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Abstract

The linac-driven Vacuum-Ultraviolet Free Electron
Laser (VUV-FEL) at DESY, Hamburg produces short
pulses of intense soft X-ray radiation. As the high gain
FEL process depends strongly on a high peak current
of the electron bunches, it is necessary to measure and
control the bunch length. For this purpose, coherent
synchrotron radiation (CSR) from a bending magnet of
the bunch compressor BC2 is analyzed with a Martin-
Puplett interferometer.

The measurement process and the reconstruction
of the longitudinal charge profile are discussed in de-
tail, including the recovery of phase information by
Kramers-Kronig analysis of the form factor. The mea-
sured spectra show no significant intensity contribu-
tion above a frequency of 2 THz, and the reconstructed
bunch shape is found to be independent of the accel-
eration phase in the accessible range, with a full width
at half maximum of about 1 ps. No evidence for the
formation of a narrow charge spike with an extent be-
low 400 fs can be established. However, critical factors
of the measurement like diffraction losses need further
investigation.

Zusammenfassung

Der auf einem Linearbeschleuniger beruhende
Vakuum-Ultraviolett-Freie-Elektronen-Laser (VUV-
FEL) des DESY, Hamburg, erzeugt kurze Pulse
intensiver weicher Röntgenstrahlung. Da der hoch-
verstärkende FEL-Prozess einen großen Spitzenstrom
der Elektronenpakete voraussetzt, ist die Messung
und Regelung der Elektronenpaketlänge notwendig.
Zu diesem Zweck wird die kohärente Synchrotron-
strahlung (CSR), die in einem Ablenkmagneten der
magnetischen Schikane BC2 entsteht, mit einem
Martin-Puplett-Interferometer untersucht.

Der Messprozess und die Rekonstruktion des lon-
gitudinalen Ladungsprofils werden detailliert erörtert,
einschließlich der Rückgewinnung von Phaseninforma-
tionen durch eine Kramers-Kronig-Analyse des Form-
faktors. Die gemessenen Spektren weisen keinen si-
gnifikanten Intensitätsbeitrag über einer Frequenz von
2 THz auf, und im der Messung zugänglichen Be-
reich ist die rekonstruierte Form des Elektronenpa-
kets unabhängig von der Beschleunigungsphase, mit
einer Halbwertsbreite von etwa 1 ps. Die Bildung ei-
ner schmalen Ladungsspitze mit einer Ausdehnung von
unter 400 fs kann nicht nachgewiesen werden. Jedoch
bedürfen kritische Einflussgrößen der Messung wie et-
wa Beugungsverluste weiterer Untersuchung.
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1 Introduction

In this thesis, the results of longitudinal bunch shape
and bunch length measurements at the DESY VUV-FEL
are discussed. As short electron bunches are required for
a high-gain free electron laser, the coherent synchrotron
radiation (CSR) they produce in a magnetic chicane can be
used for diagnostics. The employment of a Martin-Puplett
interferometer for measuring the CSR spectrum and the
principle of reconstructing the charge distribution from it
are presented.

1.1 From synchrotron radiation to the free
electron laser

Synchrotron light from particle accelerators has proven to
be a powerful tool in solid state physics and material sci-
ence due to its high intensity and broad spectrum, ranging
from the infrared to hard X-rays. At first merely a by-
product of electron accelerators used for elementary parti-
cle research, the unique properties of this radiation have
attracted a huge community of users and given rise to
an ever-growing demand for higher brilliance of the syn-
chrotron light.

In the last decades, more and more accelerator facilities
have either been converted to dedicated synchrotron light
sources (e.g. the DORIS storage ring at HASYLAB1) or
have been constructed solely for that purpose (e.g. SLS2,
Diamond3). These installations of the so-called second
and third generation are storage rings using wigglers and
undulators – periodic arrangements of permanent magnets
generating an alternating transverse magnetic field – to im-
prove the quality of the generated radiation. However, the
electrons in these setups do not radiate in phase, and their
energy is limited by the size of the storage ring. An agree-
ment has been reached over the past ten years that the next
step towards higher brilliance would be taken with linear
accelerators driving Free Electron Lasers (FELs), promis-
ing to increase radiation power, coherence level, and to
yield several orders of magnitude in brilliance as depicted
in Fig. 1.1.

Already in 1971, J. M. J. Madey had suggested the “stim-
ulated emission of bremsstrahlung in a periodic magnetic
field” [Mad71] as a mechanism to generate high-power co-
herent radiation in an undulator structure. In 1976, the
applicability of his theory was demonstrated at Stanford
University when the first FEL amplified light of 10.6 µm
wavelength [Eli76]. The setup of a “classical” low-gain
FEL resembles that of a conventional laser in using an op-
tical cavity to amplify the light over many reflection cycles.
This principle works well in the infrared, visible or “soft”
ultraviolet range, but fails for shorter wavelengths, as there
are no good mirrors for the “hard” ultraviolet (sometimes
called vacuum-ultraviolet) and X-ray radiation needed for
diffraction experiments.

The key to free electron lasers in this spectral range is
the effect of Self-Amplified Spontaneous Emission or SASE.

1 Hamburger Synchrotronstrahlungslabor, DESY, Hamburg, Ger-
many

2 Swiss Light Source, Villigen, Switzerland
3 Diamond Synchrotron Light Source, Rutherford Appleton Labo-

ratory, Didcot, UK
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Figure 1.1: Peak brilliance of various X-ray sources. SASE
FELs will produce radiation with a brilliance several or-
ders of magnitude higher than that of conventional syn-
chrotron light sources.

The basic idea is that the random density fluctuations
present in any electron beam contain some frequency com-
ponent that fulfils the resonance condition imposed by an
undulator, leading to the development of a longitudinal
charge density modulation. If the undulator is long enough,
this “microbunching” increases the fraction of electrons ra-
diating in phase, and thus enables a high-gain FEL process.
First discussed by A. M. Kondratenko and E. L. Saldin in
1981 [Kon81] and independently derived by R. Bonifacio
et al. in 1984 [Bon84], the SASE principle was shown to
work in some prototype machines.

In 2000, the Low Energy Undulator Test Line LEUTL
at Argonne National Laboratory4 showed SASE lasing at
530 nm wavelength [Mil00], which could later be improved
to 385 nm. It was followed by the TESLA Test Facility
TTF at DESY in the same year, when the first hard ul-
traviolet radiation with a peak intensity at 109 nm was
produced [And00]. Tunability down to 80 nm was demon-
strated few weeks later.

1.2 The VUV-FEL

Conceived not only as a free electron laser, but mainly
as a testbed for the proposed superconducting linear col-
lider TESLA (TeV Energy Superconducting Linear Accel-
erator), the TESLA Test Facility was to produce an elec-
tron beam of considerably higher quality in terms of emit-
tance and bunch length than attainable in a storage ring.
While work on the superconducting 1.8 K niobium cavities
for the accelerator modules started in 1992, construction
of the 100 m long linac was to commence about two years
later. It comprised a radio frequency (RF) photocathode

4 Argonne National Laboratory, Argonne, Illinois, USA
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Figure 1.2: Sketch of the VUV-FEL. The electrons are produced in the photocathode RF gun and
accelerated in the modules ACC1 to ACC5. Two bunch compressors serve to reduce the bunch
length and increase the peak current in order to enable the SASE process in the undulator.
At the last dipole of BC2, synchrotron light is extracted and led through a transfer line to the
Terahertz and Optical Synchrotron Radiation Laboratory, TOSYLAB.

electron gun, one accelerator module with eight nine-cell
cavities fed with an RF frequency of 1.3 GHz, a bunch
compressor to reduce the bunch length and a 15 m long
undulator. TTF was operated until 2003, when the accel-
erator was extended to 260 m in order to drive an FEL at
much shorter wavelengths.

Commissioning of the second phase of the test facility,
named Vacuum-Ultraviolet Free Electron Laser for the ex-
pected spectral range it would cover, began in early 2004.
As sketched in Fig. 1.2, the VUV-FEL consists of an RF
photocathode gun, five accelerator modules similar to the
type used in TTF, two bunch compressors – named BC2
and BC3 for historical reasons –, and an undulator com-
posed of six 5 m long segments. Some free space behind
the modules ACC4 and ACC5 is reserved for two additional
acceleration stages in order to facilitate a later increase in
energy.

The RF gun can produce bunches of up to 4 nC charge
at a rate of 1 MHz, grouped in bunch trains as required
(Fig. 1.3). The electrons are accelerated to an energy of
127 MeV in ACC1 and pass the first bunch compressor,
BC2, where the bunch may be shortened by about a factor
of eight [Stu04]. This is necessary because the peak cur-
rent of the beam in the undulator is a decisive factor for
the SASE process. ACC2 and ACC3 increase the energy to
380 MeV before another compression step by a factor of up
to five can be taken in BC3. In the current state, the last
modules are used to push the beam energy to 440 MeV. It is
planned to cross the threshold of 1 GeV by using the option
for two more acceleration structures, ACC6 and ACC7. In
front of the main undulator, space is reserved for additional
undulators to “seed” the FEL process. A bypass line al-
lows to send the beam to the dump without traversing the
sensitive undulator structures at all.

It was in January 2005, few weeks after the first beam
had passed the undulator, when the VUV-FEL produced
the world’s first soft X-ray SASE laserlight at wavelengths
of about 30 nm. In mid-2005, the VUV-FEL is scheduled
to become a user facility delivering its laser pulses to five
experimental stations. Planned experiments include clus-
ter, surface and solid state physics as well as molecular
biology and plasma research. The experimentators are not

Time
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g
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1 sµ 200ms (typ.)

Figure 1.3: Timing of macropulses at the VUV-FEL. The
beam is divided into bunch trains of typically 10 single
bunches, the latter repeating at 1 MHz. The macropulse
repetition rate is usually 5 Hz or 2 Hz. For user oper-
ation, up to 7200 bunches/train at 10 Hz are planned,
with a bunch repetition rate of 9 MHz.

only going to take advantage of the high intensity of the
generated radiation, but especially of its time structure, as
the single light pulses are far shorter than a picosecond.
This allows novel investigations of the course of chemical
processes or of the interaction of matter with X-ray light.

With these unique features, the VUV-FEL also serves
as a pilot machine for the European X-ray FEL (XFEL), a
20 GeV linac-driven free electron laser planned to be built
in 2006, extending from the DESY site over a length of
more than 3 km to the north-west [Wei04].

1.3 Bunch length

As mentioned before, the peak current I0 of the electron
bunches is an important factor for a high-gain FEL. This
can be seen directly from the simplified equations for the
case of a monoenergetic electron beam with an energy
matching the resonance condition imposed by the undula-
tor [Wie03]. In this case, the gain G of the seeding electro-
magnetic wave grows exponentially with the longitudinal
position z in the undulator,

G(z) ∝ exp

�
z

LG

�
,

with the gain length given by

LG = Cγ

�
σ2

t

I0

�1/3

.
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1.3 Bunch length

C is merely a constant defined by the parameters of the
undulator, γ denotes the relativistic gamma factor and σt

the transverse RMS size of the beam. It can be seen that it
is imperative to have an electron beam with high peak cur-
rent to render the generation of laser pulses feasible within
an undulator of limited length.

To reach a radiation wavelength of 6 nm in the ultimate
extension stage of the VUV-FEL, a peak current of 2500 A
will be needed (cf. [Edw95], [TTF02]). This emphasizes
the need for longitudinal bunch compression, which is re-
alized by magnetic chicanes that are discussed in more
detail in section 5.1. It also leads to the requirement
for new techniques of longitudinal bunch shape measure-
ment, as conventional methods (like streak cameras) reach
their resolution limit for the generated sub-picosecond long
bunches. At present, several diagnostic techniques for ul-
trashort bunches are under investigation; a comprehensive
overview can be found in [Kra97]. They may be grouped
in two main categories, time-domain and frequency-domain
techniques.

The two best-known time domain methods involve the
use of special cavities. In the zero-phasing technique, the
cavity is fed with the usual longitudinally accelerating RF
wave after a phase shift of 90°, which means that an en-
ergy slope is impressed on the bunch so that its head can
be separated from its tail in a dispersive section. Very
similar is the employment of a transverse deflecting cavity,
which uses a transverse mode to make head and tail of a
bunch separable on a screen. Both of these methods suffer
from the disadvantage of relatively high space requirements
and of their invasiveness, which means that some bunches
have to be consumed for the measurement. A promising
noninvasive time-domain technique is the Electro-Optical
Sampling (EOS), which uses the dependence of the bire-
fringence of a ZnTe or similar crystal on the strength of
an external electric field by putting the crystal near the
beam and probing its optical properties with ultrashort
laser pulses that are triggered relative to the arrival time
of the single bunches. EOS is mainly limited by the timing
jitter of the electronics involved; a relative jitter of 40 fs
has already been demonstrated [Ste04a].

All frequency domain approaches involve the analysis of
the radiation spectrum generated by the electron bunch.
In this context, the most important types of radiation are
coherent synchrotron radiation (CSR), coherent transition
radiation (CTR) and coherent diffraction radiation (CDR).
Although more subtle spectrometers have been proposed
(see e.g. [Lud03]), the widely used work horse for spec-
troscopy in all ranges of application is the Michelson inter-
ferometer.

The focus of this thesis is on the examination of syn-
chrotron light that is extracted from the last dipole of BC2
and led through a transfer line to the Terahertz and Optical
Synchrotron Radiation Laboratory, TOSYLAB (Fig. 1.2).
There, the intensity spectrum is measured with a Martin-
Puplett interferometer, a variant of the Michelson type es-
pecially suited for polarized radiation.

Measurements with a similar instrument have been done
at the Tesla Test Facility by Boris Leißner, Marc Geitz
and Jan Menzel and can be found in [Lei98], [Gei99a] and
[Men05]. Earlier investigations are found in [Han97].
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2 Beam diagnostics with coherent radiation

The radiation emitted by a relativistic bunch of elec-
trons is usually incoherent because the particles radiate
under random phases. In this case, the intensity perceived
by an observer is the sum of the single-particle intensities,
regardless of the nature of the radiation process. However,
this simple relation is only valid as long as the radiation
wavelength is small compared to the bunch length.

If we consider a one-dimensional distribution of electrons
that is confined to a length l, we find the phases of emis-
sion to be distributed between 0 and 2π for a wavelength
λ = l. For longer wavelengths, the phase range becomes
even smaller, and hence the emitted radiation becomes par-
tially coherent. If the wavelength is big compared to the
bunch length, λ� l, the phase difference between the elec-
tric fields generated by the electrons is negligible, and the
total field may be found by adding these single-particle
contributions.

As intensity scales with the square of the electric field,
we may thus distinguish two extreme cases. For totally
incoherent radiation, the intensity scales with the number
N of emitting particles, whereas in the totally coherent
case it scales with N2.

2.1 The radiation spectrum of a bunch of
charged particles

As the goal is to use the radiation spectrum I(ω) produced
by a bunch of relativistic charged particles to determine its
density distribution ρ(x), an expression has to be found
relating them. The brief mathematical derivation given
here is similar to the one found in [Lai96], and its validity
is restricted to the far-field or Fraunhofer limit.

Considering a bunch of N particles with the individual
coordinates xj , we first postulate that they are all sub-
ject to the same radiation process, each emitting an inten-
sity distribution described by the single-particle spectrum
I1(ω). In the far-field, the difference in field amplitude from
the single particles can be neglected. However, their phase
contribution has to be considered. Hence, if a detector is
put in a direction described by the unit vector n from the
charge distribution, it will observe the intensity sum

I(ω) = I1(ω)

�����
NX

j=1

exp
�
iω

xj · n
c

������
2

= I1(ω)

NX
j=1

exp
�
iω

xj · n
c

� NX
k=1

exp
�
−iω

xk · n
c

�
.

This double sum yields unity for each term with j = k and
may thus be written as

I(ω) = I1(ω)

0
@N +

NX
j 6=k

exp

�
iω

(xj − xk) · n
c

�1A . (2.1)

To proceed from discrete particles to a continuous distri-
bution, the total charge of the bunch is expressed as Q =R
ρ(x) d3x. Then the number of electrons in the infinites-

imal cube between x and x + dx is dN = (ρ(x)/Q) d3x,

and (2.1) can be rewritten as

I(ω) = I1(ω)

�
N +N(N − 1)

ZZ
ρ(x)ρ(x′)

Q2

· exp

�
iω

(x− x′) · n
c

�
d3xd3x′

�
. (2.2)

If we now introduce the form factor F (ω) as the three-
dimensional Fourier transform1 of the charge distribution
with

F (ω) =
1

Q

Z
d3x ρ(x) exp(−iω(x · n)) , (2.3)

we obtain the simple relation

I(ω) = I1(ω)
�
N +N(N − 1) |F (ω)|2

�
. (2.4)

This result is consistent with the qualitative considerations
outlined above. For sufficiently high frequencies, the form
factor vanishes and I(ω) = NI1(ω). In the low-frequency
limit of ω → 0, F (ω) approaches unity and hence I(ω) =
N2I1(ω).

It should be noted that the form factor depends on the
direction n of the particular wave vector. In the case of ob-
servation along the direction of motion of the bunch, (2.3)
reduces to a one-dimensional integration over the longitu-
dinal charge distribution,

Fz(ω) =
1

Q

Z
dz ρ(z) exp(−iωz) .

If the radiated power is confined to a small solid angle
around this z-axis, even experimental setups with a broad
angular acceptance will measure a spectrum that is domi-
nated by the longitudinal form factor. It will be seen that
this is the case for synchrotron radiation.

Provided that the single-particle spectrum is known,
equation (2.4) is a useful tool to calculate the coherent
spectrum of an electron bunch from its density distribution.
Still, the reverse way – calculating the distribution from the
spectrum – cannot be taken without difficulties. The prob-
lem is that only the modulus of the form factor appears in
the equation, while the Fourier transform of any asymmet-
rical distribution has a non-vanishing imaginary part. The
interferometry with CSR and a Martin-Puplett interfero-
meter as described in this thesis shares this drawback with
all frequency-domain techniques of bunch length diagnos-
tics that rely on a measurement of the intensity spectrum
alone. However, the phase of the form factor is not com-
pletely independent of its absolute distribution, and thus a
minimal phase carrying most characteristics of the original
bunch shape can be established using a Kramers-Kronig
relation. The problem of recovering the lost phase infor-
mation of the form factor is addressed in detail in chapter 4.

As mentioned before, in the context of beam diagnos-
tics a number of different sources of coherent radiation are
under investigation. Here, only synchrotron and transition
radiation will be characterized briefly.

1 Accelerator physicists sometimes define the form factor as the
square of the Fourier transform (2.3). However, the term is most
widely used in nuclear physics, and hence the convention used in
the majority of textbooks from that field is followed here.
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2 Beam diagnostics with coherent radiation

-15

-10

-5

0

5

10

-10 -8 -6 -4 -2 0

lo
g
1
0
I
(ω

)/
I
(ω

c
)

log10 ω/ωc

spectrum with coherent effects
spectrum without coherent effects

Figure 2.1: Spectrum of synchrotron radiation with co-
herence effects. The axes are normalized to the critical
angular frequency ωc and the synchrotron radiation in-
tensity at that frequency. The coherent amplification is
shown for a Gaussian-shaped bunch with an RMS width
of 250 µm and a charge of 1 nC.

2.2 Coherent synchrotron radiation

Synchrotron radiation is produced when a relativistic
charged particle is accelerated perpendicular to its direc-
tion of motion. For purely circular motion, analytical for-
mulas describing the radiated spectrum can be found in a
variety of references like [Jac98]. The total radiated power
is known to scale as E4/R2 with E being the beam energy
and R the bending radius, and at the at the critical angular
frequency ωc = 2πνc = 3

2
γ3 c

R
the spectrum is split in two

halves with the same integrated power.

From the discussion above it is clear that coherence ef-
fects can only be expected for wavelengths in the order of or
longer than the bunchlength, i.e. for the low-frequency part
of the spectrum. Figure 2.1 shows the coherent synchrotron
radiation spectrum for a Gaussian bunch of 250 µm RMS
width. For conditions similar to those in bunch compres-
sor BC2, γ = 250 and R = 1.6 m, the critical frequency is
approximately νc ≈ 7 · 1014 Hz, while the coherent ampli-
fication takes place below about 4 THz. In the context of
bunch length measurements, a low-frequency approxima-
tion of the spectral power distribution as given by [Hof98],

dP

dω
≈ e20

2πε0Γ( 1
3
)

�
ω

3cR2

�1/3

≈ 1.7224 · 10−28m
W

s−1
·
�

ω

3cR2

�1/3

,

(2.5)

can be used as I1(ω) in (2.4) to obtain a rough estimate of
the form factor.

