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Abstract

This paper describes a universal algorithm for the calculation of the longitudinal radiative
interaction force in the electron bunch with a line-charge distribution moving along an arbi-
trary small-angle trajectory. Practically important case of the bunch moving in an undulator
(a wiggler) is studied in detail. Explicit analytical solutions for the radiative interaction force
are obtained for a rectangular and for a Gaussian bunch shape. [t is shown that the rate of
the bunch energy loss due to the radiative interaction forces is equal to the power of coherent
radiation in far zone.

The numerical estimations presented in the paper show that the effect of radiative interaction
cal be important in undulators which are used for generation of coherent infrared radiation.
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1 Introduction

The theory of the radiative interaction of electrons in an intensive microbunch traversing
curved trajectory is intensively developed nowadays. This is explained by the practical
importance of the radiative effects for bearn dynamics in linear colliders [1,2] and short-
wavelength free electron lasers [1,3,4]. When intensive electron bunch passes bending
magnets, bunch compressors, wigglers etc, radiative interaction induces the energy spread
in the electron heam and can lead to the transverse emittance dilution in highly dispersive
sections of bunch compressors [5,6].

Most of the previous theoretical studies of the radiative interaction (see, e.g., refs. [7,5,8])
have been focused on the periodical circular motion of a bunch. Recently, the problem
connected with transients in a bending magnet of finite length has been considered [9,10].
From practical point of view it is important to calculate radiative effects in a more com-
plicated systems such as a sequence of bending magnets, an undulator (a wiggler), etc.
In this paper (in Section 2) we present a universal algorithm for the calculation of the
radiative interaction of the particles in a line-charge bunch moving on an arbitrary curved
small-angle trajectory. This algorithm can be used also to study the radiative effects in a
short electron bunch moving along any (not small-angle) trajectory.

In Section 3 we use this general algorithm to find analytical solution for a bunch moving
in an undulator (a wiggler). The solution is obtained using approximations of neglecting
transient effects (when bunch enters and leaves an undulator) and neglecting shielding
effects (influence of a vacuum chamber on the radiative process). The obtained solution
includes periodical oscillations of the radiative force and is written for an arbitrary line
density of an electron bunch and an arbitrary value of the undulator parameter. In Sec-
tions 4 and 5 the solutions, averaged over period, are obtained in the form of explicit
functions for a rectangular and a Gaussian bunches. These results can be used for quick
estimations of the considered effect and for testing numerical simulation codes. In Section
6 the applicability region of the considered model is discussed and numerical examples
are presented.

2 Method for calculation

In this Section we present a universal algorithm for the calculation of the longitudinal
(along a particle’s velocity) radiative interaction force acting on a particle in an ultrarel-
ativistic electron bunch with a line-charge distribution moving along a plane trajectory.
It is assumed that vectors of the velocities are always within a small cone on a part of
the trajectory between a position of the bunch head and a retarded position of the tail.
Proposed algorithm can be applied, for instance, for any bunch length and small-angle
trajectory, or for any trajectory if the bunch 1s short enough.

The motion of the particles is supposed to be given and we solve only electrodynamic
problem. First, we consider the interaction between two particles via longitudinal Lienard-
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Fig. 1. Interaction of two particles moving on a curved trajectory.

Wiechert electric field and renormalize this interaction in order to exclude from consid-
eration the non-dissipative divergent terms. Second, we obtain the expression for the
radiative force acting on a particle within a rectangular bunch. Third, this expression is
generalized for a bunch with an arbitrary line density. Finally, the method is illustrated
by the consideration of a microbunch moving on a circle.

