior. The free
expansion due to the repulsive self-forces is controlled by the externally i;nposed focusing
lattice, producing beam envelope, or surface plasma oscillations. In contrast, for many
beams, the longitudinal space charge forces do not produce significant debunching, and
small efforts (running slightly off of rf crest) are necessary to compensate the energy slew
introduced by the space-charge forces. This is because in the beam rest frame, the bunch
length is much larger than the radius yy0, >> 0,, and the longitudinal surface plasma
oscillation frequency is much smaller than the transverse frequency. This can be quantified

by a geometric correction factor for plasma frequencies based on the envelope approach due

to Lapostolle[1]
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where we can approximate f(x) = [ 2i| . It can be seen that under the condition that

¥o0, >>0, that f(x)=1, and the longitudinal plasma frequency approaches zero,
Wy o= O, /YT, as the field becomes nearly purely transverse, E, o (o, /)fOO‘z)z. The
. physical basis of determining plasma oscillation frequencies will be illustrated further by
the discussion below.

For short-wavelength longitudinal density perturbations {microbunching) such as

are introduced by the FEL process, however, the field is no longer transverse, as the
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longitudinal density gradients may have a rest frame scale length shorter than the beam
width. In the ultra-short wavelength limit, the electric field associated with a periodic

density perturbation

m = ny =g = ny, cos(k, &) | (1.2)

of wavelength A, =2x/k,, with n,y the unperturbed beam density, and § =z — vyt

(distance measured in the Galillean frame moving with the beam) is

4edn

r

E

=

sin(k,$). (1.3)

For a constant density bunch distribution with a hard edge at radius a, the longitudinal

electric field inside of the beam is given by

E,=- 4’: on sin(k,g)[l _ka Ko(kf“JIO(-’ﬂH. (1.4)
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In the limit that the beam radius is large compared to the oscillation wavelength in the beam

rest frame (k,a >> vy), the correction factor in to Eq. 1.3 found in Eq.. 1.4 approachés

unity. In the case of the FEL the radiation wavenumber has a strong dependence on the

normalized energy, k, o< y%, and so this situation, where the longitudinal space-charge
force attains its one-dimensional limiting strength, is to be expected for any beam of
moderate energy or above (i.e. the UCLA IR FEL k,o, =y, while for the TTF-FEL
k.o, >>7vy). We shall therefore be concerned for the remainder of this work with one-
dimensional plasma oscillations in FEL-microbunched beams. A detailed analysis of a the
fields in two-dimensional microbunched beam, including higher harmonic bunching, is

included in Appendix A.
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I1. LONGITUDINAL PLASMA OSCILLATIONS

We now derive the equations for small arnplitl.'lde, linear, one-dimensional plasma
oscillations in a microbunched beam. We consider the beam to be initially a cold plasma - a
continuous, infinitely wide electron beam with average velocity v, and density nyq. The
effect of the FEL instability is, in addition to the density perturbation defined by Eq. 1.1,

where |n] << nyq is required for linearity, a self-consistent small perturbation in the beam

velocity
VI =V — Vo, (2.1)

where we again require || << v, .

We begin the derivation of the longitudinal plasma oscillation equations by

examining the equation of continuity in one-dimension

ap
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where beam charge density p =—en, and density J, = pv, in the case of a cold fluid.

Keeping only terms linear in perturbed quantities in Eq. 2.1 we have

o odm M
a[ ‘+‘Vb0 &z +nb0 & =0, (23)

In order to relate the density and velocity to the electric field, we must use the momentum,

defined relativistically as
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p,=p=pmec= "Lmec (2.4)
J1- B2

This relation allows us to write the relationship between the differential, (in that they are

perturbed quantities) velocity v; and momentum p,

A2 h (2.5)

Po Vb0

The rate of change in momentum of a fluid electron due.to an electric field is therefore

dp 3 dv -
‘Et-l“ =m,Ys __tL = —eEzl . (2.6)

This equation is valid for the perturbed system only - in a non-neutral plasma such as an
electron beam, there is a zeroth order expansion of the beam, as discussed above, which is
governed by the zeroth order electric field. As we are only interested in the oscillations
affecting the microbunching, our treatment neglects this generally small effect.

