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Abstract 
 
The control system modeling for the TESLA - TeV–Energy Superconducting Linear 
Accelerator project has been developed for the efficient stabilization of the pulsed, 
accelerating EM field of the resonator. The cavity parameters identification is an essential 
task for the comprehensive control algorithm. The TESLA cavity simulator has been 
successfully implemented by applying very high speed FPGA – Field Programmable Gate 
Array technology. The electromechanical model of the cavity resonator includes the basic 
features - Lorentz force detuning and beam loading. The parameters identification bases on 
the electrical model of the cavity. The model is represented by the state space equation for the 
envelope of the cavity voltage driven by the current generator and the beam loading. For a 
given model structure, the over-determined matrix equation is created covering the long 
enough measurement range with the solution according to the least squares method. A low 
degree polynomial approximation is applied to estimate the time-varying cavity detuning 
during the pulse. The measurement channel distortion is considered, leading to the external 
cavity model seen by the controller. The comprehensive algorithm of the cavity parameters 
identification has been implemented in the Matlab system with different modes of the 
operation. Some experimental results have been presented for different cavity operational 
conditions. The following considerations have lead to the synthesis of the efficient algorithm 
for the cavity control system predicted for the potential FPGA technology implementation. 
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1.   Introduction 
 
The TESLA – XFEL project bases on the nine-cell super conducting niobium resonators to 
accelerate the electrons and positrons. The acceleration structure is operated in a standing π-
mode wave at the frequency of 1,3 GHz. The RF oscillating field is synchronized with the 
motion of a particle moving at the velocity of light across the cavity. 
The LLRF – Low Level Radio Frequency TESLA cavity control system has been developed 
to stabilize the accelerating fields of the resonators (figure 1). The control section, powered by 
one klystron, may consist of many cavities. One klystron supplies the RF power to the cavities 
through the coupled wave-guide with a circulator. The fast amplitude and phase control of the 
cavity field is accomplished by modulation of the signal driving the klystron from the vector 
modulator. The cavities are driven with the pulses of 1.3 ms in duration and the average 
accelerating gradients of 25 MV/m. The cavity RF signal is down-converted to the 
intermediate frequency of 250 KHz preserving the amplitude and phase information. The 
ADC and DAC converters link the analog and digital parts of the system. The digital signal 
processing is applied for the field vector detection, calibration and filtering. The control 
feedback system regulates the vector sum of the pulsed accelerating fields in multiple cavities. 
The digital controller stabilizes the detected real (in-phase) and imaginary (quadrature) 
components of the incident wave according to the desired set point. Additionally, the adaptive 
feed-forward is applied to improve the compensation of repetitive perturbations induced by 
the beam loading and by the dynamic Lorentz force detuning. The control block applies the 
value of the cavity parameters estimated in the identification system and generates the 
required data for the FPGA based controller.  
A comprehensive digital system modeling has been developed for the investigation of the 
optimal control method for the cavity. The software model is applied as a pattern for the 
potential FPGA implementation in the real system. The design of a fast and efficient digital 
controller is a challenging task and it is an important contribution to the optimization of the 
TESLA accelerator.  

Fig.1. 
 
