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Introduction

This report summarizes the surface roughness wake �eld study for the TESLA

FEL transfer line and the undulator. At present di�erent models have been

developed by K.Bane [1], G.Stupakov [2], A.Novokhatski, M.Timm,T.Weiland [3]

to study the e�ect of a random surface roughness in a beam pipe, and by K.Bane,

A.Novokhatski [4], G.Stupakov [5], M.Dohlus [6] to calculate the wake in beam

pipes with periodic surface structure. The e�ects of surface structures with small

and large transverse dimensions are estimated separately by two periodic models.

The rms amplitudes and wavelenghts of the corrugations are computed from a real

measured surface function [7] after low- and high-pass �ltering respectively. The

longitudinal wake potentials of rectangular and sinusoidal periodical surfaces and

the longitudinal resistive wall wake are calculated numerically and analytically

respectively.

1 Short summary of di�erent models.

1.1 Bane's model [1]

The roughness is represented by bumps or hollows of simple form (hemisphere,

cube, prism etc.), which are located randomly on the internal surface of the pipe.

For a pipe radius b, large compared to the radius of a hemisphere r (b >> r) ;

the contribution to the impedance from a single hemisphere in the low-frequency

range is given by [8]:

Z1 (!) = �i!
Z0r

3

4�cb2
(1)

where ! is the frequency, Z0 = 377
 and c is the speed of light. For a small single

roughness of varying form , the above expression needs to be multiplied by a form

factor f , the numerical value of which, for some simple objects, varies between

f=0.6 (rotated half cube) and f=10.8 (cube) [1, 9]. The contribution from a set

of bumps (contribution from hollows is considerably smaller and is neglected) is

given by the sum of the individual bump contributions to the impedance. The

complete impedance per unit length is then

Z (!)

L
= �i�fk

Z0r

4�b
(2)

1



Here � is a packing factor equal to the relative area on the surface occupied by the

bumps and L is the length of the pipe. The longitudinal potential of a Gaussian

bunch with rms longitudinal size �z can be written as:

Wz (s) = �
Z0�frc

4�2b

1Z
0

ke�k
2
�
2
z=2 sin (ks) dk = �

Z0�frc

21:5�1:5�3
z
b
se�s

2
=2�2z (3)

Here g�cg (k) = e�k
2
�
2
z=2 is the Fourier image of the longitudinal charge distri-

bution of a Gaussian bunch.

The loss-factor in this a model is equal to zero. The rms value of the longitu-

dinal potential is given by

�� =
Z0�fc

33=423=2�3=2

r

b�2
z

(4)

Note, that the above formula di�ers from that given in [9]: the factor 3 in the

denominator is raised to the power of 0.75 instead of 0.25 in [9].

The extremes of the function (3) are equal with opposite sign at s = ��z.
The peak-to-peak energy spread is then expressed as:

�Wp =
Z0�fcp
2e�3=2

r

b�2
z

(5)

The model considered is valid for a uniform distribution of identical bumps,

when their characteristic cross section (radius at the base) is equal to their height.

1.2 The Stupakov model [2]

The model [2, 9] is based on the statistical description of roughness. The basic

assumption of the model is that the angle between the normal to the rough surface

and the radial direction is small in comparison to unity. It is also assumed that

the height of the roughness and the average size of the cross section are small

with respect to radius of the pipe.

The impedance of a statistically non-uniform rough cylindrical surface is de-

termined by a two dimensional Fourier transformation of the surface correlation

function R
�
~kx; ~kz

�
and in the general case is given by

Z (!) = �
ikZ0L

2�b
Ŝ; Ŝ =

Z
d~kxd~kzR

�
~kx; ~kz

� ~k2
zq

~k2
x
+ ~k2

z

: (6)

Depending on the representation of the correlation function (i.e. the type of

roughness) various expressions for the impedance are obtained.

In particular, for a rough surface with a Gaussian spectrum
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R
�ek� = l2

c
d2

2�
e�
ek2l2c=2; ~k =

q
~k2
x
+ ~k2

z
(7)

the impedance is given by

Z (!)