It is instructive in this context to write the total time derivative of a fluid quantity in

terms of its partial and convective components,

d _d dJ
— =4V, 2.7
a x 0% @D
which allows us to recast Eq. 2.6 as
(ﬁ +Vpo i)‘ﬁ =-— 7E,. (2.8)
ot &Z m,¥Yo

Differentiating Eq. 2.2 once with respect to time and using Eq. 2.8 we now have

5
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~We can now write the equation for plasma oscillations using the’ divergeﬂce of the electric

field,

?-E:%&:-Menl, (2.10)

to obtain a relation containing only the perturbed density,

2 2
where
) 47F€2f1b0
@y = (2.12)
0'fe

defines the microbunching plasma frequency. The factor of +/2 difference in the plasma
frequencies defined by Eq. 1.1 and Eq. 2.12 arises from the fact that the former describes
surface plasma oscillations, while the latter is appropriate for internal, bulk plasma
oscillations.
If we now use the distance down the beamline as the independent variable, we can
formulate Eq. 2.11 as
2

i—zn, +kom =0, (2.13)



TESLA FEL-Report 1996-15

with k2 = @2 [vly =4mrnyo/B3v5 - Tt should be noted that Eq. 2.13 does not contain
derivatives with respect to the spatial variable { = z — v,4f, and so a small amplitude

disturbance in the beam density is stationary in the rest frame position - each beam “slice” is
‘an independent oscillator. This is always the case for electrostatic plasma oscillations in a
cold, uniform ambient density plasma.

The general solution for a density oscillation described by Eq. 2.13 is

ny(z.)=m(0,0) cos(kpz) + -’—lj—(}?i-g—)sin(kpz) : (2.14)

P

where the prime indicates a derivative with respect to z. It would appear that there are
two constants associated with this solution, but in fact the equation of continuity (Eq. 2.3)

relates them by

n(0,0)= Lodn - Mo OV

v, dt Vyy 02
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III. LONGITUDINAL DYNAMICS IN BETWEEN FEL UNDULATOR SECTIONS

In order to use Eqgs. 2.14-15 to analyze the longitudinal plasma oscillations
occuring after an undulator section, we must have a model for the microbunching which

occurs in the undulator. We have, from the theory of the SASE FEL process,

v
L. }/8‘ —L = peeLhy cos(k,{) (3.1)
Po Ybo

where b, = 0ny, / ny,, is the bunching factor, or fractional modulation of the beam due to

the action of the ponderomotive potential, which has a periedicity very close to the radiation
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2/3
ak
wavelength 2r/k, . Here, also ppg =I: 4“;{ 4 ] is the FEL[2] or Pierce parameter, &,

W

is the wavenumber of the undulator field, and a,, 1s its normalized strength. The bunching

in configuration space is one-quarter of a wavelength out of phase with that in velocity

space,
ﬁl (O,C) = nbobl Sin(krg) . | B (3.2)

Combining Eqgs. 3.1 and 2.15, we have

b
A = PEBLA oos (k) (3.3)
Vbo Yo
and
7(0,8) = nyok, 2 F;gbl sin(k,{) (3.4
0

The plasma oscillations described by Eq. 2.14 are given, in the case of the SASE
FEL bunched beam, by

m(z.$) = bngg sin(krg)[cos(kpz) + :—’p}%sin(kpz) . (3.5)
p 0

This expression shows that the bunching is enhanced for propagation distances less
than one-quarter of a plasma wavelength. The maximum in the beam density occurs within

this distance, and is given by
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Figure 1. Experimental setup for CTR measurement of space-charge oscillations in FEL-

induced beam microbunching.