Let us consider two electrons moving with velocity ¢ (which is close to the velocity of
light, @ ~ 1 -~ 1/2+%, 4? >> 1) along some small-angle curved trajectory one after another
(see Fig.1). The electric field of a back electron produced at source point S’ at time ¢’
reaches a front electron at time ¢ in the point 5 of the trajectory. Explicit expression for
this field is given by Lienard-Wiechert formula [11], containing “Coulomb” and “radiation”
terms:

E(S) = Ecoul + Erad — 3 . (1)

The distance L between present position of the front electron and retarded position of
the back one, the path length S — S’ between these points along the trajectory, and the
distance s — s’ between the electrons are connected by the retardation condition

S—-8—(s—s)=0L. (2)

Kinetic energy of the front electron changes under the action of the electric field produced
by the back electron:

Cd(i B‘ ( -'cou] + Erad) . (3)

The rate of the energy change of the back electron under the action of the front one is
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given by the expression {in the small-angle approximation):

d&' e?
cdt (s~ )2 (4)

This expression does not depend on a specific shape of a small-angle trajectory and is
valid also for the trivial case of a straight-path motion. Both expressions (3) and (4) are
divergent at (s — s’) — 0. We are interested in the study of the curvature effects and
remove this divergence subtracting the kinetic energy change which would take place if
the electrons were moving on the straight line. This renormalization does not affect the
total energy change of the system of two electrons and leads to the following expressions
for the “curvature” part (or, radiative part) of the kinetic energy change of the front and
of the back electron, respectively:

dgcur = 82

edt = eﬁ : Erad + 6)6 * Ecoul - m - chr(s - SI? S) ’ (5)
A&y _

In the following we will refer to the term in square brackets in eq. (5) as to “renormalized
Coulomb” term. The back electron does not lose its kinetic energy under the considered
interaction, as it is shown by eq. (6).

Let us now study the radiative interaction of the particles in 2 bunch with a line-charge
density A = const. Let a test particle with a coordinate s along the bunch (s = 0 is the
coordinate of the bunch tail) be placed at some point S along the trajectory. The retarded
position of the bunch tail is S (see Fig.2). To find the rate of the energy change of the

L
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Fig. 2. Ithustration of the radiative interaction of particles in a rectangular bunch, including
semi-infinite complementary contour.
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test particle we should sum up the action of all the particles behind it. When the particles
density is high enough, we can replace this summation by the integration:

o [ ., ,
)T _)\Ofdchu,(s—s,S). (7)

C

Now we can formally add and subtract the action of semi-infinite electron beam with the
same linear density:

dgcur
cdt

s 0
=) f ds'Gous(s — 8',8) — A f ds'Couels — 8, 5) . (8)

The first integral in the right hand side of this equation is equal to zero for any small-angle
trajectory (see ref. [9] for more detail). It means that the radiative force is equal o zero
at any point of infinitely long circuit of dc current. Fields produced by such a circuit are
static!. Since the result does not depend on a specific shape of such a complementary
circuit, we can choose the complementary circuit convenient for the calculation (it may not
coincide with the actual trajectory). It is convenient to assume that retarded positions of
particles of complementary semi-infinite beam are placed on the straight line tangential to
the actual trajectory at the retarded position of the bunch tail Si, (see Fig. 2}. Apparently,
the simplification is connected with the fact that acceleration is equal to zero on this
circuit. Thus, the integrand contains only “renormalized Coulomb” term:

62

0 0
dgcur _ ' ot — _ ! 24l B —
— ,\_i ds'Genr(s —8',5) = /\—0/0 ds [eﬁEcoul (s =57 (9)

cdt

The second term is integrated easily and one gets

dgm__)\__ o B 5")

cdt s . L’)2 6’)3

(10)

To perform integration in eq. (10), we go over to a retarded position 5’ as an independent
variable, and then — to an angle o (see Fig. 2) which changes from 0 to 8. Finally, we
obtain the following expression (see also Fig. 3):

dgcur .2 2 2 1+72(j59
i e“A0(s,5) = €A (d{ = L 150 (11)

! This is valid also for any finite closed circuit (see, for example, ref. [11]) — in this case, of
course, one can not neglect the action of the fields produced by particles moving in front of the
test particle.
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The retardation condition is written as

s=5—5,—0L. (12)
L
.
S _pe; R ¢
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Fig. 3. The scheme for calculation of the radiative force acting on a particle in a rectangular
bunch.

