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Abstract

Two methods for the calculation of fields of three dimensional charge

distributions on general trajectories are described. Although the source functions are

three dimensional, the numerical field calculation is reduced to one-dimensional

integrals that have to be evaluated numerically. The first method determines the

longitudinal electric field of charge densities that can be factorized into arbitrary

longitudinal and transverse distributions. The field is split into a ‘linear-motion-part’

that is independent of the shape of the general trajectory and a second part, that is

under certain conditions, independent on the transverse density function. A special

case of this method is the ‘small-angle-approach’ described in [1]. The second method

allows the complete field calculation (electromagnetic fields and potentials) of

spherical Gaussian distributions without further restrictions. A generalization for

general Gaussian distributions is proposed. A couple of examples demonstrate the

applicability of these approaches.

1. Introduction

Very short bunches with high peak currents are required in X-ray Free Electron

Lasers (SASE-FELs). In most designs, short bunches are produced by longitudinal

compression in magnetic chicanes, where particles with different energies have

different path lengths so that a bunch with an energy distribution correlated with

longitudinal particle position can shrink in length. However, care has to be taken so

that the low emittance beams are not blown up by the electromagnetic self-fields
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caused by the bunch. Two types of approaches are presently used to calculate the

dynamics of such bunches selfconsistently.

The one-dimensional approach of Borland [2] uses a simplified model for the

calculation of longitudinal forces. It neglects transverse beam dimensions and

calculates the longitudinal self-field of a one-dimensional beam that is obtained by a

projection of the ‘real’ three-dimensional beam to a reference trajectory. As the field

of a one-dimensional beam is infinite on its trajectory a ‘renormalized Coulomb’ term

is used [1]. (This is equivalent to neglecting the ‘linear motion’ term that is discussed

later.) For the field calculation at a certain instant, it is assumed that the longitudinal

distribution is ridged and has not changed at retarded times. Transverse self-forces are

neglected completely. The field calculation method discussed in section 2 is suited for

this approach. The starting point is the description of a three-dimensional source

distribution and its predefined motion with respect to a general three-dimensional

path. Formally the scalar and vector potential as well as the electromagnetic fields can

be expressed as three-dimensional integrals of retarded sources. To find a one-

dimensional integral expression for the longitudinal electric field on the reference

trajectory we split it artificially into two contributions E
~

and lE , with lE the

longitudinal field of the same distribution in linear motion. This splitting extracts

almost all contributions to E
~

from retarded sources close to the observer. E
~

is

represented as the sum of three terms 1E , 2E and 3E that can be approximated by

one-dimensional integrals if the near effects are negligible. A further simplification is

possible for observation positions that are enclosed by trajectories with constant or

nearly constant curvature. For such points the ‘small angle approximation’ [1] and its

generalization for arbitrary three-dimensional trajectories are derived. The

disadvantage of the ‘small angle approximation’ and its generalization is that an

implicit equation for the retarded time has to be solved for all points of the integration

interval. This is avoided by an alternative formulation that uses a substitution for the

integration variable.

For self-consistent tracking with the sub-bunch approach [3, 4] the particle

distribution is described by a set of sub-bunches. These sub-bunches have a well-

defined shape (e.g. Gaussian, time-independent) and each of the sub-bunches has an

individual trajectory that is known for the past. This defines the source distribution
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( )t,rρ so that potentials and electromagnetic fields can be calculated by an

integration of the retarded sources. The field calculation in [5] is directly based on the

Liénard Wiechert equations. A disadvantage of the sub-bunch approach is the large

numerical effort. For N observer particles and M field generating bunches MN ×

three-dimensional integrations have to be performed for every time step. The effort

can be reduced considerably by more efficient field calculations for sub-bunches [6],

by the simultaneous integration of all sources and by an improved and more flexible

generation of the set of sub-bunches. In section 3 a method is decribed to calculate

electromagnetical fields of spherical Gaussian sub-bunches by a one-dimensional

integration without any approximations and a generalization for arbitrary Gaussian

distributions is proposed.

2. Longitudinal Field of Bunches with Arbitrary Longitudinal Profile

2.1. Source and Observer

To describe the three-dimensional source distributions ( )t,rρ a one-dimensional

“longitudinal” density function )(sλ with the bunch charge �= dsq λ and a two

dimensional density function ),( 21 xxη with 121 =� dxdxη are defined. Further we

define a general three-dimensional trajectory )ˆ(ssr and a plane =),( 21 xxηr

2211 uu xx + with ŝ the length coordinate, )ˆ()ˆ( ˆ ss sss ru ∂= the unity vector in

tangential direction, 021 =⋅uu and 213 uuu ×= the normal vector to the ηr -plane.

The line charge denisty of a beam without transverse dimensions and with constant

velocity cv β= along the trajectory is )ˆ( vts −λ . A certain type of three-dimensional

charge density is obtained by the convolution of the line charge density )ˆ( vts −λ and

the two-dimensional density ),( 21 xxη with respect to their three dimensional

allocation )ˆ(ssr and ),( 21 xxηr . This charge density is formally descibed by

( ) ( ) ),()ˆ()ˆ(,,det),,()ˆ( 212121 xxvtsstxxs ss ηλρ η −=+ uuurr . (1)

In the following we assume that the angle between the path direction )ˆ(ssu and the

normal vector 3u is small, so that 1x , 2x are approximately transverse coordinates

and ),( 21 xxη is approximately the transverse denisty. The typical longitudinal and
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transverse dimensions of the beam are characterized by λσ and ησ (e.g. rms

dimensions). λ∆ and η∆ are maximal dimensions with 0)( =sλ and ),( 21 xxη =0 for

λ∆>s and 22
2

2
1 η∆>+ xx .

The longitudinal electric field is calculated for an observer that travels on the

trajectory. Therefore the position and longitudinal direction of the observer are

defined by the longitudinal coordinate os as )( oso srr = and )( oso suu = .