Considering that the total radiation power scales with
E4, it is remarkable that approximation (2.5) is indepen-
dent of the beam energy. As Fig. 2.2 illustrates, the inco-
herent synchrotron radiation spectra for various relativistic
gamma factors in fact do not differ for low frequencies. If
the energy is raised, only the shifting of the peak towards
higher frequencies causes the integrated power to increase.
For accelerator diagnostics this means that the power of the
coherent radiation does not depend on beam energy, but
only on shape, charge and length of the bunch. In terms of
total radiated power, the incoherent part may usually be
neglected when there is a significant coherent part in the
spectrum.
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Figure 2.2: Incoherent synchrotron radiation spectra for
various beam energies, given in terms of the relativis-
tic gamma factor. For low frequencies, the spectrum is
independent of the energy. For higher γ, the intensity
distribution extends to higher frequencies and the total
radiated power grows.

2.2.1 Angular distribution and polarization

An important characteristic of synchrotron radiation is its
angular distribution. With θ denoting the angle of eleva-
tion of the observer above the plane of motion of the parti-
cles (which will here be called horizontal), [Jac98] gives the
following formula for radiated energy per unit solid angle:

dI

dΩ
=

7

16
· e20
4πε0R

· 1

(1/γ2 + θ2)5/2

�
1 +

5

7

θ2

(1/γ2) + θ2

�

This shows directly that most of the radiation is confined
to a small angle of elevation. Moreover, the equation may
be used to derive some information about the polarization
of the radiation as its first term corresponds to polarization
parallel to the orbital plane, and the second to the perpen-
dicular state. The radiation emitted in the plane of motion
is totally horizontally polarized. Even integrating over θ, it
is found that the parallel component comprises a fraction
of 7/8 of the total emitted power. It will be seen that this
property makes synchrotron radiation an ideal input to a
Martin-Puplett interferometer.

By a more thorough derivation, an expression incorpo-
rating also the frequency dependence may be found. For
brevity, only the most important considerations in this con-
text will be mentioned here. A more detailed discussion can
be found in a variety of textbooks like [Jac98] or [Wie03].
The average opening angle of synchrotron light is about
the inverse of the relativistic gamma factor,



θ2
�1/2 ≈ 1/γ .

While for angular frequencies far above ωc the emitted
beam is narrower, it is correspondingly found to be much
broader in the limit of long wavelengths; the critical angle
where the relative radiated power has decreased to 1/e is
found to be

θc ≈
�

3
c

ωR

�1/3

(for ω � ωc) ,

which is again independent of the particle energy. For the
conditions found in the magnetic chicane BC2, the average
opening angle is 0.23°, whereas for a frequency of 1 THz
the critical angle of 2.6° is about ten times bigger.
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2.3 Coherent transition radiation

0

2

4

6

8

10

0 2 4 6 8 10

ra
d
ia

te
d

en
er

g
y

p
er

fr
eq

u
en

cy
in

te
rv

al
(1

0
−

3
6
J/

H
z)

frequency (THz)

numerical simulation
plain synchrotron radiation

Figure 2.3: Comparison of single-particle spectra for BC2.
For the simulation, 5 mirror charges on the vacuum
chamber walls were taken into consideration to repro-
duce the low-frequency cutoff effect. The synchrotron
radiation spectrum has been calculated using (2.5), and
normalized to the same integrated energy.

2.2.2 Simulated CSR spectrum for bunch
compressor BC2

The common analytical formulas for synchrotron radiation
describe an electron orbiting in a closed circle in free space.
It is obvious that these assumptions are not met by parti-
cles moving through a magnetic chicane: On the one hand,
the field of a dipole magnet has areas of transition from
and to zero. Thus, only a part of the orbit well within the
area covered by the dipole can be regarded as the arc of
a circle. The radiation contributions from the outer, inho-
mogeneous field regions are referred to as edge radiation.
On the other hand, the electrons move within a metallic
vacuum chamber, so additional boundary conditions have
to be satisfied for a correct calculation of the electric field.

In general, this electrodynamic problem cannot be solved
analytically anymore. Instead, numerical simulations are
used to track the particle through the bunch compressor
while calculating its time dependent electric field. After-
wards a Fourier transform is used to compute the energy
spectrum.

The single-particle spectrum shown in Fig. 2.3 is based
on a simulation from [Gri05] for a particle energy of
130 MeV and a bending radius of 1.6 m in the last dipole
of BC2. The finite length of the magnet is taken into con-
sideration, and the vacuum chamber is modeled as a set
of two perfectly conducting horizontal planes, one 4 mm
above the plane of motion, the other 4 mm below it. The
corresponding boundary conditions are reproduced using
the well-known method of mirror charges, of which five
generations are calculated. The radiation energy is inte-
grated over the area of the vacuum window of the bunch
compressor.

For comparison, the synchrotron radiation spectrum as
computed from (2.5) is also shown in Fig. 2.3, normalized
to the same integrated energy as the simulated one.

The intensity of the simulated spectrum drops sharply
below about 500 GHz. This effect is known from the theory
of waveguides which have a cutoff frequency below which
no electromagnetic waves are transported. The situation
in a vacuum chamber with narrowly spaced metallic walls
is similar. It will be seen that the low-frequency cutoff con-
stitutes a severe restriction for bunch shape measurements
with coherent radiation.

particle
trajectory

backwards
radiation

boundary
plane

ÃÃ

k p

n

²2²1

Figure 2.4: Direction of emission of transition radiation.
The principal plane of emission is defined by the normal
vector n to the boundary plane and the particle momen-
tum p. The main part of the backward radiated power
is confined to a small angle around vector k.

2.3 Coherent transition radiation

Whenever a charged particle passes the boundary between
two media with different dielectric properties, a part of
the electric field that it carries along is stripped off and
emitted as transition radiation (TR). The probably most
popular use of this process in accelerator diagnostics is the
visualization of the transverse beam profile with optical
transition radiation (OTR) screens. These screens are thin
discs typically made of silicon, often with a metallic surface
layer, which are directly inserted into the vacuum cham-
ber. A conventional camera is then used to observe the
generated picture.

While OTR applications are based on incoherent emis-
sion, short electron bunches may also generate coherent
transition radiation which can be used for coherent radia-
tion diagnostics as described in the beginning of this chap-
ter. Because the focus of this thesis is on interferometry
with synchrotron light, the properties of transition radia-
tion will be summarized only roughly. An extended intro-
duction with the focus on beam diagnostics can be found
in [Gei99].

An important property of transition radiation is its
“white” spectrum. The emitted power is independent of
frequency; this is extremely helpful because I1 in (2.4)
is reduced to a constant. The main part of the radiated
power is confined to a small angular range in both the
forward direction – i.e. in the direction of the beam – and
the backward direction as shown in Fig. 2.4. For exam-
ple, all OTR screens at the VUV-FEL are mounted at an
angle of ψ = 45° with respect to the beam axis. The gen-
erated transition radiation is then mainly emitted in the
plane spanned by that axis and the normal to the screen
n. Its main direction is 45° off that normal vector, which
means that the backward part of the OTR leaves the vac-
uum chamber by an angle of 90° with respect to the beam
axis.
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3 The Martin-Puplett interferometer

In this chapter, the principle of spectral measurements
with an interferometer of the Martin-Puplett type is dis-
cussed. A description of the actual experimental setup is
found in section 5.3.

incident
radiation

polarizer

fixed
roof mirror

moveable
roof mirror

be
am

 d
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id
er

vertical
detector

horizontal
detector

analyzer

Figure 3.1: Schematic of a Martin-Puplett interferometer.
The alignment of the wire grids is outlined as seen in
projection by the first incident beam.

3.1 Basic design and mode of operation

The design of a Martin-Puplett interferometer resembles
that of the well-known Michelson interferometer, with some
additional arrangements to take advantage of the polariz-
ability of electromagnetic radiation. A simplified schematic
is given in Fig. 3.1.

The incident light enters from the left and passes a grid
of vertically aligned wires acting as a horizontal polarizer
for wavelengths in the FIR regime (cf. section 5.3.4). In the
center of the interferometer, a similar grid is placed at an
angle of 45° relative to the beam axis. Its wires are oriented
at 35.3° relative to the horizontal plane, so they appear at
45° in projection (see Fig. A.1 for a drawing of the actual
setup). The central grid thus acts as a beam divider that
transmits one half of the incoming intensity and reflects
the other half, both beams being polarized linearly, but
perpendicular to each other. The radiation is then double-
reflected at the roof mirrors and reaches the beam splitter
again.

Because the polarization of the partial beams is flipped
at the roof mirrors (cf. section 5.3.2), the previously re-
flected beam is now transmitted and vice versa, so that a
superposition of both beams propagates into the analyzer
arm of the interferometer. Here, the final wire grid sep-
arates the horizontally polarized fraction of the radiation
from the vertically polarized one, each being monitored by
a separate detector.

In the process of recording an interferogram, the right
roof mirror is moved along the axis of the incident beam.
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Figure 3.2: Exemplary plot of the detector signal ampli-
tudes versus the position of the moveable roof mirror.
Fluctuations and drifts of the total radiation intensity
are especially discernible in the sum of the signals.

When the optical path length from the central beam divider
to the moveable roof mirror matches that to the fixed one,
it is obvious that – after recombination of the two rays –
horizontally polarized light arrives at the analyzer grid. In
any other case, the difference of the optical path lengths
2x gives rise to a phase shift between the reflected and the
transmitted ray, and thus leads to a change of the polar-
ization state of the recombined beam.

If two linearly polarized waves with perpendicular po-
larizations are recombined at non-zero phase, elliptically
polarized light is produced. Because the phase depends on
the wavelength λ of the radiation as ϕ = 2π 2x

λ
, different

frequency components of the recombined beam show differ-
ent degrees of ellipticity and therefore different intensities
in the horizontal and vertical plane of polarization behind
the analyzer grid.

3.2 The interferogram

According to the mode of operation illustrated above, the
direct result of an interferometer scan is a series of data
points of the two detector signal amplitudes versus the roof
mirror position x, as depicted in Fig. 3.2. Fluctuations
and drifts in the radiation intensity affect both detector
signals similarly, whereas the interference patterns for the
horizontal and the vertical polarization are anticorrelated.

The fact that ideally no intensity is lost in the interfero-
meter, i.e. that the intensity of the beam behind the first
polarizer equals the total intensity measured at both de-
tectors, can be utilized to decrease the signal fluctuations
mentioned above. If Uh(x) and Uv(x) are the signal ampli-
tudes measured by the horizontal and vertical detector, we
define the difference interferogram δ(x) as the difference of
these amplitudes normalized to their sum:

δ(x) =
Uh(x)− Uv(x)

Uh(x) + Uv(x)
(3.1)

As seen in Fig. 3.3, the noise originating from variations of
the beam intensity is almost completely removed in the dif-
ference interferogram. Consequently, the curve approaches
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Figure 3.3: Exemplary plot of the normalized difference
interferogram corresponding to the signal amplitudes
shown above. By normalizing to the sum of the signals,
fluctuations are eliminated to a great extent.

zero in the outer regions where less interference effects are
noticeable.

3.3 The relation between the difference
interferogram and the spectrum

To understand the physical meaning of the difference inter-
ferogram, a basic analysis of the functioning of the Martin-
Puplett interferometer is necessary, as given for instance
in [Lei98]. For this purpose, the electric field E for one fre-
quency component ω of a reference beam is tracked through
the various stages of reflection and transmission in the in-
strument.

Behind the first wire grid, we have a horizontally polar-
ized plane wave with the wave vector k:

E(t,x) = E(t,x)uh = E0 sin(ωt− kx)uh

For the analysis of interference effects we will compare the
electric fields of partial waves at the same arbitrary location
x. Hence, kx is just a constant phase offset. We are free
to choose it as zero, and thus it is silently neglected in the
following.

uh designates the horizontal, uv the vertical unit vector
in a right-handed coordinate system moving along with the
beam so that uh ⊥ k ⊥ uv. At the beam divider, the wave
is split up into a transmitted part Et and a reflected part
Er, both being oppositely polarized at 45° relative to the
horizontal plane:

Et(t) =
E0√

2
sin(ωt)

uh + uv√
2

Er(t) =
E0√

2
sin(ωt)

uh − uv√
2

As outlined in section 5.3.2, the following double-reflection
at the roof mirrors preserves the polarization of the beams
in our k-relative coordinate system. However, a phase shift
results if the moveable roof mirror is in a position ∆x 6= 0
where the two beams have unequal optical path lengths.
The path difference 2∆x is equivalent to a time offset τ =
2∆x

c
, and the resulting electric fields are

E′
t(t) = Et(t− τ) =

E0√
2

sin(ω (t− τ))uh + uv√
2

E′
r(t) = Er(t) =

E0√
2

sin(ωt)
uh − uv√

2
.

uv

uh

!t–!¿/2

!¿/2

E
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a
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Figure 3.4: Elliptical polarization of light in the analyzer
arm of the interferometer

Now, E′
t is reflected at the central wire grid while E′

r is
transmitted. Hence the total field in front of the analyzer
grid becomes

Efinal(t) = E′
t(t) + E′

r(t)

=
E0

2

h
(sin(ωt− ωτ) + sinωt) uh

+ (sin(ωt− ωτ)− sinωt) uv

i
.

(3.2)

To get a better view of the polarization state of the radi-
ation, (3.2) can be rewritten using trigonometric sum for-
mulas. This yields

Efinal(t) = E0

h
sin
�
ωt− ωτ

2

�
cos
�ωτ

2

�
uh

− cos
�
ωt− ωτ

2

�
sin
�ωτ

2

�
uv

i
.

(3.3)

From this equation it becomes clear that the horizon-
tal and vertical components are out of phase by 90°, with
amplitudes determined by the time shift τ . The light is
therefore eliptically polarized as shown in Fig. 3.4. For zero
path difference (τ = 0) we get horizontal polarization as
expected.

However, the detectors measure intensities and not elec-
tric fields, and due to their time constant they integrate
over the incoming radiation. Hence we can expect the de-
tector signals to be proportional to the time average of the
squared electric field:

Uh,v(τ) ∝ lim
T→∞

1

2T

Z T

−T

(Efinal · uh,v)
2 dt

After integrating we get

Uh(τ) ∝ E0
2

2
cos2

ωτ

2

Uv(τ) ∝
E0

2

2
sin2 ωτ

2
,

which already shows that the signals have to be anticorre-
lated, i.e. one detector shows a maximum when the other
shows a minimum and vice versa. From (3.1), we can now
calculate the expected form of the difference interferogram
for monochromatic light:

δmono(τ) =
cos2 ωτ

2
− sin2 ωτ

2

cos2 ωτ
2

+ sin2 ωτ
2

= cosωτ
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3.5 Comparison with the Michelson interferometer
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Figure 3.5: Electric field vectors for the recombination of
the partial beams in front of the analyzer grid at zero
path difference.
a) In a well-aligned interferometer, the amplitudes of the
electric fields are equal. The recombined wave is horizon-
tally polarized.
b) If there is some misalignment, the amplitudes differ.
The vertical component of the recombined field does not
vanish.

It is straightforward to generalize this result to the case
of a whole spectrum with an arbitrary intensity distribu-
tion I(ω). In this case, the integrated detector signals are
given by

Uh(τ) ∝
Z ∞

0

I(ω) cos2
ωτ

2
dω

Uv(τ) ∝
Z ∞

0

I(ω) sin2 ωτ

2
dω ,

and therefore the difference interferogram becomes

δ(τ) =

R∞
0
I(ω)

�
cos2 ωτ

2
− sin2 ωτ

2

�
dωR∞

0
I(ω)

�
cos2 ωτ

2
+ sin2 ωτ

2

�
dω

=

R∞
0
I(ω) cos(ωτ) dωR∞
0
I(ω) dω

.

This is the Fourier cosine transform of I(ω), normalized to
the integrated intensity. In short, the difference interfero-
gram is the Fourier transform of the spectrum.

3.4 Influence of misalignments

A detailed analysis of various types of interferometer mis-
alignments and of their influence on the interferogram can
be found in the literature (e.g. [Lam78], [Les90]). However,
a relatively simple consideration can already give some in-
sight.

Almost all conceivable misalignments of a Martin-
Puplett interferometer have the effect in common that the
interfering electric fields in front of the analyzer grid do not
have the same amplitude anymore, as they would in a well-
aligned instrument. We can imitate this by introducing a
factor ξ to one of the two perpendicular fields in (3.2):

Efinal(t) = E′
t(t) + ξE′

r(t) (3.4)

The placement of the misalignment parameter ξ is arbi-
trary. A more practical definition is

ξ =
max(E′r, E

′
t)

min(E′r, E
′
t)

, (3.5)

so ξ is the ratio of the electric field amplitudes of the two
beams in front of the analyzer grid, and it is restricted to
0 6 ξ 6 1.

The consequences of a misalignment with ξ < 1 are il-
lustrated in Fig. 3.5. Even if the interferometer is set to an
equal optical path length in both arms, the recombination
of the partial beams does not yield horizontally polarized
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Figure 3.6: Amplitude of the difference interferogram as a
function of the misalignment parameter ξ. For a per-
fectly aligned interferometer, ξ is unity.

light anymore. The influence can be calculated by decom-
posing (3.4) into its horizontal and vertical components:

Efinal(t)/E0 =�
1− ξ

2
sin(ωt− ωτ) + ξ sin

�
ωt− ωτ

2

�
cos

ωτ

2

�
uh

+

�
ξ − 1

2
sin(ωt− ωτ)− ξ cos

�
ωt− ωτ

2

�
sin

ωτ

2

�
uv

This result is similar to (3.3), but the field components now
have an additional, equal in-phase contribution. Proceed-
ing to the detector intensities, we obtain

Uh(τ) ∝
�
ξ2

2
cos2

ωτ

2
+

(1− ξ)2

8

�
E0

2

Uv(τ) ∝
�
ξ2

2
sin2 ωτ

2
+

(1− ξ)2

8

�
E0

2 .

So, if one of the two interfering beams in front of the ana-
lyzer has a different intensity than the other, a constant
offset is found in the detected signals. The difference in-
terferogram is affected as well, and the calculation leads to

δ(τ) =
1

1 + 1
2

�
1
ξ
− 1
�2

R∞
0
I(ω) cos(ωτ) dωR∞
0
I(ω) dω

. (3.6)

This is the same result as found before, except for a scal-
ing factor that depends solely on the misalignment param-
eter ξ. The difference interferogram does not change, only
its amplitude is influenced as shown in Fig. 3.6.

3.5 Comparison with the Michelson
interferometer

When compared with interferometers of the Michelson
type, the Martin-Puplett design reveals its most obvious
advantage in having two outputs instead of one, because
the differential measurement improves the signal-to-noise
ratio. The fact that the total incoming intensity behind the
initial polarizer matches the sum of the final intensities at
the detectors permits a very accurate normalization, allow-
ing to remove almost all effects originating from variations
in the initial intensity. This feature is especially useful for
synchrotron radiation measurements as the beam charge
and other accelerator parameters can be subject to strong
fluctuations.
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3 The Martin-Puplett interferometer

In a Michelson interferometer, only one half of the initial
intensity finds its way to the detector while the other half is
reflected back in the direction of the source. Due to the na-
ture of the central beam divider, the Martin-Puplett type
ideally transports all of the incoming polarized light to the
detectors. However, this advantage can only be brought to
bear in the case of light having mainly the right polariza-
tion. Otherwise, a smaller or greater part of the radiation
is reflected at the first wire grid, thus lowering the intensity
yield of the Martin-Puplett instrument.
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4 Kramers-Kronig analysis

Any intensity-based interferometry method is subject
to the limitation that only the absolute value of the form
factor can be measured, and not its complex phase. How-
ever, it is possible to recover the missing phase informa-
tion by a Kramers-Kronig analysis, a technique proposed
by R. Lai and A. J. Sievers in [Lai94] and summarized in
[Lai97], that takes advantage of the formal similarity with
the analysis used in optics to reconstruct complex reflec-
tivities.

An outline of the mathematical foundations given in
[Tol56] will be presented here in a form already adapted
to the problem of deriving the complex form factor.

4.1 Definitions and prerequisites

Remembering that the complex form factor is the Fourier
transform of the charge distribution1 ρ(t),

F (ω) =
1

Q

Z +∞

−∞
ρ(t) exp(−iωt) dt , (4.1)

we know that F (0) = 1, and hence |F (ω)| is bounded by
unity for all frequencies ω. For a real bunch of finite length
it is also obvious that F (ω) → 0 for ω →∞.

We are now looking for the most common expression for
F (ω) for a given modulus |F (ω)|. To facilitate the discus-
sion of the problem, we do not require ω to be real, but
allow for complex values. As we can assume that ρ(t) → 0
for t → ∞, it follows from (4.1) that the form factor is
analytic2 in the upper half of the complex ω plane. Fur-
thermore, the reality of ρ(t) determines the symmetry of
the form factor F (ωr) for real ωr:

F (−ωr) = F ∗(ωr)

If we look at a complex ω = ωr + iωi, it is easy to find a
generalization of this rule:

F (−ωr + iωi) = F ∗(ωr + iωi) (4.2)

Postulating that the bound |F (ω)| 6 1 holds for all com-
plex ω ∈ C, we can introduce a complex phase

η(ω) = ηr(ω) + iηi(ω)

with ηi, ηr ∈ R, ηi > 0, and write F (ω) as

F (ω) = exp(iη(ω))

= exp(−ηi(ω)) exp(iηr(ω)) .

