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Abstract

A new non-destructive method for measurement of the longitudinal profile of subpicosec-
ond electron bunches is proposed. The method is based on measurement of spectral intensity
correlations in synchrotron radiation. Statistical properties of synchrotron radiation pro-
duced by a bunch passing the bending magnet are considered. The signal to noise ratio
is analyzed in terms of the degeneracy parameter. The degeneracy parameter increases
approximately as a third power of the wavelength which makes the visible range of syn-
chrotron radiation to be a natural choice for the spectral intensity correlation measurement.
An example of the experimental set-up is also described.
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1 Introduction

The length of electron bunches for the next generation linear colliders are of an
order of ¢, ~ 0.1 — 1 mm [1-3]. The projects of X-ray FELs require even shorter
bunches, down to 0.025 mm {1,4,5]. These values are less by an order of magnitude
than those used in the existent accelerators. Development of nondestructive methods
for measurements of longitudinal distribution of the beam current in such a short
bunches is a challenging problem.

In this paper we describe a new method for nondestructive measurement of the lon-
gitudinal profile of the electron bunch. The method is based on the measurements in
frequency domain of correlations between the fluctuations of synchrotron radiation
produced by a bunch passing a bending magnet.

The proposed device is the combination of a monochromator and a counting inter-
ferometer which gives directly the square of the modulus of the Fourier transform
of the longitudinal electron bunch profile. Reconstruction of the beam profile from
these data is performed by means of a standard technique developed for the image
reconstruction from the data obtained by means of the Hanbury-Brown and Twiss
intensity interferometer.

This paper is organized as follows. The principle of the method is described in sec-
tion 2. The principle of operation of the proposed device is based essentially on the
statistical properties of the synchrotron radiation and the detection process itself, so
the next five sections are devoted to detailed description of these topics. Statistical
properties of synchrotron radiation are studied in section 3. Section 4 is devoted to
the problem of photoelectric detection of synchrotron radiation. Section 5 presents
practical formulae for calculations of the spectral brightness of SR sources, of the
wave degeneracy parameter and of the photocount degeneracy parameter. Sections 6
and 7 present a detailed study of the output characteristics of the device. In the end of
the paper we illustrate with numerical example the potential of the proposed method
for an on line, non-destructive diagnostic of the electron beam in the accelerator at

the TESLA Test Facility at DESY.

2 Principle of the method

The layout of the device for measurement the longitudinal profile of the electron pulse
is presented in Fig. 1. An ultrarelativistic electron bunch passes a bending magnet
and radiates a pulse of synchrotron radiation. The diaphragm of aperture d is used
for selection of the transversely coherent fraction of synchrotron radiation which is
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Fig. 1. The layout of the device for measurement the longitudinal profile of the electron
pulse.

directed to the monochromator with an aperture D). The monochromator is placed at
the distance of z from the diaphragm. The resolution of the monochromator is equal
to Awy,, the central frequency is equal to wy and Aw,, /we < 1. The radiation reaching
the monochromator is transversely coherent when, according to Van Cittert-Zernike
theorem, the following condition is fulfilled (see e.g. [6]):

cz
— > D,
LUQd

where ¢ is the velocity of light. A one-dimensional array photodetector is placed at
the monochromator exit which performs measurement-of the spectral distribution of
the radiation energy. The signal from each element of the photodetector is stored in
the computer in matrix form. The row index corresponds to the frequency and the
column index corresponds to the pulse number. This matrix is used for the calculation
of statistical properties of the radiation. In particular, the spectral correlation function
contains the information about the Fourier transform of the electron bunch profile.

The principle of operation of the proposed device is based essentially on the statistical
properties of synchrotron radiation. It is shown in section 2 that synchrotron radia-
tion possesses all the features corresponding to completely chaotic polarized light. In
particular, the higher order spectral correlation functions are expressed via the first
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order correlation function. The probability density distribution of the spectral den-
sity of the radiation bunch energy follows the negative exponential distribution and
the probability density function of the radiation bunch energy after monochromator
follows the gamma distribution.

At sufficient. resolution of the monochromator, it seems to be technically feasible
to measure the second order spectral correlation function. The results of spectral
correlation measurements can be used for the reconstruction of the electron pulse
shape.