L
= �

p
�

4
p
2

ikZ0d
2

lcb
(8)

where d is the rms height of roughness, lc the correlation length that is given by

the characteristic size of the base of a roughness. The longitudinal wake potential

is then expressed as

Wz (s) = �
c

16

Z0d
2

lcb�3
z

se�s
2
=2�2

z (9)

with the rms �� and peak-to-peak �Wp energy spread given by

�� =
cZ0d

2

33=416lc

r

b�2
z

; �Wp =
c

8
p
e

Z0d
2

lcb�2
z

(10)

In the case of a fractal surface ( R
�ek� = Ae�q for ek > ek0 and R

�ek� = 0 forek < ek0), the normalized impedance is expressed in terms of the parameter q and

the characteristic wave number ek0 as
Z (!)

L
= �

ikZ0

4�b

q � 2

q � 3
d2ek0 (11)

where ek0 � �=lc Thus smaller values of q give more "spiky" pro�les [2, 9].

The longitudinal potential of a Gaussian bunch is then written as

Wz (s) = �
c

4
p
2�

Z0d
2

lcb�3
z

q � 2

q � 3
se�s

2
=2�2z (12)

with rms �� and peak-to-peak �Wp energy spread given by

�� =
c

33=44
p
2�

Z0d
2

lcb�2
z

q � 2

q � 3
; �Wp =

c

2
p
2�e

Z0d
2

lcb�2
z

q � 2

q � 3
(13)

As has been shown in [9], the coincidence of the Bane and Stupakov models

takes place when the rough surface consists of identical bumps randomly scattered

over the surface. The corresponding relation between the parameters of the two

models follows from the comparison of formulas (3) and (9) for Gaussian spectrum

roughness, and formulas (3),(12) for fractal roughness. In particular

�fr = �
d2

lc
(14)

for the Gaussian spectrum roughness and

�fr =
�

2

d2

lc

q � 2

q � 3
(15)

for fractal roughness.
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1.3 The NTW model [3]

It is shown in [3, 4], that the presence of roughness is equivalent to a pipe with

a thin dielectric layer or periodic corrugations on the smooth wall of a pipe. In

both these cases the resonator impedance model applies. The monopole resonant

longitudinal and dipole transverse wake functions wz (s) and wr (s) for a single

particle are presented as follows:

wz (s) = 2�0 cos ks; wr (s) = 4�0 sin ks; (16)

with �0 = Z0c=2�b
2 and s > 0: The resonance wave number k for the dielectric

layer and for the periodic rectangular corrugations is equal to

k =

s
2"

("� 1) bÆ0
k =

s
2p

bÆg
(17)

respectively (similar results were also presented by Stupakov [10] and Bane, Stu-

pakov [11] for a round pipe with small periodical sinusoidal and rectangular cor-

rugations). In the �rst case " � 2 is the dielectric constant and Æ0 is the typical

depth of the corrugations. In the second case Æ is the depth, g is the gap and

p is the period of the corrugations. For the Gaussian bunch distribution the

longitudinal wake potential is presented as follows:

Wz(s) = �
�0

2
e�s2=2�2

z

(
�

 
�is� k�2

zp
2�z

!
+ �

 
�is+ k�2

zp
2�z

!)
(18)

where � (z) = e�z
2

erfc (�iz) is a complex error function. In the case of k�z >> 1

one obtains from (18):

Wz(s) = �

s
2

�

�0�z

s2 + k2�4
z

se�s
2
=2�2z (19)

and for s << k�2
z
, the comparison with the Bane model (Eq.3) gives

�fr =
g

p
Æ : (20)

1.4 Surface Impedance of a Corrugated Pipe

The e�ect of a random surface roughness is modelled by a pipe with the surface

function

r(z) = b� Ær cos zk1 (21)

with �cg = 2�=k1 the period of the corrugation, and Ær its amplitude. In [5]

the impedance is derived for a shallow corrugation ak1 � 1 and for frequencies

! < k1c0=2 as

Z(!) = �
1

2�b

Zs(!)

1 + ik0
b

2

Zs(!)

