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Abstract

Two methods for the calculation of fields of three dimensional charge
distributions on general trgectories are described. Although the source functions are
three dimensional, the numerical field calculation is reduced to one-dimensional
integrals that have to be evaluated numerically. The first method determines the
longitudinal electric field of charge densities that can be factorized into arbitrary
longitudinal and transverse distributions. The field is split into a ‘linear-motion-part’
that is independent of the shape of the general trgjectory and a second part, that is
under certain conditions, independent on the transverse density function. A special
case of this method is the * small-angle-approach’ described in [1]. The second method
allows the complete field calculation (electromagnetic fields and potentials) of
spherical Gaussian distributions without further restrictions. A generalization for
general Gaussian distributions is proposed. A couple of examples demonstrate the

applicability of these approaches.

1. Introduction

Very short bunches with high peak currents are required in X-ray Free Electron
Lasers (SASE-FELS). In most designs, short bunches are produced by longitudinal
compression in magnetic chicanes, where particles with different energies have
different path lengths so that a bunch with an energy distribution correlated with
longitudinal particle position can shrink in length. However, care has to be taken so

that the low emittance beams are not blown up by the electromagnetic self-fields
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caused by the bunch. Two types of approaches are presently used to calculate the

dynamics of such bunches selfconsistently.

The one-dimensional approach of Borland [2] uses a simplified model for the
calculation of longitudinal forces. It neglects transverse beam dimensions and
calculates the longitudinal self-field of a one-dimensional beam that is obtained by a
projection of the ‘real’ three-dimensional beam to a reference trgjectory. As the field
of aone-dimensional beam is infinite on its trgectory a ‘renormalized Coulomb’ term
isused [1]. (This is equivalent to neglecting the ‘linear motion’ term that is discussed
later.) For the field calculation at a certain instant, it is assumed that the longitudinal
distribution is ridged and has not changed at retarded times. Transverse self-forces are
neglected completely. The field calculation method discussed in section 2 is suited for
this approach. The starting point is the description of a three-dimensional source
distribution and its predefined motion with respect to a general three-dimensional
path. Formally the scalar and vector potential as well as the electromagnetic fields can
be expressed as three-dimensional integrals of retarded sources. To find a one-

dimensional integral expression for the longitudina electric field on the reference
trajectory we split it artificially into two contributions E and E,, with E, the
longitudinal field of the same distribution in linear motion. This splitting extracts

almost al contributions to E from retarded sources close to the observer. E is

represented as the sum of three terms E,, E, and E, that can be approximated by

one-dimensional integrals if the near effects are negligible. A further simplification is
possible for observation positions that are enclosed by trajectories with constant or
nearly constant curvature. For such points the ‘small angle approximation’ [1] and its
generalization for arbitrary three-dimensional trajectories are derived. The
disadvantage of the ‘small angle approximation’ and its generalization is that an
implicit equation for the retarded time has to be solved for all points of the integration
interval. This is avoided by an alternative formulation that uses a substitution for the

integration variable.

For sdf-consistent tracking with the sub-bunch approach [3, 4] the particle
distribution is described by a set of sub-bunches. These sub-bunches have a well-
defined shape (e.g. Gaussian, time-independent) and each of the sub-bunches has an

individual trajectory that is known for the past. This defines the source distribution
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p(r,t) so that potentials and electromagnetic fields can be calculated by an

integration of the retarded sources. The field calculation in [5] is directly based on the
Liénard Wiechert equations. A disadvantage of the sub-bunch approach is the large
numerical effort. For N observer particlesand M field generating bunches N x M
three-dimensional integrations have to be performed for every time step. The effort
can be reduced considerably by more efficient field calculations for sub-bunches [6],
by the simultaneous integration of all sources and by an improved and more flexible
generation of the set of sub-bunches. In section 3 a method is decribed to caculate
electromagnetical fields of spherical Gaussian sub-bunches by a one-dimensional
integration without any approximations and a generalization for arbitrary Gaussian
digtributions is proposed.

2. Longitudinal Fidd of Buncheswith Arbitrary Longitudinal Prdfile

2.1. Source and Observer

To describe the three-dimensional source distributions p(r,t) a one-dimensional

“longitudinal” density function A(s) with the bunch charge q= I Ads and a two

dimensional density function 7(x;,x,) with fndxldx2 =1 are defined. Further we
define a general three-dimensional trajectory r(S) and a plane r, (x,X,)=
X,U; + X,U, with § the length coordinate, u (S)=0.(5) the unity vector in
tangential direction, u,-u, =0 and u; =u, xu, the normal vector to the r, -plane.

The line charge denisty of a beam without transverse dimensions and with constant

velocity v= fc adong the trgjectory is A(S—wt). A certain type of three-dimensional
charge density is obtained by the convolution of the line charge density A(§—wt) and
the two-dimensional density 7(x;,X,) with respect to their three dimensional

alocation r (8) and r, (x,,x,) . This charge density is formally descibed by

Pr(8) +1,(4,%,).t)det(u,,u,,u,(8) = AGB- V(% %,) - )
In the following we assume that the angle between the path direction u (S) and the

normal vector u, is small, so that X, X, are approximately transverse coordinates

and 1(x;,X,) is approximately the transverse denisty. The typical longitudinal and
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transverse dimensions of the beam are characterized by o, and o, (eg. rms
dimensions). A, and A, are maximal dimensionswith A(s) =0 and 77(x;, X,) =0 for

S>A, and X7 +x; > A2

The longitudinal electric field is calculated for an observer that travels on the
traectory. Therefore the postion and longitudinal direction of the observer are

defined by the longitudinal coordinate s, asr, =r(s,) and u, =u(s,).

2.2. Scalar- and Vector-Potential
The electromagnetic fields are derived from the scalar and vector potential for

Lorentz gauge. The three-dimensional integration of the retarded sources defined by
Eq. (1) resultsin:

Areed(r 1) = Jp(r D av _JA(S+S°_Vt’)n(xl’xz)dxldxzds, (2a)
Ir - R(r,s+s,,%,X,)

J(r’ t)

Ir -
— ﬁc—lj ﬂ“(s+ So _Vt’)ﬂ(Xy XZ)

R(r,s+s,,%.,X,)

AmeA(r,t)=c dv’

. (2D)
u,(s+s,)dx,dx,ds

with the vectorial and scalar distance functions
R(r,S, X, %) =1 — I’S(é) -, (X, %)

R(r,5,%,%,) = R(r,8,x,%,)|

and the retarded time t' =t —c™|r —r’] c'R(r,$,%,X,) . Thisis equivalent to the

convolution of the line charge potentials & (r,t) and A™ (r,t) with the transverse

density function n(x,, X,) :

O(r,t) = dW (r,t) ® n(x,, X,)

(A) ' (8)
A(r,t) =AY (r,t)®n(x,X,)

The convolution operator is defined by

X(r,t) ®n(x,%;) = jX(I’ =1, (X, %,))1 (%, X, ) dx,dx,
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and the potentials of the line charge source are calculated by a one-dimensional inte-

gration equivalent to Eq. (2):

) [ As+s, - W)
Ame® P (r ,t) _J—R“) (srs) (4a)
AreA P (r,t) = B Mus(s+ s,)ds . (4b)

R (r,s+s,)
with RA(r,8) =|r —ry(8)| and t' =t —c*R(r,9).