When resolution of the monochromator is worse than the interval of spectral coher-
ence, Aw. ~ ¢/o,, the mean value-to-dispersion ratio of the photocounts in a given
frequency range Aw,, can be measured. The square of this ratio is equal to M, the
number of coherence intervals inside the monochromator linewidth. Analysis of these

measurements allows one to estimate the electron bunch length as ¢, ~ cM/Aw,, .

For this method to be applicable the radiation wavelength must be much smaller
than the bunch length. At a bunch length of the order of 0.1 mm one can use a wide
interval of the radiation spectrum, from the infrared down to X-rays. The choice
of the optimal value of the operating frequency is influenced by such issues as tol-
erable value of the signal-to-noise ratio, required resolution of the monochromator
(Awn/w € ¢f(wo,)) and the existence of commercially available detectors and opti-
cal elements with the required parameters. The choice of the visible range possesses
the following advantages. The degeneracy parameter (number of photocounts in the
interval of spectral coherence Aw,)} can reach a value larger than unity and therefore
can ensure short measurement time. The required resolution of the monochromator
(Awy,fw € ¢f(wea,) ~ 0.1%) can be achieved without significant efforts. There is also
a highly developed technology of electrooptical devices (optical fibers, fast detectors,
electrooptical switches, etc.) operating in the visible wavelength range.

3 Statistical properties of synchretron radiation

Synchrotron radiation is a stochastic object and at a given time it is impossible to
predict the amount energy which flows to a detector. The stochastic nature of the
synchrotron radiation is determined by the shot noise of the electron beam generating
the radiation.
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3.1 Shot noise in the electron beam

Let us consider microscopic picture of the electron beam current at the entrance into
a bending magnet. The electron beam current is constituted by moving electrons
randomly arriving to the entrance of the magnet:

= Z(St—-fk

where §(...) is the delta-function, (-e) is the charge of the electron, N is the number
of electrons in a bunch and ¢, is the arrival time of the kth electron to the magnet
entrance. The electron bunch profile is described by the profile function F(t) and the
beam current averaged over an ensemble of bunches can be written in the form:

(1) = (=e)NF() (1)

The probability of the arrival of the electron at the time interval (¢,¢ + dt) is equal
to F(t)dt. For the Gaussian profile the electron bunch function F(t) has the form:

F(t) = \/Q_jrch exp (_%) . (2)

The electron beam current I(¢) and its Fourier transform I(w) are connected by

Fourier transformations:
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It follows from eq. (3) that Fourier transform of the input current, I(w), is the sum
of a large number of complex random phasors with random phases ¢, = wtg. If the
characteristic duration of a bunch or i1s long, wor > 1, then the phases ¢ can
be considered to be uniformly distributed on interval (x, —7) . Under this condition
the probability density distribution of | I(w) |? is given by the negative exponential
distribution [6):

1

1T F) = ey 0 (—<—

o
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where (...) means the averaging over an ensemble of bunches.
Let us calculate the first order correlation of complex Fourier harmonics I(w) and

f(w’):

T()w)) = (3 3 expliwte — iw'ty)) .

k=1 n=1

Expanding this relation, we can write:

N
(I{w) (") = 62(’;1 exp [i{w — wt)) + 62(}§ exp(twty — iw'ty))

N
=e? ) (expli(w — ]} + € D (exp(iwti) ) (exp(~iw't,)) . (4)
k=1 k#n

Taking into account the relation (1) and the first relation in the eq. (3) we obtain

that (exp(iwty)) is equal to the Fourier transformation of the bunch profile function
F(t):

(expliwty)) = [ F(ti)e“™dty = F(w) (5)

Fourier transform of the Gaussian profile function (2) has the form:

F(w) = exp (—“”2; 7 ) .

Substituting (5) in the expression (4) we obtain:

(I(w)I"(W) = ENF(w = w') + N(N — 1) F(w) F*(w') .

In the case when

N|Fw) <1 (6)

the expression for the first order spectral correlation takes the form:

(H{w)*(W")) = ENF(w —w') . (7)
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For the case of the electron bunch with the Gaussian profile, the explicit expression
for the first order correlation of complex Fourier harmonics /(w) and I(w') has the
form:

[T W) = N exp | -0 )

Let us discuss the applicability region of approximation (6). The physical sense of
relation (6) is that frequency w has to be large enough. Let us consider numerical
example for the case of the Gaussian profile of the electron bunch. At wor = 10 we
have [ F(w) |*= exp(—=100) ~ 4 x 107*. As a rule, the number of particles in the
bunch N is not larger than 10, so condition (6) is fulfilled in practice.