The complex phase η(ω) is just another way of representing
the form factor F (ω); both descriptions are equivalent and
can be converted into each other. Solving for the phase,
we get

ηi(ω) = − ln |F (ω)|
ηr(ω) = argF (ω) .

1 As ρ(t) actually carries the unit C/s, it would be more accurate to
speak of a current distribution. However, in the context of bunch
lengths it is often used interchangeably with the spatial ρ(x), and
therefore both are comprehended under the same notion.

2 A function f : U ⊆ C → C is referred to as analytic (or holo-
morphic) on an open set U if f is complex differentiable at every
point in U [Bro96].

This means that the imaginary part of the phase is deter-
mined by the given absolute value of the form factor while
the real part remains unknown. Although the information
is insufficient for an exact determination of this real part,
the knowledge of ηi(ω) and of certain properties of F (ω)
can be used to find some restraints, and especially a mini-
mal value, for ηr(ω).

4.2 Contributions to the form factor

Because we are only interested in the value of F (ω) for real
ω, we may multiply it with any function provided that the
absolute value |F (ω)| on the real ω axis is not changed and
that the so-called regularity condition is still fulfilled – i.e.
F (ωr), ωr ∈ R, is the boundary value function of F (ω)
which is itself bounded and analytic in the upper half of
the complex ω plane.

One multiplicative term that complies with these re-
quirements is the following:

Bn(ω) =
ω − µn

µ∗n − ω
(4.3)

Here, µn is any number from the upper half of the complex
plane. Obviously, Bn(ω) has exactly one zero at µn and
one pole at µ∗n, which means that there is no singularity
in the upper half of the complex ω plane. For real ωr,
|Bn(ωr)| = 1 holds as required, ensuring that the absolute
value of the form factor is not changed:

|Bn(ωr)F (ωr)| = |F (ωr)|

Rewriting (4.3) with the real and imaginary parts of the
differences, we get

Bn(ω) = −<(ω − µn) + i=(ω − µn)

<(ω − µn) + i=(ω + µn)
.

From this, we can see that |Bn(ω)| < 1 holds in the upper
half of the complex ω plane, with =(ω) > 0 and =(µn) > 0.
Thus, the regularity condition is still met by Bn(ω)F (ω).

Taking this into account, it can be shown that the most
common form for F (ω) is

F (ω) = F̃ (ω)B(ω)C(ω)

with F̃ (ω) bounded, analytic, and nonzero in the upper
half of the complex ω plane and B(ω) a product of the
terms Bn(ω) examined above:3

B(ω) =
Y
n

Bn(ω)

=
Y
n

ω − µn

µ∗n − ω

The term B(ω) is called a Blaschke product. It intro-
duces exactly n zeros in the upper half of the complex
ω plane. The calculation of its phase when written as
B(ω) = exp(iξ(ω)) is straightforward and yields

ξ(ω) = −i
X

n

ln
ω − µn

ω − µ∗n
. (4.4)

3 [Tol56] refers to [Nev36] and [Sho43] for a discussion of this mathe-
matical theorem, as well as to personal communications with Prof.
Marcel Riesz.
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4 Kramers-Kronig analysis
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Figure 4.1: Integration path for equations (4.6) and (4.7).
f(ω′) is singular at ω′ = ω.

Bearing in mind the definition of the complex logarithm,
ln z = ln |z| + i arg z, we can conclude from the discussion
of the single terms Bn(ω) above that the imaginary part of
ξ(ω) is in fact zero on the real axis, i.e. for ωr ∈ R

ξ(ωr) =
X

n

arg
ωr − µn

ωr − µ∗n

holds, which can be shown to be a monotonically increas-
ing, positive function of frequency.

C(ω) is a negligible term in our case. It contains a fac-
tor exp(idω), d ∈ R+

0 , that merely introduces a constant
displacement of the bunch, so we may arbitrarily choose
d = 0. If furthermore η(ω) is continuous on the real ω
axis, it can be assumed that C(ω) = 1.

Under these circumstances, F̃ (ω) can be understood as
the function F (ω) after removal of its complex zeros. For
convenience, this can again be expressed in phase form as
F̃ (ω) = exp(iη̃(ω)). Looking at the total phase for our
form factor, we get

η(ω) = η̃(ω) + ξ(ω) . (4.5)

This means that η̃(ω) is the minimal phase allowed by
specifying a certain |F (ω)|, and also the phase minimally
increasing with ω— which is a statement that must be un-
derstood in the context that terms growing linearly with ω
have already been disregarded. However, there may be a
contribution from complex zeros of the form factor in the
upper half ω plane. These terms ξ(ω), the phases of the
Blaschke products, make the actual phase rise faster than
the minimal one.

There seems to be no way to determine the magnitude
of ξ(ω) from the modulus of a form factor. However, it
will be shown that the minimal phase can be calculated.
Hence, the Blaschke phase can be obtained from (4.5) if
a bunch shape – and with it a full complex form factor –
is specified. This way, it can be shown that the minimal
phase is a good approximation of the actual form factor
phase for bunch shapes typically expected in accelerators,
including single or superpositions of multiple Gaussians,
and simple asymmetric shapes [Lai97].

Still, the Blaschke contribution can be non-negligible for
certain atypical shapes like symmetric Lorentzian distribu-
tions. But even in these cases, basic parameters of the den-
sity distribution like peak width and amplitude are found
to be largely preserved.

4.3 Derivation of the minimal phase

To find a connection between the initially known ηi(ω) and
the minimal phase η̃(ω), a reasonable starting point would

be to make use of Cauchy’s integral formula to get an in-
tegral expression for η̃(ω):

η̃(ω) =
1

2πi

I
κ

η̃(ω′)

ω′ − ωdω′ (4.6)

Here, κ could be any contour enclosing the point ω coun-
terclockwise. However, we know that F (ω′) approaches
zero for |ω′| → ∞, which in turn means for the phase
that |η(ω′)| = |−i lnF (ω′)| → ∞. Hence the integral (4.6)
cannot be evaluated properly. Instead we choose a more
well-behaved function and follow the derivation given in
[Woo72]:

f(ω′) =
(1 + ωω′)iη̃(ω′)

(1 + ω′2)(ω − ω′)

It is plausible and can be rigorously proven that |f(ω′)| → 0
for |ω′| → ∞.

If we now choose an integration contour κ consisting of
a counterclockwise semicircle in the upper half of the com-
plex ω plane and a return path along the real axis, we
realize the existence of a singularity of f(ω′) at ω′ = ω.
Therefore, we give κ a small detour above this point as
shown in Fig. 4.1. Using the residue theorem, we can then
write I

κ

f(ω′) dω′ = 2πi

nX
j=1

Res f(ωj) . (4.7)

Now we have to look for singularities to calculate the com-
plex residues on the right hand side of (4.7). Knowing that
F̃ (ω′) has no zeros in the upper half plane, η̃(ω′) has no
singularities itself. From the definition of f(ω′) we can then
conclude that there is only one singular point at ω′ = i, so
we may write

I
κ

f(ω′) dω′ = 2πi Res f(i) . (4.8)

Now the radius of the upper semicircle of the contour κ
is extended to infinity. The properties of f(ω′) are such
that the corresponding contribution to the integral van-
ishes. Two parts remain, firstly the path along the real axis
excluding the pole ω′ = ω, which is a construct referred to
as the Cauchy principal value, commonly designated by PV
[Bro96]:

PV

Z +∞

−∞
f(ω′) dω′ =

lim
ε→+0

�Z ω−ε

−∞
f(ω′) dω′ +

Z ∞

ω+ε

f(ω′) dω′
�

The second remaining part of the contour integral origi-
nates from the singularity itself; the corresponding section
of the integration path is an infinitesimally small semi-
circle above ω. The integral can be calculated if we let
ω′ = ω + ε exp iφ:

Z
y
f(ω′)dω′ = lim

ε→0

Z 0

π

f(ω + ε exp iφ) d(ω + ε exp iφ)

=

Z 0

π

(1 + ω2)iη̃(ω) · iε exp iφ

(1 + ω2)(ω − ω − ε exp iφ)
dφ

= −πη̃(ω)
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4.3 Derivation of the minimal phase

Inserting these two parts in (4.8), only the residue of f(i)
remains to be determined:

PV

Z +∞

−∞
f(ω′) dω′ − πη̃(ω) = 2πi Res f(i)

= 2πi
η̃(i)(ω − i)

−2(1 + iω)

= −πη̃(i) (4.9)

To proceed, some insight to the properties of η̃(i) is re-
quired. If we remember the symmetry condition (4.2) and
rewrite it with respect to the complex phase, we get

ηr(−ωr + iωi) = −ηr(ωr + iωi)

ηi(−ωr + iωi) = ηi(ωr + iωi)

or, in more condensed but less readable form,

η(ω) = −η∗(−ω∗) . (4.10)

It is now obvious that η(i) is imaginary for ωr = 0. Be-
cause the charge distribution ρ(t) is real, complex zeros of
the form factor also appear symmetrically, i.e. a zero at
µj always has a twin at −µ∗j . Thus, the contribution of
the Blaschke product is symmetrical with respect to the
imaginary axis, and (4.10) is valid for the minimal phase
η̃(ω) as well. So finally, we are able to conclude that η̃(i)
is imaginary.

We make use of this finding by taking the real part of
equation (4.9):

<
�
PV

Z +∞

−∞

(1 + ωω′)iη̃(ω′)

(1 + ω′2)(ω − ω′) dω′
�

= < [πη̃(ω)− πη̃(i)]

PV

Z +∞

−∞

−(1 + ωω′)η̃i(ω
′)

(1 + ω′2)(ω − ω′) dω′ = πη̃r(ω) (4.11)

As stated above, (4.10) is a valid symmetry relation also for
the minimal phase η̃(ω), i.e. for real frequencies η̃(−ωr) =
−η̃∗(ωr). With this, we can now transform the integral
(4.11) to cover only positive frequencies:

η̃r(ω) =
1

π

�
PV

Z 0

−∞

−(1 + ωω′)η̃i(ω
′)

(1 + ω′2)(ω − ω′) dω′

+ PV

Z ∞

0

−(1 + ωω′)η̃i(ω
′)

(1 + ω′2)(ω − ω′) dω′
�

=
1

π

�
−PV

Z ∞

0

−(1 + ω(−ω′))η̃i(−ω′)
(1 + (−ω′)2)(ω − (−ω′)) dω′

+ PV

Z ∞

0

−(1 + ωω′)η̃i(ω
′)

(1 + ω′2)(ω − ω′) dω′
�

=
1

π
PV

Z ∞

0

η̃i(ω
′)

(1 + ω′2)(ω2 − ω′2) ·h
(−1 + ωω′)(ω − ω′)+

(−1− ωω′)(ω + ω′)
i

dω′

= −2ω

π
PV

Z ∞

0

η̃i(ω
′)

ω2 − ω′2 dω′ (4.12)

To dispose of the singularity at ω′ = ω, we can once
more apply a well-known trick from complex analysis by
introducing an integral of value zero:

2ω

π
PV

Z ∞

0

η̃i(ω)

ω2 − ω′2 dω′ = 0 (4.13)

The validity of (4.13) can be shown by an integration sim-
ilar to the one carried out above. If we now add (4.13) to

(4.12), the singularity is replaced by a removable disconti-
nuity, and thus the need to take the Cauchy principal value
is lifted:

η̃r(ω) =
2ω

π

Z ∞

0

η̃i(ω)− η̃i(ω′)
ω2 − ω′2 dω′ (4.14)

This is the Kramers-Kronig relation for the minimal phase.
It can be recognized immediately that in this integral for-
mula the real part of the phase depends only on its own
imaginary part and vice versa. However, as yet it does not
contain information on how to calculate the minimal phase
from known quantities. As a matter of fact, the final step
is simple when we remember that |F (ωr)| = |F̃ (ωr)| and
hence ηi(ωr) = η̃i(ωr). Insertion into (4.14) yields the final
expression for the calculation of the minimal phase,

η̃r(ω) =
2ω

π

Z ∞

0

ηi(ω)− ηi(ω′)
ω2 − ω′2 dω′ (4.15)

or η̃r(ω) =
2ω

π

Z ∞

0

ln |F (ω′)|
|F (ω)|

ω2 − ω′2 dω′ . (4.16)
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5 Experimental setup

In this chapter, an overview of the experimental setup
used for interferometry with coherent synchrotron radia-
tion is given, together with an analysis of its expected in-
fluence on the measurement results. If necessary, the func-
tional principle of single components is discussed as well.

Figure 5.1: Functional principle of a bunch compressor. A
magnetic chicane introduces a dispersive section to the
accelerator in a way that electrons with a lower-than-
nominal energy have a longer orbit (dashed) and those
with higher energy have a shorter orbit (dotted).

5.1 Injector and bunch compressor

High peak beam current and low transverse emittance are
needed to operate a high-gain FEL. Both of these parame-
ters are intrinsically limited by the performance of the in-
jector. For a bunch charge of 1 nC, the current VUV-FEL
photoinjector is capable of generating an electron beam
with a normalized emittance of 1.7 mmmrad as geomet-
rical average of the horizontal and vertical plane [Ste04].
The charge is extracted from a photocathode with a laser
pulse and accelerated in the 11/2-cell RF cavity of the gun,
generating a longitudinally Gaussian-shaped bunch1 with
an RMS width of (1.7 ± 0.2) mm, as measured with a
streak camera in the BC2 section [Hon04]. As the max-
imum charge density in the sub-relativistic energy domain
of the gun is limited by space-charge effects, the electron
bunches need to be compressed to reach the desired high
peak current of about 2500 A at ultra-relativistic energies.

At the VUV-FEL, bunch compression is achieved by two
magnetic chicanes. The first, BC2, consists of four equal
dipole magnets that are arranged in the shape of a “C”, or
trapezoid. The second, BC3, is “S”-shaped and will not be
discussed here. Nevertheless, its basic functional principle
is the same; a detailed comparison of bunch compressor
geometries is found in [Stu04].

The dipoles of BC2 are all driven by the same power
supply in a series connection to make their magnetic field
differ only in sign. This ideally introduces a section of
closed dispersion to the linac. Because the deflection of
charges in a dipole field is energy-dependent, electrons with
higher energy will have a shorter trajectory through the
magnetic chicane than those with lower energy (Fig. 5.1).
To take advantage of this, an energy slope has to be induced
along the bunch in such a way that the particles in its front
part have smaller energy than those in its rear part. This
is achieved by shifting the phase of the accelerating RF
wave so that the electron packet is not accelerated on the

1 The gun reaches its minimum possible emittance only with a “flat-
top”, i.e. a rectangular laser pulse. In the cited measurement, this
was achieved using a laser pulse shaper. However, no such pulse
shaper is currently installed at the VUV-FEL.

a)

b)

electric (RF) field

time

Figure 5.2: Comparison of different acceleration phases.
a) On-crest operation. The RF field is nearly constant
over the length of the bunch.
b) Off-crest operation. The head of the bunch (i.e. the
end with earlier arrival time) experiences a lower accel-
eration field than the tail.
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Figure 5.3: Transmission of the BC2 vacuum chamber
window. The values have been calculated for 4.8 mm
thick crystalline α-quartz using data from [Pal97]. Be-
low 900 GHz, the transmission has been extrapolated lin-
early.

peak of the electric field (“on-crest” operation), but on its
ascending slope (“off-crest”), as illustrated in Fig. 5.2.

5.1.1 Vacuum chamber window

Synchrotron radiation is extracted from the last dipole
magnet of the bunch compressor through a commercially
available 4.8 mm thick vacuum window made of a z-cut
quartz single crystal (see Fig. A.4). Its transmission for
terahertz radiation has been calculated from the absorp-
tion coefficients given in [Pal97] and is shown in Fig. 5.3.
A strong absorption band at 3.8 THz is discernible that
virtually constitutes an upper limit for spectral measure-
ments. Because no experimental data is known for the
transmission below 900 GHz, the curve is extrapolated lin-
early.

In the spectral range of 0–3.5 THz, the transmission
drops roughly by a factor of two. In interferometer mea-
surements, this is corrected by use of an appropriate trans-
fer function (cf. section 6.3.3).
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Figure 5.4: Sketch of the infrared beam transfer line. All measures are given in mm. M3 reflects
the beam perpendicularly onto the polarizer grid of the interferometer.

mirror diameter
PM1 100 mm
M1 250 mm
M2 150 mm
M3 150 mm

Table 5.1: Mirror sizes for the ra-
diation transfer line. All flat
mirrors have circular shape.
For the paraboloid, the diam-
eter of the cylinder from which
the surface is milled is given.

5.2 The radiation transfer line

For easier access, the interferometer is not placed in the
accelerator tunnel, but in a laboratory container outside.
The radiation is transported there by a set of mirrors as
shown in Fig. 5.4. The first one is an off-axis paraboloid2

placed at a distance of 21 cm from the vacuum window.
Its effective focal length of 81 cm has been chosen based
on the assumption that the focal point coincides with the
beam position in the vacuum chamber at the beginning
of the last dipole magnet. Thus, the radiation beam is
parallelized and reflected upwards onto a flat mirror ori-
ented at 45° against the yz-plane. This mirror deflect the
beam outside the tunnel, and two others lead it down to
the level of the experiment and finally in z-direction into
the interferometer. Because the optics of terahertz waves
is strongly diffraction-limited, the sizes of all mirrors have
been laid out generously; a list of the diameters is given in
Tab. 5.1. All mirrors are adjustable in two angles to allow
an optimization of the transmission of the transfer line.

The whole transfer line is enclosed by blackened metal-
lic tubes of at least 20 cm diameter, the mirrors and the
interferometer are placed in black plastic or metallic cas-
ings. The system can be flooded with dry nitrogen from
the interferometer end while a small hole near the vacuum
window provides for venting. As a homonuclear diatomic
molecule, N2 has no permanent dipole moment and con-
sequently does not show any absorption in the infrared or
far-infrared at normal pressures. Although the transfer line
is not expected to be wholly gas-tight, the nitrogen flush-
ing is capable of strongly reducing the absorption effects of
water vapor.

2 See section 5.3.3 for a short description of the functional principle
of an off-axis parabolic mirror.
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Figure 5.5: Sketch of the transfer line with the vector des-
ignations used in the model

5.2.1 Mathematical model of the transfer line

It is not obvious how the alignment of the four mirrors
affects the polarization of the transported light. Hence, a
simple mathematical model of the transfer line has been de-
veloped. To facilitate the description of the beam transfer
line, the parabolic mirror PM1 is treated as a flat mirror,
and the incident radiation is assumed to be a plane wave.
This way, only a single wave vector needs to be traced,
using the law of reflection. As we are only interested in
the direction of the electric field and of the wave vectors,
we can restrict the discussion to unit vectors. Let nPM1,
nM1, nM2, nM3 be the normals of the mirrors as displayed
in Fig. 5.5. If k̃0 is the normalized wave vector of a plane
electromagnetic wave incident on PM1, the direction of the
reflected waves is given by

k̃1 = k̃0− (2nPM1 · k̃0) nPM1

k̃2 = k̃1− (2nM1 · k̃1) nM1

k̃3 = k̃2− (2nM2 · k̃2) nM2

k̃4 = k̃3− (2nM3 · k̃3) nM3 ,

(5.1)

with k̃4 specifying the direction of incidence onto the po-
larizer grid of the Martin-Puplett interferometer.

In the case of reflection at a perfectly conducting surface,
the component of the electric field perpendicular to the
plane of incidence retains amplitude and direction (except
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5.2 The radiation transfer line

for a phase jump of 180°, which is not of concern for this
consideration). The amplitude of the parallel component
also stays constant, but the direction changes to obey the
law of reflection. We designate the plane of incidence that
is spanned by k̃in and k̃out by means of the unit normal
vector u = k̃in × k̃out, and for the mirrors of the transfer
line we obtain

uPM1 = k̃0 × k̃1

uM1 = k̃1 × k̃2

uM2 = k̃2 × k̃3

uM3 = k̃3 × k̃4 .

(5.2)

The two components of the incident electric field vector
can then be calculated as

Ẽ⊥ = Ẽin · u, Ẽ‖ =
���Ẽin × u

��� ,

and the reflected electric fields are found by combining
these components with the appropriate direction vectors:

Ẽ1 =
�
Ẽ0 · uPM1

�
uPM1 +

���Ẽ0 × uPM1

��� �uPM1 × k̃1

�
Ẽ2 =

�
Ẽ1 · uM1

�
uM1 +

���Ẽ1 × uM1

��� �uM1 × k̃2

�
Ẽ3 =

�
Ẽ2 · uM2

�
uM2 +

���Ẽ2 × uM2

��� �uM2 × k̃3

�
Ẽ4 =

�
Ẽ3 · uM3

�
uM3 +

���Ẽ3 × uM3

��� �uM3 × k̃4

�
(5.3)

With the help of equations (5.1), (5.2), (5.3) it is now
possible to calculate the polarization of the plane wave in
each section of the transfer line. For a first check of the
model, the mirrors are placed in a way to obtain an op-
tical path with only right angles. The wavefront incident
on PM1 is assumed to be horizontally polarized and to
propagate in z-direction, and the paraboloid itself is only
reflecting upwards. The normal vectors of the mirrors, and
the resulting wave vectors, planes of incidence, and electric
field vectors are summarized in Tab. 5.2.