A few words on notation: all unspecified integration ranges are infinite. For the
rest of the report we skip the arguments of functions in the integrals and use the

following notation (unless specified differently):

re=ry(s+s,)
u,=ug(s+s,)
R {ro —ry—r,(X,%,) in3dintegras

ro—rs inldintegrals
R=|R|
n=R/R
t'=t-c'R

A=A(s+s, - W)
The longitudinal interval with non-vanishing retarded sources in Egs. (2, 4) is

implicitly defined by:

—A; <s+s,—W =s+fr, -1 (s+5,)|+S, ~Vt <A, . (5)
For simplicity we neglect transverse beam dimensions. To provide insight into typical
interaction lengths, we estimate the path length difference L, =|q between the
observer particle (at s,) and the retarded position of a source particle that is o,
behind. This is the solution of s+ Sr, —r.(s+s,)|=-0 . The distance functions for

linear motion and for circular motion with curvature radius R, are:

E for linear motion
Iro —ro(s+s,)| =

2R, sin[i]‘ for circular motion '’
2R,
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and L, followsas

L o,/(l-B) forlinear motion @
* " 13/24R?c,  for circular motion
The solution for circular motion is an approximation and is valid if L, << R, and
(1- B)L, << o, . For example for a bunch with the length &, =100um in a bunch

compressor with bending radii R, =10m, the typical interaction length is at least

3/24Rjo, =0.62m. For observers in the bunch (|s,—vt|<A;) the interaction

length with head particles (o< ¢ ;) is usually much shorter than with tail particles.

However the main contribution to the longitudinal electric field comes from the
negative part of the integration range.

2.3. Longitudinal Electric Field
The longitudinal electric field E, observed by atest particle with the velocity v
can be expressed as.

EV=E-v=-V®.v-9,A-v=-d®+9,(P-A-v) , (6)

with d, =d/dt and 9, = d/dt . This can be split into the three terms

E, =-v'd®
E,=v,(8°®-A V) , (7)
E, =v'y?,®

with 7/:]/ y1- % . There are two mathematical and one physical reason for this

splitting: the integrals of the first two terms converge even for one-dimensional

digtributions, the first two terms are dominated by long range interactions with

retarded sources, and the third term is proportional to ¥ for source distributions with

o, >> R /y® with R, the curverture radius of the trajectory.

In the following we show that E, and E, can be approximated by one-
dimensional integrals. To use asimilar technique for at least a part of the last term, we

split E, into a‘linear motion’ term E, and aresidual term E;:
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E;=v'y %0 (0-o))

)
E =v'y,®,

E, and @, arethe longitudinal field and the scalar potential of the source distribution
for motion along a linear path r,(S) =r,+u,(S—s,) that istangential to the (general)
trajectory at r (S) . In this report we discuss the calculation of the terms E;, E, and

E,, but not the ‘linear motion’ term E, that is proportional to ¥ and behaves as

expected for distributions in uniform linear motion.

2.4. Integral Representation of E;, E,and E,

The integral representations of theterms E,, E,and E,in Egs. (7) and (8) are

AreE, = J[iz —ﬁjn (u, —ug)n dx,dx,ds , (9a)
R R
AneE, = —ﬁzj%(l— u.(s)-u,)n dxdx,ds , (9b)
_ AA
AneE, =y ZJ(—E + RI: jndxldxzds (90)

with

n=R(r,s+s,,X,%)/R(,s+s,,%,X,)

_ 2 2 2
R =./S + X+ X5

A =A(s+ BR +s, —vt)

For the first term E; we calculated the total derivative of Eq. (2a), using VR=n and
an integration by parts.

d i ds= %lds+ i i EdSzO :
ds\ R Jos R JR\ R/ ds
The second and third term E, and E, follow directly from the partial derivative of

Egs. (28) and (2b) and an integral formulation of the ‘linear motion’ potential

Ared (1 1) = J% dx,dx,ds
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that is analogue to Eq. (2a).

To approximate the three-dimensional integrals in Eq. (9) by a one-dimensional

integration along the s coordinate we have to investigate the dependency of the

integrands on the transverse coordinates x, and X,. The integrands are a product of

the transverse distribution function 7(x,,x,) (with Indxldx2 =1) and terms that

depend on the distance function R(r,§,x,x,) . For large values of H the distance

function R(r,$§,x;,%,) can be approximated by:

Ir, (%, %)|

R(r,$,%,%) = R(r,50,0)—r,(x,X,) -n(r,s,0,0) + 2R(r,s,0,0)

The x,, X, dependency of the distance function is negligible for xZ + x2 < A% if the
distance R=|g is large and the offset dependency R(r,$, x,x,)— R(r,5,0,0) small
compared to the bunch length o, . Thisis equivalent to the conditions

9>>A,

9>> A% /A, . (10)

A, /A, >>u;-n(r,s0,0)

As we made the assumption u, - u(s) =1 in the beginning, the last criterion is always
fulfilled for beams with not too extremean aspect raio o, /aﬂ . The s integration

range is split into a part where condition (10) is fullfilled (part @) and the rest (part b).

Therefore we can simplify the integration of part a |---ndx,dx,ds= f---ds, and
pat a pat a
roughly estimate part b:  [---ndx,dx,ds= f---ds. If thetota integral is dominated by
part b part b

long range interactions so that the criterion

‘ j---d% ~ j---ndxldxzds{ <<
pat b pat b

is fulfilled, the longitudinal electric field (without ‘linear motion’ part) can be

I"'d% (11)

part

calculated by one-dimensional integration:

AmeE,| = J[ﬂ ’B/lj (u, —u,)ds, (124)
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AreE, = —ﬁZJ%’(l—us uy)ds, (12b)
AreE, = y‘zj(—%’+ %',jds. (12c)

Formally the same result could be obtained for a one-dimensional beam, but it has to

be noted that transverse field components and E, are infinite.

For observer positions in the bunch or ahead (s, > vt — A ) criterion (11) is usually

fulfilled. This is obvious for trgectories that are linear in the neighborhood of the

observer and it will be shown later for circular trajectories.