Let us calculate the second order correlation of complex Fourier harmonics I{w) and

f(w’):

(| I(w) [l I(w e'(3- 22 D 2oexpliw(ts — tm) +iw(t, — 1)) .

n=1m=1p=1 g=1

The N* terms in this summation can be placed in 15 different classes (see, e.g. ref. {6]).
When condition (6) is fulfilled, only two classes are of importance with (n = m, p = ¢,
n#p)and (n =g, m=p, n #m). Thus, we can write:

(I (@) Pl 1) 1) = (| (@) ) 1) F)+ | I @) (@) (9)

Substituting eq. (7) into eq. (9) we obtain:

(| I(w) P T(w) |*) = *N?(14 | F(w =) ). (10)
3.2  Analysis of synchrotron radiation properties in frequency domain

Let us study the spectral characteristics of the transversely coherent fraction of syn-
chrotron radiation after the monochromator. For simplicity we consider linear polar-
ization of synchrotron radiation, and use scalar representation of the radiation field.
Nevertheless, all the results are valid for any polarization. The central frequency of the
monochromator is equal to wy and the bandwidth of monochromator is small. The
linearity of Maxwell equations and the fact that a monochromator can be treated
as a linear filter allows one to write the Fourier components of electric field of the
synchrotron radiation in the following form:

E(w) = A(w)Gm(w — wo)(w) , (11)
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where Gp(w — wp) is the frequency profile of the monochromator and A(w) is the
Fourier harmonic of the radiation field emitted by single electron. Taking into account
that the linewidth of monochromator is small, we assume A(w) to be constant within
the monochromator bandwidth.

It follows from eq. (11) that statistical properties of the Fourier amplitudes F(w)
are defined by statistical properties of the Fourier amplitudes of the input current
I(w). In particular, it follows immediately from (3) that | E(w) |? is distributed in
accordance with the negative exponential probability density function:

L B
Pl B D) = Ty By P( TE@) |2>)' 12)

It should be noted that such a distribution is the feature of completely chaotic po-
larized radiation (see ref. [6] for more details).

Let us calculate the correlation of complex Fourier harmonics E(w) and E{w'):

(E(w)E"(w)) =] Alwo) [* Gm(w — wo)G™(w' = wo)(I(w)I"(w)) . (13)

Substituting eq. (7) into eq. (13) we obtain:

(E(W)E* (W) = N | A(wo) |? Gm(w — wo)Gr (W' — wo) Fw — ') . (14)

The average spectral density of the radiation energy at the detector installed after

the monochromator is given by the expression:

(I Ew) ) == N | Alwo) [1] Gl — ) [ (15)

4t

The first order spectral correlation function is defined as

(o — ) = (E(w)E"(w) ‘ 16

=)= T P B ) e
Substituting eqs. (14) and (15) into eq. (16) we obtain

gilw—w) = Flw-uw). (17)

Explicit expression for the first order spectral correlation function of the SR emitted
by the electron bunch with Gaussian bunch has the form:

nz 2

i = of) = exp |- L2 (13)
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We define the interval of spectral coherence Aw, as follows:

Aw, = ] | g1(Aw) |? d(Aw) . (19)

For the case of the Gaussian profile of the electron-beam, the interval of spectral
coherence is equal to

7 F(Aw) |* d(Aw) = VT . (20)

The second order correlation of complex Fourier harmonics E(w) and E(w') is given
by the expression:

(| E(w) ] E(w) ') =] Alwo) [*] Gm(w — wo) '] G(w' — wo)
(| I(w) [P T(w") %) -

)
Using egs. (9) and (13) we obtain:

(1 B(@) P B P) = (| B@) PN B P+ HE@EWN F . (22)
The second order spectral correlation function is defined as

wto =)= R )

Using eqs. (22), (17) and (23) we obtain that the first and the second order correlation
functions are connected by the relation:

g(w—w) =1+ |gi(w—w) [*, (24)

which is also a general property of the completely chaotic polarized radiation. Exphcit
expression for the second order spectral correlation function has the form:

gg(w—-w')=l+|l?’(w~—-w') |2 .