It is found that the electric field of the wave entering the
interferometer is pointing in x-direction. This meets the
expectations that horizontally polarized light incident on
one end of the ideal transfer line is mapped to horizontally
polarized light on the other end.

However, in the actual setup the CSR beam is not leaving
the vacuum chamber in z-direction, but under an angle of
about 18° as shown in Fig. A.4. This situation is described
by an incident unit wave vector of

k̃0 = (− sin(18°), 0, cos(18°))

and the corresponding unit vector of the electric field for
horizontal polarization,

Ẽ0 = (− cos(18°), 0, − sin(18°)) .

Of course it is also necessary to turn PM1 towards the vac-
uum window to obtain a correctly upwards-reflected beam:

nPM1 = (sin(18°), 1, − cos(18°)) /
√

2

Under these initial conditions, the calculation summarized
in Tab. 5.3 shows that the resulting polarization in front
of the interferometer is tilted by 18° against the horizon-
tal plane. As the wires of the polarizer grid are usually
oriented vertically, this means the loss of a fraction of
sin2(18°) ≈ 10% of the incident radiation intensity.

A comparatively easy remedy for this problem is to turn
the final mirror around its y-axis so that the beam reflected
by M3 is parallel to the incident beam at the beginning of
the transfer line. Table 5.4 shows that in this case the
plane of polarization is restored to the xz-plane. As the
wave vector incident on the interferometer also changes its
direction, a relocation of the whole instrument is needed as
well.

Another option is to adjust the polarizer angle to match
the tilted plane of polarization. However, this would cause
exactly the alignment error discussed in section 3.4, be-
cause the intensities of the two partial beams after trans-
mission and reflection at the 45°-aligned beam divider grid
would differ. In terms of the electric field, this means

Er = E0 cos(45°− 18°)
Et = E0 sin(45°− 18°) ,

and using definition (3.5), we find a misalignment param-
eter of ξ = 0.51. Following (3.6), the amplitude of the
difference interferogram would hence be reduced to 68%.

Compared with the intensity loss of 10%, the latter op-
tion is clearly unacceptable. The vertical alignment of the
polarizer wires should be retained, and the final transfer
line mirror and the interferometer itself should be adjusted
in angle as far as this is possible without requiring addi-
tional constructional effort.
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5 Experimental setup

completely rectangular optical path
mirror normals wave vectors

nPM1 = ( 0, 1,−1)/
√

2

nM1 = (−1,−1, 0)/
√

2

nM2 = ( 1,−1, 0)/
√

2

nM3 = ( 0, 1, 1)/
√

2

k̃0 = ( 0, 0, 1)

k̃1 = ( 0, 1, 0)

k̃2 = (−1, 0, 0)

k̃3 = ( 0,−1, 0)

k̃4 = ( 0, 0, 1)

plane-of-incidence normals electric field

uPM1 = (−1, 0, 0)

uM1 = ( 0, 0, 1)

uM2 = ( 0, 0, 1)

uM3 = (−1, 0, 0)

Ẽ0 = ( 1, 0, 0)

Ẽ1 = ( 1, 0, 0)

Ẽ2 = ( 0,−1, 0)

Ẽ3 = ( 1, 0, 0)

Ẽ4 = ( 1, 0, 0)

Table 5.2: Unit vectors specifying the directions of mirrors, wave vectors, planes of incidence, and
electric fields for an ideal beam transfer line with exact right angles. The vectors are specified
as (x, y, z) triples following the coordinate system indicated in Fig. 5.5.

actual transfer line setup
mirror normals wave vectors

nPM1 = (sin 18°, 1,− cos 18°)/
√

2

nM1 = ( −1 ,−1, 0 )/
√

2

nM2 = ( 1 ,−1, 0 )/
√

2

nM3 = ( 0 , 1, 1 )/
√

2

k̃0 = (− sin 18°, 0, cos 18°)
k̃1 = ( 0 , 1, 0 )

k̃2 = ( −1 , 0, 0 )

k̃3 = ( 0 ,−1, 0 )

k̃4 = ( 0 , 0, 1 )

plane-of-incidence normals electric field

uPM1 = (− cos 18°, 0,− sin 18°)
uM1 = ( 0 , 0, 1 )

uM2 = ( 0 , 0, 1 )

uM3 = ( −1 , 0, 0 )

Ẽ0 = (− cos 18°, 0 ,− sin 18°)
Ẽ1 = (− cos 18°, 0 ,− sin 18°)
Ẽ2 = ( 0 ,− cos 18°,− sin 18°)
Ẽ3 = ( cos 18° , 0 ,− sin 18°)
Ẽ4 = ( cos 18° , sin 18° , 0 )

Table 5.3: Unit vectors for the actual setup of the beam transfer line (assuming design orienta-
tions). The resulting polarization is tilted against the horizontal plane by 18°.

improved transfer line setup
mirror normals wave vectors

nPM1 = (sin 18°, 1,− cos 18°)/
√

2

nM1 = ( −1 ,−1, 0 )/
√

2

nM2 = ( 1 ,−1, 0 )/
√

2

nM3 = (sin 18°, 1, cos 18° )/
√

2

k̃0 = (− sin 18°, 0, cos 18°)
k̃1 = ( 0 , 1, 0 )

k̃2 = ( −1 , 0, 0 )

k̃3 = ( 0 ,−1, 0 )

k̃4 = ( sin 18° , 0, cos 18°)
plane-of-incidence normals electric field

uPM1 = (− cos 18°, 0,− sin 18°)
uM1 = ( 0 , 0, 1 )

uM2 = ( 0 , 0, 1 )

uM3 = (− cos 18°, 0, sin 18° )

Ẽ0 = (− cos 18°, 0 ,− sin 18°)
Ẽ1 = (− cos 18°, 0 ,− sin 18°)
Ẽ2 = ( 0 ,− cos 18°,− sin 18°)
Ẽ3 = ( cos 18° , 0 ,− sin 18°)
Ẽ4 = ( cos 18° , 0 ,− sin 18°)

Table 5.4: Unit vectors for an improved setup of the beam transfer line. The resulting polarization
is in the xz-plane.
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5.3 The Martin-Puplett interferometer

Figure 5.6: Photograph of the interferometer setup. The
depicted elements are: PG – Rotatable polarizer grid.
BDG – Beam divider grid. FRM – Fixed roof mirror.
MRM – Moveable roof mirror. PM2 – Parabolic mirror.
AG – Analyzer grid. VDET – Detector for vertical polar-
ization. HDET – Detector for horizontal polarization.

5.3 The Martin-Puplett interferometer

The actual interferometer setup used for the synchrotron
radiation measurements is very similar to the basic layout
presented in Fig. 3.1. The main difference is the presence of
a 90° off-axis parabolic mirror that collects the elliptically
polarized radiation behind the beam divider and focuses it
onto the detectors (Fig. 5.6). The analyzer grid is placed
at an angle of 45° relative to the horizontal plane, and its
wires are oriented in a way that detector VDET – below the
grid – measures the vertically polarized component whereas
HDET – behind the grid as seen from the paraboloid – mea-
sures the horizontal component.

In the following, a brief summary of the characteristics of
the optical components used in the interferometer is given.
Where applicable, spectral limitations arising from the spe-
cific properties of these components are pointed out.

5.3.1 Flat mirrors

The mirrors of the interferometer as well as those used in
the beam transport line have polished aluminum surfaces.
According to [Spa79], the plasma frequency of this material
is 3.55·1015 Hz, which corresponds to a wavelength of about
85 nm. All waves with frequencies much lower than the
plasma frequency are almost completely reflected at the
metal, with the electric field penetrating the surface only
by a very short distance. Hence for light in the infrared or
far infrared regime with substantially longer wavelengths
of micro- or millimeters, absorption and transmission are
negligible.

A surface is commonly regarded as a good reflector if its
roughness, i.e. the peak-to-peak distance of the fine valleys
and ridges on the surface, is below 1/10 of the wavelength.
As polished metal surfaces have a roughness of about one
micrometer or below, the mirrors of the interferometer and
of the transfer line can be regarded as perfect reflectors for
wavelengths down to at least 10 µm, which corresponds to
a frequency of 30 THz.
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Figure 5.7: Functional principle of a roof mirror.
a) Top view. The electric field component perpendicular
to the plane of incidence (Enσ) is inverted twice.
b) View in the direction of the single wave vectors. In
this frame of reference, the polarization state is restored
after the second reflection.
c) Front view. In the fixed reference frame of the roof
mirror, the field component parallel to the plane of inci-
dence (Enπ) is inverted by the double-reflection.

5.3.2 Roof mirrors

A roof mirror consists of two flat mirrors which are joined
at one side under an angle of 90°. The junction is referred
to as the ridge line. An incident ray of light is reflected at
each of the two surfaces, leaving the mirror parallel to its
direction of incidence (Fig. 5.7a).

If the incident plane wave is linearly polarized, its electric
field E1 can be split in two components, one parallel to
the plane of incidence (E1π), and one perpendicular to it
(E1σ). This way of decomposition implies that the latter
component lies in the reflector plane, where no electric field
can be sustained. Hence, in the case of total reflection at
a metal surface, the perpendicular component E2σ of the
reflected field must be found by inversion of E1σ:

E2σ = −E1σ

As this effect is repeated in the second reflection, we see
that the σ-component of the outgoing wave is the same as
that of the incident wave, E3σ = E1σ.

From Fig. 5.7a, it becomes clear that the parallel com-
ponent of the electric field is rotated by 180° in the two
successive reflections, so that E3π = −E1π. This means
that the plane of polarization of the incident wave is mir-
rored at a plane given by the initial wave vector k1 and the
ridge line (Fig. 5.7c).

However, if we observe the electric field in a frame of
reference that is attached to the respective wave vector – if
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5 Experimental setup

EFL f=2

ff

Figure 5.8: Effective focal length (EFL) of an off-axis
parabolic mirror (drawing from [Ori04])

we look “in the direction of the beam” –, the polarization
of the incident wave is found to be the same as that of the
outgoing wave (Fig. 5.7b). In this sense, the function of a
roof mirror can be described as changing the direction of a
wave by 180° while preserving its polarization state.

5.3.3 Parabolic mirrors

In infrared applications, quasi-optical lenses made of low-
loss materials like polyethylene, polypropylene or Teflon
are frequently used for the purpose of focusing paral-
lel beams or for parallelizing light from a point source.
Parabolic mirrors have certain advantages over these
diffractive elements that make them indispensible espe-
cially for the use with far-infrared radiation. Firstly, the
very good reflectivity of polished metal surfaces avoids ab-
sorption losses that inevitably occur in any lens material.
Secondly, chromatic aberration does not appear, so the fo-
cal point is the same for light of all wavelengths.

For practical reasons, it is often desirable to have an off-
axis focus. To accomplish this, an outer section of a full
paraboloid can be used. A setup as shown on the right
side of Fig. 5.8 is called a 90° off-axis parabolic mirror. Its
effective focal length is twice the focal length of the full
paraboloid [Ori04].

5.3.4 Wire grids

For Michelson interferometers it is customary to use some
kind of semitransparent dielectric foil as a beam divider.
Although instruments of the Martin-Puplett type are some-
times set up in a similar way with polarizing foils, they are
found to be strongly bandwidth-limited by the frequency
dependence of the optical properties of the specific mate-
rial.

For far-infrared spectroscopy, an effective polarizer can
be made from an array of closely spaced parallel metal-
lic wires, a so-called wire grid. Any incident electric field
can be divided into one component parallel and one per-
pendicular to the wires. The parallel component induces
a counteracting current in the metal and is thus reflected,
whereas the normal component can pass the grid with little
attenuation. If the thickness d of the wires and the spac-
ing s (from center to center) are small compared to the
wavelength of the incident light, the moduli of the reflec-
tion coefficients for the electric field components parallel
and perpendicular to the wires can be calculated as follows
[Les90]:
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Figure 5.9: Calculated reflectivity for the parallel and nor-
mal components of an incident electric field on a wire
grid of 15 µm thick perfectly conducting wires with a
spacing of 45 µm (center-center). The parallel compo-
nent is nearly perfectly reflected. For the normal com-
ponent, the reflectivity of the field increases by about
25% in amplitude towards a frequency of 3 THz.
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The grids used in the experimental setup consist of
15 µm thick gold-coated tungsten wires placed at a dis-
tance of 45 µm. The reflectivity of the electric field for
these parameters is plotted in Fig. 5.9 for frequencies up
to 3 THz. While the parallel component is reflected nearly
perfectly over the whole spectral range, the transmission of
the normal component decreases towards higher frequen-
cies; nearly 25% of the electric field are reflected at 3 THz,
equivalent to about five percent of the radiation power of
that component.

The upper frequency of 3 THz corresponds to a wave-
length of about 100 µm, sufficiently fulfilling the condition
λ � s, d. However, for higher frequencies the equations
(5.4), (5.5) do not hold anymore. For the purpose of bunch
length measurements at the bunch compressor BC2 this
spectral range is wide enough, as it will be seen that no sig-
nificant intensity contribution at frequencies above 2 THz
is found anyway. Hence, in this context, the wire grids can
be treated as ideal polarizers. A comprehensive treatment
of the properties of wire grids for a broad spectral range is
found in [Cha80].
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5.4 Detectors
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Figure 5.10: Signal shape of a DTGS pyroelectric detector.
The rise time is within a few hundred microseconds, the
signal decay takes several milliseconds. Hence the de-
tector measures the radiation from a whole macropulse,
and single bunches cannot be distinguished. The voltage
is negative by convention.

5.4 Detectors

5.4.1 Pyroelectric detectors

All interferometric measurements discussed in this thesis
have been done with a pair of DLaTGS detectors (model
Bruker GAT202). Their infrared sensitive component is
a pyroelectric deuterated triglycine sulphate crystal doped
with L-α-alanine. As the crystal diameter is 2 mm, it can
be expected that the sensitivity drops sharply for radiation
of millimeter and longer wavelengths. The detector window
is shielded against visible light by a black polyethylene foil
and a few millimeter thick layer of an unknown plastic
material of white color.

Ferroelectric crystals are called pyroelectric at a given
temperature when their electric dipole moment cannot be
changed by applying an external electric field; they of-
ten exhibit a change of their spontaneous polarization due
to temperature variations [Kit96]. This is the case with
DTGS. When the crystal absorbs radiation, it is heated
and the resulting change of dipole moment can be mea-
sured as a current between two electrodes. As this current
balances the spontaneous polarization, it is only of short
duration and quickly decays to zero. Hence a pyroelec-
tric detector is sensitive only to temperature changes, or in
other terms only to radiation of altering intensity, because
the absorption of any constant radiation power takes the
crystal into thermal equilibrium.

These properties are well suited for the measurement of
short pulses of synchrotron radiation. In Fig. 5.10, the re-
sponse of one of the DTGS detectors mounted in the in-
terferometer is shown for a macropulse of 10 bunches, each
carrying a charge of 1 nC, at medium compression in BC2.
While the rise time of the signal is within a few hundred
microseconds, its decay is mainly determined by the detec-
tor electronics and lies in the range of several milliseconds3.
Hence it is obvious that single bunches within a macropulse
cannot be distinguished.

To enlarge the effective active area of the detectors,
radiation is collected using metallic cones as laid out in

3 Other pyrodetectors show a much faster response with decay times
of down to 100 ns. However, this advantage is bought at the cost
of signal amplitude, as these devices do not integrate over the
intensity of a whole bunch train.

Fig. A.5. Although the cones introduce a strong angu-
lar dependence to the detector acceptance, they help to
increase the overall signal amplitude and the tolerance
against transverse position errors.

5.4.2 Cryogenic bolometer

For the measurement of the transfer function described
in section 7.5.1, a cryogenic bolometer built by the Max
Planck Institute for Radio Astronomy4 has been used. Its
FIR-sensitive part is an indium antimonide (InSb) crystal
cooled by a liquid helium dewar. The operating tempera-
ture of 2 K is reached by pumping the helium. Because a
filling of helium lasts only for few hours and an outer tank
has to be constantly refilled with liquid nitrogen to shield
the inner dewar, the handling is quite cumbersome and the
instrument is only used when high sensitivity is needed.

The InSb crystal is a semiconductor whose intrinsic con-
ductivity changes as a function of temperature. When a
bias voltage is applied across it, the resulting current is
a measure for the absolute temperature of the crystal; by
cryogenic cooling, the absorption of far-infrared radiation
can thus be detected with high precision and low noise.
It is clear that the signal decay time is influenced by the
quality of the thermal contact to the cooling reservoir. To
protect the device from too big heat loads, it is shielded
from (short wavelength) infrared radiation by a spectral
filter.

4 Max-Planck-Institut für Radioastronomie, Bonn, Germany
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6 Measuring principle and reconstruction process

The reconstruction of the longitudinal charge density
distribution from an interferometric measurement of co-
herent radiation is a complex process comprising several
steps. In this chapter, a detailed overview of the measur-
ing principle is given and typical difficulties are pointed
out.

6.1 Detector signals

The signals of the two pyroelectric detectors are sampled
with an ADC, triggered by the VUV-FEL macropulse trig-
ger with a frequency of typically 1–10 Hz. For each bunch
train, 4096 data samples are taken at a rate of 200 kHz, so
one ADC buffer covers a time span of 20.5 ms. Because the
rise time of the pyroelectric detectors is small compared to
this, a baseline and a peak voltage can be calculated as av-
erages over fixed ranges of the buffer as depicted in Fig. 6.1.
The amplitude is then calculated as the difference of base-
line and peak voltage. The amplitude value is often simply
referred to as the “detector signal”.
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Figure 6.1: Amplitude calculation for a DTGS detector
signal. 4096 data samples are taken. The baseline volt-
age is averaged over the first 400, the peak voltage over
70 samples around the peak of the signal. The amplitude
is the difference of baseline and peak voltage.

6.2 Interferograms

In the process of recording an interferogram, the signal
amplitudes are measured for a number Na of consecutive
macropulses at each position of the moveable roof mirror.
The single data point of the raw interferogram is given
by the mean value of these Na measurements, its error
is the corresponding standard deviation. While a higher
number of measurements leads to more precise values for
the single data points, a whole interferogram scan will take
proportionally longer. A typical value is Na = 5.

The alignment of the interferometer is a critical factor for
the magnitude of the signals. Also the electric properties of
the readout electronics of each detector are expected to dif-
fer slightly. As a consequence, the absolute sensitivities of
the two detectors are not equal, as seen in the raw interfer-
ogram shown in Fig. 6.2. Hence, to allow a normalization
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Figure 6.2: Raw interferogram with uncorrected signal am-
plitudes. The horizontal detector has a smaller sensitiv-
ity than the vertical one.

to the total intensity, a correction of the measured volt-
ages is necessary. To determine the correction factor, an
average over the signals of the left and right quarter of the
interferogram is calculated for each of the two detectors.
The correction factor is then simply the ratio of these two
values, and the result of its application is an interferogram
like the one presented earlier in Fig. 3.2.

The specific range for averaging – i.e. the two outer quar-
ters of the interferogram – is meant to exclude the center
burst1, where the horizontally and vertically polarized com-
ponents of the radiation are indeed expected to have dif-
ferent intensities. Obviously, the algorithm fails when the
scan range is too small or not properly centered.

If the data have been thus corrected, the normalized dif-
ference interferogram δ(x) can be obtained directly from
equation (3.1). The error is calculated using Gaussian er-
ror propagation with s1 and s2 denoting the standard de-
viations of the corrected signal amplitudes:
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It is often necessary to specify an interferogram not as
a function of the roof mirror position x, but of the corre-
sponding time shift τ that is induced between the two com-
ponents of the beam. The position x0 of the center burst
is defined by the maximum of the difference interferogram,
and the time shift is then calculated as τ = 2(x− x0)/c.

6.3 Spectra

It has already been pointed out that the difference inter-
ferogram is the Fourier cosine transform of the radiation

1 The center burst is the central maximum of an interferogram.
It is located at the position of zero path difference between the
partial beams.
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6 Measuring principle and reconstruction process

intensity spectrum. Because the cosine transform is in-
verse to itself, we may in principle obtain the spectrum2

as

I(ω) =

Z ∞

−∞
δ(τ) cos(ωτ) dτ .

However, as only a discrete numberN of points is measured
over a limited range [τmin, τmax], this approach has to be
modified. We have to replace the continuous transform by
a discrete one, and noting that the cosine transform of a
real signal is just the real part of the corresponding complex
Fourier transform, we get

I(ωk) =
1

N
<

NX
n=1

δ(τn) exp(iωkτn) . (6.1)

Because the measuring positions of the moveable roof
mirror during an interferometer scan are spaced equidis-
tantially, (6.1) can be computed with common DFT or
FFT (Discrete/Fast Fourier Transform) algorithms, yield-
ing K = N/2 non-redundant intensity values equally dis-
tributed on the interval [0, νmax], with the upper frequency
limit νmax = N/2/(τmax − τmin).