2.5.Moreabout E,

To find a uniform expression for E = E — E =E +E, + E, we want to neglect the

term A/R? inthe integrand of Eq. (12a) so that

47ng1:—ﬁj%,n-(uo—us)ds. (13)

Thisisjustified by the following arguments.

a) Stationary trajectories. For linear, circular and helical trajectories the factor
n-(u, —u,) iszero and A/R? does not contribute (as well as A’/R). For this type of
trajectory the scalar potential is a stationary function, its total derivative is zero and
the term E; vanishes. It has to be emphasized that this is fulfilled only for the
particular choice of the observer position r, =r_(s,) and direction u, =u.(s,). For
observers with constant offset to the trgjectory and for circular or helical motion there

is a relative motion in the restframe that causes a change of the potential (compare
Fig. 2).

b) Locally stationary trajectories. If atrgectory is linear, circular or helical in the
neighbourhood of the observation position the integation range of (12b) can be split
into a gationary part (around the observer) and the rest. The stationary part does not
contribute and for the rest the approximation B1'/R—A/R?=0,(AR") = BAR™ is

used. This approximation is appropriate if the distance |s0 — §| between the observer
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and transition points (a $= 1) is large compared to the bunchlength A, . Therefore

the full range integration Eqg. (13) can be used for all observation postions with

stationary trajectories in the close surrounding. The criterion |s0 - §| >> A, is ill too

strict, as one finds from analysis of the arc to line and line to arc transitions. It can be

shown that [(1/(47eR?))n - (u, —u,)ds scales as

s {1 s,/L, +In(s,/L,) transition from arc toline

~0016% > _ " _
e o,R|(L-s,/L;) /2 transition from line toarc

for an observer position s, after the transition at s, =0, with R, the curvature radius
and L, the typical interaction length (compare Eq. (5)). This is usually negligible

compared to the steady state field of a bunch in circular motion (compare Eq. (19) that
will be derived later).

c) Trajectories with continuous curvature: The scalar product in Eg. (12a) is

estimated by the lowest order Taylor expansion arround the observation point:

(o]

n-(u —us)=—ww+0(s“).

The path function has to be sufficiently smooth, so that the first derivative of the
curvature function K(8) =[0u,(8)| exists. The integral for E, follows with R=|g

The negative part of the integration range has a length of the order of L, and is

(usually) much longer than the positive part «< ¢, and the bunch. Therefore the 1’

term contributes much more than the 1 term.

2.6. Simplified One-Dimensional Integral

Egs. (12b,c) and (13) are combined to one expression for E=E- E, and the
A'/R termis modified by the use of the substitution s+ AR (s) =u+ SR(u) so that
an integral expression is found that depends on A’'=A'(s+ AR+s, —vt) and the
kernel K(s,,9):

10
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AeE = Ame(E—E,) = A/ K(s,,5)ds
ﬁh'(us_uo)_ﬁz(l_us.uo)_y_z+1_ﬁus'n (14a)

R 7?|s+ AR

An equivalent expression that depends on A(u+s, —vt) follows from the substitu-

K(s,,8) =

tion u=s+ AR(S):

AmeE = [A'(u+s, —vt) - K(s,,u)du

R =[P Usmu)=B2A-u, u)=y?) 1 (14b)
; B R(l_ﬁus'n)

s(u) }/2|U|

Note that the kernel of Eq. (144) is explicit but the parameter u in Eq. (14b) isimplic-
itly determined by the substitution equation. Both equations are valid for general
three-dimensional trajectories. For planar trajectories the scalar products ug-u,,
n-u, and n-u, can be replaced by cosine functions of the angles ¢, 6 and ¢ -6
that are defined in Fig. 1. To derive a simple small angle approximation all cosine
functions are replaced by their second order Taylor expansion, all factors S ae setto

one and the positive part of the integration interval is neglected:

_90+y? 0%/2+1-p

fors< 0

K.9=1" R s+ /R) (159
0 otherwise
1 ¢O+y7
~ = T ——— foru<O
K(s,,u) = (R 92/2+1—/3Lu) 7%u (15b)
0 otherwise

With 1— 8 ~1/(2y?) Eq. (15b) is identical to the small angle approximation in [1].

An energy independent approximation can be used for ¥ >>1 and bunches that are

long compared to the critical wavelength (o, >> R, / )

AmeE = [A(s+R+5s, —c,t) - K(s,,5)ds

n-(u;-u,)-@A-ug,-u,) @6 16
K(s,,S) = R ~—-— fors<O (16)

0 otherwise

11
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It has to be mentioned that the implicit equation for the lower boundary (5) with
S =1 has not aways a solution. This happens if the first part of the trgectory is a

semi-infinite line and if the distance between the observer position s, and the tail of
the bunch is longer than the slippage s, —s, —a that is defined in Fig 3. For such
situations a special treatment of the integration range s, + s<'s, with ¢ =const and
6, R asdefined in Fig. 3 is advisable. Although one can find an energy independent

approximation for E it does not aways exist for the individual terms E; and E, .

Some remarks about advantages and disadvantages of the formulations with
K(s,,s) and K(so,u). Equations with K(s,,s) can be integrated without solving an

implicit equation if we abstain from the calculation of the boundaries of the integra-

tion. For some situations the integration range on a semi-infinite line before the

transition to the first curvature can be quite long (< o,»?). The integrals with
K(so,u) are convolution integrals in time. They can be solved efficiently by FFT

methods if E is required for atime interval. For trgjectories that are piecewise linear

both formulations can be combined: the curved parts are calculated with K(s,,s) and
the linear parts with K(so,u) where the implicit equation u=s+ SR(S) can be
solved analytically. Both formulations of Egs. (14) and (15) may have a numerical
problem for very small values of |g or |u| because the kernels are calculated as the

difference of large numbersthat are of the order 2|3 or y2|u[ ™.
2.7. Circular Motion
The longitudinal field of abunch in circular motion has been discussed many times

e.g. in[1] with approximation (15b). In the following we use approximation (15a) and

estimate criterion (11) for bunches with transverse dimensions.

The distance function R and the angles ¢, 8 (compare Fig. 1) of abunch in circu-

lar motion on atrajectory with theradius R, are:

R=[r.(s))-r.(s, +9)|=[2R sin(§/(2R))}. ¢=9R,, 6=95(2R,).

With y*(s+ R) = y*(s+ R)— R/2 and the lowest order Taylor expansions s+ R~
33/(24R02) and R = —s for s< 0 the kernel of Eq. (15a) can be written as:

12
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s (. 4Ry
K(so,s<0)~2R02(1 sz+12R02y‘2j' a7

The kernel and its asymptotic behavior

s/(8R?) for —R,/y <<s<0

K(S,9) z{s/(zRg) for s<<-Ry/y

is shown in Fig. 4. The asymptotic functions are used for short- and for long-bunch-
approximations,

a) The short bunch approximation uses the asymptotic kernel K(s,,s) = s/(BROZ)
and estimates the term s+ AR in the argument of the A” function for negative values
of s by (1-)s. The approximation is valid for bunches that are short compared to

R,/7*. Thelongitudinal field and its mean value are:

~ . ;/4 0 3

E= = _L/l(u +s,—vt)du , (18a)
e_Lle _ __a

E= qj E(t)A(s, —vt)vdt = (18b)

The total energy loss — qcE is in agreement with the well known radiation power of a
single particle with the charge q [7]. The transverse beam dimension o, < A, is

limited by the criterion (11) for the contributions of the split integration range.
According to Eqg. (10) the integration range is split into patsaand b at —a>>

max(Ai,Azn/Ai). To estimate the scaling of the split integrals we asume that A’ is

roughly constant for —L, <s< 0 and zero otherwise:

[oeedg o |47 K(so,s)d%oc

pata

i?K(s s)d% o< a’
2 (Rl 1
O-l a

fodg e | A7 K(so,s)ds(oc

iz jK(so,s)d%oc L2 -a*,

O, -1,

13
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with L, « y?c, the typical interaction length. To fulfill condition (11) the typical

interaction length has to be large compared to a and therefore the transverse

dimension o, needsto be small comparedto yo, .