Z0

(22)
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with the surface impedance

Zs(!) = ik0Z0

 
Ær�

�cg

!2  
j

k+
+

j

k�

!
(23)

and k� =
q
k20 � (k0 � k1)2. This approach can be used to calculate the wake

potential of gaussian bunches with rms length � and rms frequency !� = c0=�

if the condition ! < k1c0=2 is ful�lled for ! < 3!� or �cg < ��=3 ' �. In [6]

the model is generalized for the high frequency regime, so that it can be used

to calculate the wake potential of long surface periods. Therefore the surface

impedance Zs in Eq. (22) has to be calculated by

Zs(!) = ik0Z0

 
Ær�

�cg

!2  
J1(k+b)

J0(k+b)k+
+

J1(k�b)

J0(k�b)k�

!
: (24)

To calculate the wake potential the impedance function is replaced by a pole

expansion:

Z(!) = �
X
�

i!2kloss;�

!2
�
� !2

(25)

with !� the poles of Eq. (22) and k�1loss;� = d

d!

1
ImfZ(!)g

���
!=!�

the inverse pole

strengths. The longitudinal wake potential is given by the convolution integral

Wz(s) =

Z
1

0
w(x)

g((s� x)=�)

�
dx (26)

with w(s) = �2
P

� kloss;� cos(s!�=c0) and g(s) the gaussian normal distribution.

It has to be mentioned that only pole coeÆcients !� , kloss;� have to be taken into

account for which the beam spectrum is not negligible.

The normalized longitudinal wake for b = 5mm, � = 25�m can be seen in

Figs. 1 and 2 for �cg = 10; 50; 100 and 200�m and Ær=�cg = 0:01 and 0:005.

The shape of the wakes varies with the wavelength of the surface corrugation,

but it scales in the investigated parameter range essentially with Ær2=�cg. For

�cg < � only the �rst pole of Eq. (25) is signi�cantly stimulated by the bunch

spectrum. For this case the model described by Stupakov [5] is appropriate. For

larger values of �cg further resonances !� are stimulated, which are closely related

to the cuto� frequencies of TM0n waveguide modes by k�(!�) = !c;TM0�=c0 +

O(b�1). Therefore the lowest loss parameter kloss;1 describes the stimulation of

the synchronous mode which is taken into account by the NTW model and the

higher loss parameters kloss;�>1 describe the excitation of waveguide modes. As

the sum of all loss parameters is knorm = Z0c0=2�b
2 the wake is dominated by

the higher resonances if �cg > 3� and kloss;1=knorm � 1.
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2 Surface Roughness Wake�eld E�ects in the

TESLA-FEL

Fig. 3 shows the surface function Ær of one of the �rst probes measured at

DESY [7]. Although Ær is small compared to the bunch length it has transverse

structures which are small compared to the bunch length as well as contributions

with larger dimension. The models [1, 2, 3] are based on the assumption that

all dimensions of the surface structure are small. Therefore we use the model

of a periodical surface to estimate the wake �eld e�ects. To take into account

the contribution of long and short surface wavelengths we split Ær into a slowly

varying part Ær1 and a fast varying part Ær2 = Ær� Ær1 as shown in Figs. 3 and 4.

The slowly varying part Ær1 is obtained by a convolution with a gaussian sampling

function of the rms width 15�m. (This is equivalent to a low pass �ltering with

a gaussian �lter function.) The e�ects of both parts are estimated separately by

the wakes of periodic surfaces Ærp1, Ærp2 with the same rms roughnesses Æ1, Æ2

and similar transverse dimensions to the original functions. The properties of the

original [7] and the periodic surface functions are listed in the following table.

function rms amplitude wavelength comment

Ær1 0.5�m slow random variation

Ær1pr 0.5�m 100�m rectangular periodical

Ær1ps sinusoidal periodical

Ær2 0.1�m fast random variation

Ær2p 0.1�m 10�m sinusoidol periodical

The longitudinal wake potential of the slowly varying part is calculated by

two methods: for a direct numerical integration by MAFIA [12] a rectangular

periodical surface function Ær1pr is used; the calculation based on Eq. (22) with

Eq. (24) assumes a sinusoidal shape yÆr1ps. As the MAFIA model still includes

some fast variations, the fast varying part Ær2p is calculated only for a sinusoidal

surface (cf. Fig. 5).