6.3.1 Avoiding spectral artifacts

Asymmetric scan range

The scan range is virtually never exactly symmetric around
the center position of the roof mirror. Hence, the interfer-
ogram is divided into a one-sided and a double-sided part,
the latter extending around the center burst by an equal
distance to the left and to the right. The double-sided part
would effectively be counted twice in the transformation.
To avoid this, it is beforehand multiplied with a ramp that
rises linearly from zero to one (Fig. 6.3). The effect can be
understood if the ramp is decomposed into a constant part
of 1/2 and a part rising from −1/2 to +1/2. The constant
part serves to compensate the double-counting while the
rising part is introduced to avoid a step between the two
regions of the interferogram. As it is antisymmetric around
the origin, it generates only imaginary Fourier components
that are discarded anyway.

Apodization

Some further precautions have to be taken in order to avoid
spectral artifacts. For example, the finite extent of the
difference interferogram on the τ axis leads to an effect
commonly referred to as leakage. Because the intensity is
sharply cut to zero at the boundaries of the measurement
range, some frequency components are errorneously pop-
ulated. This can be seen if the finite-width interferogram
is described as the product of an interferogram of infinite
length and a window function that is 1 in the measured
range and 0 outside. Because of its rectangular shape, this
function is often referred to as the “boxcar” function. In
the frequency domain, the product is represented by a con-
volution. Thus, each frequency component of the interfero-
gram is distributed in the spectrum with a lineshape given
by the Fourier transform of the window function.

In Fig. 6.4, a boxcar function of 50 ps width and the cor-
responding lineshape are shown. Each spectral line has an
infinite number of sidelobes; the intensity “leaks” over a

2 Because any information about the absolute radiation power is
lost in the normalization step, the spectrum is referred to as a
relative quantity and specified in arbitrary units. Thus, constant
factors in the Fourier transforms are omitted here.
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Figure 6.3: Preparation steps for computation of the spec-
trum. The double-sided part of the difference interfer-
ogram is multiplied with a ramp to avoid counting it
twice, and apodized with a Blackmann-Harris window
to reduce leakage. The result is then padded with zeros
to avoid the “picket fence effect”.

broad spectral range. The problem of leakage is addressed
by choosing a window function that approaches zero more
smoothly towards the outer ends. For all spectra presented
in this thesis, a four-term Blackmann-Harris function as
parametrized in [Gro84] has been used:

BH(τ) = 0.35875 + 0.48829 cos
πτ

τmax

+ 0.14128 cos
2πτ

τmax
+ 0.01168 cos

3πτ

τmax

Figure 6.4 shows that the sidelobes are completely sup-
pressed – however, at the cost of a significant increase in
the width of the main line.

Zero filling

Another common problem of discrete Fourier transforms,
the picket fence effect, stems from the finite number of
output points. As mentioned before, the number K of fre-
quency domain points obtained by a DFT computation of
(6.1) amounts to only half the number N of time domain
points, K = N/2. Because the DFT thus produces sam-
ples for fixed frequencies νk = νmax

k
K

, it may happen that
a spectral line falls directly between two sampling positions
– it appears as if seen through a picket fence. Depending on
the linewidth, this may introduce a considerable amplitude
error.

Relief can be afforded in a simple way by appending
N · (ζ − 1) zeros to the interferogram, which increases the
number of points of the spectrum without introducing any
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6.3 Spectra
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Figure 6.4: Comparison of the performance of the
Blackmann-Harris apodization window and the rectan-
gular “boxcar” window for the case of no apodization.
All intensities are normalized to one.

error, but of course also without increasing the physical
resolution. ζ is called the zero filling factor ; a value of
ζ = 4 has been used in all measurements.

6.3.2 Phase correction

After the difference interferogram has been prepared as de-
scribed, it is Fourier transformed to the spectrum Ĩ(ν).
This spectrum is generally complex because no sample of
the interferogram coincides exactly with the position of
zero path difference, causing an effective shift in τ and cor-
respondingly a phase rising linearly with ν. As discussed
before, the measurement range is never fully symmetric
around the zero position, so any phase contributions of the
one-sided part are not canceled like those of the double-
sided part. Furthermore, the difference interferogram is
always slightly asymmetric because of misalignments and
measurement errors.

All of this renders a direct application of (6.1) impossible.
Instead, the full complex spectrum Ĩ(ν) has to be phase-
corrected before discarding the imaginary part:

I(νk) = <
h
Ĩ(νk) exp(−iφcorr(νk))

i

To obtain the correction phase φcorr, the double-sided part
of the interferogram is apodized and Fourier transformed
separately. φcorr(ν) is the phase of this additional spec-
trum. Because it has a lower resolution than the full spec-
trum Ĩ, the phase is interpolated to the discrete frequency
points νk.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

tr
an

sm
is
si
o
n

frequency (THz)

Figure 6.5: Transmission of humid air for an optical path
length of 50 cm as calculated from [Jep04]. The relative
humidity of the laboratory air is not specified, transmis-
sion values higher than one are caused by uncertainties
of the measurement.

6.3.3 Transfer function

The spectrum we have obtained is now free from artifacts
generated by the Fourier transform itself. Nevertheless, it
still contains the accumulated influence of all components
of the beamline. The simulated single-particle spectrum al-
ready takes into account the effect of the vacuum chamber.
As discussed before, the metallic mirrors and wire grids
are treated as ideal optical elements and thus any spectral
effects caused by them are neglected.

Sources of spectral distortion

Four parts of the optical system remain to be quantified
with respect to their spectral influence. The first is the
quartz window of the bunch compressor that has already
been discussed and whose transmission function can be
taken from literature (Fig. 5.3).

The second important part is the gas filling of the beam
line itself. Because the optical path length in the transfer
line exceeds 11 meters, the measurement is extremely sus-
ceptible to absorption by humid air. In the measurement
range up to 3 THz, the strong absorption caused by wa-
ter vapor is critical, as seen by the plot of the measured
transmission for an optical path length of 50 cm given in
Fig. 6.5. The improvement achievable by nitrogen purging
of the instrument has been studied and is summarized in
section 7.5.2.

The third item is the sensitivity of the detectors, which
must be considered as unknown from the outset, because
the manufacturer of the DTGS detectors does not supply
any information for the spectral range below 2 THz. As no
calibrated far-infrared radiation source was available for
measurements, a transfer function for the DTGS detectors
is not constructed.

However, the influence of detector responsivity on the
measured spectrum may be grave. For example it has
been shown for other pyroelectric detectors based on thin
LiTaO3 crystals that a strong etalon effect causes periodic
zeros in the measured far-infrared spectrum [Ric00]. Fig-
ure 6.6 illustrates that no such zeros are discernible in spec-
tra measured with the DTGS detectors. The only points
of near-zero intensity in the range up to about 1.5 THz
can be attributed to water absorption. Above 1.5 THz, the
intensity is so low that only noise remains.
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Figure 6.6: Spectrum measured at nearly maximum bunch
compression without nitrogen flushing of the infrared
transfer line. The vertical lines mark the most impor-
tant absorption lines of water vapor up to 2 THz.

The fourth factor that may influence the measured spec-
trum are diffraction losses along the beam transfer line.
For millimeter and longer wavelengths, geometric optics is
a bad approximation. Hence, the whole system of mirrors
and beam pipes including the interferometer components
has to be simulated numerically to obtain a transfer func-
tion. The matter is presently under investigation, however,
the preliminary results are inconclusive. Thus, diffraction
effects are not included in the total transfer function.

Correction process

To obtain the transfer function needed to correct a mea-
sured spectrum, the single transmission data sets Ti – at
the moment this only comprises the transmission Twater

of humid air and twindow of the quartz window – are first
interpolated to the frequency points of the spectrum and
multiplied:

Tc(νk) =
Y

i

Ti(νk) = Twater(νk)Twindow(νk)

Afterwards, the combined transmission function has to be
convolved with the instrumental lineshape (ILS) of the
measurement to adjust it to the same spectral resolution.
Because the scan range of the Martin-Puplett interferome-
ter is usually quite small, the resolution of the measure-
ments is considerably lower than that of the transmission
function, and the ILS is given by the Fourier transform of
the Blackmann-Harris apodization window (cf. Fig. 6.4).

Figure 6.7 shows the combined transfer function before
and after the convolution step. As expected, the convolved
function Tconv(νk) reveals much broader features than the
original T (νk), which also means that the depth of nar-
row absorption lines is reduced. The spectrum can now be
corrected by dividing it by the final transfer function:

Icorr(νk) = I(νk)/Tconv(νk) (6.2)

6.3.4 Error

Starting with the uncertainty of the difference interfero-
gram (δn ± sδn), the error can be propagated through the
calculation steps to obtain the uncertainty of the intensity
values of the final spectrum. Recalling the basic definition
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Figure 6.7: Full transfer function before and after convo-
lution with the instrumental lineshape. The ILS used
for this plot corresponds to an interferogram width of
about 100 ps. Note that the convolved transfer function
has been normalized to one to make the two curves more
distinguishable.

of the uncorrected spectrum,

I(ωk) =
1

N

NX
n=1

δn cosωkτn ,

the standard deviation sI(ωk) of the intensity values can
be calculated using simple error propagation:

sI(ωk) =
1

N

"
NX

n=1

�
∂I

∂δn

�2

s2δn

#1/2

=
1

N

"
NX

n=1

cos2(ωkτn)s2δn

#1/2
(6.3)

The size of the errors sδ in the difference interferogram
is mainly determined by the stability of various accelera-
tor parameters between single macropulses. Thus, we may
deem sδ approximately independent of the time shift τn,
and simplify (6.3) by replacing sδn it with an average value
s̄δ. This leads to the result

sI ≈
s̄δ

N

"
NX

n=1

cos2(ωkτn)

#1/2

≈ s̄δ√
2N

.

It should be noted that the apodization window BH(τ)
and the ramp R(τ) covering the doublesided part of the
interferogram have to be included in the calculation of the
average error of the difference interferogram:

s̄δ =
1

N

NX
n=1

sδn ·BH(τn) ·R(τn)

Finally, an error for the corrected spectrum needs to be
calculated. The transfer functions for humid air and for
the quartz window carry only comparatively small uncer-
tainties, while strong effects on the spectrum are to be
expected from diffraction losses and nonlinearities of the
detector. Hence, an error of the transfer function cannot
be reasonably estimated, and the uncertainty of the cor-
rected spectrum is obtained by dividing by the transfer
function:

sIcorr(νk) = sI/Tconv(νk)

This definition has the expected effect that the intensity
error is bigger where the transfer function is lower, i.e. the
error of the spectrum is amplified in the same way as the
spectrum itself.
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6.5 Reconstruction of the bunch shape

6.4 Form factors

The corrected spectrum now gives a good description of
the coherent intensity distribution radiated by the electron
bunch. Hence we can use the central formula for coherent
radiation effects (2.4) to calculate the form factor, and by
neglecting the small incoherent part we get

��F (ω)
�� ∝

s
Icorr(ω)

I1(ω)
.

The equation is given only as a proportionality because
the normalization step in the calculation of the difference
interferogram makes the amplitude of the measured spec-
trum arbitrary. It is obvious that a good knowledge of
the single-particle spectrum I1 is required to determine the
form factor.

The calculations can not be expected to yield reasonable
results in frequency ranges where the measured intensities
are close to zero, because neither the division by a trans-
fer function nor by the single-particle intensity are able to
restore missing information. For the CSR measurements,
this is found to be the case especially at frequencies below
275 GHz due to the cutoff effect of the vacuum chamber. It
is hence necessary to find a way of reconstructing the form
factor there.

Low-frequency Taylor asymptote

An approach to the problem of finding a suitable low-
frequency extrapolation or “asymptote” has been discussed
in [Lai97]. Beginning with a Taylor expansion of the lon-
gitudinal form factor, we can write

F (ω) =

Z
ρ(t)

Q
exp(−iωt) dt =

Z
ρ(t)

Q

∞X
k=0

(−iωt)k

k!
dt

=

∞X
k=0

�
(−i)k

k!
ωk ·

Z
ρ(t)

Q
tk dt

�
=

∞X
k=0

(−i)k

k!
ωk
tk�

=


t0
�
− iω



t1
�
− 1

2
ω2 
t2�+

i

6
ω3 
t3�+ . . . ,

with


tk
�

denoting the kth moment of the normalized

charge distribution ρ(t)/Q, i.e. the average value of tk,
weighted by ρ(t)/Q. This of course means that the zeroth
moment is unity,



t0
�

= 1.
Up to second order in ω, the modulus of the form factor

can then be expressed as

��F (ω)
�� ≈

s�
〈t0〉 − 1

2
ω2 〈t2〉

�2

+

�
ω 〈t1〉

�2

≈
q
〈t0〉2 − ω2 〈t0〉 〈t2〉+ ω2 〈t1〉2 .

This low-frequency behavior can be simulated by fitting a
function of two parameters A and B,

FTaylor(ω) =
p
A+Bω2 ,

to a reasonable part of the form factor.

Low-frequency Gaussian asymptote

Sometimes better results are obtained by enhancing the
form factor at low frequencies. This is accomplished by a
Gaussian extrapolation of the form

FGaussian(ω) = A exp

�
− ω2

2B2

�
,

which generally yields a steeper increase of the form factor
towards ω = 0 than the Taylor type.

High-frequency asymptote

The measured form factor covers the frequency range from
zero to an upper frequency νmax. To avoid a sharp drop to
zero at that point, a high-frequency asymptote of the form

Fhf(ω) = Aω−B (6.4)

is attached to the form factor. The exponent B is chosen by
hand to approximately match the slope of |F (ω)|; a value
of 4 shows satisfactory results. It is usually sufficient to
extend the asymptote to twice the frequency range covered
by the measured form factor.

Normalization

The physical form factor is subject to the constraint that
its zero-frequency component is unity, Fabs(0) = 1. Hence,
a normalization is necessary after attachment of the appro-
priate high- and low-frequency asymptotes to the measured
form factor. We can write

Fabs(ω) =
|F (ω)|
|F (0)| .

6.5 Reconstruction of the bunch shape

Now that the absolute value of the form factor is estab-
lished, the Kramers-Kronig relation (4.16) can be used to
calculate the minimal phase η̃r(ω). Thus, the complex form
factor is obtained:

Fc(ω) = Fabs(ω) exp(iη̃r(ω))

All information necessary for the reconstruction of the
bunch shape has been gathered. However, until now Fc(ω)
is only defined for positive frequencies. Knowing that the
complex form factor is the Fourier transform of a real quan-
tity, we can conclude that its imaginary part must be an-
tisymmetric in ω, i.e. Fc(−ω) = F ∗c (ω).

After this preparation, we can calculate the bunch shape
with a final inverse Fourier transform,

ρ̃(t) =
1

2π

Z ∞

−∞
Fc(ω) exp(iωt) dω

=
1

2π

Z ∞

0

�
Fc(ω) exp(iωt) + F ∗c (ω) exp(−iωt)

�
dω .

This way, we obtain a distribution ρ̃(t) that is normalized
to
R
ρ̃(t) dt = 1. We can find a discretization of the trans-

form in the same way as we have for the spectrum in (6.1).
If the complex form factor is constituted by K samples
Fc(ωk) corresponding to the equidistant circular frequen-
cies ωk, with ω0 = 0 and thus Fc(ω0) = 1, we get

ρ̃(tn) =
∆ω

2π

 
1 +

KX
k=1

�
Fc(ωk) exp(iωkt)+

F ∗c (ωk) exp(−iωkt)
�!

,

with ∆ω denoting the step width between the ωk.
Following this definition, the reconstructed density dis-

tribution ρ̃(t) carries the unit s−1. It would be easy to
obtain a current profile of the bunch by multiplying it with
the charge, J(t) = ρ̃(t)Q. However, only an unknown frac-
tion of the bunch contributes to the observed coherent radi-
ation. Therefore the reconstructed bunch profiles are given
in arbitrary units.
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6 Measuring principle and reconstruction process

6.5.1 Effectivity of the minimal phase
reconstruction

The influence of the asymptotic high- and low-frequency
attachments on the reconstructed bunch shape can be ex-
amined for an exemplary asymmetric bunch. A simple
parametrization is given by

ρ(t) =

8>>>>><
>>>>>:

exp

�
−t2

2σ0
2

�
for t < 0

N−1X
n=0

An exp

�
−t2

2σn
2

�
for t > 0

(6.5)

with the constraints

0 6 An 6 1,

N−1X
n=0

An = 1 .

On the negative half of the time axis this is just a Gaussian
of amplitude 1 and width σ0, while an arbitrary number
N of various Gaussians is added on the positive side in a
way that the function has its only maximum at t = 0 with
ρ(t) = 1.

Compared with a parametrization as proposed in [Gel03]
for electron bunches having passed a magnetic chicane – a
Gaussian peak and an attached exponential decay –, the
multi-Gaussian (6.5) is easier to adapt to a desired bunch
shape, and it is inherently continuously differentiable.

Influence of the low-frequency asymptote

As an example, the parameter set

σ0 = 150 fs, A0 = 0.3

σ1 = 600 fs, A0 = 0.7

has been chosen. As depicted in Fig. 6.8, it yields a roughly
triangular bunch extending over about 1.5 ps. The form
factor of this charge distribution is calculated and attached
with the two described types of low-frequency asymptotes
(Taylor/Gaussian) at 275 GHz, which is just above the ob-
served onset of the cutoff imposed by the the BC2 vacuum
chamber.

Not surprisingly, the Gaussian asymptote reproduces the
real form factor much better than the Taylor type. How-
ever, the resulting reconstructed bunch shapes are barely
distinguishable, with the Gaussian asymptote giving a dis-
tribution that is only marginally broader than the one cal-
culated with a low-frequency Taylor extrapolation. In both
cases, the agreement with the original bunch shape is quite
good except for a small detour below zero in front of the
ascending slope of the bunch. As it is also reproduced by
reconstruction of the original form factor, this undershoot
must be considered an artifact produced by the Kramers-
Kronig analysis.

Influence of the high-frequency asymptote

Figure 6.9 compares the reconstruction results for vari-
ous high-frequency extrapolations. The form factor of the
bunch shape specified above is truncated at a frequency of
2 THz, and three exponential high-frequency asymptotes
following (6.4) with parameters of B = 3, 4, 5 are attached.
One curve also represents the continuation with a low pos-
itive value3 above the truncation point. It is obvious that

3 As equation (4.16) for the minimal phase contains the logarithm
of the form factor, it must be assured that |F (ω)| > 0.

the latter gives the worst result, with a substantial oscil-
lation being visible in the reconstructed charge distribu-
tion. This effect is typical for the Fourier transform of any
sharply truncated function (cf. section 6.3.1), but also the
minimal phase obtained by Kramers-Kronig analysis shows
resonance-like behavior around the steep slope of the form
factor, as seen in Fig. 6.10.

The other reconstructions fit well to the original bunch
shape. In fact, they reproduce the rising edge even bet-
ter than the reconstructions based on the original high-
frequency part of the form factor – i.e. they do not create
the small undershoot seen in Fig. 6.8. The reason for this
behavior is unclear, but the plot of the minimal phases
for the various exponential asymptotes on the right side of
Fig. 6.10 shows that the phase of the original form factor is
considerably higher than the minimal phases calculated for
the others. However, as the difference is mainly an unim-
portant linear slope corresponding to a translation of the
bunch, it can be summarized that the bunch shape recon-
struction by Kramers-Kronig analysis is fairly independent
of the specific choice of asymptotic extrapolations.

This holds as long as the original form factor is well-
behaved in the sense of not including zeros and not showing
“exotic” behavior outside the range that is accessible to
the measurement. If, for example, a bunch has most of
its charge concentrated in a very long tail, the form factor
is dominated by a narrow structure at low frequencies. If
this structure is suppressed in the emitted spectrum by
a low-frequency cutoff, a reasonable reconstruction of the
tail is not possible. The maximum length of any feature
of the bunch that can be reconstructed amounts to about
half the cutoff wavelength. For the CSR measurement at
bunch compressor BC2, this is

lmax ≈
1

2
(275 GHz)−1 ≈ 1.8 ps or 550 µm.