2.2. Scalar- and Vector-Potential

The electromagnetic fields are derived from the scalar and vector potential for

Lorentz gauge. The three-dimensional integration of the retarded sources defined by

Eq. (1) results in:
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with the vectorial and scalar distance functions

),,ˆ,(),,ˆ,(

),()ˆ(),,ˆ,(

2121

2121

xxsxxsR

xxsxxs s

rRr

rrrrR

=

−−= η
,

and the retarded time ),,ˆ,( 21
11 xxsRctctt rrr −− −=′−−=′ . This is equivalent to the

convolution of the line charge potentials ),()( trλΦ and ),()( trA λ with the transverse

density function ),( 21 xxη :

),(),(),(
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λ
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⊗=
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rArA
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. (3)

The convolution operator is defined by

� 21212121 ),()),((),(),( dxdxxxxxXxxtX ηη ηrrr −=⊗ ,
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and the potentials of the line charge source are calculated by a one-dimensional inte-

gration equivalent to Eq. (2):

�
�
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with )ˆ()ˆ,()( ssR srrr −=λ and )ˆ,()(1 sRctt rλ−−=′ .

A few words on notation: all unspecified integration ranges are infinite. For the

rest of the report we skip the arguments of functions in the integrals and use the

following notation (unless specified differently):

)(

integrals1din

integrals3din),(

)(

)(

1

21

tvss

Rctt

R

R

xx

ss

ss

o

so

so

oss

oss

′−+=
−=′

=

=
�
�
�

−
−−

=

+=
+=

−

λλ

η

Rn

R

rr

rrr
R

uu

rr

The longitudinal interval with non-vanishing retarded sources in Eqs. (2, 4) is

implicitly defined by:

λλ β ∆<−++−+=′−+<∆− vtsssstvss oosoo )(rr . (5)

For simplicity we neglect transverse beam dimensions. To provide insight into typical

interaction lengths, we estimate the path length difference sL =λ between the

observer particle (at os ) and the retarded position of a source particle that is λσ

behind. This is the solution of λσβ −=+−+ )( oso sss rr . The distance functions for

linear motion and for circular motion with curvature radius 0R are:
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and λL follows as

( )
�
�
� −
=

motioncircularfor24

motionlinearfor1
3 2

0 λ

λ
λ σ

βσ
R

L . (4)

The solution for circular motion is an approximation and is valid if 0RL <<λ and

( ) λλ σβ <<− L1 . For example for a bunch with the length m100µσ λ = in a bunch

compressor with bending radii m100 =R , the typical interaction length is at least

3 2
024 λσR m62.0≈ . For observers in the bunch ( λ∆<− vtso ) the interaction

length with head particles ( λσ∝ ) is usually much shorter than with tail particles.

However the main contribution to the longitudinal electric field comes from the

negative part of the integration range.

2.3. Longitudinal Electric Field

The longitudinal electric field ||E observed by a test particle with the velocity v

can be expressed as:

( )vAvAvvE ⋅−Φ∂+Φ−=⋅∂−⋅Φ−∇=⋅= ttt dvE || , (6)

with dtddt = and tt ∂∂=∂ . This can be split into the three terms

( )
Φ∂=

⋅−Φ∂=

Φ−=

−−

−

−

t

t

t

vE

vE

dvE

21

21
2

1
1

γ
β

γ

vA , (7)

with 211 βγ −= . There are two mathematical and one physical reason for this

splitting: the integrals of the first two terms converge even for one-dimensional

distributions, the first two terms are dominated by long range interactions with

retarded sources, and the third term is proportional to 2−γ for source distributions with

3/γσ λ cR>> with cR the curverture radius of the trajectory.

In the following we show that 1E and 2E can be approximated by one-

dimensional integrals. To use a similar technique for at least a part of the last term, we

split γE into a ‘linear motion’ term lE and a residual term 3E :
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lE and lΦ are the longitudinal field and the scalar potential of the source distribution

for motion along a linear path )ˆ()ˆ( oool sss −+= urr that is tangential to the (general)

trajectory at )ˆ(ssr . In this report we discuss the calculation of the terms 1E , 2E and

3E , but not the ‘linear motion’ term lE that is proportional to 2−γ and behaves as

expected for distributions in uniform linear motion.

2.4. Integral Representation of 1E , 2E and 3E

The integral representations of the terms 1E , 2E and 3E in Eqs. (7) and (8) are
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For the first term 1E we calculated the total derivative of Eq. (2a), using n=∇R and

an integration by parts:
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The second and third term 2E and 3E follow directly from the partial derivative of

Eqs. (2a) and (2b) and an integral formulation of the ‘linear motion’ potential

�
�
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that is analogue to Eq. (2a).

To approximate the three-dimensional integrals in Eq. (9) by a one-dimensional

integration along the s coordinate we have to investigate the dependency of the

integrands on the transverse coordinates 1x and 2x . The integrands are a product of

the transverse distribution function ( )21 , xxη (with 121 =� dxdxη ) and terms that

depend on the distance function ),,ˆ,( 21 xxsR r . For large values of s , the distance

function ),,ˆ,( 21 xxsR r can be approximated by:

)0,0,,(2

),(
)0,0,,(),()0,0,ˆ,(),,ˆ,(

2

21

2121 sR

xx
sxxsRxxsR

r

r
rnrrr η

η +⋅−≈ .

The 21 , xx dependency of the distance function is negligible for 22
2

2
1 λ∆<+ xx if the

distance sR ≈ is large and the offset dependency )0,0,ˆ,(),,ˆ,( 21 sRxxsR rr − small

compared to the bunch length λσ . This is equivalent to the conditions

)0,0,,(3

2

s

s

s

rnu ⋅>>∆∆
∆∆>>

∆>>

ηλ

λη

λ

. (10)

As we made the assumption 1)(3 ≈⋅ ssuu in the beginning, the last criterion is always

fulfilled for beams with not too extremean aspect ratio λη σσ . The s integration

range is split into a part where condition (10) is fullfilled (part a) and the rest (part b).

Therefore we can simplify the integration of part a: � �
apartapart

21 dsdsdxdx �� ≈η , and

roughly estimate part b: � �
bpartbpart

21 dsdsdxdx �� ≈η . If the total integral is dominated by

long range interactions so that the criterion

� � �
apartbpart

21
bpart

dsdsdxdxds ��� <<≈ η (11)

is fulfilled, the longitudinal electric field (without ‘linear motion’ part) can be

calculated by one-dimensional integration:

( )�
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−= ds

RR
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�
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′

−= ds
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E os )1(4 2
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λβπε , (12b)
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Formally the same result could be obtained for a one-dimensional beam, but it has to

be noted that transverse field components and lE are infinite.