2.  Cavity modeling and parameters description 
 
2.1 General consideration 
 
The recognition of cavity features can lead to the efficient algorithm stabilizing the EM field 
with the reasonable power consumption. 
The primary parameters of the cavity model correspond to the resonant RLC circuit 
representation. The secondary parameters, derived from the primary ones and practically 
applied, are as follows: resonance frequency ≡ ω0 = 2πf0 = (LC)-½, characteristic resistance 
(normalized half-shunt impedance) ≡ ρ = (L/C)½, load resistance (half-shunt impedance) ≡ RL, 
loaded quality factor ≡ QL = RL/ρ, half-bandwidth (HWHM) ≡ 2πf1/2 = ω1/2 =1/2CRL = 
ω0/2QL. The resonance frequency f0 and characteristic resistance ρ is the invariant feature of 
the stationary circuit and are considered as the basic parameters with the well-defined nominal 
value. The diverse operational conditions influence the loading of the resonator and determine 
mutually the corresponding parameters RL, QL and ω1/2. 
The super-conducting resonator has an extremely high loaded quality factor QL ~ 3·106 and 
the narrow bandwidth of about 430 Hz (FWHM). Hence, the cavity is very sensitive to the 
mechanical distortion caused by microphonics and the Lorentz force, changing the resonator's 
frequency (LC product). Therefore, the cavity model is a non-stationary one with the time 
varying detuning ∆ω = ω0 - ωg = 2π∆f, as the deviation from the generator nominal frequency 
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ωg. The cavity detuning value can be comparable to the cavity bandwidth in the real operation 
condition. This cavity parameter has two dominate the deterministic components: the Lorentz 
force detuning and the initial predetuning. The mechanically biased predetuning attempts to 
compensate the EM forced detuning factor, during the operational condition of the cavity. 
The identification of the time varying detuning is desired to generate the proper feed forward 
and set point tables for the required cavity performance. Additionally, it can be applied for the 
dynamic compensation of the cavity detuning by the piezo-translator system. 
The mechanical model of the super-conductive cavity has been created for the simulation 
purpose. The model describes the Lorentz force detuning, which is a function of the square of 
time varying field gradient. It bases on the heuristic relationship for the independent 
mechanical modes of the cavity with the resonance frequency fm, the quality factor Qm and the 
Lorentz force detuning constant Km for the given m mode. Three dominating resonance 
frequencies are considered in the cavity model and the superposition of all modes yield the 
resultant detuning. 
The super-conducting cavity electro-mechanical model has been implemented in the Matlab 
system and the main parameters of the model for the simulation purpose are combined in the 
table 1. 
  

Table 1. 
 
The simulation results for the cavity real operational condition are presented in figure 2. The 
cavity is driven in the pulse mode forced by the control feedback supported by the 
feed-forward. During the first stage of the operation, the cavity is filling with constant forward 
power, resulting in an exponential increase of the electromagnetic field, according to its 
natural behavior in the resonance condition. When the cavity gradient has reached the 
required final value, the beam loading current is injected, resulting in the steady-state flattop 
operation. Turning off both, the generator and the beam current yields an exponential decay of 
the cavity field.  
 

Fig.2. 
 