The next problem is a description of the fluctuations of the energy of the radiation
pulse W at the detector installed after the monochromator. From the expression for
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Pointing’s vector and Parseval’s theorem we have:

- = f | Ew) |? dw (25)

where S is the transverse area of the detector. Taking into account eq. (15) we can
write the expression for the average energy measured by the detector:

W) = 2 {1 B@) o = S052 | o) P [ | Gl o) oo (26)

0

One can obtain from this expression that the average energy is function of the fre-
quency profile of the monochromator.

The normalized dispersion of the energy distribution is calculated as follows:

o W= (w?)
W Wy
[do [ d!(| E@) [ () ) 1
Ja Bw ) Ja( Ben Py

(27)

Using definition (23) for the second order correlation function and relation (24) we

reduce this expression to the form

o0 [o,o]

((W _ (W))Q) g‘dwgdwl(l E(w) |2)<l E(w') IZ) |91(w _w!) |2
wye T ® o F o - (28)
[ do| B(w) ) [ de{] B(@) |2

Analysis of this expression shows that the energy deviation after the monochromator

depends on the frequency profile of the monochromator and on the electron bunch
formfactor F'(Aw).

Let us consider the case of the electron bunch with the Gaussian profile and the
monochromator with a rectangular line:

Aw,,
| Gr(w —wy) [*=1 at jw—w| < -——;J—,
Awp,
| Gn(w —wo) P=0 at |w—wo| > %

10
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Integration of expression (28) provides the following result:
Aw Aw 1{ Aw, \? Aw, \
2 _ c m - [o] _ _ m
oty = Awmerf (ﬁch) - (Awm) {1 exp [ s ( ch) ]} , (29)

where erf(z) is the error function-[8] and Aw, is given by expression (20).

When the monochromator linewidth is much narrower than the interval of spectral
coherence (19), the normalized dispersion tends to unity:

ofy o~ 1 at Aw, € Aw, .

When the monochromator linewidth is much larger than the interval of spectral
coherence, the dispersion is inversly proportional to the monochromator linewidth:

Aw,
JAYS I

at Aw, € Aw,, .

oy

The next practical problem is to find the probability density distribution of the radi-
ation energy after the monochromator, p(W). We have shown above that the trans-
versely coherent fraction of the synchrotron radiation possesses all the features of
completely chaotic polarized radiation. Using the considerations similar to those pre-
sented in ref. [6] (Chapter 6) we find that the distribution of the radiation energy
after the monochromator is described rather well by the gamma probability density
distribution:

=i () e (-¥) R

where ['(M) is the gamma function of argument M and

M= (31)

1
ol

This distribution provides correct values for the mean value of W and for the disper-

sion o}, :

/Wp(W)dW —<W >, pr(wmw - % .

It follows from eq. (28) that parameter M can not be less than unity. When parameter
M tends to unity, distribution (30) tends to the negative exponential distribution (12).
When M > 1, distribution (30) tends to the Gaussian distribution.

11
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4 Photoelectric detection of synchrotron radiation

In this section we study the problem of photocount fluctuations in the detector of
the SR. We assume that the radiation reaching the photodetector has full transverse
coherence and that statistical properties of the radiation follow the laws described in
the previous section. It has been shown above that the energy, W, in the radiation
pulse is unpredictable. Thus, we can predict the probability density p(W) only. In
this case the probability of detection of K photons is given by Mandel’s semiclassical
formula [6]:

P(K) = / (“}? exp(—aW)P(W)dW | (32)

where o = 1/hw and 7 is the quantum efliciency of the photodetector. Using formula
(32) we get the expression for the mean and for the variance of the value of K (see,
e.g. ref. [6]):

(K?) — (K)? 1

(K)=a(W), of= L =(K>+G%V, (33)

where ofy; = 1/M is given by expression (28). The expression for photocounts fluctu-
ations contains two terms. The first term corresponds to the “photon shot noise” and
its origin is in the Poisson distribution. The second term corresponds to the classical
fluctuations of the energy in the radiation bunch and takes its origin from the shot
noise in the electron bunch. The ratio of the classical variance to the “photon shot
noise” variance is named as the photocount degeneracy parameter 4, [6]:

(&)

5:: = —M_ . (34)

Let us consider a specific scheme with the monochromator installed in front of the
photodetector. When monochromator linewidth is large, Aw,, > Aw,, parameter M
is equal to the number of coherence intervals inside the monochromator linewidth
and parameter §, can be interpreted as average number of photons detected within
the coherence interval Aw,:

Aw,
[

.
Aw,,

(K) at  Awpy 2 Aw, .