We should comment the formulae (11) and (12). Let the test particle be placed at some
distance s from the tail of a rectangular bunch. At a given moment of time it passes the
point with coordinate S along the trajectory with some definite direction of velocity 5
(see Fig. 3). The retarded position of the bunch tail S;, along the trajectory is defined
by the condition (12), where L is the retarded distance. Since we consider a small-angle
approximation, one should expand trigonometric functions which will appear in eq. (12),
keeping the main term and the next nonvanishing high-order term in angle. At the point
Ste of the trajectory the tail particle has at retarded moment of time the velocity ﬁtr and
the direction to the present position of the test particle is given by vector #. The rate
of the energy change of the test particle due to the curvature effects is given by formula
(11), where @ = arccos(7 ,Gtr/ﬁ) and ¢ = arccos(ﬁ ﬂt,/ﬁz) To define the correct signs of
these angles, one should use the following rule. If in some polar coordinates the vectors
By, 7, and 3 have angles ¥y, 1, and 3, respectively, then 8 = 1) — 1, and ¢ = 2y — 2bs.

Using this algorithm one can calculate the rate of a particle’s energy change as a function
of its position along a rectangular bunch and of its position along a trajectory (in general
case this function may not have explicit form). Then it is easy to generalize the solution
for a rectangular bunch with A(s) = const to the case of an arbitrary linear density A(s).

One can consider this bunch to be composed of rectangular bunches with a length (s — ")
and a linear density ds’' [dA(¢')/ds’]. Hence,

dgcu[‘
cdt

dA(s")
ds'

/ds@s—s S) (13)

where function @ is defined by eq. (11).

Now let us illustrate this algorithm with the simplest case of a microbunch motion on
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Fig. 4. The scheme for the calculation of the radiative interaction in a rectangular bunch moving
on a circle.

a curved trajectory — the periodical circular motion (see Fig. 4). In this geometry 8 =
¢/2 <« 1 and one easily obtains that the retardation condition (12) is approximated by

R R
s= gt o (19

and expression (11) takes the form [9]:

o _ oy (1 21475 4hy  (39)(8 + %) 15)
cdt ¥is Re1HZEE S R (444267124 4%¢7)

At v2¢? > 1 eq. (14) takes the simplified form s ~ R¢®/24 and eq. (15) is reduced to the
well-known one [7,5]:

dgcur
edt

4e2 )\ _ 2e%)
- Ré T g1/3R2/341/3 ?

= &’ AP(s) = (16)

The considered case can be referred to as the steady-state regime when the radiative
interaction does not depend on a bunch position along a trajectory. Using expressions
(13) and (16), for the case of an arbitrary function of linear density we obtain [7,5,8]:
A€ eur 2¢? / ds'  dA(s)
(

cdt  3BRIS s — 83 ds'

— 0o

(17)

In the next Section we use the described algorithm for the calculation of the radiative
interaction of the electrons in a bunch moving in an undulator. The transient eflects (when
a bunch enters and leaves an undulator) are not considered in this paper. Nevertheless,
we should note that the algorithm described in this Section allows one to calculate these
transients, too. The subscript “cur” will not be used in the following Sections and one
should keep in mind that we always mean the kinetic energy change due o curvature
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effects. The terms, which are omitted in our consideration, describe trivial longitudinal
space-charge forces in a bunch moving on a straight line and can be calculated separately.

3 General solution for a bunch moving in an undulator

Let us consider rectangular electron bunch of a length [, with a linear density A = N/I,
moving in the z direction through an undulator with magnetic field

H, = H, cos(kyz) .