2.2 Signal-dependent modeling of cavity parameters and direct identification for 
deterministic condition 
 
The cavity parameters can be estimated for a given model structure, applying the input-output 
relation of the real plant. The cavity electrical model is based on the state space equation for 
the envelope of the cavity voltage v(t) driven with the current generator ig(t) and the average 
beam loading  ib0(t) as follows:  
dv(t)/dt = Ae·v(t) + ω0·ρ·[ig(t) - ib0(t)],  (1) 
where, phasor Ae = -ω1/2 + i∆ω for complex representation, or matrix Ae= [-ω1/2, -∆ω; ∆ω,-
ω1/2] for vector representation.  
The term ω0·ρ = 2ω1/2·RL = 1/C is a, relatively stable and well-defined, driving factor. 
Therefore, the cavity bandwidth and detuning are responsible for the cavity behavior and 
should be carefully recognized. 
Discrete samples of the input [ig(nT) - ib0(nT)] = [(ig)n – (ib0)n] and the output v(nT) = vn, 
signals with the sampling interval of T, are considered for the digital implementation of the 
cavity model.  
The complex solution of the state space equation for the successive n-1, n samples yields the 
difference equation, as follows:  
vn = vn-1·exp(T·Ae) + ω0·ρ·[(ig)n-1 – (ib0)n-1]·[exp(T·Ae) – 1)]/Ae. (2) 
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Applying the linear approximation: exp(Ae·T) ≈ 1 + T·Ae, for the small enough value of the 
sampling time T, a discrete form of the state space equation is as follows: 
vn = (1 + T·Ae)·vn-1 + T·ω0·ρ·[(ig)n-1 – (ib0)n-1]. (3) 
Providing new symbols, yields:  
vn = E·vn-1 + un-1 – (ub)n-1,  (4) 
where, the cavity parameters phasor E = (1-ω1/2·T) + i∆ω·T, for complex representation, 
or system matrix E = [1-T·ω1/2, -T·∆ω; T·∆ω, 1-T·ω1/2], for vector representation, 
unified input signal samples: un-1 = T·ω0·ρ·(ig)n-1 for generator, and (ub)n-1 = T·ω0·ρ·(ib0)n-1 for 
beam loading. 
Solving the above recursive equation, the phasor E can be estimated for every step ‘n’ as the 
signal-dependent model of the cavity parameters as follows: 
En = (vn - un-1 + (ub)n-1)/vn-1      for     vn-1 ≠ 0. (5) 
Therefore, the cavity parameters can be identified for every n>2 step of the iterative 
processing as follows: 
half-bandwith:    (ω1/2)n  = (1- Re(En))/T   (6) 
detuning:    (∆ω)n  =  Im(En)/T.    (7) 
The above on-line algorithm has been implemented in the Matlab system for the time interval 
T = 1µs. The initial parameters for the first two steps of the algorithm have been set from the 
table (f1/2 and ∆f).  
The cavity response and the estimated parameters for the current generator step, without the 
beam, are presented in figure 3. For a deterministic and noiseless condition, the estimated 
cavity parameters are in perfect agreement with the given ones from the model. 
Nevertheless, the cavity parameters identification algorithm is very sensitive to any 
disturbances in the real operational condition: stochastic noise, bit-resolution errors and I/Q 
detection inaccuracy. The FPGA cavity simulator has been used for its parameters 
identification in the step operation mode. The 18-bit resolution signal with the noise (variance 
of 1e-4 MV2) after modulation and demodulation has been considered to investigate the on-
line parameters identification. The Matlab cavity model has been applied as a reference one. 
The root of mean square error (RMS) has been calculated as the assessment of the cavity 
parameters identification. The simulation results are presented in figure 4 for driving current 
of  ig=16 mA. For the case of direct estimation of the cavity detuning, the RMS equals to 67 
Hz. For the constant value of the cavity bandwidth, the off-line averaging gives a reasonable 
results. For the time-varying cavity detuning, several stochastic methods can be considered. A 
sophisticated filtering of the cavity output voltage could improve the results, but the 
additional delay can be expected. The cavity detuning identification is efficient only when the 
obtained result is useful for the control development. The applied estimation of the cavity 
parameters for the real operational condition is considered in the next chapter. 
 

Fig.3. 
 

Fig.4. 
 
3.   Cavity parameters identification 
 
3.1 Total identification of cavity parameters in real operational condition 
 
The cavity input and output signals are not available directly for the control purpose in the 
real operational condition. Furthermore, in the presence of noise, the stochastic approach 
should be performed for the cavity parameters identification. Assuming the static and linear 
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distortion of the measurement channel, according to figure 5, the cavity discrete model, seen 
by the controller, can be expressed in the general vector form for the step ‘k’:   
vk   = Ek*vk-1 + u0 + G*uk-1 - C·(ub)k-1  (8)  
where, measured vectors: vk-1, vk, uk-1 – output and input values for step k-1 and k, 
respectively; (ub)k-1 – normalized beam loading vector for step k-1; the unknown parameters 
are: system matrix Ek = [1-T·ω1/2, -T·∆ωk; T·∆ωk, 1-T·ω1/2]; resultant distortion matrix - G = 
[g1, g2; g3, g4] = C*D; input distortion matrix – D;  output distortion matrix C = [c1, -c2; c2, 
c1]; resultant offset vector - u0 = C*u’0; u’0 – input offset vector. 
 

Fig.5. 
 