In the opposite case, at Aw, € Aw,, the value of the parameter M is close to the
unity and parameter . is equal to the average number of detected photons:

&, ~ (K) at  Awp, € Aw, .

12
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The probability density of the SR energy after the monochromator, p(1¥), is the
gamma distribution. Substituting (30) into Mandel’s formula (32) and performing
integration we come to the negative binomial distribution [6]:

(K + M) M\ BN :
P(K) = 5g T DI0T (1+ (I{)) (1+ M) . (35)

When monochromator has narrow linewidth, Aw,, € Aw,, parameter M tends to
the unity, and the negative binomial distribution transforms to Bose distribution:

()"

TR )

iy U =

The negative binomial distribution tends to the gamma distribution at large values
of the count degeneracy parameter d,. In particular, the Bose distribution tends to
the negative exponential distribution (4, ~ {(K) in this case):

: GOSN RO Y 8
A T3 ()FF () p( (K)) |

In the opposite case, at §, — 0, the negative binomial distribution (35) transforms
to the Poisson distribution:

Jim P(k) = B exp(())

5 The degeneracy parameter for synchrotron radiation

The quality of the radiation source is described usually by the spectral brightness
defined as the density of photons in the six-dimensional phase space volume (see, e.g.

ref. [7]):
1 dN,» 1 (. dNp,
= = A
B An20, 0,000, ()\ dA ) €€, ( dA )

where €, , is the horizontal and the vertical photon beam emitfance respectively.
When the electron beam emittance is much larger than the diffraction limited photon
beam emittance

> A
€r,z P
' 2

13
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the photon beam emittance is approximately equal to the electron beam emittance.

Synchrotron radiation which emerges from a bending magnet has an uniform angular
distribution in the deflection plane and we must therefore replace the divergence o,
by the total angle Ay accepted by the photon beam line

1 d2Nph '
5= o000, (A d)\d;b) ' (37)

The expression in brackets (...) and photon flux ANph into a spectral interval AA/)
and into a horizontal angle Ay are related by

: d?Non\ A
AN, = (/\dAd@b) Ay

In practical units, the photon flux per one mrad into unit spectral bandwidth is

(/\Z/\];Z’;) [phot. /sec. fmrad.] = 2.46 x 10%I(A)E(GeV)y(A/As) . (38)

Here £ is the energy of the particles, I is the beam current , n{A/X.) is the universal
spectral function, A, = 47 R/(3~°) is critical wavelength, R is the radius of bend. For
the large arguments A/A, 3> 1 we may apply an asymptotic approximation for the
spectral function n{A/A;) and get

RE
CVSBEL RIS

We close this discussion about SR spectral brightness with some comments on the
condition that were used to obtain result (37). Photons of SR are emitted into a
narrow angle

c \1/3
Af, ~ (m) <1.

Hence the maximum linear dimension of a coherence area of the SR source is given
approximately by:}

2 1/3
Az, ~ Az, ~ (ﬂ) > M.

w2

11t should be noticed that this fact should be taken into account when selecting coherent
fraction of synchrotron radiation (see section 2 and Fig. 1).

14
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Thus the SR source is partially coherent when

A R\'®
£, = QTTJZO'zr >> 5 5 O'w’z >> (C;’_?) . (39)

Under this condition in eq. (37) values o, ., 0, characterize the electron bunch.

It should be noted that in the opposite case, when
2R 1/3 1/3
Tm < (w—) ey

in eq. (37) we must replace the o, , , 0, by the (CQR/wz)l’{a, (c/(wR))lfg respectively.

For the further consideration we use the notion of the wave degeneracy parameter
dw which is equal to the average number of transversely coherent photons radiated
by the electron bunch inside the spectral interval of coherence Aw, . Physically this
parameter describes the average number of photons which can interfere, or, according
to the quantum theory, the number of photons in one quantum state (one “mode”).

Taking into account that the “emittance” of the diffractionally limited photon beam
is equal to (see, e.g. ref. [7]):

min(em,z) = min(QTrax,zox’z‘) = )

22| >

we calculate average number of spatially coherent photons radiated within one pulse
into the spectral interval of A/ A:

1 ATAX T ENABY  NAN T
(AN"*‘)°°““4wzazaz,amIT dt (’\ dAdy IT] - (40)

- 00

where B(t) is the instantaneous spectral brightness of the synchrotron radiation. The
value of AX/A is connected with the interval of the spectral coherence by the relation:

AN Aw,

A wy

= wio [ 1 ai(aw) P d(aw) .