The squared term in Eq. 3.6 represents the additional bunching due to the initial
velocity distribution at the end of the undulator. In the limit of a beam with nggligibly small
space-charge, this number is much larger than unity, which corresponds to the tight
bunching one expects from a velocity modulated beam with no repulsive self-force active.
It should also be noted that this extra bunching term is propertional to p}y 2 with no
explict dependence on the beam energy. This term is less than unity for beams with high
gain, typically in the Raman regime. For the UCLA IR FEL case[3] this number is

approximately 2.3, and so the beam bunches more tightly by an additional factor of 150%.
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This occurs very quickly after the undulator, because in this case k;l =21 cm, with the
maximum beam density at z = 37/8k, =25 cm. The oscillation proceeds towards smaller

bunching after this point, with the null occuring at z = 77r/ 8kp =30.2 cm. After the null,

the bunching reverses (to the extent that the assumptidn of one-dimensional laminar flow
holds), at maximizes again-after-an. additional one-quarter plasma period. We plan to
investigate these phenomena at the UCLA IR FEL using the coherent transition radiation-
based microbunching diagnostic we have developed, with the transition radiator placed at a
number of positions downstream of the undulator[4]. The experimental setup for this
measurement is shown in Fig. 1.

For the TTF-FEL in its initial stage[5], we take for the sake of example the energy

as 500 MeV, the rms bunch length beam ¢_ = 50 ym, and the rms beam size ¢, = 50 ym.

In this case, we have k;l =300 cm, which is a relatively short length considering the

energy of the beam. The additional bunching factor for these TTF-FEL parameters is
k, PrEL

k, v

=4.5 (twice that of the UCLA case, as pgg; is four times smailer), and the

bunching factor increases in a inter-undulator module drift by approximately this factor if

the drift length is chosen to be approximately z = 3m/Tk, = 400 cm. One is likely to have

shorter drifts in practice, which produce smaller density enhancements. One possible way
to circumvent this is to use an optical klystron configuration, in which a short dispersive

section allows enhanced pulse compression in a shorter propagation distance.
IV. SPACE-CHARGE OSCILLATIONS IN DISPERSIVE SECTIONS: THE OPTICAL KLYSTRON
The use of a dispersive section at the end of an FEL undulator serves to enhance the

phase bunching of the electron distribution by introducing a change in the relationship

between the longitudinal velocity and the momentum,

10
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For high energy electrons, the second, dispersive path-length term on the right side of Eq.
4.1 is dominant in cases of interest. A chicane, which is basically one. peripd of a long
wavelength undulator, is typically used to give an average horizontal dispc?sion which is
negative, and so the bunching proceeds in the same direction as pure velocity bunching.
The introduction of this additional effect changes the plasma oscillation equation

2.11 (and expressions derived from it), by a redefinition of the plasma frequency,

@ on(2) = 4me’nyg (J— - ﬂx(Z)J = 4re’npy (-ﬂx (Z)). (4.2)
e Yom, T(% R Yo, R

This frequency has an explicit dependence on z, which makes the oscillation equation not

easily integrable. If we average the dispersion over the chicane section, we can assign an

average value to it in Eq. 4.2,
2 2
<~—ﬂ—*‘—>ai"258—, (4.3)

where a;, >> 1 is the equivalent undulator parameter, and @ is the maximum bend angle in
the chicane section.

Taking this average value of the dispersion, we can again integrate the oscillation

equations to obtain the equivalent of Eq. 3.5,

. k, a :
nl (Z’ C) = binbO Sln(krg)|:cos(kp,6'hz) + -k—r—h 'a_c_;_-pj;%—slﬂ_ S]n(kp,chz) ] (44)
. p.c

11
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where k, ;5 =®p 0,/ Vpo- The maximum enhancement of the bunching is now
approximately larger, by a factor of a, / 2 from the case of a pure drift. This is the same
factor by which the plasma frequency is raised.