For observer positions in the bunch or ahead ( λ∆−> vtso ) criterion (11) is usually

fulfilled. This is obvious for trajectories that are linear in the neighborhood of the

observer and it will be shown later for circular trajectories.

2.5. More about 1E

To find a uniform expression for 321

~
EEEEEE l ++=−= we want to neglect the

term 2Rλ in the integrand of Eq. (12a) so that

( )�
�
� −⋅
′

−= ds
R

E so uun
λβπε 14 . (13)

This is justified by the following arguments.

a) Stationary trajectories: For linear, circular and helical trajectories the factor

( )so uun −⋅ is zero and 2Rλ does not contribute (as well as Rλ′ ). For this type of

trajectory the scalar potential is a stationary function, its total derivative is zero and

the term 1E vanishes. It has to be emphasized that this is fulfilled only for the

particular choice of the observer position )( oso srr = and direction )( oso suu = . For

observers with constant offset to the trajectory and for circular or helical motion there

is a relative motion in the restframe that causes a change of the potential (compare

Fig. 2).

b) Locally stationary trajectories: If a trajectory is linear, circular or helical in the

neighbourhood of the observation position the integation range of (12b) can be split

into a stationary part (around the observer) and the rest. The stationary part does not

contribute and for the rest the approximation ≈∂=−′ − )( 12 RRR R λλλβ 1−′Rλβ is

used. This approximation is appropriate if the distance to ss − between the observer
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and transition points (at tss =ˆ ) is large compared to the bunchlength λ∆ . Therefore

the full range integration Eq. (13) can be used for all observation positions with

stationary trajectories in the close surrounding. The criterion λ∆>>− to ss is still too

strict, as one finds from analysis of the arc to line and line to arc transitions. It can be

shown that ( )( ) ( )� dsR so uun −⋅4 2πελ scales as

( )
( )�
�
�

−
+−

−
arctolinefromiontransit21

linetoarcfromiontransitln1
016.0 22

0

0

λ

λλ

λσε Ls

LsLs

R

sq

o

ooo

for an observer position os after the transition at 0=ts , with 0R the curvature radius

and λL the typical interaction length (compare Eq. (5)). This is usually negligible

compared to the steady state field of a bunch in circular motion (compare Eq. (19) that

will be derived later).

c) Trajectories with continuous curvature: The scalar product in Eq. (12a) is

estimated by the lowest order Taylor expansion arround the observation point:

( ) )(
12

)()( 43
sOs

sKsK oo
so +

′
−=−⋅ uun .

The path function has to be sufficiently smooth, so that the first derivative of the

curvature function )ˆ()ˆ( ˆ ssK ssu∂= exists. The integral for 1E follows with sR ≈

as

( ) ( )� dsss
KK

ds
RR

so
2

2 12
λβλλβλ ′−

′
−≈�

�

� −⋅�
�

�
�
�

	 ′
− uun .

The negative part of the integration range has a length of the order of λL and is

(usually) much longer than the positive part λσ∝ and the bunch. Therefore the λ′

term contributes much more than the λ term.

2.6. Simplified One-Dimensional Integral

Eqs. (12b,c) and (13) are combined to one expression for lEEE −=~
and the

ll Rλ′ term is modified by the use of the substitution )()( uRusRs l ββ +=+ so that

an integral expression is found that depends on ( )vtsRs o −++′=′ βλλ and the

kernel ),( ssK o :
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An equivalent expression that depends on ( )vtsu o −+′λ follows from the substitu-

tion )(sRsu β+= :
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Note that the kernel of Eq. (14a) is explicit but the parameter u in Eq. (14b) is implic-

itly determined by the substitution equation. Both equations are valid for general

three-dimensional trajectories. For planar trajectories the scalar products os uu ⋅ ,

sun ⋅ and oun ⋅ can be replaced by cosine functions of the angles φ , θ and θφ −

that are defined in Fig. 1. To derive a simple small angle approximation all cosine

functions are replaced by their second order Taylor expansion, all factors β are set to

one and the positive part of the integration interval is neglected:
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With ( )2211 γβ ≈− Eq. (15b) is identical to the small angle approximation in [1].

An energy independent approximation can be used for 1>>γ and bunches that are

long compared to the critical wavelength ( 3
0 γσ λ R>> ):
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It has to be mentioned that the implicit equation for the lower boundary (5) with

1=β has not always a solution. This happens if the first part of the trajectory is a

semi-infinite line and if the distance between the observer position os and the tail of

the bunch is longer than the slippage ass to −− that is defined in Fig 3. For such

situations a special treatment of the integration range to sss <+ with const=φ and

θ , R as defined in Fig. 3 is advisable. Although one can find an energy independent

approximation for E
~

it does not always exist for the individual terms 1E and 2E .

Some remarks about advantages and disadvantages of the formulations with

),( ssK o and ),(
~

usK o . Equations with ),( ssK o can be integrated without solving an

implicit equation if we abstain from the calculation of the boundaries of the integra-

tion. For some situations the integration range on a semi-infinite line before the

transition to the first curvature can be quite long ( 2γσ λ∝ ). The integrals with

),(
~

usK o are convolution integrals in time. They can be solved efficiently by FFT

methods if E
~

is required for a time interval. For trajectories that are piecewise linear

both formulations can be combined: the curved parts are calculated with ),( ssK o and

the linear parts with ),(
~

usK o where the implicit equation )(sRsu β+= can be

solved analytically. Both formulations of Eqs. (14) and (15) may have a numerical

problem for very small values of s or u because the kernels are calculated as the

difference of large numbers that are of the order
12 −− sγ or

12 −− uγ .

2.7. Circular Motion

The longitudinal field of a bunch in circular motion has been discussed many times

e.g. in [1] with approximation (15b). In the following we use approximation (15a) and

estimate criterion (11) for bunches with transverse dimensions.

The distance function R and the angles φ , θ (compare Fig. 1) of a bunch in circu-

lar motion on a trajectory with the radius 0R are:

( ) ( ).2,,)2(sin2)()( 0000 RsRsRsRsssR osos ===+−= θφrr

With ( ) ( ) 2/22 RRsRs −+≈+ γβγ and the lowest order Taylor expansions ≈+ Rs

( )2
0

3 24Rs and sR −≈ for 0<s the kernel of Eq. (15a) can be written as:
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The kernel and its asymptotic behavior
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is shown in Fig. 4. The asymptotic functions are used for short- and for long-bunch-

approximations.

a) The short bunch approximation uses the asymptotic kernel ( )2
03),( RsssK o ≈

and estimates the term Rs β+ in the argument of the λ′ function for negative values

of s by ( )sβ−1 . The approximation is valid for bunches that are short compared to

3
0 γR . The longitudinal field and its mean value are:
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The total energy loss Eqc− is in agreement with the well known radiation power of a

single particle with the charge q [7]. The transverse beam dimension ηησ ∆∝ is

limited by the criterion (11) for the contributions of the split integration range.