Using eqs. (19), {17) and Parseval’s theorem we obtain:

Aw, 1 7 2 AT
— _“’_0_[0 | F(Aw) | d(Aw)mZ_Zo F2(t)dt .

15
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Using the fact that the instantaneous spectral brightness B(t) and the instantaneous
value of the beam current (I(t)) are related by

B(t) = const{/(t)) ,

we can equivalently write {see eq. (1))

B(t) = const'F'(t) .

It is convenient to refer to the peak value of spectral brightness

max B(t) = const’' max F(t) = Bpeak -

By convention, we represent the time integral of the instantaneous spectral brightness
in the form

oC

[ B(#)dt = Bpeus/ max F(2)

—00

Here the normalization condition

[ve]

[ F(t)dt = 1

-0

is used. Note that the dependence of the factor

1 7o,

on the exact shape of the bunch is rather weak. The results are A = 1 for the
rectangular pulse-shape and A = 272 for the Gaussian pulse-shape. Thus A >~ 1
is a reasonable approximation. Finally, the degeneracy parameter can be estimated
simply as:

_ Bpeak/\3
by = Do (41)

The formula for calculation of the photocount degeneracy parameter &. is given by:

Aw,,
MAw,

8. =nRn Sw (42)

16
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where R, is the integral reflection coefficient of the monochromator mirrors and
the dispersive element. When the monochromator linewidth is large, Aw,, > Auw,,
parameter 4, is given by:

8, = nRnbw .

In opposite case, at Aw,, € Aw,, the value of the parameter M is close to the unity
and the parameter 4, is equal to:
Aw,,

Let us present specific numerical example for the case of the storage ring DORIS
(€ =5GeV, [peak =100 A, R =12 m, 0, = 2 mm, 0,06, = 0.1 mm mrad). The peak
spectral brightness at the wavelength of A = 50 A is equal to:

B =~ 10"*phot./(sec x mrad® x mm? x 0.1 % bandw.)

Substituting this number into eq. (41} we obtain that the wave degeneracy parameter
is very small, about of §y ~ 107°.

At the wavelength of A ~ 5000 A the spectral brightness reduces down to the value
of:

B ~ 2 x 10**phot./(sec x mrad® x mm?® x 0.1 % bandw.) ,

but the value of A* increases by six orders of magnitude with respect to the wavelength
of 50 A . As the result, in the visible wavelength range the degeneracy parameter is
about of dw ~ 2.

Therefore, this numerical example shows that quantum fluctuations in the photode-
tector can be suppressed significantly by an appropriate choice of the operating wave-
length.

6 The expected value of the count-fluctuation product and its relation-
ship to electron bunch formfactor

In section 2 we described the layout of the device for measurement of the beam
longitudinal profile. The detector of the synchrotron radiation is placed after the
monochromator and is composed of a large number of discrete elements arranged in

17
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a closely packed linear array. Each element of the detector is connected with separate
electronic counter. Let us consider two elements of the detector detecting the radiation
in two different frequency intervals (wy,w; + Aw;) and (wq,ws + Aws). The difference
of frequencies (w3 — w2) is determined by the distance between the elements. The
resolution of the monochromator is assumed to be better than Aw,s. During one
radiation pulse, each of two elements of the detector registers K; and K5 number
of photocounts, respectively. After each shot, an electronic scheme multiplies these
numbers and passes this product to an averaging accumulator, where it is added to
the previously stored sum of count products. Finally, the total sum is divided by the
number of shots. This result, averaged (shot to shot) count product {K;K3), contains
information about the electron bunch formfactor.