On the other hand, the ability to resolve short structures
of the charge distribution is limited by the maximum mea-
surable frequency. If we take the strong absorption band
of the quartz window (cf. Fig. 5.3) as the limit, we obtain

lmin ≈
1

2
(3.6 THz)−1 ≈ 140 fs or 42 µm.
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Figure 6.8: Influence of the low-frequency asymptote on the reconstructed bunch shape. The
small plot shows the form factor of an exemplary bunch shape with two types of low-frequency
asymptotes attached at 275 GHz. The main plot compares the original bunch shape with the
reconstructions from the respective form factors.
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Figure 6.9: Influence of the high-frequency asymptote on the reconstructed bunch shape. The
compared high-frequency continuations are a simple truncation to near-zero and three expo-
nential asymptotes based on (6.4) for different values of the parameter B.
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Figure 6.10: Minimal phases for various high-frequency extrapolations of the form factor. The
“original” curve shows the phase of the exemplary form factor following the bunch shape given
by (6.5). Left: If the form factor is truncated and continued with a small constant above
2 THz, the minimal phase shows resonance-like behavior around the truncation frequency.
Right: High-frequency asymptotes following (6.4) for three values of B are attached to the
form factor. The minimal phases are lower than the original phase.
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7 Measurements

7.1 Pyroelectric detectors as bunch
compression monitors

The interferometric measurement of bunch lengths is
quite time-consuming. To obtain a typical interferogram
of 512 points with an averaging over 5 samples at a linac
repetition rate of 2 Hz, the scan takes at least 21 minutes,
not including the time needed to drive the roof mirror into
its measuring positions. However, it is not always neces-
sary to measure the coherent spectrum in detail. Impor-
tant characteristics like the degree of bunch compression
can already be determined from the total intensity of the
generated radiation.

In this context it is useful to recall the shape of a par-
tially coherent spectrum as shown in Fig. 2.1. If the bunch
length is decreased, the width of the form factor in the
frequency domain grows. If this is done for a fixed set of
other parameters like bending radius, beam energy, charge,
the incoherent spectrum stays constant while the coherence
regime extends to higher frequencies, thus increasing the
integrated radiation power. This effect is commonly used
to find the RF phase of the accelerating module that yields
maximum compression of the beam.
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Figure 7.1: Signal amplitudes of pyroelectric detectors as a
function of the RF phase of acceleration module ACC1.
The measured radiation sources are synchrotron radia-
tion from the last dipole of BC2 (CSR) and transition
radiation from a screen downstream of BC2 (CTR). The
choice of a Gaussian fit function is purely empirical.

Figure 7.1 shows the result of a scan of the phase of
ACC1, for a machine setting in which the on-crest phase
of the module had previously been determined to be about
120° by observation of the beam image on an OTR screen
in the dispersive section of bunch compressor BC2. Dur-
ing the scan, two different radiation sources have been
observed with pyroelectric detectors, transition radiation
from a screen nine meters downstream of BC2, and syn-
chrotron radiation from the last dipole of the same bunch
compressor (the latter actually measured with one detector
of the interferometer). For each phase setpoint, the signal
has been averaged over eight successive pulses.

Stepping downwards from higher module phases, the en-
ergy slope induced along the bunch grows, and so does

the compression caused by the magnetic chicane. At some
point the electron packet has reached a state where it pro-
duces the most intense coherent radiation; this setting is
considered as the phase of maximum compression. If the
phase is further decreased, overcompression takes place,
and the radiation power diminishes.

Although the absolute amplitude of the voltages cannot
be compared, the minimum of the curves yields the same
phase of maximum compression for both radiation sources
within an accuracy of 0.1°. This emphasizes that the princi-
ple of coherent radiation diagnostics is independent of the
particular physical radiation process. Because especially
pyroelectric detectors are easy to set up and provide a fast
qualitative measure of the degree of bunch compression,
they have become a standard tool in accelerator diagnos-
tics.

7.1.1 Phase stability

In most of the interferograms that have been recorded, a
strong drift of the total radiation intensity over the dura-
tion of the measurement has been observed. To investigate
the stability of the RF system, a number of consecutive
phase scans of module ACC1 have been performed with
the CSR detectors. Figure 7.2 shows the measured phase
of maximum compression as a function of time. A varia-
tion of about 1.5° over a period of 35 minutes is discernible.
The general slope towards lower phases is an artifact result-
ing from a continuous increase of the bunch charge that has
been carried out in parallel to the scans. Because the shape
of the peaks obtained by the phase scans becomes asym-
metric for higher charge, the used Gaussian fit tends to
underestimate the position of the minimum.
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Figure 7.2: Stability of the nominal RF phase of ACC1
that results in maximum compression. A periodicity
of about 35 minutes is discernible. The general slope
towards lower phases is an artifact from a continuous
increase of the bunch charge over the duration of the
measurement.

From the phase scan shown in Fig. 7.1 it becomes clear
that a fluctuation of 1.5° has a dramatic effect on the co-
herent radiation intensity, especially if the accelerator is set
up for intermediate compression states on the steep signal
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7 Measurements

slope. In this examplary measurement, the detector sig-
nal drops by a factor of 2.7 between 110° and 111.5°. At
the prevalent pulse repetition rate of 2 Hz, interferometer
measurements take at least 30 minutes to achieve sufficient
frequency resolution and range, and often longer if special
parameter sets are chosen. This means that the interfer-
ogram is obtained for a bunch shape that is smeared out
because the module phase always covers its complete drift
range during the scan. Efforts are made to improve the
stability of the RF system.

7.1.2 Charge dependence of the radiation intensity

It has already been stated that the incoherent radiation
intensity produced by a relativistic bunch of electrons can
be neglected whenever a significant part of the radiation is
emitted coherently. The validity of this approximation is
confirmed by the fact that the pyroelectric detector signal
has vanishing amplitude outside the narrow compression
region indicated in Fig. 7.1, regardless of the choice of ra-
diation source (CSR, CTR), bunch charge (up to 3 nC),
and number of bunches per macropulse (up to 10). Using
(2.4) we may thus write

P =

Z ∞

0

dP1

dω

�
N +N(N − 1) |F (ω)|2

�
dω

≈
Z ∞

0

dP1

dω
N2 |F (ω)|2 dω (7.1)

for the total radiated power, with dP1/dω denoting the
single-particle spectrum, and N the number of particles.
The form factor does not explicitly depend on N , but only
on the normalized charge distribution ρ(t)/Q. Hence, we
expect a quadratic dependence of the radiation power on
the number of particles, P ∝ N2, if the bunch shape itself
is independent of N .

To check the behavior of the form factor in this con-
text, the radiation power generated by the electron bunch
has been measured for different bunch charges Q = Ne0.
For the measurement depicted in Fig. 7.3, the current of
the flashlamp amplifier of the photoinjector laser has been
varied in 30 steps to cover a charge range of 0.3 nC to
3.2 nC. For each step, 20 successive readings from one of
the interferometer detectors and from a bunch compres-
sion monitor (BCM) have been averaged. The BCM is a
pyroelectric detector recording the CTR intensity from a
transition radiator that is located about 9 m downstream
of bunch compressor BC2. The whole procedure has been
repeated for different settings of the phase of acceleration
module ACC1.

It can be seen that almost all of the measured curves
deviate from the ideal P ∝ N2 behavior. An especially
remarkable fact is that the radiation intensity registered by
the interferometer detector does not increase monotoniset
ytics 0,0.5,1.5 cally towards high bunch charge. Instead,
the curves show a bend at some point and the coherent
radiation power begins to decrease. These bends occur at
lower charge if the module phase is nearer to the maximum
compression phase of 108.3°. The effect is not observed by
the BCM at a position further downstream.

A possible explanation for the different behavior is found
by considering the radiation source and the cutoff imposed
by the surroundings of the beam. While the narrow BC2
vacuum chamber prevents the propagation of light with fre-
quencies below 275 GHz, the transition radiator is placed
in a more spacious part of the vacuum tube. Hence, the

cutoff frequency for the BCM is lower, interferometer mea-
surements at similar vacuum ports indicate a value of about
50 GHz. This makes an important difference if the coher-
ent radiation power is concentrated mainly in the range
of low frequencies, i.e. for bunches with distinct tail sec-
tions. A similar effect might be caused by losses in the
long radiation transfer line of the interferometer, which is
more susceptible to diffraction effects than the BCM that
is placed at a distance of less than a meter from the tran-
sition radiator. The influence of both the low-frequency
cutoff and of diffraction makes the assumption I ∝ P in-
valid, the detector signal is no longer proportional to the
radiated power.

It is also possible that the bunch compressor geome-
try (Fig. A.4) affects the measurement. The interferometer
transfer line is designed to collect synchrotron light from
the last dipole of BC2. Dispersion is created between the
first two dipoles of the bunch compressor, and in the be-
ginning of the field region of the last dipole, the orbit is
still dispersive. Hence, the CSR emitted there comes from
a bunch that is not fully compressed. The second, possibly
more important point is that the vacuum window is placed
just in the line of sight of both of the last dipole magnets.
Hence it does not only transmit synchrotron radiation from
dipole 4 as intended, but also from dipole 3, where the orbit
is highly dispersive.

To visualize the deviation of the measurements from the
ideal case of a form factor that is independent of the num-
ber of particles, the detector signals have been normalized
by Q2. By using Q = Ne0, we can conclude from (7.1)
that

P

Q2
∝
Z ∞

0

dP1

dω
|F (ω)|2 dω ,

so we may take this quantity as a relative measure of the
bunch length in a way that a bigger absolute value |P/Q2|
is a sign of a bigger integral

R
|F (ω)|dω, which can only

be caused by a bunch that is shorter in the time domain.
It should be noted that the quantity that is actually mea-
surable, |I/Q2|, can only approximate |P/Q2| within the
limitations discussed above.

The result of this charge normalization is shown in
Fig. 7.4. We see that the description P ∝ Q2 fits best
for module phases that induce a comparatively small en-
ergy slope along the bunch – namely the settings of 112.4°
and 114.4°. Especially for the BCM, I/Q2 is almost con-
stant. However, at the “strongly compressing” phases
108.4° and 110.4°, the radiation power grows almost lin-
early with charge, which means that the relative bunch
length increases for a higher number of particles.

This result is expected and mainly attributable to space
charge forces in the gun and the following part of the accel-
erator where the electron beam has not yet been brought
to ultrarelativistic energy. The more charge is extracted
from the photocathode, the bigger the energy spread of the
bunches, and the more effective we find the compression in
the magnetic chicane.

7.2 Polarization of the radiation incident on
the interferometer

To verify the calculations from section 5.2.1, the polariza-
tion of the incident radiation is measured by rotating the
polarizer grid. The moveable roof mirror is in a fixed, far
off-centric position so that the polarizations become mixed
in the interferometer, and thus each of the detector signals
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Figure 7.3: Pyroelectric detector signal amplitudes as a function of the bunch charge for different
ACC1 phases. The intensities have been measured with one of the DTGS detectors in the
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Figure 7.5: Signal amplitudes of the interferometer detec-
tors as a function of the polarizer angle. An angle of zero
corresponds to horizontally aligned wires.

is a measure for the remaining total intensity behind the
polarizer grid. For each angle φ, the detector signals for 8
successive macropulses are averaged. As φ = 0 corresponds
to vertically aligned wires, a dependence of I ∝ cos2(φ) is
expected for the case of complete horizontal polarization
of the incident light.

The measured intensities, depicted in Fig. 7.5, clearly
show sinusoidal behavior, but there are several deviations
from the expected curve. First, an overall slope of the sig-
nals is discernible, which can be explained by the phase
drift of the acceleration module. The next observation is
that the intensity does not reach zero. As we have seen
that the imperfections of the wire grids are negligible, this
is a clear sign for incomplete polarization of the incident
radiation. Hence, the vertical offset of the curves can be
used to determine the degree of polarization. It is also dis-
cernible that the points of extremal signal amplitude do
not coincide with angles that are a multiple of 90°, which
means the plane of prevalent polarization in front of the
polarizer is not horizontal, but tilted by an angle φ0.

We can now construct a fit function to quantify both φ0

and the ratio of the incident radiation intensities for verti-
cal and horizontal polarization, p = Iv/Ih. The influence of
the drift can be modeled roughly as a linear dependence of
the intensity on the polarizer angle, Ih = I0 + I ′φ. If, fur-
thermore, a correction factor ξ for the angle is introduced,
we obtain the function

I(φ) = Ih cos2
�
ξ(φ+ φ0)

�
+ Iv sin2�ξ(φ+ φ0)

�
= (I0 + I ′φ)

�
cos2

�
ξ(φ+ φ0)

�
+ p sin2�ξ(φ+ φ0)

��
.

(7.2)

Note that with the convention chosen here, the “horizon-
tal” and “vertical” planes corresponding to Ih, Iv actually
follow the tilt angle φ0. In other words, Ih, Iv are the
respective intensities of the horizontal and vertical polar-
ization component at the vacuum window of the bunch
compressor, and not those in front of the polarizer grid.

The parameter values found by a nonlinear least-squares
fit of (7.2) to the data are displayed in Tab. 7.1. Although
the agreement of the fit curves with the data is not partic-
ularly good, the tilt angle of the polarization plane against
the horizontal can be determined to (21 ± 1)°. This is in
agreement with the value of 18° expected from the nomi-
nal bending angle of the bunch compressor as discussed in
section 5.2.1. From the values of p, it can easily be cal-

detector VDET detector HDET
I0 (V) 0.590± 0.012 1.497 ± 0.020
I ′ (V/°) −0.001033 ± 0.000046 −0.002750 ± 0.000080
p 0.1963 ± 0.0089 0.2141 ± 0.0055
ξ 1.0255 ± 0.0057 1.0287 ± 0.0045
φ0 (°) −19.9 ± 1.1 −22.91 ± 0.84

Table 7.1: Fit parameters from (7.2) for the polarization
scan from Fig. 7.5
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Figure 7.6: Daughter interferograms appear in high-
resolution interferometer scans because of double-
reflection inside the quartz window. The minor plot
shows the raw signal amplitudes in volts on the same
time axis as the difference interferogram.

culated that the vertical polarization comprises a fraction
of (17.0 ± 0.5)% of the radiation power.1 This is an im-
portant result as it can be used to validate the simulated
single-particle spectrum; corresponding investigations are
planned.

Finally, the parameter ξ indicates a deviation of about
3% between the period length of the measured signal and
the angular scale of the polarizer. This might be caused
by the bad quality of the fit or by a small error in the
calibration of the step motor that rotates the grid.

7.3 Multiple reflections inside the quartz
window

When the range of an interferometer scan is chosen suf-
ficiently large, replicas of the central interferogram with
smaller amplitude become visible on both sides of the cen-
ter burst (Fig. 7.6). These so-called “daughter interfero-
grams” are caused by multiple reflections of the radiation
inside the quartz window. As illustrated in Fig. 7.7, a part
of the beam I3 does not leave the window towards the
transfer line, but is reflected back (I4). After another re-
flection at the boundary to the vacuum chamber (I5), a
beam of the reduced intensity I2 leaves the window in the
same direction as the primary beam I1. Due to the ad-
ditional optical path in the window material, the second
beam is delayed with respect to the first one, and both
will interfere when the moveable roof mirror has reached a
corresponding distance to its central position.

In principle, higher orders of reflection will lead to the
same effect in even further outward positions. However,

1 Following the remarks made before, this is to be understood as
the vertical polarization at the vacuum port, not at the interfero-
meter.
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Figure 7.7: Multiple reflections inside the quartz window
produce delayed replicas of the initial radiation pulse.
n denotes the index of refraction of the corresponding
material.

as the amplitude of the interferograms decreases with the
number of reflections involved and the scan range of the
interferometer is physically limited, only the first daughter
interferogram is examined here.

7.3.1 Refractive index of the quartz window

From the measurement shown in Fig. 7.6, it is possible to
determine the additional time shift ∆τ of the second beam,
i.e. the amount of time it takes the reflected beam to tra-
verse the quartz window twice. If we assume perpendicular
incidence onto the window, the total optical path length for
the rays I4, I5 is simply 2nqd, with the designations from
Fig. 7.7.

Crystalline quartz is birefringent and uniaxial, i.e. inci-
dent light is split into an ordinary wave, linearly polarized
perpendicular to the plane determined by the direction of
propagation and the optical axis of the crystal, and an ex-
traordinary wave, polarized parallel to that plane [Alo96].
The single crystal used in the window is z-cut – its optical
axis is perpendicular to the surface –, and hence the re-
fractive index for ordinary rays may be taken as nq for all
polarizations. Thus we may write

∆τ = 2
nqd

c
.

The minima of the daughter interferograms are found at
the positions

τ1 = − (70.5± 0.3± 0.7) ps

τ2 = + (70.5± 0.3± 0.7) ps ,

where the given uncertainty comprises one half of the step
width of the interferogram and a possible systematical error
of 1% of the time scale itself.2

From the mean time shift ∆τ = (70.5± 0.9) ps and the
vacuum window thickness3 d = (4.80± 0.02) mm, it is now
possible to calculate the refractive index of the window
material:

nq =
c∆τ

2d
= 2.20± 0.03

Comparable measurements of the refractive index of
crystalline quartz are found in [Loe73]. From the values

2 The position scale of the moveable roof mirror has been mea-
sured with an uncertainty of 1%. According to the definition
τ = 2∆x/c, this is also the relative error of the time scale.

3 As no specifications for the vacuum window are available, the ab-
solute uncertainty of the thickness has been estimated to ±20 µm.

specified for room temperature, ñq(900 GHz) = 2.113 ±
0.001 and ñq(0) = 2.112 ± 0.001, an average refractive in-
dex of ñq = 2.112±0.002 can be estimated for the observed
CSR spectrum. Although the literature value is not consis-
tent with the experimental one in the range of two standard
deviations, a coarse agreement can be stated. However, it
is possible that the thickness of the quartz window deviates
more than expected from the nominal value.

7.3.2 Amplitude of the daughter interferogram

Knowing the refractive index of the window, it is also possi-
ble to calculate the reflection and transmission coefficients
at the interfaces vacuum–quartz and quartz–air. From
Fresnel’s formulas for perpendicular incidence of light onto
a boundary plane between media with the refractive indices
n and n′, it is known that the electric field amplitudes of
the refracted (transmitted) and reflected beam can be cal-
culated as [Jac98]

Et =

���� 2n

n′ + n

����Ein (7.3)

Er =

����n′ − nn′ + n

����Ein , (7.4)

with Ein denoting the amplitude of the electric field inci-
dent from the side with the refractive index n.

As we are primarily interested in intensitites and not
electric fields, we need to calculate the absolute value of
the Poynting vector,

I = |I| = |E ×H| = EH ,

and with H = E · (n/µr) ·
p
ε0/µ0, we obtain

I = E2n

r
ε0
µ0

.

The relative susceptibility µr has been set to unity here
with regard to the three media vacuum, quartz, and air.
The important part of the intensity equation is indeed
the occurrence of the refractive index of the correspond-
ing medium. This being established, equations (7.3) and
(7.4) can be rephrased for the calculation of intensities:

It =
n′

n

�
2n

n′ + n

�2

Iin (7.5)

Ir =

�
n′ − n
n′ + n

�2

Iin (7.6)

Using the refractive indices nvac = nair = 1, nq = 2.2, and
following the designations of Fig. 7.7, the resulting relative
intensities are

I3 =
nq

nvac

�
2nvac

nvac + nq

�2

Iin = 0.872 Iin

I1 =
nair

nq

�
2nq

nq + nair

�2

I3 = 0.761 Iin

I4 =

�
nq − nair

nq + nair

�2

I3 = 0.111 Iin

I5 =

�
nvac − nq

nvac + nq

�2

I4 = 0.014 Iin

I2 =
nair

nq

�
2nq

nq + nair

�2

I5 = 0.012 Iin .

We see that the primary beam I1 comprises about three
quarters of the incident radiation intensity. The secondary
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interferogram abs. amplitude rel. amplitude
main 0.464 ± 0.027 1.000 ± 0.059
left daughter 0.062 ± 0.038 0.133 ± 0.082
right daughter 0.074 ± 0.017 0.159 ± 0.037

Table 7.2: Absolute and relative amplitudes of the differ-
ence interferograms from Fig. 7.6. The absolute ampli-
tude is the maximum value of the difference interfero-
gram, the relative one is normalized by the amplitude of
the main interferogram.

beam propagating towards the interferometer, I2, carries
only about 1/60 of the power of the primary one.

To compare these results with the amplitudes found in
the measured interferogram, the minima of the main differ-
ence interferogram and of its two daughters have been com-
piled in Tab. 7.2; to obtain relative amplitudes, the mini-
mum values and their experimental uncertainties have also
been normalized to the amplitude of the main interfero-
gram.

The problem at hand is similar to a misalignment of the
interferometer as discussed in section 3.4 in the sense that
the two interfering beams have different intensities. Thus
it is possible to calculate a “misalignment” parameter

ξ =

r
I2
I1
≈ 0.13

and to use equation (3.6) to calculate the expected relative
amplitude of the daughter interferogram. This way, a value
of 4.1% is obtained, which is far below the measured mean
relative amplitude of 14.6%.

If the reversed way is taken, a difference interferogram
amplitude of 0.146 translates into a parameter of ξ = 0.29,
which means the double-reflected beam should have 8.5%
of the intensity of the primary beam. This is inconsistent
with the calculated ratio I2/I1.