Because the plasma oscillation wavelength 27/ k, ., is shortened, in the case of the
UCLA IR FEL. it may be difficult to attempt chicane bunching after the initial 60 cm
undulator section. For the TTF-FEL example, however, there may be much to be gained
by eﬁlploying a chicane section in the so-called optical klystron mode[6]. Assuming a
chicane section 66 cm long, which with a,, =10 corresponds to one-quarter of a plasma
oscillation length, the bunching enhancement is then raised to approximately 31 at the exit

of the chicane.
V. FUTURE WORK

It is interesting to note that the results obtained above are independent of

microbunching amplitude as long as |n1| << nyg, 1.€. the wave is of small amplitude. For

inter-undulator sections of a multi-undulator array in an FEL amplifier, this condition is not
violated, as saturation (Jn;| = n,) is only exponentially approached in the final undulator
section. Even so, it the results of this paper _canlbe extended to include large amplitude
oscillations in a straightforward way. It is well known that the density profile of a large
amplitude one-dimensional plasma wave can be expanded in a power series of Fourier
amplitudes[7]. The harmonics in the density wave associated with the large amplitude
dynamics can then be analyzed separately. The two-dimensional corrections to the
nominally longitudinal field, including the effects of these higher harmonics, are explored
in Appendix A.

An integrated theory of the interplay between space-charge and FEL action,
including undulators, drifts, and dispersive sections, based on the linearized SASE theory

of Bonifacio, Narducci and Pellegrini, is now under development. Preliminary numerical

12
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results verify the conclusions based on the linearized fluid theory presented above. It is
hoped that features of both the theoretical and computational approaches to this problem
will be verified soon at the UCLA IR FEL experiment[3-4].

It should also be pointed out that the general subject of treatment of space-charge
oscillations in relativistic beams in both drifts and chicanes occurs outside of the context of
FELs. An example of current interest is the so-called plasma klystron[8], which has been
proposed as an injector for ultra-short wavelength acceleration schemes such as the plasma -

beatwave accelerator.
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APPENDIX A: CALCULATION OF THE SPACE CHARGE ELECTRIC FIELD

We begin with a general, radially uniform (to a hard edge) charge distribution bunched
at many harmonics, moving relativistically in the z-direction, which is written in the

laboratory frame as
p= Po(l + hElbh COS%]a | (A.1)

where pg =—eny the phase dependence of each harmonic is given by ¢, = hké +8,,
A =2rm/k being the fundamental periodicity of the distribution. We transform the space

charge density distribution given in Eq. A.1 into the beam rest frame (r,z’). In this rest

frame the charge density p,,,, now reads:

Po v k- ’
_ =1+ Y, bycosl h—2'+8 0<r<a
Prest = YO[ h=1 h ( Yo h)jl . (AZ)

0 rza

In order to calculate the electrostatic potential associated to this distribution (the problem is

approximately electrostatic one in this reference frame), we split the density p,,,, into'two

terms, one (trivial) corresponding to the constant density, and the second (of interest)

representing the oscillating components

2o E bhcos(hEz’+BhJ 0<r<a
14

Pres: = Y k=i (A-3)

0 r2da

Let us consider the Poisson equation szph(r,z’) = =47,y 4 (r,2") for the h-th

b kz’ : ,
component, where prmh(r,z’)=-‘20—"cos[h—i+6hJ). To solve this equation we
’ Y

14
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factorize the dependence of the potential function ¢;(r,z") on the two cylindrical co-
ordinates r and z’: @4(r,2)=f(z)g(r) ; 0sr<a and @, (r,2)=0()(r) ; r2a .

Poisson equation becomes:

, R ek c0{h¥.z'+:9hj
1 dg(zr)+ 1 dg(r)+ . ffzz)z_ POy, }: ;OSTSG
18y dr” rg(r) dr  f(Z) dz 14 f(Z)e(n) - (A.4)
2 2 ’
1 drgr)+ 1 d’r(r)+ 1 d0(22)=0 . r2a
T(r) dr re(r) dr o) d7

Setting f(z")= A@cos{h%z’ + G;E)and o(z)= Bcos[h-’f-z’ —I-Bh} the two
Y

equations are transformed into:

r 2 2 2
r2d ggr)+rdg(r)_ hEr g(r)=—r— : 0€r<€a

dr dr Y A AS)
W 2 2 .
r? ddtgr)+rd’;5r)—(h$-r] 7(r)=0 ,  r2a

and further into:

2 2
2480 AW 2 V2 g M
dx ARk Y
2 ; . (A.6)
x2 T(zx) +x LG *1(x)=0 ; Xz
dx dx 4

which are recognized as homogeneous and inhomogeneous modified Bessel equations.
The general solution of the second equation in A.6 is 7(x)=C-[(x)+ D-K,(x), where

I,(x) and K,(x) zero order are modified Bessel functions of the first and second kind,

respectively. The general solution of the first equation in (A.6) is likewise given by

15
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2
gx)=E I(x)+F- Ko(x)-i--j;[%) . Since the potential must be non-singular both at

x=0 and at x - 2, one must have F = C =0 . Moreover, two connection relations must
be guaranteed at the outer edge r =a of the space charge density distribution, i.e. a

continuity of the potential f(z)g(X)= o(z")7(X) V Z’, and the radial electric field

f(z )dg(fi; X) o(z )dT(J;; X) V z’, where X = ]j?_‘ These conditions are equiv-
14
alent to:
2
A47r,(;0bh [E,]O(hx)_,_%(_z_k_] :lz B-D-Ky(hX) (A7)
and
A:zg—b;:E-Il(hX)=—B-D-K1(hX) (A-8)
0

The solutions for the integration constants, namely 4,5,0 and £, are A=8=1,

and, using the Wronskian relation for the modified Bessel functions,

D = 2700k (v/hk)" 1,(hX) 47"'90?‘17’ X - I,(hX) (A.9)
Y  LX)Ky(hX)+ I(hX)K,(hX)  hk
2
and —(y/hk)" K, (hX) = —{y/hk)" hX - K, (hX). (A.10)

- LX) Ky (hX) + I (hX) K (hX)
Finally, the expression of the electrostatic potential @,(r,z") in the beam rest frame is:

Qu(rz) = %cos(hﬁz’ + Bh][l - hX- Kl(hX)Io(ﬁr)} ; 0€r<a

Y Y (A.11)
(ph(r’z’)=ﬁ%%-%gﬁ}—/cos[hiz'+9thX-Il(hX)KO(ﬁr) ; r=za

14 4

16
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We are interested in the axial electric field, which is responsible for the space charge

oscillations described in this paper; this can be easily calculated, in the rest frame, by

E™(r,z’)=—0d¢/dz’ , to obtain

Ezresr - 47po E b—hsin(hﬁz’ + eh]|:1 - hX- Kl(h‘lf)lo(E r):” ; 0Sr=a
k pai| A Y 14 .
j | - (A.12)
Ere = 4mpo {?isin(hﬁz% BthX LOXKo(RE r)} ;  rza
k pa1l A 14 . Y

The field transformation back to the laboratory frame is straightforward, being

ENb(r,0,) = El*'(r,2’ = 2y), hence

Elab 4mpg & z {b}? s1n(¢h)|:l hX - KI(hX)IO(—-—r):I} ; 0<r<a

X 4
(A.13)
Eéﬂb = il 0 z {“%SIH(Qbh)hX : Il(hX)Ko(“‘“‘r)} 3 rza
| k p=1 h Y
The on-axis field, £, @,)= £“ ¢=0,¢,)
4r
E, = pO z ~sin(gy 1 - hX - K, (hX)]. (A.14)

It is interesting to calculate, for completeness, the transverse electric field, using

Ei’e.'if(r z )_ _a(p/ar ’dl’ld Elab(r ¢h) wr&i‘!(r,zf — Z‘}f). WC find

471'100

Elb = 2700 z cos(th)hX Kl(hX)Il(——r) . 0<r<R

(A.15)

Elab — 4’2’0 g Zh cos( gy hX - Il(hX)K,(——r) r2R

17
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which gives, to lowest order in

E" = 2mpyr Eb,, cos(¢y, J(AX)K; (hX). (A.16)
h=1 ‘

The radial field is proportional to the quantity X - K;(hX), the identical normalized

factor by which the longitudinal is degraded due to 2-D effects.

o
h

X*K1(X)
[en}
i~

Fig. A.1: Plot of the function X K, (X).
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