In this section we perform a statistical analysis of the correlation between the counts
of two elements of the detector. Let us calculate the expected average value of (K I):

(I(II{2> = Z Z Kl.[{gP(I{I,I'{z) f (44)
K1=0K,=0

where P(K1, K7) is the joint probability distribution of K; and K, . It follows from
the basic properties of the conditional probabilities that

P(K,,Ky) = /dWldeQP(Kl,Kg | Wy, Wo) P(W4, W), (45)
0 0

where P(W;, W;) represents the joint probability distribution of energies W, and Wa.
Since K| and K are independent when conditioned by the Wy and W5, respectively,
we can write [6]:

P(I’{l,I{Q | Wl, Wg) = P(I(l | Wl)P(Il"z | Wg) =
(Wi (aW,)Xz

K SP(ma)

exp(—aWs) . (46)

Using eqs. (44), (45) and (46) one can show that the average value of the count
product (K K3) can be expressed in terms of the average of the classical energy
product at the two detector elements:

(Kl_K’z) = (!2<W1W2> . (47)

Assuming the size of the detector element to be sufficiently small, Aw; ;» € Aw,, the
classical energies W; and W, can be written in the form:

Wl = 01 | E(wl) |2 Awl ) Wg = Cg | E(w;z) |2 AWQ . (48)
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This allows one to express the average of the energy product (W, W;) in the terms of
the second order spectral correlation function:

(W) _ (] Blw) |
W)Wy~ ] Elwn)

(49)

Remembering that the SR source is a completely chaotic polarized radiation source,
we can simplify expression (49) in the following way. Using eqs. (17) and (24) we
obtain that the output signal of the counting interferometer is equal to the square of
the modulus of the electron bunch formfactor:

(K — (K1) (s — (K3)))

(I(l)(.[\'rz) =| F(wl —wg) | ' (50)

One can see that the proposed device provides the possibility to measure the modulus
of the Fourier transform of the electron bunch profile, while information about its
phase is missing. To provide reconstruction of the beam profile from these data a
special technique should be used similar to that developed by Hanbury-Brown and
Twiss to determine a diameter of stars using the intensity interferometer [6].

7 The signal-to-noise ratio associated with the output of the counting
interferometer

The next problem is to define the sensitivity of the proposed method for measurement

of the electron bunch profile. The signal-to noise ratio for the proposed device can be

written in the form:?

S VN (AKIAKS) (51)
N JUAKAKR)?) — (AKGAK,)?
where AK 9 = (Ky3 — (Ki2)), Vs is the number of independent measurements

averaged in the accumulator (total number of the electron bunches).

Let us consider the case when the degeneracy parameter is much larger than unity,
d. 3> 1. The fluctuations of the photocounts are defined mainly by the classical noise

? Complete analysis of the finite averaging should include the uncertainties associated with
all of three average quantities: (K}, (K,) and (AK,;AK,). For the purpose of simplicity
we neglect the uncertainties of (K;) and (K) (see, e.g. ref. [6]).
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in this case and eq. (51) can be reduced to

e VN (AW AW,)
N~ (AW AW ) — (AW AW

(52)

Remembering that the spectral density of the radiation energy is distributed in ac-
cordance with the negative exponential distribution (12) and using eq. (48) one can
derive that

% = 12(14 | Flwr —w2) [1)
(W2W,)

W:2(1+2|F(wl—wz) BE

(Wis) _ .
(Wh,2)* ’

(WiWs) — (W) (W)

UACANE G

Combining the above expressions, we find that the signal-to-noise ratio is given by
the expression:

5. VN, | Fw —ws) [
N \/11|F(w1—w2)|4—12|F(w1—w2)|2+9}

(53)

at 6. > 1.

Let us perform analysis of the signal-to-noise ratio taking into account the quantum
effects. In general case the joint probability P(K;, K3) is given by egs. (45) and (46).
When calculating the signal component (numerator of eq. (51)), we can take into
account classically induced fluctuations of the counts only. This can be done due to
the fact that the quantum fluctuations of the counts at the outputs of two detectors
are statistically independent. General calculations of the noise fluctuations associated
with the output of counting interferometer (denominator of eq. (51)) should include
both the classical and the quantum effects. Taking into account these considerations
and using eq. (45) and (46), we can derive the following relations:

(KEED) _ {(a*W2 + aWi)(a?W} + al¥h))

(K)2{Kq)? {aW))2H{aW,)? ’
(K]?I{Q) — ((Q2W12 + cle)aWQ)
(K1)*(K2) (aWp)2(aWy)
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(K2)  ((02W2, + aWi,))
B~ laWia® (54)

We illustrate the technique for calculations of the above expressions for the value of
(KiK3):

(KED =3 S KIKIP(K, Ky) =

K1=0 Ky=0

/dWlfd P(Wy, W,) x
1] 0

(aW.
Z Kza 2) exp(—aW,;)| =

Ha=0

o0
/ dw, / AWo P(Wy, Wa) (a2 W2 + aW1)(a? W2 + aW,y) =
0

((a2Wf + aW)(2W5 + aWs)) . (55)

The expression for the signal-to-noise ratio can be calculated using eq. (54). This
calculation is a lengthy one and we will consider only special case when the degeneracy
parameter is much less than 1. Using approximation §, < 1 we obtain (d.)12 =
(K, 3). Under such a condition it follows from eq. (54) that the variance ((AK1AK3)?)
18 equal to:

(AKIAK)?Y) ~ (KiKs) .