The cavity discrete model can be expanded to the scalar equations, applying the 
corresponding vector components as follows: 
(v1)k  = – T·∆ωk·(v2)k-1 + (1–T·ω1/2)·(v1)k-1 + u01 + g1·(u1)k-1 + g2·(u2)k-1 – [c1·(ub1)k-1 – c2·(ub2)k-1]  (9) 
(v2)k   =   T·∆ωk·(v1)k-1 + (1–T·ω1/2)·(v2)k-1 + u02 + g3·(u1)k-1 + g4·(u2)k-1 – [c1·(ub2)k-1 + c2·(ub1)k-1]  (10) 
The unknown parameters of the cavity, which are nine constant values and step-varying 
detuning ∆ωk, can be extracted from the above equations moving again to the vector format 
for step k as follows: 
 vk = [-(v2)k-1; (v1)k-1] * T·∆ωk + hk * y   (11) 
where, y = [(1-T·ω1/2); u0; g1; g2; g3; g4; c1; c2] - column vector (9x1) of constant parameters, 
hk = [vk-1, eye(2), [(uT)k-1; 0,0], [0,0; (uT)k-1], -(ub)k-1, [(ub2)k-1; -(ub1)k-1]] – signal-dependent 
matrix (2x9) of the model structure related to the parameters. 
Let us assume the step-varying cavity detuning ∆ωk as a L-order discrete series for the 
successive steps k = m:n, as follows:  
∆ωk =  wk * x,   (12) 
where, the column vector ‘x’ contains L unknown series of coefficients, and the row vector wk 
describes the given L-order series structure of the step-varying detuning model. 
Applying the above equations for all N = m-n+1 steps within the range k = m:n, the cavity 
model consists of 2N equations expressed by the matrix, as follows: 
V = X * x + Y * y = [X, Y] * [x; y] = H * z    (13) 
where, V – total output vector (2N x 1), thus V(2k-1:2k) = vk; X – structure matrix (2N x L) 
of the model part related to the detuning, thus, X(2k-1:2k, :) = T·[-(v2)k-1; (v1)k-1]*wk; Y – 
structure matrix (2N x 9) of the model part related to the parameters, thus Y(2k-1:2k, :) = hk 
H = [X, Y]  – total structure matrix (2N x L+9), z = [x; y] – total vector of unknown L+9 
values. 
The vector ‘z’ can be effectively estimated in the noisy condition with the over-determined 
matrix equation created for the long enough range k = m:n. Multiplying two sides of the 
above equation by matrix transposition HT, the solution for the vector z is given by: 
z = (HT*H)-1*HT*V   (14) 
It is a unique and optimal solution, according to the least square (LS) method for the 
measured data of the vector V and the matrix H. 
The simultaneous estimation of the all parameters is quite efficient in the presence of noise, 
but less accurate than the consecutive method described below. 
3.2 Separated identification of stable cavity parameters 
The time-varying detuning ∆ωk can be eliminated from the general scalar equations,  in the 
first stage of the cavity parameters identification. The remained, unknown, relatively stable 
parameters of the cavity model can be extracted from the residual equation, moving again to 
the vector format. Thus, the compact, reduced relation for step k is obtained as follows: 
 (vT)k * vk-1 = fk * y,  (15) 
where, y = [(1-T·ω1/2); u0; g1; g2; g3; g4; c1; c2] - column vector (9x1) of constant parameters, 
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fk = [(v2)k-1, (vT)k-1, (v1)k-1·( uT)k-1, (v2)k-1·(uT)k-1, -(vT)k-1*(ub)k-1, det[vk-1, (ub)k-1]] - row vector 
(1x9) of the model structure. 
Applying the above equation for all the steps, within the range k = m:n,  the cavity model can 
be expressed in the matrix format, as follows: 
U = F * y,  (16)  
where, U – total output vector ((n-m+1) x 1), so U(k) = (vT)k * vk-1, F – structure matrix ((n-
m+1) x 9), so F(k, :) = fk. 
The vector parameters ‘y’ can be effectively estimated according to the LS method and the 
solution is given by: 
y = (FT*F)-1*FT*U.  (17) 
Thus, the cavity parameters estimation is as follows: 
ω1/2 = (1-y(1))/T,  u0 = y(2:3),  g = [g1; g2; g3; g4] = y(4:7),  c = [c1; c2] = y(8:9).    (18) 
3.2.1. Successive identification of cavity parameters 
The process of further identification can be realized, for the better parameters assessment in 
the practical algorithm implementation. Thus, the different cavity operational conditions are 
considered to estimate the corresponding part of the parameters according to the decomposed 
matrix equation as follows: 
U = F * y = F(:, 1:3) * y(1:3) + F(:, 4:7) * y(4:7) + F(:, 8:9) * y(8:9).   (19) 
Three periods of the cavity operation: filling, flattop, decay are considered for the successive 
parameters estimation. Only the part of the parameters vector ‘y’ is estimated according to the 
LS method for each range. The vector and matrix of the cavity model of the proper structure 
are created, applying the part of matrix F and vector U, which were determined earlier, with 
the parameters according to the table 2.  
 