There may be several reasons for the observed deviation.
The raw signal amplitudes displayed in Fig. 7.6 show strong
intensity drifts. While the positions of maximum intensity
approximately coincide with those of the daughter interfer-
ograms, the center burst is clearly located in an intensity
minimum. Although this could change the observed signal-
to-noise ratio, due to the normalization process it cannot
affect the amplitude of the difference interferogram.

It is more likely that an overall misalignment of the in-
terferometer – which is apparent from the low amplitude
of the difference interferogram – causes a distortion of the
measurement. Still, it is not clear why only the primary
interferogram would be affected by this.

7.4 Alignment studies

It has already been stated that misalignments of the
Martin-Puplett interferometer reduce the amplitude of the
difference interferogram and decrease the signal-to-noise
ratio. The alignment procedure for a FIR instrument is
slightly more complex than for interferometers working in
the optical regime.

The main difficulty is that a laser beam cannot be used
because the wire grids do not act as beam splitters for
optical frequencies. It would be necessary to remove the
polarizer and to replace the beam divider and the analyzer
grid by beam-splitting foils, which would require that the
mounting supports for the wire grids and for the foils ensure

an identical alignment. The positioning of the laser itself
introduces an additional uncertainty. These problems can
be overcome by developing a procedure for the beam-based
alignment of the interferometer, i.e. by using the CSR from
the bunch compressor for alignment studies.

7.4.1 Transfer line

Before the interferometer itself can be adjusted, it has to
be made sure that the synchrotron radiation is properly
transported through the beam transfer line (Fig. 5.4). The
first alignment can be done with a laser that is set up beside
the bunch compressor and targeted at the first parabolic
mirror. Afterwards, CSR is used for the fine tuning.

In a first step, a single pyroelectric detector or a cam-
era are mounted in front of the polarizer grid. They are
directed towards the incident radiation along the optical
axis PG—BDG—MRM of the interferometer. The angles
of the transfer line mirrors are now successively varied and
optimized for the maximum detector signal or the brightest
spot.

The inspection of visible synchrotron light with a camera
has some advantages over the use of a far-infrared detector.
Because the electron beam describes an arc in the bunch
compressor, the radiation is not merely emitted in a cone,
but covers a larger angular range in the plane of deflec-
tion. This horizontal plane is also the plane of polarization
examined in section 5.2.1.

Figure 7.8 shows three images of visible synchrotron light
entering the interferometer. The plane of maximum extent
of the beam is found to have an angle of 19.6° against the
horizontal, which is in good agreement with the calculated
value of 18°. The pictures represent three different states
of rotation of the paraboloid PM1. This mirror – although
sufficient for far-infrared radiation – has a bad optical qual-
ity, with visible flutes on the surface. These lines act like a
grating for visible light, producing interference patterns in
the reflected beam. This effect is actually useful for align-
ment purposes because the central intensity maximum is
clearly separated from outer maxima of higher order, and
can thus be identified much easier.

7.4.2 Roof mirror tilt

In the interferometer itself, the only three adjustable com-
ponents are the two roof mirrors and the paraboloid PM2.
A short overview on how to recognize typical misalignments
of the roof mirrors is presented in the following.

The only externally accessible means of adjustment of
the roof mirrors is a micrometer screw that can be used
to tilt the whole mirror upwards or downwards (Fig. A.3,
top right), i.e. to change the inclination of the ridge line
against the vertical axis. The point of zero excursion of
this screw has been chosen to coincide with a horizontally
leveled top surface of the mirror. Negative excursions lead
to a downward deflection of the reflected beam, positive
ones to an upward deflection. The sign convention is op-
posite to the one used for the position of the moveable roof
mirror (Fig. 7.9).

To study the influence of the tilt alignment, a number
of difference interferograms have been taken at maximum
compression of the electron beam for various values of the
excursion χ of the moveable roof mirror. The fixed roof
mirror has remained leveled, i.e. at an excursion of zero.
Both the scan range and the number of points have been
reduced, so that the measurements could be done in quick
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Figure 7.8: Images of visible synchrotron light entering the interferometer. The pictures represent
three different rotation states of the parabolic mirror PM1. Left: Bad alignment, only a sidelobe
of the interference pattern is visible. The plane of maximum extent of the beam is tilted
by about 20° against the horizontal. Middle: Central intensity maximum with an intensity
minimum on the right side. Right: Good alignment.
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Figure 7.9: Sign conventions for the roof mirror tilt. The
excursion of the alignment screw is negative if the mirror
is tilted downwards.

succession. Thus all interferograms have been taken within
less than an hour, and except for the discussed drifts the
comparability of the data is ensured.

A selection of the various difference interferograms is
shown in Fig. 7.10. Three properties of the curves are of
special interest:

Center burst position

It is noticeable that the position of the center burst changes
with the variation of the excursion χ. The reason is that
the turning point of the roof mirror is located near its base.
Hence, if the adjustment screw is being set to a negative
excursion, the upper part of the mirror actually moves to-
wards the incident beam, or away from it for a positive
excursion.

Assuming that the beam extends over the whole cross-
section of the mirror, the shift of the center burst could
be obtained by dividing the beam into vertical slices and
averaging the displacements experienced by each of them
– however, as the vertical positions of the alignment screw
and of the turning point are nearly symmetric around the
center of the mirror, the average shift can be approximated
as χ/2, which is confirmed by the measurements.

Amplitude

The amplitude of the center burst is the most obvious pa-
rameter of a difference interferogram. It depends strongly
on the roof mirror tilt. There are two reasons for this:
Firstly, if the incoming beam is reflected at the moveable

-0.4

-0.2

0

0.2

0.4

0.6

0.8

47.5 48 48.5 49 49.5

n
or

m
.
d
iff

er
en

ce
([

−
1
:1

])

roof mirror position (mm)

−0.25 mm
−0.10 mm
+0.10 mm
+0.25 mm
+0.50 mm

Figure 7.10: Difference interferograms for various tilt states
of the moveable roof mirror. The given distance is the ex-
cursion of the alignment screw from the central position
that corresponds to a horizontally leveled top surface of
the mirror. Negative values indicate a tilt downwards,
positive values upwards.

roof mirror under an angle, it acquires a vertical offset rel-
ative to the beam reflected at the fixed roof mirror. The
size of this offset at the analyzer grid can be estimated with
a simple calculation.

The height difference between the alignment screw and
the turning point of the mirror is h = 85 mm, so for the
outmost excursion of χ = 0.5 mm we find a tilt angle of

ϕ = arctan(χ/h) ≈ 0.34° .

A horizontally incident beam is hence deflected by an angle
of 2ϕ ≈ 0.7°, and as the optical path length l from the roof
mirrors to the parabolic mirror is about 31 cm, the vertical
offset accumulated there is found to be l tan(2ϕ) ≈ 4 mm.
Depending on the total size of the radiation spot for a
specific wavelength, this offset leads to a reduction of the
area of overlap between the two beams, and hence to a
decrease of modulation in the interferogram.

The second reason for the diminished amplitude is the
reduction of spatial coherence between the beams. After
passing the transfer line, the incident radiation constitutes
a plane wave in good approximation. While an ideal in-
terferometer would divide this wave front into two waves
that are parallel in front of the final parabolic mirror, a
tilt of one roof mirror leads to an inclination of one of the
wave fronts against the other. This means that the phase
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relation between the electric fields of both beams is not
fixed anymore, but becomes a function of position within
the interference region.

The strong dependence of the difference interferogram
amplitude on the roof mirror tilt makes it the main pa-
rameter for an optimization of the instrument. Additional
information can, however, be gained from the asymmetry
of the interferogram.

Asymmetry

A close look at Fig. 7.10 reveals that most of the difference
interferograms are slightly asymmetric. In a well-aligned
instrument, the beam propagates exactly horizontally after
reflection at the roof mirrors; otherwise, a vertical offset
between the beams at the final parabolic mirror reduces
the amplitude of the difference interferogram. If the optical
path length is now reduced by a movement of the roof
mirror, the vertical offset is reduced, and the modulation
of the interferogram is increased. This is in fact observed
in the measurements, where nearly all interferograms show
a larger amplitude on their left side.

Alignment procedure

From the observed effects, an alignment procedure for the
tilts of the two roof mirrors has been developed. The max-
imum amplitude of the interferogram can be reached for
different tilts of the moveable (MRM) and the fixed roof
mirror (FRM) as observed in the measurement because the
particular positions of zero excursion are not known. A ver-
tical tilt of the central beam divider grid can also introduce
different angular errors for the two partial beams.

Additionally, the incident beam might be inclined by an
angle ψ relative to the horizontal plane. In this case, the de-
pendence of the vertical beamspot position at the parabolic
mirror can only be removed by an equal tilt of the MRM,
so setting ϕ = ψ yields the minimum asymmetry.

Summing up, there are two parts to the alignment of the
roof mirror tilts: Both must have an equal offset angle ψ
to compensate for non-horizontal incidence of the beam,
and a certain difference angle ∆ϕ to compensate for an-
gular errors of the beam divider and of the roof mirrors
themselves:

ϕMRM = ψ

ϕFRM = ψ + ∆ϕ

Taking this into acount, the alignment procedure can be
formulated as follows:

1. Align the last mirror of the transfer line to ensure hor-
izontal incidence to the interferometer. This can be
done on the basis of visible synchrotron light with a
leveled setup of a camera and a horizontal slit screen.

2. Level both roof mirrors, ϕMRM = ϕFRM = 0.

3. Take a series of interferograms, varying the tilt of the
MRM around the starting position.

4. Select the interferogram (a) with the biggest ampli-
tude and note the corresponding difference between
the excursions of FRM and MRM, ∆ϕ = ϕFRM(a) −
ϕMRM(a).

5. If one of the interferograms (s) is significantly more
symmetric than the one with biggest amplitude,

note the corresponding excursion of the MRM, ψ =
ϕMRM(s), set the excursion of the FRM to the sum of
this value and the difference from last step, ϕFRM =
ψ + ∆ϕ, and continue with step 3.

6. Set the MRM to the excursion that it had in the inter-
ferogram (a) with maximum amplitude, which should
now also be quite symmetric: ϕMRM = ϕMRM(a).

7. Move the MRM into its exact center burst position.

8. Minimize the signal of the vertical detector by cau-
tiously varying the tilt of the FRM. If necessary, re-
peat step 7.

Step 1 and 2 only establish a starting point for the pro-
cedure, and may hence be omitted if the transfer line is
known to be pre-aligned well. The last two steps make use
of the fact that incident horizontally polarized light is re-
stored to its initial polarization state after recombination
of the partial beams in the interferometer if the path dif-
ference is zero. In an ideal instrument, the signal from the
vertical detector could thus be reduced to zero in the center
burst of the interferogram.

7.5 Transfer function measurements

For a reconstruction of the bunch form factor, the trans-
fer function of the optical system must be known. Some
measurements aiming at an improved understanding of the
observed spectral behavior are presented in the following
sections.

7.5.1 Diffraction losses in the beam transfer line

In order to obtain information about the spectral influence
of diffraction losses along the beam transport line, a sim-
ple blackbody radiator consisting of a heating plate and a
chopper has been set up between the BC2 vacuum cham-
ber window and the first parabolic mirror PM1. Although
the (short-wavelength) infrared part of the emitted radia-
tion was easily detectable with a pyroelectric detector at
the end of the transfer line, the intensity behind the in-
terferometer was too small to be measured, and therefore
no spectrum could be recorded. Even with a cryogenic
bolometer of much higher sensitivity, no signal could be
established.

Similar measurements with the same bolometer can be
found in [Men05]. In that experiment, a small signal could
be established at the end of the interferometer, and a quite
noisy spectrum was measured. In contrast to the recent
measurement, the “blackbody” source was mounted di-
rectly in front of the interferometer.

The preliminary conclusion is that the intensity loss for
far-infrared radiation due to transfer line effects was grave
for the given setup of the transfer line during the measure-
ment. However, the transport efficiency could later be im-
proved by a CSR-based alignment of the transfer mirrors.
Further investigations are needed.

7.5.2 Absorption in humid air

As mentioned before, the absorption caused by water vapor
has a critical influence on the interferometric measurements
which can be reduced by purging the instrument and the
beam transfer line with dry nitrogen. Figure 7.11 shows
that the relative humidity of the gas filling can be reduced
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Figure 7.11: Relative atmospheric humidity inside the TO-
SYLAB beam transfer line during nitrogen purging with
a flow of 1 l/s [Gri05a]

to about 0.5% if the maximum possible nitrogen flow of
1 l/s is sustained. However, this is a slow process, and it
takes at least two days to make it effective.

Basic considerations

Quantifying the influence of water absorption on the basis
of measured spectra is a rather unprecise procedure be-
cause it involves several estimates. As a lot of time is
needed for a good nitrogen purging of the instrument, no
two measurements comparing a dry nitrogen atmosphere
with the normal atmosphere under equal external condi-
tions could be taken. For the spectra that can be compared
here, it must be expected that several characteristics of the
accelerator have changed in the time between the measure-
ments.

During the interferometer runs, the humidity was not de-
termined. Considering that the measurements under nitro-
gen atmosphere have been taken with a reduced gas flow of
about 0.5 l/s and that the instrument had to be opened spo-
radically for adjustments, the relative humidity can only be
roughly estimated as (1.5 ± 1.0)%. For the relative humid-
ity of the laboratory air, a value of (50 ± 10)% is assumed.
The ratio of the water concentrations in dry nitrogen and
normal laboratory atmosphere is then approximately

Chumid

Cdry
≈ 50± 10

1.5± 1.0
≈ 33± 23 . (7.7)

The reference absorption data for humid air from [Jep04]
(cf. Fig. 6.5) are given in the form of absorption coefficients
αref(ω). Knowing from Beer’s law that the absorption co-
efficient is proportional to the concentration C of the ab-
sorber,

α(ω) = Cκ(ω) ,

with the factor κ(ω) being a material constant independent
of the concentration, we can calculate the transmission over
an optical path of length l by

T (ω) = exp(−α(ω)l) = exp(−κ(ω)Cl) . (7.8)

As the humidity Cref of the laboratory air is not specified
for the reference data set, it cannot be used to determine
the transmission for a given water concentration. However,
we can define an effective optical path length leff as the
distance a wave would have to travel in air of the reference
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Figure 7.12: Top: Comparison of spectra taken with and
without nitrogen purging of the interferometer. Bot-
tom: Transmission of humid air in the beam transfer
line, calculated as the ratio of the two measured spectra.
For comparison, the reference transmission for an optical
path length of 13 m is shown.

water concentration to obtain a given transmission T :

Tref(ω) = exp(κ(ω)Cref leff) = exp(κ(ω)Cl) = T (ω)

⇒ leff =
Cl

Cref

Hence, the effective optical path length is proportional to
the product of the actual path length l and the actual con-
centration C.

Quantifying the influence of water absorption

To obtain a transmission spectrum, two CSR spectra taken
under nearly equal external conditions are compared, one
taken after three days of nitrogen flushing, the other two
weeks after disabling it. The amplitudes have been ad-
justed manually to attain a good agreement of the inten-
sity values. On the left side of Fig. 7.12, four major minima
are discernible in both spectra in the frequency range from
250 to 900 GHz. Outside this region, the low intensities
prevent a detailed analysis. The labeled minima are less
pronounced in the spectrum taken with nitrogen purging.

The relative transmission can now be determined by di-
viding the intensities of the two spectra:

T (ω) =
Ihumid(ω)

Idry(ω)

Now a transmission spectrum is calculated from the refer-
ence data using (7.8), with the path length being adjusted
to fit the curve to the measured T (ω) in the regions of the
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Figure 7.13: A spectrum recorded under humid atmosphere
is corrected with the full transfer function. Where the
transfer function is near zero as in some regions above
1 THz, the correction process fails.

four labeled intensity minima. The value found for this
effective optical path length4 is lhumid−dry = (13 ± 2) m.
Because only two pairs of well-comparable measurements
could be found, the reproducibility of this result could only
be checked in one other case, where an effective path length
of about 13 m also gave the best agreement with the mea-
sured transmission; the uncertainty had to be estimated.

The reference transmission spectrum is compared with
the measured one on the right side of Fig. 7.12. For the
main absorption lines 2, 3, and 4, the agreement between
the reference curve and the measurement is good. The
remaining dips are only partially caused by water vapor.
At the position of minimum 1, the reference data contain
no indication of water absorption. Thus, a more thorough
investigation of the observed structures is necessary.

If we assume that the two compared spectra differ only
in the respective transmission imposed by the water vapor
concentrations Cdry and Chumid, we can write the measured
transmission as

T (ω) =
Thumid

Tdry
= exp(lκ(ω) · (Chumid − Cdry)) ,

and hence the effective optical path length as

lhumid−dry =
Chumid − Cdry

Cref
l , (7.9)

with l denoting the real path length of about 12 m given
by the transfer line and interferometer setup. By inserting
the concentration ratio (7.7) into (7.9), we find the effective
path length for humid and for dry atmosphere,

ldry = 1
32
lhumid−dry = (0.40± 0.28) m

lhumid = 33
32
lhumid−dry = (13.40± 2.1) m .

These values are used to calculate the transfer function
from the reference data for humid air in order to correct
measured spectra.

However, it can be seen from Fig. 7.12 that the trans-
mission for humid air drops to almost zero in some regions
above 1 THz. Hence, the measured intensities in these re-
gions come from noise, and application of the transfer func-
tion leads to a strong amplification of these values and of
their uncertainties as shown in Fig. 7.13.

4 The measured T (ω) represents the transmission for humid air of
the concentration Chumid − Cdry, hence the index “humid−dry”.

wavelength water line
nr. (µm) pos. (µm)
1a 927.1 ± 6.1 922.0
1b 856.5 ± 7.0 –
2a 715.9 ± 7.2 –
2b 661.7 ± 9.3 669.2
3 540.5 ± 1.7 538.3
5 482.7 ± 2.3 483.0
6 448.5 ± 4.1 –
4a 423.8 ± 0.9 –
4b 398.9 ± 2.0 398.6

Table 7.3: Positions of reproducible minima in the mea-
sured spectra. Where applicable, the central wavelength
of the closest major water absorption line is given.

The figure compares a spectrum recorded under humid
atmosphere with another one that has been corrected with
the full transfer function, including vacuum window effects
and water absorption. The described artifacts are visible in
the right part of the corrected curve, effectively rendering
the measurement useless for the affected frequencies. As
there are only small spectral regions without strong wa-
ter absorption at higher frequencies, it can be summarized
that the interferometer has to be purged with nitrogen if a
spectral range of more than 1 THz is to be covered.

At lower frequencies, the absorption lines are clearly re-
duced by application of the transfer function. However,
some structures remain that have to be examined in more
detail.

7.5.3 Observed spectral structures

Figure 7.14 shows a part of two measured spectra on a
wavelength scale. One has been taken with a nitrogen-
purged interferometer, the other in the normal humid at-
mosphere, with different accelerator settings. Nine struc-
tures are visible in both spectra at wavelengths above
390 µm. The positions of these minima are reproducible
in all measured spectra, regardless of other external pa-
rameters like the acceleration phase.

To obtain the positions of the nine minima, four spectra
have been chosen under the criterion of good discernability
of the structures. The spectra represent various accelerator
parameters, and two have been measured under nitrogen
atmosphere, two in humid air. The averaged positions of
the minima are given in Tab. 7.3 together with the central
wavelengths of close major water absorption lines as found
in [Pic98].

Five of the observed structures can be explained by water
absorption. It appears that the absorption around 922 µm
is not included in the reference transmission data because
of too coarse sampling. The aforementioned structures la-
beled as 1, 2, and 4 in Fig. 7.12 are each found to be com-
posed of two sub-minima, of which only one in each case
can be attributed to a water line.

The origin of minima 1b, 2a, 6, and 4a is unknown. They
are possibly caused by a frequency dependence of the detec-
tor or by diffraction losses. Simulations also indicate that
interference effects between the synchrotron radiation from
the third and fourth dipole of the bunch compressor can
cause oscillations in the single-particle spectrum [Gri05].
As the positions of the minima are not equidistant, there
is no indication of an etalon effect in the pyroelectric crys-
tal as observed with other detectors (cf. section 6.3.3).
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Figure 7.14: CSR spectra for nitrogen atmosphere and humid air on a wavelength scale. A
number of structures are reproduced in all spectra that have a sufficient resolution, regardless
of external parameters. This plot shows the position of the minima in two exemplary spectra,
the intensity scaling is arbitrary.

7.6 Bunch shape reconstruction from a
selected measurement

The process of reconstructing the bunch shape from the
difference interferogram has been discussed in chapter 6.
It is now applied to a selected measurement to obtain a
first value for the bunch length. Some difficulties arising
with “real” experimental data are also pointed out.

The measurement labeled D0 has been selected under the
criteria of good suppression of water absorption by nitrogen
flushing, and of both a reasonably high spectral resolution
and spectral range. The most important accelerator and
scan parameters are found in Tab. A.1 and A.2. The inter-
ferogram was recorded while the VUV-FEL produced laser
pulses, so the measurement represents a typical setting for
the FEL mode of the machine. As the SASE process in the
undulator proved to be very sensitive to small variations of
the RF phase of acceleration module ACC1, it was neces-
sary to continuously adjust this parameter in small steps
in order to compensate for drifts. This way, the phase was
kept at approximately 6° above the maximum compression
setting, which indicates a relatively weak compression of
the bunch in the magnetic chicane BC2.