The transverse and longitudinal velocities of an electron can be approximated by

K . K*
ﬁy - VSIH(sz)v 162 — ﬁ - '27}{? s1n (sz) 3

where K = eH,, [k,mc® is the undulator parameter, v = £/mc?® is relativistic factor,

(14+ K?/2)/v* <« 1 and 3 ~ 1 — 1/24%. Transverse coordinate changes as follows:

K
Yhw

y=- cos(kyz) .

We suppose the motion of particles to be given and solve only electrodynamic problem.
Our goal is to calculate the rate of the energy change of an electron in the bunch due
to the radiative interaction force as a function of electron’s position s along the bunch
(s = 0 is the coordinate of the bunch tail) and of its position z along the undulator. The
calculations are based on the general approach described in the previous Section. Leaving
the details of the calculations, we present here the following result:

d&

i e*kyX D(3,K, %), (18)
where
1 A — K*B(A,2)[sinAcos 2 + (1 — cos A) sin £]
T ]
D(3, K,2) =7 —2 AT BB : (19)
B(A,2)=(1—cos A —AsinA)cos 2+ (Acos A —sinA)sin Z | (20)

and A is the solution of the transcendental equation:



TESLA FEL 1997-08

2 2 4A
X(cos Acos2Z +sin Asin2Z) — 2(1 — cos A)}. (21)

2 2
§= A (1 + i ) + K [2(1 —cosA) — Asin A]

Here the following reduced variables are used: § = %k, s and 2 = k, 2. To explain the
physical sense of variable A, let us represent it in the following form: A = k,(z — z;,).
Here z and =z are projections on the undulator axis of the current position of reference
particle and of the retarded position of the bunch tail, respectively.

It follows from geometrical symmetry of the problem and from egs. (19), (20) and (21)
that function D) is periodical with respect to the position of reference particle z along the
undulator and the period is equal to the half of the undulator period 7/, (the period is
equal to 7 with respect to the normalized position 2).

To check the validity of expression (18) let us consider the limits when this expression has
simple physical interpretation. First of all, it is seen that in the limit of § — oc function
D tends to zero, i.e. at any point of infinitely long bunch the radiative interaction force
is equal to zero as it should be.

Now let the bunch be shorter than characteristic wavelength of spectrum of incoherent
radiation, which is of the order of (k,v?)~! for small values of K and of the order of
(K kyy?)~! for large values of K. When

sgl, K<l (22)

function D is reduced to the following simple form:

D = —%KZé cos? 2 . (23)

The rate of the energy loss by the whole bunch can be calculated as follows:

Ly
de, dE
ZJE"Ode’\cdt' (24)

Substituting expressions (18) and (23) in eq. (24) we obtain:

%(% = —g [NeKkyy cos(kyz)]?

Using the definition of the parameter K we can rewrite this expression in the following
form:
d&, 2

4y a2z 2
o 3N roy H, cos®(kyz) , (25)
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where v, = e?/mc? is the classical radius of electron. One can see that in the limit of
a “short” bunch the energy loss is identical to that of a single particle with the charge
Ne. So, in this limit formula (18) provides correct and physically transparent result. This
indicates also that renormalization procedure (5) has been performed correctly. Indeed,
result (25) could not be obtained without taking into account the “renormalized Coulomb”
term.

Now let us consider the limit of A <« 1. In this case the result should depend on the
value of the local magnetic field only (or, on local curvature), and solution (18) must be
reduced to that corresponding to a circular motion. The approximate form of eq. {21) can
be written as follows:

é-l— K?
2 24

AP cos® 2 . (26)

§~

The first term in the right hand side of this equation comes from the difference between
the electron’s velocity and the velocity of light, and the second one is due to a local
curvature of the trajectory. As a result, function D takes the form:

4AK?cos? 2 (8 + A’K?cos? 2)

D= AR e 12+ AR oo B

(27)

Taking into account that

kIK*?cos®z 1

,},2 R? !

where R is a local radius of curvature, we can obtain that the solution (18), (26) and (27)
is identical to (15) and (14). When conditions (22) are satisfied, expression (27) takes the
simple form (23). Solution (27) is reduced to (16) at (K | cos 2 |)™! « A « 1. The latter
asymptote means that the bunch is much shorter than the wavelength of the first harmonic
of the undulator radiation but is much longer than the characteristic wavelength R/+* of
the synchrotron radiation spectrum (which is radiated by a single electron at large values
of the parameter K).