According to Eq. (10) the integration range is split into parts a and b at >>− a

( )ληλ ∆∆∆ 2,max . To estimate the scaling of the split integrals we asume that λ′ is

roughly constant for 0<<− sLλ and zero otherwise:
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λ� ,
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with λλ σγ 2∝L the typical interaction length. To fulfill condition (11) the typical

interaction length has to be large compared to a and therefore the transverse

dimension ησ needs to be small compared to λγσ .

b) The long bunch approximation uses the asymptotic kernel ( )2
02),( RsssK o ≈

and estimates the the term Rs β+ in the argument of the λ′ function for negative

values of s by ( )2
0

3 24Rs . This approximation is energy independent and valid for

3
0 γσ λ R>> . The substitution ( )2

0
3 24Rsu = is used to calculate the longitudinal

field:

3432
0

0

332
0

3

)(

32

1~

λσε
λ

επ R

q
du

u

vtsu

R
E o ∝�

�

� −+−
−≈

∞

. (19)

The longitudinal field and its mean value of a Gaussian bunch λλ σσλ qsgs )/()( = are

( ) ��
�

�
��
�

� −
≈

λλ σσεπ
osvt

G
R

q
E 3

42
0

233

1

23

1~
, (20a)

�
( )

3432
0

323 64

65
)()(

~1

λσεπ
λ

R

q
vdtvtstE

q
E o

Γ−=−= , (20b)

with )(sg the gaussian normal distribution and the shape function

( ) �
∞ +′=
0

3

)(
2 ξ

ξ
ξπ d

xg
xG

that is plotted in Fig. 5. The limitation for the transverse beam dimension ησ can be

estimated in almost the same manner as for short bunches with the exception that the

typical interaction length is 3 2
024 λλ σRL = . Therefore the transverse beam dimen-

sion has to be small compared to 3 2
0 λλλ σσ RL ∝ .

2.8. Example 1, Part 1: Circular Motion, Energy Dependent Approximation

The complete longitudinal field lEEE += ~
is calculated for a spherical Gaussian

bunch on a circular trajectory with the radius m100 =R . The bunch charge and
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dimensions are nC1=q and m100µσσ ηλ == . Eq. (14a) is used for E
~

and the

linear motion contribution lE is computed by

( )� dxxFvtsxg
q

E ol )()(4 ηλλ
ηλ

σγσσ
σγσ

πε −+′−= , (21)

with

1for
1

1

2
erf1

2
exp

2
)(

2

2

>>
+

≈
�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
−��

�

�
��
�

�
= ξ

ξ

ξξπ
xF .

This equation is valid for Gaussian bunches with arbitrary aspect ration λη σσ . The

field for γ =50, 100, 200 and 1000 is shown in Fig. 6. It can be seen that the curve for

the lowest energy is dominated by the ‘linear motion’ contribution λγ ′∝ −2 and that

the curves approach the energy independent shape (compare Fig. 5) with increasing

value of γ . As lE is antisymmetric it does not contribute to the total energy loss =P

� dtvttEc )()(2 −− λβ . The total energy losses are 34.76 kW, 43.00 kW, 43.77 kW,

43.83 kW and 43.83 kW for γ =50, 100, 200, 1000 and for the energy independent

approximation Eqc− with Eq. (20b).

2.9. Example 2: Helical Motion, Energy Independent Approximation

The helical trajectory is a simple example of none-planar motion. The path

function and the tangential vector of the helix are

zrdyrdxrds RRsRsRRsRs uuur /1)sin()cos()( 22−++= ,

zrdyrrdxrrds RRRsRRRsRRs uuuu /1)cos()sin()( 22−++−= ,

with dR the diameter, rRπ2 the revolution length and 222 dr RRh −= π the height

of one winding. It can be verified that the term )( os uun −⋅ is zero as it was men-

tioned above. For the argument of λ′ we use the lowest order Taylor expansion of

( )22

3

24

s
)()(

dr

osos
RR

ssssRs ≈+−+=+ rrββ
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with 1→β and for 0<s . The term ( ))cos(1)(1 2
rrdos RsRR −=⋅− uu in Eq. (16)

is also replaced by its lowest order Taylor expansion so that we get the energy

independent kernel:

( )222

)1(
)0,(

dr

os
o

RR

s

R
ssK ≈

⋅−
−=<

uu
.

The expressions for the argument of λ′ and for the kernel are formally identical to

that of circular motion if one replaces dr RR 2 by 0R . Therefore the longitudinal field

E
~

follows by analogy to Eq. (20) as

( ) ��
�

�
��
�

� −
≈

λλ σσεπ
o

r

d svt
G

R

Rq
E 3

44

2

233 23

1~
.

The term dr RR 2 is identical to the curvature radius
1−′su . Note that this approach is

not appropriate to calculate the radiation of micro-bunches in a helical undulator

because criterion (11) is not fulfilled for typical aspect ratios λη σσ in FELs.

2.10. Example 3, Part 1: Bunch-Compressor

The trajectory in dispersive bunch-compressors with several bending magnets can

be described by a sequence of arcs and lines. In such devices long range interactions

can take place that involve several elements (e.g. arc-line-arc or line-arc-line[10]).