Signal amplitudes

The raw signal amplitudes in Fig. 7.15 show the fast (shot-
to-shot) fluctuations of the CSR intensity as well as the
slower drift that has been counteracted manually. The
signal amplitude of the vertical detector is considerably
smaller than the horizontal one because the former can-
not be properly centered below the analyzer grid due to
mechanical limitations. However, the amplitude correc-
tion step described in section 6.2 is able to overcome this
problem, so that the computation of the difference inter-
ferogram is possible.

Difference interferogram

From the plot found in Fig. 7.16, we see that the interfer-
ogram is slightly asymmetric, with a more distinct mod-
ulation towards positive time shifts. This is an indica-

tion for non-perpendicular incidence of the radiation to the
moveable roof mirror, however, the amplitude of nearly 0.8
shows that the alignment of the instrument is sufficient
for further evaluation of the data. The full width at half
maximum5 (FWHM) of the center burst is about 0.51 ps.

Spectrum

The spectrum derived from the difference interferogram
is depicted in Fig. 7.17. The measurement was made af-
ter several days of nitrogen purging with maximum pos-
sible flow, and no influence of water absorption is dis-
cernible. Therefore, only the transmission of the quartz
window has been included in the transfer function. The
given error range clearly shows that the measured intensi-
ties mainly constitute noise above 2 THz. The transmission
of crystalline quartz drops to nearly zero around 3.85 THz
(Fig. 5.3), which creates an artefact in the corrected spec-
trum. Therefore, the spectrum is truncated at 3.7 THz.

Form factor

At the high-frequency end, an exponential asymptote of
the form Aω−4 (cf. (6.4)) is appended to the form factor,
while the two discussed types of low-frequency asymptotes
– Taylor-type and Gaussian – are fitted to the falling slope
between 275 and 325 GHz. The Gaussian curve is steeper,
and hence normalizing the zero-frequency value to unity
yields an overall higher form factor for the Taylor-type
asymptote.

Normally, the simulated single-particle spectrum (cf.
Fig. 2.3) is used to calculate the form factor from the spec-
trum. For comparison, the form factor resulting from use
of the single-particle synchrotron radiation spectrum (2.5)
is also shown in Fig. 7.18. It can be seen that the former
gives a smoother slope at low frequencies.

5 The width is measured at half the amplitude of the maximum, i.e.
relative to zero.
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Figure 7.15: Raw signal amplitudes of measurement D0.
Fast fluctuations of the radiation intensity are visible.
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Figure 7.16: Difference interferogram of measurement D0,
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Figure 7.17: Spectrum of measurement D0, corrected with
the transfer function of the quartz window.
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Figure 7.19: Minimal phase of measurement D0. Above
2 THz, where the spectrum is dominated by noise, the
minimal phase becomes erratic.
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Figure 7.21: Linear interpolation of the spectrum from
measurement D0.

Minimal phase

The minimal phases found by Kramers-Kronig analysis are
depicted in Fig. 7.19. They differ only slightly at low fre-
quencies. Above 2 THz, where the spectrum is dominated
by noise, the minimal phase becomes erratic. However, this
is not relevant because the modulus of the form factor is
small there.

Bunch shape

Knowledge of the moduli of the form factors and of the
minimal phases finally allows the calculation of the bunch
shapes, which are shown in Fig. 7.20. The curves have been
normalized to an equal integral. They are clearly asymmet-
ric, with a full width at half maximum of about 1 ps. Both
the Gaussian and the Taylor-type low-frequency extrapo-
lation yield the same steeply rising front of the bunch, but
differ slightly in the length of the tail.

The widths of the distributions are given in the caption
of the figure. It should be noted that in the calculation of
the root-mean-square (RMS) width,

wRMS =

R
ρ̃(t)(t− t̄)2 dtR

ρ̃(t) dt
, with t̄ =

R
ρ̃(t)t dtR
ρ̃(t) dt

,

only current values ρ̃(t) above five percent of the maxi-
mum of the respective curve are included to eliminate the
influence of trailing over-/undershoots.

On the top of the bunch distribution, two small spikes
are discernible. The bigger one has a width of roughly
160 fs, the smaller one of about 60 fs. Considering the max-
imum frequency of 3.7 THz, the smallest structure length
that can be reliably reproduced is about half a wavelength,
0.5/(3.7 THz)≈ 140 fs. Thus, the spikes are clearly pro-
duced by the upper end of the measured spectrum, and as
the measurement is dominated by noise in that range, they
should not be interpreted as real features of the current
distribution unreservedly.

7.6.1 Linear interpolation of the spectrum

Although the nitrogen purging of the interferometer is
quite effective in reducing absorption by water vapor, the
measured spectrum still shows numerous unexplained min-
ima.

It has been tried to remove these structures by linear
interpolation between selected local maxima of the mea-
sured intensity, as depicted in Fig. 7.21. The resulting spec-
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Figure 7.22: Bunch shape reconstructed from the interpo-
lated spectrum of measurement D0, compared with the
two reconstructions from the original spectrum. Width
of the reconstruction from the interpolated spectrum:
0.82 ps (FWHM) / 0.32 ps (RMS).

trum is strictly monotonic with the exception of the low-
frequency cutoff region below 275 GHz, and its slope just
above this frequency is considerably smaller than that of
the narrow peak in the original measurement. In turn, the
small slope leads to a reduction of the amplitude of the low-
frequency asymptotes that are fitted to this spectral range.
This effect is strong enough to make the Gaussian- and
Taylor-type extrapolation virtually indistinguishable, and
consequently they result in the same bunch shape, which is
compared with the two reconstructions from the original,
non-interpolated spectrum on the right side of the same
figure.

As expected, the obtained current profile (Fig. 7.22) is
smoother than the original profiles. However, the general
bunch shape is quite similar, with the most important dif-
ference that the tail of the distribution is almost completely
suppressed, resulting in a smaller width of 0.82 ps (FWHM)
or 0.32 ps (RMS). As a rule, a higher slope in the fit range
for the low-frequency asymptote makes the reconstructed
bunch broader and increases the dependence on the par-
ticular type (Gaussian or Taylor). The uncertainty about
long features of the current distribution is a general limita-
tion of the interferometric method, and can only be partly
overcome by measuring coherent radiation from a different
part of the vacuum chamber with a lower cutoff frequency.

The leading spike at the front end of the bunch is found
to be more distinct than in the original curves. This is
clearly a consequence of the almost constant, if small, ar-
tificial intensity contributions at high frequencies, which
replace the noise seen in the measured spectra.

7.7 Various degrees of bunch compression

The degree of compression in the magnetic chicane is
mainly determined by the RF phase in the acceleration
module. A phase scan like the one depicted in Fig. 7.1
shows that only a narrow range of at most ±6° around the
phase of maximum compression is accessible for radiation
measurements with pyroelectric detectors. The range be-
comes even narrower if the accelerator is operated with only
one bunch per macropulse (i.e. in “single-bunch mode”), as
the radiation intensity scales linearly with the number of
bunches.
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Figure 7.25: Measurements D1–D4, reconstructed bunch
shapes.

7.7.1 Measurements with unstabilized phase

The measurements D1–D4, taken under nitrogen atmo-
sphere, represent four settings of the phase of ACC1. Be-
cause the interferograms were recorded on two consecu-
tive days, some parameters of the accelerator are not the
same for all of them (cf. Tab. A.1). Most importantly, the
charge varied from 0.8 to 1.1 nC. However, considering the
charge dependence in Fig. 7.3, a qualitative comparison of
the measurements is possible. The phase drift in ACC1
was not compensated.

Figure 7.23 shows that the difference interferograms are
quite similar. There is a slight change in the width of
the center burst, however it is neither correlated with the
phase nor with the bunch charge. Only a small variation
is discernible in the oscillatory behavior outside the center
burst.

The resulting spectra – depicted in Fig. 7.24 – have been
corrected with the full transfer function including quartz
window effects and residual water absorption. For the main
plot, the curves have been normalized to an equal integral.
Although changes in the spectra are visible, they do not fol-
low a recognizable pattern. The spectrum with the highest
degree of compression (+1.2°) has the smallest fraction of
intensity at high frequencies while the +3.0° curve has the
highest one, with a significant contribution between 1.5 and
2 THz.

The spectra are easier to distinguish if they are scaled
corresponding to the measured intensity. For this purpose,
an average over the sum of the signal amplitudes is calcu-
lated for each measurement. The values thus obtained are
a measure for the mean total intensity incident on both de-
tectors during an interferometer scan. To make the results
comparable between different measurements, they are di-
vided by the number of bunches per macropulse, yielding
the mean signals per bunch specified in Fig. 7.24. The nor-
malized intensities are now multiplied with these numbers,
giving the spectra shown in the minor plot of the same
figure.

As expected, the intensity grows with higher bunch com-
pression. However, this increase is not accompanied by a
shift to the high frequency range as would be the case if
the coherently radiating part of the bunch became shorter.
Instead, the spectral distribution stays roughly constant.

From this observation, it is not surprising that also the
reconstructed bunch shapes show little dependence on the
phase, as seen in Fig. 7.25. The bunch lengths are com-
pared with the ones obtained for the previously examined

measurement in Tab. A.3, allowing the conclusion that the
coherently radiating part of the bunch is always roughly
one picosecond long, provided both the single-particle spec-
trum and the transfer function are approximately correct.

7.7.2 Measurements with stabilized phase

As mentioned before, it has been observed that the slow
drift of the RF phase in ACC1 needs to be compensated to
sustain the FEL process. In order to keep the compression
in BC2 constant, a feedback software has been developed
to adjust the phase setpoint of the module. It monitors
the intensity of coherent diffraction radiation generated by
the electron beam passing a slit screen a few meters down-
stream of the bunch compressor. If the measured intensity
is higher than a preselected target value, the phase set-
point is increased, or decreased if the intensity is lower.
This way, the CSR intensity observed with the detectors in
the interferometer is stabilized, too.

The four interferograms H1–H4 have been recorded with
different target intensities of the feedback (cf. Tab. A.1).
By comparison with a preceding phase scan, it is possible
to estimate the corresponding phases relative to the point
of maximum compression. Due to time constraints, it has
not been possible to perform nitrogen purging before the
measurements.

The obtained spectra are displayed in Fig. 7.26. In the
major plot, showing the curves normalized to an equal in-
tegral, they are barely distinguishable, with the exception
of the +3° spectrum, which has a slightly higher contri-
bution of low frequencies than the others. However, for
this phase the intensity measured at the diffraction radia-
tor was already so low that the feedback was barely able to
stabilize the compression. As technical problems prevented
to increase the number of bunches per macropulse, it was
not possible to investigate the behavior at lower degrees of
compression.

The measurements confirm the preceding analysis that
the shape of the spectrum is barely changed by variations
of the RF phase within a narrow range around the point of
maximum compression. As shown in the minor plot, if the
compression is increased, all frequencies of the spectrum
are equally amplified. This is an indication that the shape
of the “active” part of the bunch – i.e. the part that con-
tributes to the observed coherent radiation – is invariant
under variations of the phase in the compression region.
The increase in intensity is caused by an increased popula-
tion of this active part by the electrons of the bunch.
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Figure 7.23: Measurements D1–D4, difference interferograms. The phases are relative to the
respective points of maximum compression as found by phase scans of the acceleration module
ACC1. The minor plot shows the full interferogram with statistical error for a phase of +1.2°.
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Figure 7.24: Measurements D1–D4, Major plot: Spectra after correction with the full transfer
function, normalized to an equal integral. Minor plot: The same spectra, normalized to the
mean signal amplitude per bunch.
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Figure 7.26: Measurements H1–H4, spectra. Major plot: Normalized to an equal integral. Minor
plot: Normalized to the mean detector signal per bunch.
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8 Conclusion

A high peak current of the electron bunches is a very
important parameter for a high-gain free electron laser. To
generate high local charge densities in the first place, a
laser driven photo cathode is used, and a rapid acceleration
to relativistic energies in an RF cavity helps to minimize
the growth of the energy spread by space charge effects.
Afterwards, the current is increased by a longitudinal com-
pression of the bunches in two magnetic chicanes.

Monitoring the coherent radiation intensity emitted by
the electron bunches with pyroelectric detectors has proven
to be an excellent tool to determine a qualitative degree of
compression. With this method, it has been possible to
show that the RF phase of the first acceleration module of
the VUV-FEL – the basic parameter controlling the com-
pression of the beam – performs periodic drifts over a range
of about 1.5°. It has also been observed that the SASE pro-
cess is very sensitive to variations of this phase, and that
hence a regulation of the degree of compression is neces-
sary to sustain the generation of laser pulses. A feedback
software has been developed that is able to stabilize the
phase with sufficient accuracy.

While the integrated intensity of coherent radiation is
only a qualitative measure for the compression achieved in
the magnetic chicanes, an analysis of its spectrum allows to
reconstruct the longitudinal charge profile of the electron
bunches. It has been shown that a Martin-Puplett inter-
ferometer is well suited to determine the far-infrared spec-
trum of a strongly fluctuating radiation source because of
its intensity-normalizing working principle. Detailed pro-
cedures for alignment of the instrument as well as for data
recording, and for the complex evaluation and reconstruc-
tion process have been established.

Using coherent synchrotron radiation for the interferom-
etry – which is generated in a bunch compressor anyway –
has the advantage of facilitating parasitic measurements
without disrupting the operation of the accelerator. How-
ever, it introduces the problem of a single-particle spectrum
that is not well known, as it includes radiation contribu-
tions from more than one magnet, and edge effects from
the finite extent of the dipole fields. The narrow vacuum
chamber imposes a low-frequency cutoff at 275 GHz that
prevents features of the bunch longer than about 2 ps to
be reconstructed.

Within these constraints, the bunch shape after compres-
sion in the magnetic chicane BC2 has been determined.
Within the measurement uncertainties, it is found to be
independent of the phase setting of the preceding acceler-
ation module ACC1. The longitudinal profile is strongly
asymmetric with a steep rise at the head of the bunch.
The full width at half maximum amounts to about 1 ps,
and only minor structures with an extent below 400 fs are
discernible.

As the measured spectra show no significant intensity
above 2 THz, there is no evidence for the existence of a
narrow spike comprising a material fraction of the bunch
charge. However, some effects are not understood well, and
the possibility that the high-frequency range is suppressed
– e.g. by diffraction losses – cannot be excluded.

Outlook

At present, a number of unknown quantities enter into the
process of bunch shape reconstruction. To improve the
accuracy of the method, several points need further inves-
tigation:

• The diffraction losses along the beam transfer line
should be measured to obtain a reliable transfer func-
tion. For this purpose, a far-infrared source with a
known spectrum, possibly a blackbody radiator, is
needed.

• The spectral responsivity of the detectors for far-
infrared radiation needs to be determined.

• The computed incoherent spectrum at the vacuum
port of the bunch compressor should be verified ex-
perimentally. While the low radiation intensity makes
this virtually impossible with the current parameters
of the accelerator, the planned operation with 1000
or more bunches per macropulse might facilitate an
interferometric measurement.

The planned installation of a third-harmonic cavity will
help to reduce the energy spread of the beam before it
passes the magnetic chicane; it is expected that this will
lead to a shortening of the compressed bunch, and hence
more intensity at high frequencies should be measurable
with the interferometer.

If some of the above points can be clarified and the re-
sults can be successfully cross-checked with other meth-
ods, the bunch length measurement by interferometry will
be a reliable tool for accelerator diagnostics at the VUV-
FEL and the XFEL. However, the length of reconstructable
bunch features will always be limited upwards by the low-
frequency cutoff of the beam surroundings, and downwards
by the optical components.

49





A Appendices

A.1 Tables

Phase Phase
Relative of max. at scan Energy Charge

Token phase (°) compr. (°) start (°) (MeV) (nC) Bunches
D0 ∼ 6 (SASE operation) 125 1.16 ± 0.04 10

D1 1.1 119.4 120.5 125 1.16± 0.07 1
D2 3.0 106.8 109.8 127 0.80± 0.05 2
D3 4.8 119.2 124.0 125 1.16± 0.07 1
D4 5.6 106.4 112.0 127 0.81± 0.04 5

H1 ∼ 0.0 (stabilized to 80 mV) 127 0.96 ± 0.03 1
H2 ∼ 1.5 (stabilized to 60 mV) 127 0.92 ± 0.05 1
H3 ∼ 2.5 (stabilized to 40 mV) 127 0.96 ± 0.03 1
H4 ∼ 3.0 (stabilized to 30 mV) 127 0.96 ± 0.03 2

Table A.1: Main accelerator parameters for the examined measurements. The Dn interferogram
scans were recorded in dry nitrogen atmosphere, the Hn scans in humid air. The phase of
maximum compression of ACC1 is found by a scan as described in section 7.1, and it is the
point of reference for the relative phase. During SASE operation, the phase was adjusted
manually to compensate for drifts, for stabilized measurements this was done automatically by
a feedback loop monitoring the CTR signal from a transition radiator downstream of BC2.

Roof mirror Roof mirror
start pos. end pos. Measurements Max. freq.

Token (mm) (mm) Points per point (THz)
D0 44.0 53.0 512 4 4.3

D1 41.0 56.0 512 5 2.6
D2 43.0 54.0 367 3 2.5
D3 41.0 56.0 511 5 2.6
D4 43.0 54.0 366 3 2.5

H1 40.5 56.5 512 3 2.4
H2 40.5 56.5 512 3 2.4
H3 40.5 56.5 512 3 2.4
H4 40.5 56.5 512 3 2.4

Table A.2: Scan parameters for the examined measurements. The specified maximum frequency
is the highest frequency that can be obtained from a measurement with the given scan range
and number of points.

relative Low-freq. Width (ps)
Token phase (°) asymptote FWHM RMS Remarks

D0 6.0 Taylor 0.98 0.50
6.0 Gaussian 1.11 0.63

D0′ 6.0 Taylor 0.82 0.32 linear interpolation,
6.0 Gaussian 0.82 0.32 see Fig. 7.21

D1 1.2 Taylor 1.23 0.48
D2 3.0 Taylor 0.92 0.55
D3 4.8 Taylor 1.08 0.48
D4 5.6 Taylor 1.17 0.55

Table A.3: Bunch lengths for measurements D0–D4; the specified phase is relative to the point
of maximum compression at the start of the scan.
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A.2 Technical drawings
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Figure A.1: Beam divider BDG of the Martin-Puplett interferometer, wires not to scale (drawing
by R. Siedling)
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Figure A.2: Parabolic mirror PM2 of the Martin-Puplett interferometer, all measures in millime-
ters (drawing by R. Siedling, modified)
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Figure A.3: Roof mirror FRM/MRM of the Martin-Puplett interferometer, all measures in mil-
limeters. The fixed and the moveable roof mirror are identical in construction. (drawing by
R. Siedling, modified)
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Figure A.4: Schematic of the BC2 vacuum chamber. The vacuum window covers about 2.5° of
the bending arc. (drawing by O. Grimm, modified)
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Figure A.5: DTGS detector cone

A.3 Abbreviations

ACCn acceleration module n of the VUV-FEL
AG analyzer wire grid of the Martin-Puplett

interferometer
BCn bunch compressor n of the VUV-FEL

(counting starts with 2 for historical rea-
sons)

BCM bunch compression monitor
BDG beam divider wire grid of the Martin-

Puplett interferometer
CDR coherent diffraction radiation
CSR coherent synchrotron radiation
CTR coherent transition radiation
DESY Deutsches Elektronen-Synchrotron
DFT discrete Fourier transform
DLaTGS deuterated triglycine sulphate, doped

with L-α-alanine
DTGS deuterated triclycine sulphate (this in-

cludes DLaTGS)
EFL effective focal length
FEL free electron laser
FFT fast Fourier transform
FIR far-infrared
FRM fixed roof mirror
FWHM full width at half maximum
HDET detector for horizontally polarized radia-

tion in the Martin-Puplett interferometer
ILS instrumental lineshape
IR infrared
LINAC linear accelerator
Mn flat mirror n of the radiation transfer line
MRM moveable roof mirror
OTR optical transition radiation
PG polarizer wire grid of the Martin-Puplett

interferometer
PMn off-axis parabolic mirror n of the radia-

tion transfer line
RF radio frequency
RMS root-mean-square
SASE self-amplified spontaneous emission
SR synchrotron radiation
TESLA TeV Energy Superconducting Linear

Accelerator
TOSYLAB Terahertz and Optical Synchrotron Radi-

ation Laboratory
TTF TESLA Test Facility
UV ultraviolet
VDET detector for vertically polarized radiation

in the Martin-Puplett interferometer
VUV vacuum-ultraviolet
VUV-FEL Vacuum-Ultraviolet Free Electron Laser
XFEL (European) X-ray Free Electron Laser
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