b) The long bunch approximation uses the asymptotic kernel K(s,,s) = s/(ZROZ)
and estimates the the term s+ AR in the argument of the A’ function for negative
values of s by 53/ (24R02). This approximation is energy independent and valid for

o, >> R,/y®. The substitution u=s*/(24R?) is used to calculate the longitudinal
field:

o

= 1 A(-Uu+s, —vt) g
S R L -

0

The longitudinal field and its mean value of a Gaussian bunch A(s)=g(s/o,)q/c, are

1 q, 1 G\/’[—s0
3(2n)” e | Reo ( o, j 2

[E®)A(s, — vt)vdt = — 471;;52/ f)a ERo;jG = (20b)

m
U

E =

o |k

with g(s) the gaussian normal distribution and the shape function

G(x):ﬂoj%df

that is plotted in Fig. 5. The limitation for the transverse beam dimension o, can be
estimated in amost the same manner as for short bunches with the exception that the

typical interaction length is L, =3/24RZo, . Therefore the transverse beam dimen-

sion has to be small compared to /L0, «<3/R,0; .

2.8. Example 1, Part 1. Circular Motion, Energy Dependent Approximation
The complete longitudinal field E = E+ E, is calculated for a spherical Gaussian

bunch on a circular trajectory with the radius R, =10m. The bunch charge and

14
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dimensions are q=1nC and o, =0, =100um. Eq. (14d) is used for E and the

linear motion contribution E, iscomputed by

aneE, =— 1 [g/(x+ (s, ~ W)/, JF (x10, /0, )dx . (21)
yo—lo-n

with

] 1
F(X) = \/7exp( j(l erf(\/_jj W for [£[>>1.

This equation is valid for Gaussian bunches with arbitrary aspect ration o, / o,.The

field for ¥ =50, 100, 200 and 1000 is shown in Fig. 6. It can be seen that the curve for

the lowest energy is dominated by the ‘linear motion’ contribution « y 4" and that

the curves approach the energy independent shape (compare Fig. 5) with increasing

valueof y. As E, isantisymmetric it does not contribute to the total energy loss P =

— B[ E(t)A(—vt)dt . The total energy losses are 34.76 kW, 43.00 kW, 43.77 kW,
43.83 kW and 43.83 kW for =50, 100, 200, 1000 and for the energy independent

approximation — qcE with Eq. (20b).

2.9. Example 2: Helical M otion, Energy Independent Approximation
The helical trajectory is a simple example of none-planar motion. The path

function and the tangential vector of the helix are
rs(s) = Rd COS(S/Rr)ux + Rd S.n(S/Rr)uy +SV1_ R§/Rr2 u,,
us(s):_Rd/Rr Sn(S/Rr)ux-i_Rd/Rr COS(S/Rr)uy+ \ll_RdZ/er u,,

with R, the diameter, 2zR the revolution length and h= 27, R -R? the height

of one winding. It can be verified that the term n-(u,—u,) is zero as it was men-
tioned above. For the argument of A~ we use the lowest order Taylor expansion of

3

s+ AR=s+fr(s,)-r.(s, +S)”~(2—/Rd)

15
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with 8 —1 and for s<0. Theterm 1-u_-u, = (R, /R )*(1—cos(s/R )) in Eqg. (16)

is also replaced by its lowest order Taylor expansion so that we get the energy
independent kernel:

_(1—us-u0)~ S

K(s,,s<0)= R 2(R,2/Rd)2 :

The expressions for the argument of A” and for the kernel are formally identical to

that of circular motion if one replaces R? /R, by R,. Therefore the longitudinal field

E follows by analogy to Eq. (20) as

Ez 1 33 Rj G(Vt—soj
Y3(r)f? e|Rof | o, )

Theterm R?/R, isidentical to the curvature radius |u’] . Note that this approach is

not appropriate to calculate the radiation of micro-bunches in a helical undulator

because criterion (11) is not fulfilled for typical aspect ratios 077/% in FELs.

2.10. Example 3, Part 1. Bunch-Compressor

The trgjectory in dispersive bunch-compressors with several bending magnets can
be described by a sequence of arcs and lines. In such devices long range interactions
can take place that involve several elements (e.g. arc-line-arc or line-arc-ling[10]).
This is shown for the benchmark example of the bunch compressor of the CSR
workshop in Zeuthen 2002 [11]. The example consists of a simple four-bend chicane
with parameters similar to those required for the compression stages of the LCLS (at 5
GeV) or TESLA XFEL (at 500 MeV). All four magnets have the same length (0.5 m)
and bending radius (10 m). The length of the drifts between the first and last two
magnets is 5 m and the middle magnets are separated by a 1 m drift. We calculate the

longitudinal electric field E=E + E, for a 1 nC bunch with o, =100um and

y =1000 for several positions in the chicane. The fixed bunch length of o, =20um

corresponds to the beam dimension after compression. We did not change the bunch
length (as it happens during compression) to allow the comparison of fields at the
same relative position with respect to different magnets. Fig. 7 shows the time-

dependent field for a position 15 cm after the beginning of the magnets. The field is
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similar (but not exactly identical) in magnet 1, 2 and 4 but obviously different in the
third magnet that is separated by a shorter drift (of 1 m) from the previous bending
magnet. Therefore the CSR radiation from the second magnet is not quite negligible at
this position. Even after a longer drift (of 5 m) the CSR radiation of earlier magnets
contributes to the field as it can be seen in Fig. 8 for a position 45 cm after the magnet
entrance. The late part of the signal (for vt—s, >—30,) has approached the steady

state solution that is given by Egs. (20a, 21). The early peak in the first magnet

(vt—s, =—6.20,) is the wave-front that was in the plane perpendicular to the bunch

before the charge had entered the magnet. At this location the information that the
bunch is no longer in linear motion has not reached the observer and therefore the
‘old’ front is seen. In principle the same effect is active in Fig. 7 but there the angle
between the particle motion and the wave propagation is smaller as well as the
slippage between the bunch and the wave, so that it is not possible to distinguish the
‘old” wave-front from radiative fields that have been created in the magnet. The other
early frontsin Fig. 8 (a vt—s, =-7.20, for magnets2 and 4, a vt—s, =-7.60,
for magnet 3) are related to radiation from the previous magnets. In Fig. 9 for a
positions 10 cm after the magnet, these fronts are earlier (or further ahead of the
bunch) and in Fig. 10 they are outside the picture. The later part of the signal is
identical for all magnets and independent of the history before the magnets. Note that
it seems that the wave-fronts are faster than a bunch that is in linear motion with
nearly the velocity of light.

The projected longitudinal and transverse dimensions of a bunch (with energy

chirp) at the end of the third magnet are o, =20um and o, = 2mm . Therefore the

(projected) transverse beam dimension is not small compared to /R,o2 =1.6mm

asisrequired for the applicability of the one-dimensional theory.