This is shown for the benchmark example of the bunch compressor of the CSR

workshop in Zeuthen 2002 [11]. The example consists of a simple four-bend chicane

with parameters similar to those required for the compression stages of the LCLS (at 5

GeV) or TESLA XFEL (at 500 MeV). All four magnets have the same length (0.5 m)

and bending radius (10 m). The length of the drifts between the first and last two

magnets is 5 m and the middle magnets are separated by a 1 m drift. We calculate the

longitudinal electric field lEEE += ~
for a 1 nC bunch with m100µση = and

1000=γ for several positions in the chicane. The fixed bunch length of m20µσ λ =

corresponds to the beam dimension after compression. We did not change the bunch

length (as it happens during compression) to allow the comparison of fields at the

same relative position with respect to different magnets. Fig. 7 shows the time-

dependent field for a position 15 cm after the beginning of the magnets. The field is
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similar (but not exactly identical) in magnet 1, 2 and 4 but obviously different in the

third magnet that is separated by a shorter drift (of 1 m) from the previous bending

magnet. Therefore the CSR radiation from the second magnet is not quite negligible at

this position. Even after a longer drift (of 5 m) the CSR radiation of earlier magnets

contributes to the field as it can be seen in Fig. 8 for a position 45 cm after the magnet

entrance. The late part of the signal (for λσ3−>− osvt ) has approached the steady

state solution that is given by Eqs. (20a, 21). The early peak in the first magnet

( λσ2.6−≈− osvt ) is the wave-front that was in the plane perpendicular to the bunch

before the charge had entered the magnet. At this location the information that the

bunch is no longer in linear motion has not reached the observer and therefore the

‘old’ front is seen. In principle the same effect is active in Fig. 7 but there the angle

between the particle motion and the wave propagation is smaller as well as the

slippage between the bunch and the wave, so that it is not possible to distinguish the

‘old’ wave-front from radiative fields that have been created in the magnet. The other

early fronts in Fig. 8 (at λσ2.7−≈− osvt for magnets 2 and 4, at λσ6.7−≈− osvt

for magnet 3) are related to radiation from the previous magnets. In Fig. 9 for a

positions 10 cm after the magnet, these fronts are earlier (or further ahead of the

bunch) and in Fig. 10 they are outside the picture. The later part of the signal is

identical for all magnets and independent of the history before the magnets. Note that

it seems that the wave-fronts are faster than a bunch that is in linear motion with

nearly the velocity of light.

The projected longitudinal and transverse dimensions of a bunch (with energy

chirp) at the end of the third magnet are m20 µσ λ = and mm2=ησ . Therefore the

(projected) transverse beam dimension is not small compared to 3 2
0 λσR mm6.1=

as is required for the applicability of the one-dimensional theory.

In appendix 1 the complete MATHCAD program [9] is listed that was used to

calculate the curves in Figs. 7, 8, 9 and 10. The program is neither optimized for accu-

racy nor for efficiency. The only measure that is used to ensure the convergence of the

numerical integration is the splitting of the full integrals into integrals over subinter-

vals.
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3. Complete Field of Spherical Gaussian Bunches

The electromagnetic fields as well as the scalar and vector potentials of a rigid

spherical gaussian bunch in general translatory motion can be calculated without any

approximations by a one dimensional integration for any observer position.

3.1. Scalar and Vector Potential

The source distributions ( )t,rρ and ( )t,rJ of a spherical gaussian bunch are

defined by

( ) ( ))(, tt ts rrr −= ρρ , (22a)

( ) ( ) )()(, ttt tts vrrrJ −= ρ , (22b)

( )
�
�

�

�

�
�

�

�
−=

2

2

323 2

1
exp

)2( σσπ
ρ

r
r

q
s , (22c)

with ( )rsρ the shape function, σ the rms radius of the bunch, )(ttr the time depend-

ent path function and )()( tt tt rv �= the velocity. The three dimensional integral for the

scalar potential is modified by a shift of the integration parameter r ′ so that the

observer is at the origin of the new coordinate system:

( ) �
�

� ′
′

′−+′
=�

�

� ′
′−
′′

=Φ Vd
t

Vd
t

t ts

r
rrr

rr
r

r
))((

4

1),(

4

1
,

ρ
πε

ρ
πε

.

Therefore the three-dimensional volume integration can be considered as a sequence

of a two-dimensional integrations over the surface of a sphere with radius r ′ around

the observer and a one-dimensional integration along the radial coordinate. As the

retarded time crtt ′−=′ is the same for all points on the spherical surface (with

fixed radius) the two-dimensional integral can be solved analytically. The scalar

potential can be computed by the one-dimensional integration

( ) ( )
�
�

� ′�
�

�
�
�

	 ′′
=Φ

∞

0

223

,,
,

)2(
, rd

trRr
f

q
t

σσσπε
r

r , (23a)

with the auxiliary function

( ) ( ) ( )( )bagbag
bb

abba
baf +−−=��

�

�
��
�

� +−= 1

2

sinh

2
exp),(

22 π
(23b)
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and the distance function ( )crttrR t /),,( ′−−=′ rrr to the retarded origin of the

observer. The calculation of the vector potential is equivalent:

( ) ( )
�
�

� ′�
�

�
�
�

	 ′′′−=
∞

0

223

,,
,)/(

)2(
, rd

trRr
fcrt

q
t

σσσπ
µ r

vrA . (24)

As in the last section we suppress the arguments of some functions in one-

dimensional integrals and use the following notation:

( )

)/(,)/(

)/(,)/(

)/(

)/(
),,(

/),,(

1

1

crtccrt

crtccrt

crt

crt
tr

crttrRR

t

t

t

′−=′−=

′−=′−=

′−−
′−−

=′=

′−−=′=

−

−

vβvv

vβvv

rr

rr
rnn

rrr

�

�

��

3.2. Derivatives of Potentials

The temporal and spatial derivatives of the potentials are needed for the calculation

of electromagnetic field quantities. They follow directly from Eqs. (23, 24), using the

formal rules for derivations, as:

( ) ( )
�
�

� ′�
�

�
�
�

	 ′′
⋅−=Φ∂

∞

0

323

,,
,

~

)2(
, rd

trRr
f

q
tt σσσπε

r
vnr , (25a)

( ) ( )� ( ) ( )� �
�

�
�
�

� ′⋅−′=∂
∞∞

00
323

~

)2(
, rdfrdf

q
tt ��� vvnvrA σ

σπ
µ

, (25b)

( ) ( )
�
�

� ′�
�

�
�
�

	 ′′
=Φ∇

∞

0

323

,,
,

~

)2(
, rd

trRr
f

q
t

σσσπε
r

nr , (25c)

( ) ( )
�
�

� ′�
�

�
�
�

	 ′′
×=×∇

∞

0

323

,,
,

~

)2(
, rd

trRr
f

q
t

σσσπ
µ r

vnrA , (25d)

with

)/(

)/(
),,(

crt

crt
tr

t

t

′−−
′−−

=′=
rr

rr
rnn , (25d)
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( ) ( )��
�

�
��
�

�
�
�

�
�
�

� +−��
�

�
��
�

� +−= ab
b

ab
b

aba
baf sinh

1
1cosh

2
exp),(

~
2

22

. (25e)

We used ),(
~

),( bafbafb =∂ , ( ) vnr ⋅−=′∂ trRt ,, and ( ) βnr ⋅=′∂ ′ trRr ,, .