We have checked that solution (18) for a rectangular bunch has correct asymptotical
behavior. Now we can generalize this solution for the case of a bunch with an arbitrary
linear density A(s). As it was mentioned in the previous Section, this general solution is
the convolution of the solution for a rectangular bunch with the derivative of a linear
density function:

d€ 5 [ e e s
E—ekw_[o ds'D(§ — 3§, K, 2)

dX(s")

(28)

10
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In the next Sections we will study the rate of a particle’s energy change averaged over z:

dg 2 f ISV a7 d/‘\(S')
— =%k d —§ K 2
cdt ¢ w_i SO =8, K) ds' '’ (29)
where
D(s,K) = —/dzD(s,A,z) (30)
s
]

4 Averaged solution for a rectangular bunch

In this Section we study the averaged solution (29) and (30) for the particular case of
a rectangular bunch of a length /, with a linear density A = N/I,. Let us rewrite this
solution in the following form:

df ek, N -
—= e D(§,K) . 1
= DG, ) ()

The averaged function D(8, K} is calculated using the egs. (30) and (19) - (21). For small
values of the undulator parameter, K < 1, we have

s T oA . - 9o
sin“s  sin2s sin“3
) (32)

D(g,.{()=—1{2( — 4 =

8 252 38

It is easy to see that at small values of § this expression is reduced to that given by eq. (23)
averaged over the z coordinate. Let us note that the first term in the brackets of eq. (32)
takes its origin from the “radiation” term in eq. (5), but the second and third ones come
from the “renormalized Coulomb” term.

The energy losses by the whole bunch are given by:

by

dgb 62N2 = -

— = | B{5, K)d 33

edt — ~%2 6/ (8, K)dé (33)
where

ib = ")fzszb .

11
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Performing integration, we obtain:

&, ce’NK? ) s 1 — cos(2ly)
—r = _W In(20,) — Ci(2h,) + C' + (T -1 (34)

where C' = 0.577... is Euler’s constant and Ci(...) is integral cosine [12].

Let us show that the rate of the energy losses by the electron bunch is equal to the power
of coherent radiation in the far diffraction zone. The power of coherent radiation in far
zone is calculated as the integral of the power spectral density

dF, coh @
dw dw ’

= N’n{w) (33)

where n{w) is a bunch form factor (squared module of the Fourier transform of a bunch
shape). The form factor for the rectangular bunch of the length I, is:

n(w) = (sin 2—‘"’)2 (“;—l")ﬁ - (36)

Function dP/dw entering eq. (35) is the spectral density of the radiation power emitted
by a single electron. For the first time it has been calculated in ref. [13]. In the case under
consideration (small value of the undulator parameter K'), this function is reduced to the
following simple form:

dP 2K w w?
- = 1 — 37
dw 4cvy? ( chyy? + 202193”74) ’ (37)

where w changes from zero to 2ck,y*. Substituting functions (36) and (37) in eq. (35)
and integrating within these limits, one obtains that P, exactly coincides with d&,/dt
taken with the opposite sign.

We should note that the “renormalized Coulomb” contribution to the total power, being
placed in the brackets (...) in eq. (34), is not negligible even for a long bunch, I, 3 1. In this
case the contribution of the main (“radiation”) term is only logarithmically larger. This
shows the importance of “Coulomb” part of the Lienard-Wiechert field in the radiative
interaction processes.