Thus, the signal-to-noise ratio is equal to:

S VN | Flon —wp) |°
V1| Plwr —wy) 2

at &, < 1. (56)

Analysis of obtained asymptotics (53) and (56) for the signal-to-noise ratio allows
one to make the following conclusions:

{1) The signal-to-noise ratio depends on the degeneracy parameter only when 4, is
much less than 1. In this case the number of independent measurements at given
signal-to-noise ratio is proportional to 1/4Z.

(i) The signal-to-noise ratio is proportional to | F(Aw) |*. To hold the signal-to-
noise ratio constant, the number of independent measurements must be propor-
tional to 1/ | F(Aw) |*.

21



TESLA FEL 1997-03

8 Numerical example

The operation of the new method for the electron pulse-shape measurement is il-
lustrated for the TESLA Test Facility which is under construction at DESY [5]. It
is supposed to use synchrotron radiation from the last bending magnet of the third
bunch compressor (see Table 1). The value of the peak spectral brightness is equal
to 1017Phot. /(sec. x mrad? x mm? x 0.1%bandw.) and the degeneracy parameter is
about of §w ~ 10* at the chosen operating wavelength of A = 5000 A.

We assume the use of a commercially available monochromator with the resolution of
Awp, /w 2~ 3x 1071, The electron bunch length is equal to 0.05 mm which corresponds
to the relative value of the interval of spectral coherence of Aw,/w ~ 3 x 1073,
Comparing Aw,, with Aw, one can conclude that ten pixels of the photodetector is
sufficient to cover the interval of the spectral coherence. The photocount degeneracy
parameter &, (see eq. (43)) will be of the order of 10* at the quantum efficiency of
the detector of n =~ 0.3 and the value of the integral reflection coefficient of the
monochromator mirrors and dispersive elements of R, ~ 0.3.

Table 1
Parameters of SR source

Electron beam

Energy, & 500 MeV
Peak current, [, 2.5 kA

rms bunch length, o, 50 pm
Normalized rms emittance , ¢, 27 mm mrad

Number of bunches per train 7200
Repetition rate 10 Hz

Bending magnet

Length of magnet, L., 0.5 m
Magnetic field, H 13T
A-function, 11 m
Radiation
Wavelength, Aq 5000 A
Spectral coherence Aw,/wq 0.3 %
Spectral brightness 10'"Phot./(sec. x mrad? x mm? x 0.1%bandw.)

Wave degeneracy parameter, éy 107
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The design value of the emittance of the electron bunch in the TTF accelerator is
small, so the visible fraction of the SR from the magnet is always transversely coherent
and there is no need in the installation of additional diaphragm (see Fig.1). If the
monochromator is placed at the distance of L = 2 m from the radiation source, the
aperture of the monochromator in the vertical direction should be not smaller than
AL ~ 1 cm. If vertical aperture is less than this value, the flux of coherent photons
is decreased. The aperture of the monochromator in the horizontal plane can not be
larger than Af.L due to uniform distribution of the radiation in the horizontal plane.

Let us now estimate the number of shots required for achieving a given accuracy of the
formfactor measurement. Suppose we wish to achieve a signal-to-noise ratio of 100.
The number of independent measurements required to achieve this accuracy depends
on the value of the formfactor at given frequency. Using eq. (53) we find that the
number of shots should be about 10° at the value of the formfactor about of unity. If
the linear array detector covers, for instance, the frequency range of 10Aw,, one can
perform ten independent measurements per one shot (per one radiation pulse). As a
result one can decrease the number of shots which is required for a given accuracy by a
factor of ten. In this case, one macropulse of the TTF accelerator should be sufficient
to obtain given accuracy. This requires 10 MHz data acquisition system. One can use
photomultipliers or pin-photodiodes as photodetectors. In this case the light from
the monochromator exit can be distributed to photomultipliers (or photodiodes) by
means of optical fibers.
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