In appendix 1 the complete MATHCAD program [9] is listed that was used to
calculate the curvesin Figs. 7, 8, 9 and 10. The program is neither optimized for accu-
racy nor for efficiency. The only measure that is used to ensure the convergence of the
numerical integration is the splitting of the full integrals into integrals over subinter-

vals.
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3. Complete Fidd of Spherical Gaussan Bunches
The electromagnetic fields as well as the scalar and vector potentials of a rigid

spherical gaussian bunch in general translatory motion can be calculated without any

approximations by a one dimensional integration for any observer position.

3.1. Scalar and Vector Potential

The source distributions p(r,t) and J(r,t) of a spherical gaussian bunch are

defined by

prt)=p(r—r. (1), (22a)

I(r.t)= p(r—r @) (1) , (22b)
g i

ps(r)_ (271_)3/20_3 exp[ 2 0_2 ) (22C)

with p_(r) the shape function, o the rmsradiusof the bunch, r,(t) the time depend-
ent path function and v, (t) =r,(t) the velocity. The three dimensional integral for the

scalar potential is modified by a shift of the integration parameter r’ so that the

observer is at the origin of the new coordinate system:

o(r t) = 1 p(r’,t,’) _ 1 Ps(r'H,—rt(t'))dV,.
are ) |r—r’) Arre r

Therefore the three-dimensional volume integration can be considered as a sequence
of atwo-dimensional integrations over the surface of a sphere with radius r” around
the observer and a one-dimensional integration along the radial coordinate. As the
retarded time t’=t—r’/c is the same for all points on the spherical surface (with

fixed radius) the two-dimensional integral can be solved analytically. The scalar

potential can be computed by the one-dimensional integration

oo

CD(r,t)zLJ f(r—,,wjdr’ , (233)

e(2r)¥*o? c o
0
with the auxiliary function

f(ab)= exp[— a’ *szs"”“(ab) :\ﬁl(g(a_b)_g(am)) (230)

2 b 2Db
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and the distance function R(r’,r,t)=|r—r (t—r’/c) to the retarded origin of the
observer. The calculation of the vector potential is equivalent:

o

— q,U _r’ r_, R(r,’r’t)j ’
A(r,t)——(zﬁ)a/zo_2 v(t—r’/c) f[o_,—o_ dr’. (24)

As in the last section we suppress the arguments of some functions in one-

dimensional integrals and use the following notation:

R=R(r"r,t)=|r-r(t—r'/c)

n=n(rrt) = r—r.(t—r’/c)

v=v(t-r’/c), p=ctv(t-r'/c)
v=v(t-r'/c), p=c(t—r'/c)

3.2. Derivatives of Potentials
The temporal and spatial derivatives of the potentials are needed for the calculation
of electromagnetic field quantities. They follow directly from Egs. (23, 24), using the

formal rules for derivations, as:

oo

atcp(r,t):Wngs[n-v F[E,@jav , (253)

atA(r,t)z(Zﬂ;%[azv fJar =T vy f*(...)dr'j | (250)

ve(.1)= g(m)” J ( A rt)jdr ’ (29

VxA(r,t):(Zﬂ;%Tnxv F(E,der' , (25d)
with

n=n( =" —t=re (25d)

Ir=r.t-r’rc)’
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f(ab) = exp[— a’ ; b* ][% cosh(ab) - [1+ b—lzj s nh(ab)j : (25€)

Weused 9, f (a,b) = f(a,b), 9,R(r’,r,t)=-n-v and 9 .R(r’,r,t)=n-p.

3.3. Electromagnetic Fields
The one-dimensional integrals for the electric field E=-V¢-9,A and the

magentic flux density B =V x A are:

E(r,t)—L[T«n-mﬁ—n T~ S 7o f(---)dr'j . (@8

~e(2r)¥?0? o

=

qu ~(r’ R(r’,r,t)j ,
Brit)=—————— | nxv f| —, —"Zdr’. 26b
.9 (2n)¥?c? [0' o (26b)
0
3.4. Outlying Observer and Liénard Wiechert Potentials
The integration range of Egs. (23, 24, 26) can be reduced to a finite interval if we

neglect contributions of the Gaussian functions in Eg. (23b) for arguments
la—b>x>>1 or [r’=R(r’,r,t|>A with A=xo. The upper boundary r; is the
solution of the implicit equation r] —R(r/,r,t)=A. The lower boundary r/ has a
positive solution of R(r’,r,t)—r’=A for observers that are outside the truncated
source distribution. In this context we call an observer ‘outlying’ if the term
= g(a+b) in Eq. (23b) is negligible for the complete integration range|r,r.]. Thisis
fulfilled if r’>A or if the observer is outsde a sphere with radius 2A around

r.(t—A/c). For outlying observers the auxiliary function and its derivative can be

replaced by
f(a,b) = %%g(a—b) , (272)
f(ab) = —g%g’(a— b) —\/gbiz g(a-b) . (270)

With the Gaussian function g‘”(x) = g(x/c)/o and its derivative g"”(x) the

scalar and vector potentials follow as
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v

F (o) ’_ ’
o= (92 =REY) 4 (283)
Are R(r’,r,t)
(0')
Alr,t)= q“f r’r’t))dr . (280)
r,r,t

For point particles (o — 0) the gaussian function g‘”’(x) can be substituted by the
dirac function 6(x) that can be integrated by use of the property

IQ(---)S(r’—R(r’,r,t))dr’:( Q) ]{Q(---))

o.(r"=R(r",rt)), (1-n-B )

with r” the solution of the implicit equation r’ = R(r’,r,t). This leads to the well

known Liénard-Wiechert potentials:

_q 1

or.1)= 47rg£r’(l—n-ﬁ)]r, ’ (299)
_auf_ v

A(r,t)= 47r£r’(1—n-ﬁ)]r, . (29b)

The calculation of the Liénard-Wiechert field equations from Egs. (26, 27) with

o — 0 issimilar. Thisis shown in appendix 2 for the electric field of a point particle.

3.5. Example 3, Part 2: Bunch-Compressor
Egs. (26a, b) have been used to calculate the electromagnetic field in the center of
a spherical bunch that travels through the four magnet chicane which has been

described earlier. The charge of the bunch is 1nC, the rms radius is o = 20um and
its Lorentz factor is ¥ =1000. In Fig. 11 the longitudinal field is shown as a function

of the position in the bunch-compressor. (The S-range of the first magnet is 0...0.5
m, the second magnet is between 5.5 m and 6m, the third and fourth magnet are in the
intervals 7...7.5 m and 12.5...13 m.) The longitudinal field reaches its steady state
value for circular motion approximately at the end of the magnets. The integrated
contributions from the drifts is certainly not negligible compared to that of the arcs.

Both methods Eg. (26a) and Eqg. (14a) are in good agreement. The transverse
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component of the Lorentz force F, and the transverse magnetic field can be seen in
Figs. 12 and 13. Fig. 14 shows a magnified view of F, in the range of magnets two
and three together with the product of @, the scalar potential and K, the inverse
curvature radius. The change of potential energy « A® contributes to the change of
the total particle energy AS. Bothterms F, and KAE appear on the right hand side
of the transverse equation of motion, but the different transient behaviour of F, and

K® clearly demonstratesthat no effective cancellation can be used for the integration

of the transverse equation of motion [12].