Table 2. 
 
The successive parameters estimation of the cavity model is excellent in the deterministic 
condition, but unfortunately it is very sensitive for any external interference. 
3.3. Cavity detuning estimation by the least square fitting with polynomial approximation 
Due to the mechanical inertia, the non-stationary detuning ∆ωk is relatively slowly varying 
during the pulse and the low degree polynomial approximation can be considered within the 
partial range. Therefore, for every given range k = m:n, the cavity model is time–dependent 
with the limited amount of unknown constant parameters and the least squares fitting (LS) 
with (n-m+1) samples can be applied for the identification process. 
3.3.1. Estimation of cavity detuning on-line  
Let us assume the step-varying L-degree polynomial approximation of the cavity detuning 
∆ωk, as a partial Taylor series related to the current point n, for the successive, previous  k 
steps k = m:n, as follows: 
∆ωk =  wk * x,  (20) 
where, the column vector ‘x’ consists of L+1 unknown coefficients and the row vector wk 
describes the polynomial structure of the parameter model: 
wk(1) =  1;     wk(1+i) = (n-k)i  for i = 1:L.  (21) 
The resultant column vector ∆Ω of the successive values of the cavity detuning within the 
current approximation range k = m:n is as follows: 
∆Ω = W * x, so ∆Ω(j) = ∆ωn-j+1, for  j = 1:n-m+1,  (22) 
where, Vandermonde matrix W(n-m+1 x L+1) with j-row vector W(j) = wn-j+1. 
Applying the general matrix format for the total identification of the cavity parameters 
(chapter 3.1) with the previously estimated vector ‘y’ of constant parameters, the only vector 
x remains unknown as follows: 
V - Y * y = X * x.  (23) 
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The vector coefficients ‘x’ can be effectively estimated according to the LS method again, and 
the solution is given by: 
x = (XT*X)-1*XT*(V - Y*y).  (24) 
Therefore, the estimation of the on-line cavity detuning, for the current step n is as follows: 
∆ωn = x(1).  (25) 
The simulation results for driving current of ig = 16 mA, without the beam, and with the noise, 
(variance of 1e-4 MV2) added to the cavity output, are presented in the figure 6, for different 
degree of the polynomial approximation. The root of mean square error (RMS) is calculated 
versus the range of the polynomial approximation and the cavity detuning is estimated for the 
optimal range of the LS algorithm. A 1st-degree polynomial approximation seems to be quite 
sufficient with its reasonable calculation procedure and can be considered for the future DSP 
implementation. The adaptive moving range for the different curvature can also be 
considered. 
 

Fig.6. 
 
3.3.2. Estimation of cavity detuning off-line  
 
For the repetitive Lorentz force detuning, the off-line identification procedure by the 
averaging can be applied. The LS algorithm could determine the (n-m+1) estimations for 
every point within the moving range k = m:n of the polynomial approximation. Taking the 
average value of them, the smooth detuning approximation can be obtained with the accuracy 
of ~ 1 Hz (rms), even for the more noisy output signal. 
On the other hand, the only higher degree polynomial approximation for the full fixed range 
can be considered as the off-line cavity detuning estimation. The simulation results for the 
driving current of ig=16 mA, with two noisy signals (variance of 1 MV2 and 1e-2 MV2), and 
applying different degrees of the polynomial approximation, within the full range of 2000 
steps, is presented in figure 7. 
In the Matlab implementation of the cavity detuning estimation by the LS algorithm, the total 
measurement range has been divided into the parameterized array, specified by its dimension 
and the polynomial degree for each sub-range autonomously. 
 