The longitudinal wake potentials of the surfaces with Ær1pr, Ærp2 and of a

smooth surface with the conductivity of aluminum (� = 3:65 � 107
�1m�1) and

their sum are plotted in Fig. 6 for the undulator pipe (radius b = 5mm). In

Fig. 7 the wakes can be seen for the sinusoidal surface function Ærp1s. The peak,

average and rms values of these wakes are summarized for the undulator pipe

(radius b = 5mm) and the pipes of the transfer line (radius b = 12mm, radius

b = 12cm) in the following tables.
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b=5mm min(w) max(w) < w > rms(w)

V/pCm V/pCm V/pCm V/pCm

wÆr1p
rect (cos) -60.3 (-21.3) 54.9 (20.8) -9.6 (-8.8) 41.1 (12.4)

wÆr2p
-8.8 8.8 0 6.4

wresistive -82.3 45.0 -40.4 39.6P
w -143.1 (-108.8) 99.0 (68.8) -50.0 (-49.2) 82.3 (56.2)

b=12mm min(wz) max(wz) < wz > rms(wz)

V/pCm V/pCm V/pCm V/pCm

wÆr1p
rect (cos) -26 (-9.2) 24 (9.0) -4 (4.1) 18 (5.2)

wÆr2p
-4.2 4.3 0 3.1

wresistive -35.2 23.7 -20.0 15.3P
w -57.6 (-45.1) 39.9 (33.6) -24.1 (-24.1) 31.1 (21.4)

b=12cm min(wz) max(wz) < wz > rms(wz)

V/pCm V/pCm V/pCm V/pCm

wÆr1p
rect (cos) -2.65 (-1.48) 2.38 (2.08) -0.41 (-0.96) 1.80 (0.47)

wÆr2p
-1.09 1.1 -0.23 0.36

wresistive -1.55 -0.97 0.48P
w -3.56 (-3.29) 1.33 (1.35) -1.61 (-2.17) 1.67 (1.02)

3 Conclusion

At present no models are available to describe the wake �eld e�ects of a 3d ran-

dom surface with transverse surface structures small and large compared to the

bunch dimension. To obtain a worst case estimation we use the model of a cor-

rugated pipe. The e�ects of surface structures with small and large transverse

dimensions are estimated separately by two corrugation models. The rms am-

plitudes of the corrugations are computed from a real measured surface function

after low- and high-pass �ltering respectively. The wavelengths of the periodic

functions slightly overestimate the variation of the �ltered function which leads

to a more pessimistic estimation of the wake �eld e�ects. The same is true for

the rectangular periodic model compared to a sinusoidal corrugation.

Our worst case estimation of the rms value of the complete wake in the un-

dulator pipe und the small transfer line (b = 12mm) is about twice as large as

the rms value of resistive wall wake alone. For the wide transfer line (b = 12cm)

this factor is 3.5 because the rms value of the resistive wall is over-proportionally

reduced.

Our estimations do not take into account the nonlinear interaction between

the di�erent contributions which may or may not be synergic. On the other

hand they include a large safety margin: the rectangular periodic model includes

more and sharper surface perturbations than the measured. Much further work

7



needs to be done to understand all e�ects so that less pessimistic estimations are

justi�ed.
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Figure 1: Normalized longitudinal wake for b =5mm, � = 50�m, Ær=�cg = 0:01

and �cg =10, 50, 100, 200�m. The wake is normalized to knormÆr
2=b�cg with

knorm = Z0c0=2�b
2.

Ær=�cg = 0:005
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Figure 2: Same parameters as in Fig. 1 with exception of Ær=�cg = 0:005
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Figure 3: Measured surface function Ær and the slowly varying contribution Ær1.

Figure 4: The slowly and fast varying contributions Ær1 and Ær2.

Figure 5: Periodic approximations Ær1ps, Ær1pr and Ær2p of the slowly and fast

varying contributions of the surface function. Ær1ps and Ær2p are sinusoidal func-

tions, Ær1pr is a rectangular function.
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Figure 6: Longitudinal wake potentials for the undulator pipe (b=5mm). The

wakes labled dr1, dr2(rect) and resistive are caused by the rectangular periodic

surface function Ær1pr, the sinusoidal surface function Ær2p and the surface resis-

tivity respectively. The sum of all contributions is labeled sum.
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Figure 7: Same case as in Fig. 6 but for the sinusoidal surface function Ær1ps.
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