3.6. Generalization and Planar Approximation
To organize the three-dimensional retarded source integration for an arbitrary dis-

tribution p(r,t)= p.(r —r,(t)) with fixed shape, we redefine the auxiliary functions:

f(r’, )—% [ps(r’+w)dA" (30a)
K(r")
f(rw)=v,_f({,w), (300)

with K(r’] the surface of a sphere with radius r” around the origin. Therefore the

scalar- and vector-potential are r’ -integrals of the auxiliary function f :

p(r’ t) A Telr e v A\
o(r,t)= 47ng r dv’ = 4ﬂg{)f(r r—r.(t))dr’, (314)
A ) =Ty (e —r ()’ . (31b)
A o

The electromagnetic fields are integrals of the auxiliary function f and its gradient

f:

B(r,t)= ] F(r,r —r, (t"))xvdr’. (32b)
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For values of r’ that are large compared to the dimensions of p_ the spherical

integration for the auxiliary function can be replaced by a planar integration as
sketched in Fig. 15:

L op.yda with k(e w)=w—r Y (R)

f(r',w)=
rw)=7 I W]

This integration can be solved analytically for general Gaussian bunches

q\/detM p[ L Mr},

ps(r)= (20) (34)

with M symmetric and positive definite. The planar approximations of the auxiliary

functions of Gaussian distributions are:

wj-r) | (359)

fp(r,,W):%g(gw)q

) = g 27 i) 03 (e

with the projected bunch length

w

[

The disadvantage of the planar approximation is that it can be used only for a part
of the integration range or for observers that are sufficiently far away from the source
e.g. for observers that are ahead. To avoid this, an extraction technique is proposed
that is similar to the extraction of the ‘linear motion’ part in the first method.

3.7. Extraction Approximation
The extraction approach uses an estimation of the near contributions to the inte-
gralsfor E and B :

Ne(f,F)=(B@B-1)T(rr —n(t’))—% (-, () (363)

N (1)

f(t',r =1, (t))xV . (36b)

0
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These contributions are extracted and incomplete fields E, and B, areintegrated. To
complete the tota fields, the extracted parts E, and B, are integrated seperately and
added. To approximate the incomplete fields they are integrated with the planar

approximation of the auxilliary function. The approach is based on the assumption
that the systematic errors in the modified original terms and the modified extracted
parts are similar and cancel sufficiently. Of course the extracted parts E, and B_have
to be calculated with the exact auxiliary functions. This proceedure is numerically

efficient if the effort for the calculation of the extracted parts is small compared to a
direct integration of Eqg. (32).

To use this technique the near contributions to the integrals in Eq. (32) have to be
estimated. Therefore we approximate the position and velocity of the bunch center by
afirst order expansion:

r (t)—l’|0+C( )Bm =1 —1Bio
B (t) =B+t —t)Bio =Bio—Bio -

and the acceleration by B, (t) = B,,, with r,, =1, (t), B,, = B(t) and B,, = B(t) the in-
stantaneous position, velocity and acceleration. We replace the corresponding path
functions in Eg. (36) and neglect quadratic termsin r”:

N, (f,F)= [T ——TJ (r',r —r,t)- B (', r =1, () (37)

NB(f’F):CF(r,’r -1 (t)xB, , (37b)

with the constant tensors T, = B,, ®B,, -1 ad T, =B,, ® B, +B,, ® B, Therefore

the incomplete fields are approximated by:

oo

E =

383
47[8 (389)
0

{(B®B—I)

o |'a
—
o
|
prd
—_
—_h
o
'D_hl
N
o
=
~

T
Bi_4ﬂz{fva N (f,.F)jdr" (38b)

and the extracted parts are
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=4iT (f ,F)dr’:TOV<1>, —C'T,V, @, -cB,, @, , (39a)
€ 0

e

f)dr’' =c'Vo, xB,, - CV, @ %P, (39h)

p’p

qu
B.=—"—| Ng(f
0= I Na

with @, the scalar potential of the distribution in linear motion, V®, the gradient of

the linear motion scalar potential and

09 e

q
V., ® :— —r, (t rdr
n® Are ({ ®)

One crucial point of the extraction approximation is to find a way to caculate ®,,
VO, and V, @, with similar or less effort than is required for Eq. (38). As these

guantities are related to a Poisson problem they can be evaluated very efficiently on a
grid. Therefore the advantages of Poisson solvers can be utilized if the field quantities
are not only required for one but for a set of observation points on a mesh.

3.8. Example 1, Part 2: Circular Motion

The extraction approximation is tested for a flat eliptical bunch in circular motion
with the parameters, dimensions and the orientation as shown in Fig. 16. The example
demondtrates that the extraction approximation is applicable for extreme problems
using a large aspect ratio of the rms dimensions and a projected length that differs
considerably from the local bunch length as well as from the projected transverse
dimensions. The scenario in Fig. 16 for orientation (@) is an improved description of
the compression process in the third magnet of a four-magnet bunch-compressor

chicane. The projected bunch length at the observation point is 20 um. At an
observation point that is one typical interaction length (3/34R’c =36.cm) upstream,

the projected bunch length is 38 um. It is obvious that the dynamic variation of the
length of the retarded bunch is not negligible. In Figs. 17 and 18 the longitudinal field

and the transverse component of the Lorentz force along one of the main axes of the
ellipsoid are shown. The agreement with the longitudinal field calculated by an exact
three-dimensional integration and the planar approach is good, but the one-

dimensional approximation (Eg. (20)) differs by approximately 0.5MV/m in the
core of the digtribution. Orientation (b) in Fig. 16 corresponds to a situation after
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overcompression. At an observation point that is 39 cm upstream, the long main axis
of the distribution is perpendicular to the trgjectory so that the projected bunch length

is given by the dimension of the short main axis of 5um. During one typical

interaction length the projected length of the retarded distribution is increased by
amost a factor of four! The longitudinal field differs substantially from that of
orientation (@) and of the one-dimensional calculation. The complete curve is shifted
to more positive values and tail particles that are more that 1.70 behind gain energy.
The planar approximation describes the qualitative behaviour correctly, but the
agreement to the exact curve is not really impressive. These differences are not caused
by an insufficient compensation of near terms in the field integrals, but by errors of
the planar approximation for r” in the range of 20cm to 40cm. On one side this
range contributes essentially to the total integral, but on the other side the surface of
the spherical integration is nearly perpendicular to the short main axis of the retarded
digtribution. Asthe distribution is wide in the plane used by the planar approximation
(compare Fig. 15) but 100 times shorter in the perpendicular direction, the curvature
of the spherical integration surface is not quite negligible. Therefore the planar
approximation is not too precise for this situation. The accuracy can be improved by

the use of several sub-bunches with smaller dimensions.