Fig.7. 
 
4. Initial testing of the real cavity system 
 
The Chechia cavity set-up in DESY has been applied for the initial testing of the FPGA 
controller and verification of the parameters identification algorithm according to the scheme 
presented in figure 8. The control data generated by Matlab system are loaded to the part of 
the internal FPGA memory as a feed-forward (FF) table driving the Chechia cavity. The 
output data of the cavity are acquired to another area of the memory during the pulse 
operation of the controller. Subsequently, the chosen data are conveyed to the Matlab system 
for the parameters identification processing between the pulses. For the comparison, the 
Matlab cavity model is driven in the same condition: with the same FF table applying the 
estimated Chechia parameters – half-bandwidth and detuning vector. The estimated 
parameters of the cavity can be used cyclically for the adaptive improvement of the required 
control data. 
 

Fig.8. 
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Initial testing of the Chechia system has focused the attention on the internal cavity 
parameters - half-bandwidth and non stationary detuning. Thus, the compensation of the 
environmental features – the  offset, the scaling and phase calibration has been prepared 
experimentally. 
In the first stage of the experiments, the cavity step response for the different klystron current 
has been considered for the initial system recognition. The results are presented in figure 9 for 
two operation periods – filling and decay. 
 

Fig.9. 
 
The estimation of the cavity detuning has been performed independently in these two periods 
by applying 1 to 3 degree polynomial approximation. Two curves nearly overlap in the 
turning point but the electromechanical model does not explain the fast recovery of the cavity 
detuning. Another surprise is a different half-bandwidth for these two periods.  
The next experiments would try to verify the Matlab cavity model and the efficiency of the 
parameters identification algorithm. The Chechia cavity has been driven with a simple FF 
table striving to obtain the flattop level without the beam loading. Two cases for different 
operational condition are presented in figures 10 and 11. The Chechia cavity and Matlab 
model responses have been compared, while driven in the same condition. The presumed 
detuning determines the initial FF table according to the cavity model. The estimated real 
detuning has been applied for the Matlab cavity model. When the curves are closer to each 
other, the better is the amplitude and phase stabilization on the flattop level. But 
independently, a quite good agreement for the envelopes of both objects is observed in all 
cases. Thus, the Matlab model of the cavity has been confirmed using the Chechia test bed. 
Consequently, the cavity parameters identification has been verified for the control purpose. 
Nevertheless, a set of not favorable stochastic conditions, like microphonics, nonlinearities 
and other interferences during the measurements may lead to the not expected results. The 
numerical problems with the bad conditioned matrix can also be expected. Thus, the proposed 
algorithm of the parameters identification should be carefully checked in diverse conditions of 
cavity operation. 
 

Fig.10. 
 

Fig.11. 
 
5. Conclusions 
 
The initial tests applying the FPGA based controller have been carried out with the Chechia 
cavity in DESY. The parameters identification algorithm, according to the algebraic model of 
the superconductive cavity has been presented. Applying the input-output relation, the over-
determined matrix equation has been considered with the least squares solution for the 
unknown parameters. The low degree polynomial approximation is applied for not stationary 
detuning estimation. The electrical model of the cavity has been confirmed using the Chechia 
cavity set-up. The parameters identification algorithm has been verified for the cavity control 
system development. 
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Cavity parameters identification for TESLA control system development 
Figure captions and table headings 