We have considered the case of small values of the parameter K. In the case of an arbi-
trary value of this parameter function D(4, K) takes much more complicated form than
eq. (32). We present here the asymptotical behaviour of this general averaged solution for
a rectangular bunch at large distances from the tail (§/{1 + K*/2) > 1)

nir I~ N_(1+K2/2) _ 1 . 2 §
D(3,K) ~ — 201 NiEwc sin TR

12
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1 1

T TR 1+ KR (38)
At small values of K this solution is reduced to the first term in eq. (32).
5 Averaged solution for a Gaussian bunch
In this Section we consider a bunch with a Gaussian distribution of linear density:
N 52
/\(S) = g exp l:_-ﬁ] . (39)
Let us introduce the bunch length parameter
ko
PET+E2°
The averaged solution for the Gaussian bunch can be written in the form:
5 2AT 2
=L G K), (40)

cdt V2noiy?

where z = 3/0.

In general case one can calculate function G numerically using the eq. (29). Here we study
practically important case of a long bunch, p > 1. As in the previous Section, we start
with the limit of small K. Under these conditions function & can be calculated using

egs. (29) and (32):

2

G(p,z) = gexp (_,%) Inp+ F(z) . (41)

Here parameter p is reduced to p ~ 7%k, o, and function F'(x) has the form:

F(z)= %(O +31n2 — 2)z exp (_%2) - \/g [1 +erf (%)

~3 exp (—“‘”2—2) Z dz’ exp ((‘*;)2) (1 +erf (%)ﬂ , (42)

where erf(...) is the error function [12]. The plot of function F'(z) is presented in Fig. 5
and Fig. 6 presents the plots of function G calculated at different values of parameter p.

13
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Fig. 5. Function F(z) given by eq. (42).
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Fig. 6. Function G for small value of the undulator parameter K and different values of the
bunch length parameter p. Curve (1): p = 1, curve (2): p = 30, and curve (3): p = 1000. The
curves are the results of numerical integration of eq. (29) and the circles are calculated with the
help of analytical formula (41) for large values of parameter p.

14
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In the case of an arbitrary value of the undulator parameter K, it is difficult to find explicit
analytical solution. Nevertheless, using the results of numerical integration of eq. (29), we
can write function 7 in the following form (p > 1):

Glp, K2) = 2 exp (—5) Inp+ g(K)] + F(a) (43)

where function ¢g(K') changes from 0 to 1 when K changes from small to large values. The
plot of this function is presented in Fig. 7.

We also present here the solution for a short bunch, p <« 1, and an arbitrary value of
parameter K:

G(p, K, z) = —‘/Sﬁp? (1 + %i)z [1 +erf (-—\%ﬂ . (44)

The solution for a long bunch (43) is the most important one from practical point of view.
For this expression to be valid, the rate of the energy losses by the whole bunch must be
equal to the power of coherent radiation in far zone. First, we should calculate the rate of
the energy loss by the whole bunch. Multiplying expression (40) (where the function G is

1.0

el

0.8 /

0.6 /

g (K)

0.2 /

0.0

0.1 1 10 100
K

Fig. 7. Function g(K) entering eq. (43).

15
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defined by eq. (43)) by the function of linear density (39) and performing the integration,
we get: -
d&, ce? N K*®

dt Boiy? (45)

Second, we use formula (35) to calculate the radiation power in far zone, The form factor
of the bunch is given by

2.2

(o) = exp (-2 (16

It is seen that typical frequencies of coherent radiation are below ¢/o. This means that in

the case of a long bunch, p 3> 1, we can use the asymptotical formula for power spectral

density of radiation by a single electron [13] , assuming the frequency to be much less than

the frequency of the first harmonic of the undulator radiation (w < ck,v*/(1 + K?/2)):
dP  e*K*w

—_—

do — 4ey?

(47)

Substituting eqs. (46) and (47) into eq. (35) and performing the integration, we obtain
that the coherent radiation power in far zone exactly coincides with the bunch power
losses (45) taken with the opposite sign.