4. Concdluson/Summary

Two methods have been presented to calculate the longitudinal field of a bunch
with arbitrary longitudinal shape for observers that are on the trgjectory and to
calculate all electromagnetic field quantities of spherical Gaussian bunches at
arbitrary observer positions. Both methods can be used for general trajectories, e.g.
for the sequence of arcs and drifts in bunch-compressors. Their effort is determined
by a one-dimensional integration. The restriction for the first method (“longitudinal
field on the trgjectory”) to the ratio of longitudinal to transverse beam dimensions is
not always fulfilled in real bunch-compressors. The method for spherical Gaussian
bunches is valid without limitation. An approach for arbitrary Gaussian distributions
is proposed that is also numerically efficient if the required correction terms can be
calculated simultaneously for several observer postions by a Poisson integration
technique.
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Appendix 1: MATHCAD Program for Bunch-Compressor Example

1. Physical Parameters

_ 1
Coi=299810° g=4m10 | egi= .
€0 Mo
2. Bunch and Energy
63=2010°  6,:=10010 °  qp=10°

v:=1000 PB:=y1-7 vi=B-cy

g - 2 ~dg's
_O_ap{?l.(ij } g
210y, O V2o

3. Path Function (4 Magnet Chicane)

A9 =

05 .
= — Lb:= 05 LO:=50 Li:=10 RO :=
10
0
X0.= 0 so.=0
sin(0)
X,:=X.+ RO s, =s.+ Lb
o (1—cos(¢)} o
X2:= X1+ L0~E1 S, =8 + LO
Xgi= x2+(x1—xo) =5, + Lb
X4:= X3+ L|-E3 s4:= 53+ Li
Xg = x4+|v|-(xl—x0) =5, + Lb
X6:= X5+ LO~E5 56:=55+ LO
X, = X+ M.(xl—xo) S, := 55+ Lb
R := |i-1 UgS =
for ie 0.7
jeiif (S> sl)
Sy
( j if j=-1
0
otherwise

X+ EJ.-(S— sj) if mod(j,2) =1

otherwise

ice((1o0-10-10 1)T)j
&),

5),

S-s

J~ic

sin(¢) — sin(¢0) j

cos(¢0) — cos(6)

00 « at

O« ¢0 +

Xj + R0~ic~[
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je<-1
for ie 0..7
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otherwise
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next_arc function: this function is needed for observer positions on a line;
the line-section with the observer can be excluded from the integration range;
(the kernel function K is zero for the line-section with the observer;)

next_arc(so) = s
s, if (sl < 30)~(so< 52)
S; if (53 < so)~(so< 54)
5 if (35 < so)-(so< 56)
s, if (37 < so)
S:=0,001.s,
pathin 4 magnet BC
0.3 T I I I I I
0.2 .
£
>
01 .
0 | | | | | |
0 2 4 6 8 10 12 14
x/m
. Time Mesh
o), o) n
t, .= -20— t, = 5— N := 250 n:=0.N t o =t,+ (ty— ty)—
a v b v n a ( b a) N
. Linear Motion Part
—1.26551223
1.00002368
0.37409196
— (1. * ADY-
0.09678418 eerfc(x) = (1-erf(x))*exp(x*2):
—0.18628806 1 )
Q:= 027886807 eerfc(x) = | ——— if |x| > 1400
. 2
\/ n-(O.S + X )
-1.13520398 .
1.48851587 otherwise )
| te——
0.82215223 1+ 05 |x|
0.17087277 he 0
for ne 9,8..0
2
—X h« Qn +t-h
T X =X 2
F(x) == \/:(eerfc(—jj gs(x) := e t-exp(h
2 \/—2 o p(h)
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split(a,b,A) == |Se (a b)" this function is used to split the

ne 2 integration range

for ie 0..length(A) - 1
it (a<aj)-(Aj<b)

S« Aj
n
ne—n+1
csort(S, 0)
Min(a,b) .= |a if a<b
b otherwise
. v-t vt Oq T . . L
Ejij) = |S« splif -5~ —,5-—,——5(-1 1) calculation of linear motion field
S) ) YOp
X«0
for ne 0..length(S) — 2
S1+1
' c
X« X+ g x—V—t-Fx~y~—de
G)\‘ Gn
S
—do
— X
4~n~80-y-ck»cn
elin = E“(tn)
s liner motion part
110 | | | |
5.10° -
E
S 0
]
-5.10" - -
-1.10° I I l l
—20 -15 —10 -5 0 5

v*t/sigma_lambda
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6. E123-Part
a) some functions

distance function:
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R(so, s) = |RR« Rs(so) - Rs(so+ s)

|RR

solve implicit equation s+beta*R(so,s)=u:
(needed for integration range)

s_of_u(so, u) =

Kernel Eq.(16a):

K(so, S.To, uo) =

sa«< 0

sb « sa+ step

sa« sb

otherwise
sh« sa

sh« sa

step « 2-step
while sb — sa> acc
S« 0.5-(sa+ sh)

sa« s otherwise
0.5-(sa+ sh)

sn:= -50-0y
rg ¢ Rysp+ 9)
Ug e Ugsy+9)
NeTo—Ts
R« [n|

it R>10 >

n
ne —
R

step:= 05 acc:= 0.0L0y

if sa+ B‘R(so,sa) <u

sh « sa+ step

sa« sb— step

while sb + B-R(so,sb) <u

while sa+ B-R(so,sa) >u

b« s if s+ B~R(so,s)> u

approximation for s>sn: R=-s, gamma”2*|s+beta*R|=-s

R R e A

1- ﬁ~((n)T~us)0

R

1] e ()

0 otherwise

-S

32
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otherwise

2
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b) integration TOL := 106

otherwise

§ « Mir‘(O,s_of_u(so,v-t -So~ 50;»))
s e Min(O,s_of_u(so,v-t — 5+ 50%))
Sy next_arc(so) - Sy

0 if s,<¥5

otherwise

Sy Sy if S$h<Sy

fo < Rs(so)

Ug < Us(So)

S« split(sl,su,s— so)

X«0

for ne O..length(S) — 2

Shi1
X e« X+ J[ Ks(s+ B-R(so,s) + 55— V»t)-K(SO,S,rO,UO) ds

S
X
4m-gq
Soa ) Sob )
Spa = 0.45 e = EI23[Soa’T +o|+ elln Sob = Soa+ 55 ebn = Ejp3 sob’T o+ eI|n

Soc ) Sod .
Soc = Soat 7 ecn = E|23(SOC’T + tn + eI|n Sod = Spat 125 edn = E|23 sod’T + tn + e||n

observer position: 5cm before end of magnet

magnet 1, magnet 2, ,magnet 4
6 longitudinal electrical field
2:10 T T T T
110°
—_ 0
£
2
o0t
_2.106 -
~3.10° I 1 1 1
—-20 -15 -10 -5 0 5

v*t/sigma_lambda
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Appendix 2: Liénard-Wiechert Equation for the Electric Field

The electric field of a spherical Gaussian bunch in general motion can be
calculated by a one-dimensional integration:

E(r,t):L[T((n B0 )l - Lo f(---)dr’j.

e(2r)¥? 0 & c?

For outlying observers (that are sufficiently separated from the source distribution)
the auxiliary functions f(a,b), F(a,b) can be approximated by Gaussian normal

distributions:
f(a,b) - Elg(a—b),
b

f(ab) — - El[g’(a—b)+£g(a—b)} .
b b
With the gaussian function g‘”(x) = g(x/c)/c and its derivative g’”(x) the

electric field can be written as

v

E(r,t)— q J[n_(n'ﬁ)ﬁ(g'("’(r'—R))+[m—1]g(”’(r’—R)]dr’-

Adre R R? cR

I

For point particles (o — 0) the Gaussian functions are substituted by Dirac
distributions:

R? cR

E(r,1)— -9 J[”‘(”"‘)“((S'(r'_ R))+[—”‘(”"‘)"-L]a(r'_R)]dw .