3.3. Electromagnetic Fields

The one-dimensional integrals for the electric field AE t∂−−∇= φ and the

magentic flux density AB ×∇= are:

( ) ( )( ) ( )� ( )� �
�

�
�
�

� ′−′−⋅=
∞∞

0
2

0
323

~

)2(
, rdf

c
rdf

q
t ��� vnββnrE

σ
σπε

, (26a)

( )
�
�

� ′�
�

�
�
�
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×=

∞

0

323

,,
,

~

)2(
),( rd

trRr
f

q
t

σσσπ
µ r

vnrB . (26b)

3.4. Outlying Observer and Liénard Wiechert Potentials

The integration range of Eqs. (23, 24, 26) can be reduced to a finite interval if we

neglect contributions of the Gaussian functions in Eq. (23b) for arguments

1>>>− xba or ( ) ∆>′−′ trRr ,,r with σx=∆ . The upper boundary ur ′ is the

solution of the implicit equation ( ) ∆=′−′ trRr uu ,,r . The lower boundary lr ′ has a

positive solution of ( ) ∆=′−′ rtrR ,,r for observers that are outside the truncated

source distribution. In this context we call an observer ‘outlying’ if the term

)( bag +∝ in Eq. (23b) is negligible for the complete integration range [ ]ul rr ′′, . This is

fulfilled if ∆>′lr or if the observer is outside a sphere with radius ∆2 around

( )ctt ∆−r . For outlying observers the auxiliary function and its derivative can be

replaced by

)(
1

2
),( bag

b
baf −= π

, (27a)

)(
1

2
)(

1

2
),(

~
2

bag
b

bag
b

baf −−−′−= ππ
. (27b)

With the Gaussian function σσσ )()()( xgxg = and its derivative )()( xg σ′ the

scalar and vector potentials follow as
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( ) ( )( )
( )�
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� ′
′
′−′=Φ

′

′
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trR

trRrgq
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, (28a)
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vrA
σ

π
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. (28b)

For point particles ( 0→σ ) the gaussian function )()( xg σ can be substituted by the

dirac function )(xδ that can be integrated by use of the property

( ) ( )( ) ( )
( )( )

( )
rrr

Q

trRr

Q
rdtrRrQ

′′′
��
�

�
��
�

�

⋅−
=��

�

�
��
�

�

′−′∂
=′′−′� βnr

r
1,,

,,
��

� δ

with r ′ the solution of the implicit equation ( )trRr ,,r′=′ . This leads to the well

known Liénard-Wiechert potentials:

( ) ( )
r

r

q
t

′
��
�

�
��
�

�

⋅−′
=Φ

βn
r

1

1

4
,

πε
, (29a)

( ) ( )
r

r

q
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′
��
�

�
��
�
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⋅−′
=

βn
v

rA
14

,
π
µ

. (29b)

The calculation of the Liénard-Wiechert field equations from Eqs. (26, 27) with

0→σ is similar. This is shown in appendix 2 for the electric field of a point particle.

3.5. Example 3, Part 2: Bunch-Compressor

Eqs. (26a, b) have been used to calculate the electromagnetic field in the center of

a spherical bunch that travels through the four magnet chicane which has been

described earlier. The charge of the bunch is nC1 , the rms radius is m20µσ = and

its Lorentz factor is 1000=γ . In Fig. 11 the longitudinal field is shown as a function

of the position in the bunch-compressor. (The ŝ -range of the first magnet is 0…0.5

m, the second magnet is between 5.5 m and 6m, the third and fourth magnet are in the

intervals 7…7.5 m and 12.5…13 m.) The longitudinal field reaches its steady state

value for circular motion approximately at the end of the magnets. The integrated

contributions from the drifts is certainly not negligible compared to that of the arcs.

Both methods Eq. (26a) and Eq. (14a) are in good agreement. The transverse



TESLA-FEL-2003-05

22

component of the Lorentz force ⊥F and the transverse magnetic field can be seen in

Figs. 12 and 13. Fig. 14 shows a magnified view of ⊥F in the range of magnets two

and three together with the product of Φ , the scalar potential and K , the inverse

curvature radius. The change of potential energy ∆Φ∝ contributes to the change of

the total particle energy �∆ . Both terms ⊥F and �∆K appear on the right hand side

of the transverse equation of motion, but the different transient behaviour of ⊥F and

ΦK clearly demonstrates that no effective cancellation can be used for the integration

of the transverse equation of motion [12].

3.6. Generalization and Planar Approximation

To organize the three-dimensional retarded source integration for an arbitrary dis-

tribution ( ) ( ))(, tt ts rrr −= ρρ with fixed shape, we redefine the auxiliary functions:

( )
( )
�
rK

s Ad
r

rf
′

′+′
′

=′ )(
1

, wrw ρ , (30a)

),(),(
~

wwf rfr w ′∇=′ , (30b)

with �
�
��

�
� ′rK the surface of a sphere with radius r ′ around the origin. Therefore the

scalar- and vector-potential are r ′ -integrals of the auxiliary function f :

( ) ( )�
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� ′
′−
′′
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)(,
4

),(
4
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, rdtrf
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t
t trr
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, (31a)

( ) ( )�
∞

′′−′=
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)(,
4

, rdtrf
q

t trrvrA
π
µ

. (31b)

The electromagnetic fields are integrals of the auxiliary function f and its gradient

f
~

:
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. (32b)
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For values of r′ that are large compared to the dimensions of sρ the spherical

integration for the auxiliary function can be replaced by a planar integration as

sketched in Fig. 15:

( ) �
1

)(
1

,
=⋅

′
′

=′
kr

rw Ad
r

rf sρ with ( )
w
w

wwk rr ′−=′, . (33)

This integration can be solved analytically for general Gaussian bunches
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�−= Mrr
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r t
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q

2

1
exp

2

det
)(

23π
ρ , (34)

with M symmetric and positive definite. The planar approximations of the auxiliary

functions of Gaussian distributions are:
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with the projected bunch length

w
wMw 1−

=
t

wσ .