Finally, let us present the formula for the induced correlated energy spread in the Gaussian
bunch due to the radiative interaction. Using expression (43) we write down this formula
in the form convenient for practical calculations (p > 1):

do., - TK?
— =10.21
edt 0 ngo'fyz

Vllnp + g(K))? +0.933(lnp + g(K)] — 0.786 (48)

where I = Nec/v/2mo is the peak current, 4 = 17 kA is Alfven current, and

mcto, = /(E2) — (E)2 .

6 Discussion

Let us discuss the applicability region of the results obtained in the paper. The model
approximations are using of the model of the line-charge bunch and neglecting the in-
fluence of the vacuum chamber on the process of radiative interaction. Besides, we have
considered the steady-state regime, i.e. transients in an undulator of a finite length have
been excluded out of consideration. Of course, the most correct way to set applicability
conditions of some theoretical model is the consideration of more general model, which

16
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includes all the effects neglected in the simple model. The consideration of more general
model is under way. Here we will try to make some rough estimations of applicability
conditions of the simple model considered in this paper.

We can perform such estimations for the practically important case of a long bunch,
o> (1 + K?/2)/v*k,,. First, we consider the transient effects. If one is not interested in
the behaviour of the radiative forces after the bunch leaves the undulator (which is true
for FELs), then the only transient when the bunch enters the undulator is of interest. For
such a case we can write down the following limitation on the undulator (the wiggler)
length L., allowing us to neglect transient effects:

Ly > av?, (49)

where av? = 042 /(1 + K?/2) is typical radiation formation length.

Second, we estimate the region where we can neglect the influence of the bunch transverse
size and of the vacuum pipe. It follows from simple geometrical consideration that a
characteristic measure distinguishing these effects is the mean geometric value of the
bunch length and the radiation formation length. Thus, we can roughly estimate the
region where the considered effects can be neglected:

gL Koy, Lb. (50)

Here o, and b are transverse sizes of the bunch and of the vacuum chamber, respectively.

We should note that when the above mentioned limitations are not satisfied and the con-
sidered effects become to be important, they will lead to a suppression of the radiative
interaction. In other words, the model considered in this paper means the worst-case
approximation, which makes it useful for quick estimations of the radiative interaction
effects. Also, numerical simulation codes can be checked by taking them to the corre-
sponding extreme case and comparing them with analytical results of this paper.

Let us consider two numerical examples. The first one is 6 nm SASE FEL being under
construction at the TESLA Test Facility at DESY [4]. The energy is 1 GeV, the rms
bunch length is 50 um, the peak current is 2.5 kA, the undulator period is 2.73 cm, K
is 1.27 and the undulator length is 27 m. Substituting these numbers into formula (48),
we obtain that o,/ = 4 x 10™° which is negligible. Besides, the condition (49) and the
condition (50) for shielding (the diameter of vacuum chamber is 1 ¢m) are not satisfied.
This will lead to further reduction of the effect. We should note that such a situation is
typical for the projects of VUV and X-ray FELs.

The second example is SUNSHINE experiment [14] with coherent infrared radiation pro-
duced by sub-picosecond electron bunches. The energy is 16.5 MeV, the bunch length is
240 um, the peak current is 280 A, the undulator period is 7.7 ¢cm, K varies from 0.3 to
3 and the undulator length is 2 m. The model presented in this paper describes well this
region of parameters. The estimation of the effect for K = 2 yields o,,/v ~ 1072 which
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could significantly influence on longitudinal beam dynamics. In particular, a transforma-
tion of the energy modulation to the density modulation may lead to a nonlinear growth
of the coherent emission with the undulator length that was observed in this experiment.
Based on the general formulae presented in Section 3, one can derive the approximate
algorithm for a fast numerical solution of the self-consistent problem: longitudinal phase
space distribution changes due to the radiative interaction and the latter is defined by
former.

Finally, we should note that the results of this paper can be useful for the design of
wigglers as bunch compressors for linear colliders (2,15].
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