 
Figure 1. Functional block diagram of LLRF cavity control system (for one cavity) 
Figure 2. The Matlab results of simulation for cavity real operation condition 
Fig. 3. Cavity step response for driving current of  ig=16 mA (ib0 = 0) and cavity parameters 
monitoring 
Figure 4. Direct estimation of FPGA cavity parameters for driving current of  ig=16 mA 
with noisy cavity output (variance of 1e-4 MV2) 
Figure 5. Algebraic model of cavity environment system 
Figure 6. Cavity detuning on-line estimation by LS method with noisy cavity output (variance 
of 1e-4 MV2) and root of mean square error (RMS) for different degrees and ranges of 
polynomial approximation 
Figure 7. Cavity detuning off-line estimation by LS method for two noisy signals (variance of 
1 MV2 and 1e-2 MV2), and root of mean square error (RMS) versus degree of polynomial 
approximation for range of 2000 steps 
Figure 8. Functional diagram of testing system for CHECHIA cavity driven with FPGA 
controller supported by Matlab system 
Figure 9. Step response of CHECHIA cavity and estimated detuning for different klystron 
current 
Figure 10. Feed-forward cavity driving  – CHECHIA and model comparison  (1) 
Figure 11. Feed-forward cavity driving  – CHECHIA and model comparison  (2) 
 
Table headings 
Table 1. Main parameters of the analyzed system 
Table 2. Vector and matrix parameters for three periods of cavity operation 
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Cavity parameters identification for TESLA control system development 
Tables 

 
Table 1.  

 
 

CAVITY ELECTRICAL parameters 
CAVITY  MECHANICAL  modes 
parameters 

f0 = 1300 ………  resonance frequency 
[MHz] 
ρ = 520 ……….    characteristic resistance 
[Ω] 
QL = 3·106………..loaded quality factor 
RL = QL·ρ = 1560…load resistance [MΩ] 
f1/2 = f0/2QL  = 216…half band-width [Hz] 
∆f =390 ………… .pre-detuning [Hz] 

f = [235,290,450]…resonance frequencies 
vector [Hz] 

 
Q = [100,100,100]…… quality factor vector 
 
K = [0.4, 0.3, 0.2]……Lorentz force detuning  

constants vector 
[Hz/(MV)2] 

 
 
 
Table 2.  
 
 

Range Signal 
condition Parameters vector Structure matrix Structure vector 

Total 
pulse - y F U 

1 decay uk = 0,   (ub)k 
= 0 

y(1:3) = [(1-
T·ω1/2);  u0] 

F(decay, 1:3) U(decay) 

2 filling (ub)k = 0 y(4:7) = [g1; g2; g3; 
g4] 

F(filling, 4:7) U(filling) - F(filling, 1:3) * 
y(1:3) 

3 flattop (ub)k ≠ 0 y(8:9) = [c1; c2] F(flattop, 8:9) U(flattop) - F(flattop, 1:7) * 
y(1:7) 
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Cavity parameters identification for TESLA control system development 

Figures with captions 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Functional block diagram of LLRF cavity control system (for one cavity) 
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Figure 2. The MATLAB results of simulation for cavity real operation condition 
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Fig. 3. Cavity step response for driving current of  ig=16 mA (ib0 = 0) and cavity parameters 
monitoring 
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Figure 4. Direct estimation of FPGA cavity parameters for driving current of  ig=16 mA 
with noisy cavity output (variance of 1e-4 MV2) 
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Figure 5. Algebraic model of cavity environment system 
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Figure 6. Cavity detuning on-line estimation by LS method with noisy cavity output (variance 
of 1e-4 MV2) and root of mean square error (RMS) for different degrees and ranges of 
polynomial approximation 
 



18 

 

 
Figure 7. Cavity detuning off-line estimation by LS method for two noisy signals (variance of 
1 MV2 and 1e-2 MV2), and root of mean square error (RMS) versus degree of polynomial 
approximation for range of 2000 steps 
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Figure 8. Functional diagram of testing system for CHECHIA cavity driven with FPGA 
controller supported by MATLAB system 
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Figure 9. Step response of CHECHIA cavity and estimated detuning for different klystron 
current 
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Figure 10. Feed-forward cavity driving  – CHECHIA and model comparison  (1) 
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Figure 11. Feed-forward cavity driving  – CHECHIA and model comparison  (2) 
  
 