The disadvantage of the planar approximation is that it can be used only for a part

of the integration range or for observers that are sufficiently far away from the source

e.g. for observers that are ahead. To avoid this, an extraction technique is proposed

that is similar to the extraction of the ‘linear motion’ part in the first method.

3.7. Extraction Approximation

The extraction approach uses an estimation of the near contributions to the inte-

grals for E and B :

( ) ( ) ( ) ( ))(,)(,
~~

, trf
c

trf ttE ′−′−′−′−⊗≈ rr
β

rrfIββfN
�

, (36a)

( ) ( ) vrrffN ×′−′≈ )(,
~~

, trf tB . (36b)
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These contributions are extracted and incomplete fields iE and iB are integrated. To

complete the total fields, the extracted parts eE and eB are integrated seperately and

added. To approximate the incomplete fields they are integrated with the planar

approximation of the auxilliary function. The approach is based on the assumption

that the systematic errors in the modified original terms and the modified extracted

parts are similar and cancel sufficiently. Of course the extracted parts eE and eB have

to be calculated with the exact auxiliary functions. This proceedure is numerically

efficient if the effort for the calculation of the extracted parts is small compared to a

direct integration of Eq. (32).

To use this technique the near contributions to the integrals in Eq. (32) have to be

estimated. Therefore we approximate the position and velocity of the bunch center by

a first order expansion:

( ) 0000)( lllll rttct βrβrr ′−=−′+=′ ,

( ) 0000)( lllll rttt βββββ �� ′−=−′+=′ ,

and the acceleration by 0)( ll t ββ �� = , with )(0 ttl rr = , )(0 tl ββ = and )(0 tl ββ �� = the in-

stantaneous position, velocity and acceleration. We replace the corresponding path

functions in Eq. (36) and neglect quadratic terms in r′ :
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( ) ( ) llB trcf βrrffN ×′−′= )(,
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, , (37b)

with the constant tensors IββT −⊗= 000 ll and 00001 llll ββββT ⊗+⊗= �� . Therefore

the incomplete fields are approximated by:
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and the extracted parts are
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with lΦ the scalar potential of the distribution in linear motion, lΦ∇ the gradient of

the linear motion scalar potential and

( ) ( )�
∞

′′′−′=Φ∇
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, rdrtr

q
t lll
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One crucial point of the extraction approximation is to find a way to calculate lΦ ,

lΦ∇ and ll
Φ∇β with similar or less effort than is required for Eq. (38). As these

quantities are related to a Poisson problem they can be evaluated very efficiently on a

grid. Therefore the advantages of Poisson solvers can be utilized if the field quantities

are not only required for one but for a set of observation points on a mesh.

3.8. Example 1, Part 2: Circular Motion

The extraction approximation is tested for a flat elliptical bunch in circular motion

with the parameters, dimensions and the orientation as shown in Fig. 16. The example

demonstrates that the extraction approximation is applicable for extreme problems

using a large aspect ratio of the rms dimensions and a projected length that differs

considerably from the local bunch length as well as from the projected transverse

dimensions. The scenario in Fig. 16 for orientation (a) is an improved description of

the compression process in the third magnet of a four-magnet bunch-compressor

chicane. The projected bunch length at the observation point is m20 µ . At an

observation point that is one typical interaction length ( cm63343 2
0 ≈σR ) upstream,

the projected bunch length is m83 µ . It is obvious that the dynamic variation of the

length of the retarded bunch is not negligible. In Figs. 17 and 18 the longitudinal field

and the transverse component of the Lorentz force along one of the main axes of the

ellipsoid are shown. The agreement with the longitudinal field calculated by an exact

three-dimensional integration and the planar approach is good, but the one-

dimensional approximation (Eq. (20)) differs by approximately mMV.50 in the

core of the distribution. Orientation (b) in Fig. 16 corresponds to a situation after



TESLA-FEL-2003-05

26

overcompression. At an observation point that is cm93 upstream, the long main axis

of the distribution is perpendicular to the trajectory so that the projected bunch length

is given by the dimension of the short main axis of m5 µ . During one typical

interaction length the projected length of the retarded distribution is increased by

almost a factor of four! The longitudinal field differs substantially from that of

orientation (a) and of the one-dimensional calculation. The complete curve is shifted

to more positive values and tail particles that are more that σ7.1 behind gain energy.

The planar approximation describes the qualitative behaviour correctly, but the

agreement to the exact curve is not really impressive. These differences are not caused

by an insufficient compensation of near terms in the field integrals, but by errors of

the planar approximation for r′ in the range of cm02 to cm04 . On one side this

range contributes essentially to the total integral, but on the other side the surface of

the spherical integration is nearly perpendicular to the short main axis of the retarded

distribution. As the distribution is wide in the plane used by the planar approximation

(compare Fig. 15) but 100 times shorter in the perpendicular direction, the curvature

of the spherical integration surface is not quite negligible. Therefore the planar

approximation is not too precise for this situation. The accuracy can be improved by

the use of several sub-bunches with smaller dimensions.

4. Conclusion/Summary

Two methods have been presented to calculate the longitudinal field of a bunch

with arbitrary longitudinal shape for observers that are on the trajectory and to

calculate all electromagnetic field quantities of spherical Gaussian bunches at

arbitrary observer positions. Both methods can be used for general trajectories, e.g.

for the sequence of arcs and drifts in bunch-compressors. Their effort is determined

by a one-dimensional integration. The restriction for the first method (“longitudinal

field on the trajectory”) to the ratio of longitudinal to transverse beam dimensions is

not always fulfilled in real bunch-compressors. The method for spherical Gaussian

bunches is valid without limitation. An approach for arbitrary Gaussian distributions

is proposed that is also numerically efficient if the required correction terms can be

calculated simultaneously for several observer positions by a Poisson integration

technique.



TESLA-FEL-2003-05

27

5. Acknowledgement

The author sincerely thanks E. Saldin, E. Schneidmiller, M. Yurkov, T. Limberg,

Y. Kim, K. Flöttmann, Ph. Piot, J. Rossbach, F. Stulle, B. Beutner, V. and J.

Maksimovic, U. v. Rienen and S. Wipf for many useful discussions and comments on

this work.