Qe R)dr'=(1 _1. d ( Q) ]]r

1-n-p
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with 1’ the solution of the implicit equation r’= R(r’,r,t). Therefore the electric
fieldis.

E(”)_>4?w[1 _nlli or’ (nl (:lf))g] [Rz(l( nﬁ)ll:) CR(lﬁn"‘)n«'

The following r” derivatives are used

Jd.R(r’,r,t)=n-p
JT .

ar,B(r’,r,t):—%
_( (B)B] n-(n-p _ (n-B)
or’{ @-n-B)R Ly 7’R*(1-n-B)°
B(n-B—(n-B))-(—B)n-B)
cRA-n-p)

to simplify the expression for the electric field:

q(__n-p___nx(n-p)xp
4re\ y*R*(1-n-B)°  cRA-n-B)’

E(rt)—
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Figures

U,-u,=cos¢ nNn-u,=cosd n-u,=cosig—6)

Fig. 1: Definition of angles ¢ and 6 for planar path functions

Fig. 2: The scalar potential for circular motion is not sationary for observer particles

with offset.
R
T 6
R=\/(a+s —(s,+85) +b 6 = arctan b
a+s—(s,+s)

Fig. 3: Contribution from retarded Sources on asemi-infiniteline s, +s<s,.
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0
K(so,s<0) ——
J(2*ROM2)
J(3RO2)
-1
N
g -2
©
&
&
> 3
D)
<
-4
5 L
-10 -8 6 4 P "

s*gamma/R0 --->

Fig. 4: Kernel K(s,,s< 0) for circular motion.

04

0.2

—>

G(x)
o
N
/

X —-->

Fig. 5: Shape function G(x) of Eq. (20). G(x) describes the energy independent
approximation of the normalized longitudinal field of a gaussian bunch in

circular motion.
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400000
200000 Lo
TN \
/I\ e \\
B 0 N e
g \\\ ///
> \
= -200000 |
m
-400000
gamma= 50 ——
gamma= 100 -----
-600000 r gan]ma: 200 777777 |
gamma=1000 ---------
-800000 ; ;
_4 _2 O 2 4

(t*v-so)/sigma_lambda --->

Fig. 6: Longitudinal field of around gaussian bunch in circular motion, with
q=1nC, o, =0, =100um, R, =10m and y = 50,100, 200,1000.

2e+06

1.5e+06

le+06

500000

-500000

E/(V/m) —->

-le+06

-1.5e+06

'29"‘06 B mwnet4 . ..........

-2.5e+06 ‘
-20 -15 -10 -5 0 5

(t*v-so)/sigma_lambda --->

Fig. 7: Time dependent longitudinal field of a Gaussian bunch in a bunch compressor
chicane. The fields are calculated for positions 15 cm after the entrance of the

magnets.
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2e+06

1.5e+06 N\

1e+06 F\

500000 fN
/L L

a4 \_/\
S R 3 -

n
i 0 =
E \
> -500000
E \
-1e+06
) . magnetl —— \
1.5e+06 magnet 2 - -
magnet3 ------
'Ze+06'mwr-]6t4. ..........
-2.5e+06 ‘
-20 -15 -10 -5 0 5

(t*v-so)/sigma_lambda --->

Fig. 8: Time dependent longitudinal field of a Gaussian bunch in a bunch compressor
chicane. The fields are calculated for positions 45 cm after the entrance of the
magnets. (Curves for magnet 2 and 4 are plotted on the same line.)

2e+06
1.5e+06
1e+06 ; 2 .
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> -500000
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1.5e+06 magnet 2 ————-
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_2e-'_06_mwn34. ..........
-2.5e+06 ‘
-20 -15 -10 -5 0 5

(t*v-so)/sigma_lambda --->

Fig. 9: Time dependent longitudinal field of a Gaussian bunch in a bunch compressor
chicane. The fields are calculated for positions 10 cm after the exit of the
magnets. (Curves for magnet 2 and 4 are plotted on the same line.)
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100000 T
0 /\\
-100000
A \
! -200000
E \
>
< -300000
m \
-400000
magnet 1 —
magnet 2 -----
'500000 I~ mwnet 3 ,,,,,,
magnet 4 oo /
-600000 :
-20 -15 -10 -5 0 5

(t*v-so)/sigma_lambda --->

Fig. 10: Time dependent longitudinal field of a Gaussian bunch in a bunch compres-
sor chicane. The fields are calculated for positions 50 cm after the exit of the

magnets.

- // /T //\ - ]
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Fig. 11: Longitudinal electric field in the center of a spherical Gaussian bunch that
travels through a bunch compressor chicane. The field is plotted as a function

of the position in the chicane.
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X
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+
w -100000
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-200000
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Fig. 12: Transverse component of the Lorentz force (E + vxB)-u, inthe center of a

spherical Gaussian bunch that travels through a bunch compressor chicane.
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5e+07
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o
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Fig. 13: Magnetic field in the center of a spherical Gaussian bunch that travels
through a bunch compressor chicane. (The magnetic field is perpendicular to

the plane of motion.)
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250000 T T T
N  (E+vxB)_rad ——
N K*phi ----- o

200000 _— ‘ .
A

| 150000 /\T -
E
2

E 100000 R

50000 R

5 55 6 6.5 7 7.5 8

sm --->

Fig. 14: Transverse force and scalar potential in the center of a spherical Gaussian
bunch that travels through magnets 2 and 3. The scalar potential is multiplied

by the inverse curvature radius.

Fig. 15: Planar approximation: for large radius r” the spherical integration surface is
replaced by a plane.
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t <t orientation (a) orientation (b)
Fig. 16: Flat dliptical bunch in circular motion. The rmsdimensionsin s and z
directionare o, =0, =500 um. (The z-direction is perpendicular to the
plane of motion.) Thethird rms dimension is 5 um. The angle between the s

and x directionis 87.78° for orientation (a) and —87.78° for orientation (b).

The projected bunch length for both orientationsis 20 um . The radius of the

circular trgjectory and the Lorentz factor are R, =10m and y =1000.

1le+06 T T

500000

0

-500000

->

-le+06

E/(VIm) --

-1.5e+06

-2e+06

-2.5e+06

-3e+06
-0.002 -0.0015 -0.001 -0.0005 O  0.0005 0.001 0.0015 0.002

sm --->

Fig. 17: Longitudinal field in aflat eliptical bunch for orientation (a) and (b) as
shown in Fig. 16. Bunch charge q=1nC, thick lines: exact calculation, solid

and dashes lines. planar approximation, dotted line: one-dimensional

estimation by Eq. (20).
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Fig. 18: y -component of the Lorentz force in aflat éliptical bunch for orientation (a)
and (b) as shown in Fig. 16. Bunch charge q=1nC, thick lines: exact

calculation, solid and dashes lines. planar approximation.