References

[1] E. Saldin, E. Schneidmiller, M. Yurkov: Radiative Interaction of Electrons in a

Bunch Moving in an Undulator. NIM A417 (1998) 158-168.

[2] M. Borland: Simple method for particle tracking with coherent synchrotron

radiation. Phys. Rev. Special Topics – Accelerators and Beams, Vol. 4, 070701

(2001).

[3] M. Dohlus, T. Limberg: Emittance Growth due to Wake Fields on Curved Bunch

Trajectories. International FEL Conference (Rome, 1996), TESLA-FEL 96-13.

1995.

[4] R. Li, Self-Consistent Simulation of the CSR Effect. NIM A429 (1998) 310-314.

[5] L. Gianessi, M. Quattromini: TREDI: A Self Consistent Three-Dimensional

Integration Scheme for RF-Gun Dynamics Based on the Liénard-Wiechert

Potentials Formalism. In Proceedings of the workshop towards X-ray free electron

lasers, Gargano, Italy 1997. AIP Conf. Proceedings 413, (1997) 313.

[6] M. Dohlus, A. Kabel, T. Limberg: Efficient Field Calculation of 3D Bunches on

General Trajectories. NIM A445 (2000) 338-342.

[7] J. Jackson: Classical Electrodynamics. (John Wiley and Sons, New York, 1975).

[8] Y. Derbenev, J. Rossbach, E. Saldin, V. Shiltsev: Microbunching Radiative Tail-

Head Interaction. TESLA-FEL 95-05, September 95. ).

[9] MathSoft, Inc.: http://www.mathsoft.com, MATHCAD 2001 Professional.

[10] E. Saldin, E. Schneidmiller, M. Yurkov: On the Coherent Radiation of an

Electron Bunch Moving in an Arc of a Circle. NIM A398 (1997) 373-394.

[11] CSR Workshop, Zeuthen Jan. 2002,

http://www.desy.de/csr/csr_workshop_2002/csr_workshop_2002_index.html.



TESLA-FEL-2003-05

28

[12] G. Geloni, E. Saldin, E. Schneidmiller, M. Yurkov: Misconceptions Regarding

the Cancellation of Self-Forces in the Transverse Equation of Motion for an

Electron in a bunch. DESY-03-165.



TESLA-FEL-2003-05

29

Appendix 1: MATHCAD Program for Bunch-Compressor Example
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next_arc function: this function is needed for observer positions on a line;
the line-section with the observer can be excluded from the integration range;
(the kernel function K is zero for the line-section with the observer;)
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6. E123-Part

a) some functions

distance function: R so s,( ) RR Rs so( ) Rs so s+( )−←

RR

:=

solve implicit equation s+beta*R(so,s)=u:
(needed for integration range)

step 0.5:= acc 0.01 σλ⋅:=

s_of_u so u,( ) sa 0←

sb sa step+←

sa sb←

sb sa step+←

sb β R so sb,( )⋅+ u<while

sa β R so sa,( )⋅+ u<if

sb sa←

sb sa←

sa sb step−←

step 2 step⋅←

sa β R so sa,( )⋅+ u>while

otherwise

s 0.5 sa sb+( )⋅←

sb s← s β R so s,( )⋅+ u>if

sa s← otherwise

sb sa− acc>while

0.5 sa sb+( )⋅

:=

Kernel Eq.(16a): sn 50− σλ⋅:= approximation for s>sn: R=-s, gamma^2*|s+beta*R|=-s

K so s, ro, uo,( ) rs Rs so s+( )←

us Us so s+( )←

n ro rs−←

R n←

n
n

R
←

β n( )T us uo−( )⋅�
	



�0

⋅ β
2

1 us( )T uo⋅
�
�

�
�0

−�
�
	


�
�

⋅− γ
2−

−

R

1 β n( )T us⋅
�
�

�
�0

⋅−

γ
2

s β R⋅+⋅
+ s sn<if

β 1 n( )T uo⋅
�
�

�
�0

−��
	


�
�

⋅ β
2

1 us( )T uo⋅
�
�

�
�0

−��
	


�
�

⋅−

s−
otherwise

R 10
50−>if

0 otherwise

:=



TESLA-FEL-2003-05

33
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Appendix 2: Liénard-Wiechert Equation for the Electric Field

The electric field of a spherical Gaussian bunch in general motion can be

calculated by a one-dimensional integration:
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For outlying observers (that are sufficiently separated from the source distribution)

the auxiliary functions ),( baf , ),(
~

baf can be approximated by Gaussian normal

distributions:
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For point particles ( 0→σ ) the Gaussian functions are substituted by Dirac

distributions:
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The following properties are used for the integration of the Dirac function:
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with r′ the solution of the implicit equation ( )trRr ,,r′=′ . Therefore the electric

field is:
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to simplify the expression for the electric field:
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Figures
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Fig. 12: Transverse component of the Lorentz force ( ) ⊥⋅×+ uBvE in the center of a

spherical Gaussian bunch that travels through a bunch compressor chicane.
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Fig. 13: Magnetic field in the center of a spherical Gaussian bunch that travels

through a bunch compressor chicane. (The magnetic field is perpendicular to

the plane of motion.)
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Fig. 14: Transverse force and scalar potential in the center of a spherical Gaussian

bunch that travels through magnets 2 and 3. The scalar potential is multiplied

by the inverse curvature radius.
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Fig. 15: Planar approximation: for large radius r′ the spherical integration surface is

replaced by a plane.
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Fig. 16: Flat elliptical bunch in circular motion. The rms dimensions in s and z

direction are m500 µσσ == zs . (The z -direction is perpendicular to the

plane of motion.) The third rms dimension is m5 µ . The angle between the s

and x direction is o78.87 for orientation (a) and o78.87− for orientation (b).

The projected bunch length for both orientations is m02 µ . The radius of the

circular trajectory and the Lorentz factor are m100 =R and 1000=γ .
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Fig. 17: Longitudinal field in a flat elliptical bunch for orientation (a) and (b) as

shown in Fig. 16. Bunch charge nC1=q , thick lines: exact calculation, solid

and dashes lines: planar approximation, dotted line: one-dimensional

estimation by Eq. (20).
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Fig. 18: y -component of the Lorentz force in a flat elliptical bunch for orientation (a)

and (b) as shown in Fig. 16. Bunch charge nC1=q , thick lines: exact

calculation, solid and dashes lines: planar approximation.


