
Imaging with Optical Transition Radiation,

Transverse Beam Diagnostics for the XFEL

Gero Kube
- MDI -

March 18, 2008

Abstract

In this note several aspects concerning imaging with optical transition radiation are in-
vestigated theoretically. The imaging process is described in the frame of conventional scalar
diffraction theory in the sense that the field of an ultra relativistic particle (pseudo photons)
is propagated from the source plane, i.e. a metallic target, through a lens to the image plane.
Special attention is drawn to the influence of the pre–wave zone effect which in case of high
beam energies may influence the imaging properties and as consequence also the resolution.
The intention of this note is to sum up the theory described in Refs. [1, 2] in a comprehensive
form, and to provide general estimations required for the basic design of an optical transition
radiation monitor, especially in view of the XFEL project.

1 Introduction

If a charged particle passes the boundary between two media with different dielectric constants, a
broad band electromagnetic radiation is produced which is named transition radiation. The part in
the visible range (optical transition radiation or OTR) which is generated at the boundary between
a metallic screen and vacuum is widely used for beam diagnostic purposes to measure transverse
beam sizes and divergences of charged particle beams like protons [3, 4] or electrons [5, 6, 7, 8]
in an electron energy range from 80 keV [9] up to 30 GeV [10]. For the European X–Ray Free–
Electron Laser (XFEL) it is also planned to use OTR based profile diagnostics [11]. OTR monitor
resolutions has been widely discussed in Refs. [12, 13, 14, 15]. However, in a later work [16] it was
demonstrated that the radiation characteristics strongly depends on the distance between source
and observation plane similar to the problem of Fresnel resp. Fraunhofer diffraction in classical
optics, and the condition for the observation distance a to be located in the so called wave zone
can be estimated as a À λγ2 with λ the wavelength of observation and γ the Lorentz factor. In
the case of XFEL with a maximum energy of 20 GeV and a typical optical wavelength λ = 500
nm the pre–wave zone extends to a distance of ∼ 770 m. Having in mind a compact monitor setup
the consequence is that the optical elements of the monitor will be located deeply in the pre–
wave zone. In Ref. [1, 2] the imaging properties of an OTR beam size monitor were theoretically
studied taking into account also the pre–wave zone effect. In this note the theory developed in
these references is summarized in a closed form, and general estimations are worked out required
for the basic design of a beam size monitor. In order to derive analytical expressions the discussion
concerning the monitor resolution is performed in terms of the image of a single particle. For a
complete description of the beam image onto the detector this image has to be convoluted with
the particle distribution at the screen.

2 Theory

To the authors knowledge with the exception of one monitor design reported in Ref. [17] OTR
is usually observed in backward direction, i.e. the radiation appears at specular angle and the
target behaves like a mirror. Typically the target inclination angle is Ψ = 45◦ and consequently
the detector is situated under 90◦ with respect to the beam axis. Nevertheless, smaller inclination
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angles were also used in order to reduce the depth of field influence [18]. However, in Refs. [19, 20] it
was demonstrated that the angular characteristics of backward transition and diffraction radiation
of ultra relativistic particles in the wave zone is determined with respect to the mirror reflection
direction and does not depend specifically on the target inclination angle Ψ, as far as the condition
Ψ À 1/γ holds.

For the sake of simplicity the task to describe radiation produced from an inclined target is therefore
reduced to the case of forward transition radiation and the geometry under investigation is shown
in Fig. 1. In this approach the generation of transition radiation is simply considered as reflection
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Figure 1: Scheme of the optical system used to calculate the field distribution in the image plane.

of the particle electromagnetic field by the target surface, i.e. the source is represented as pseudo
photons which are converted in real photons due to the momentum transfer from the target. It
excludes a priori radiation from inside the target itself which can give a significant contribution at
higher photon energies [21, 22]. However, in the visible spectral range this contribution is negligible
because of self absorption inside the target material. The pseudo photon approach implies a further
simplification in the sense that only the transverse field components are considered. In two recent
publications [23, 24] the contribution of the longitudinal component was taken additionally into
account, allowing an extension of the theory to low particle beam energies and arbitrary inclination
angles. This was done either by developing a vector electromagnetic theory for transition and
diffraction radiation, or by applying Kirchhoff´s method to a flat target. As it was shown significant
differences are to expect if the beam energy is low and/or the target inclination angle is large (i.e.
in the case of near grazing incidence). However, these are not the cases under investigation in this
note and therefore the application of the simplified pseudo photon method is justified.

2.1 Formulation of the Problem

According to the appendix the source field can be represented in one of the following forms:

Es
xs,ys

(~r, ω) = −i
e

2π2v
ei ω

v z

+∞∫

−∞
d2kx,y

kx, ky

k2
x + k2

y + α2
ei(kxxs+kyys) , (1)

Es
xs,ys

(~r, ω) =
eα

πv
ei ω

v z xs, ys√
x2

s + y2
s

K1(α
√

x2
s + y2

s) , (2)

with α =
ω

γv
.

These field representations are standard forms and can be found in many textbooks, see e.g.
Ref.[25]. The pseudo photon disc described by these equations has a radial extension with a char-
acteristic value of about γλ (see Eq.(57) in the appendix), i.e. even in the case of a single electron
the source has a finite size which is strongly increased with increasing beam energy and wavelength.

In the following these scalar fields are propagated through the optical system in Fig. 1. The
propagation is treated in the frame of scalar diffraction theory in Fresnel approximation, i.e. up to
the quadratic phase term. With the target located at z = 0 the propagation from the source plane
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to the lens input in a distance a is described by

Eli
xl,yl

(~rl, ω) = −i
eika

λa
ei k

2a (x2
l +y2

l )

∫

Σs

d2Σs Es
xs,ys

(~rs, ω) ei k
2a (x2

s+y2
s) e−ik

xsxl+ysyl
a , (3)

see for example Ref. [26]. The integration has to be carried out over the source plane Σs.

Before proceeding with the propagation through the optical system a short illustration for the
origin of the pre–wave zone will be given. For this it is assumed that the field contributing to
the imaging process is originating from an area in the source plane which is given by the finite
extension of the pseudo photon disc. With this area an upper limit for the contribution of the
quadratic phase factor in Eq.(3) can be given, i.e. for which cases it has to be taken into account or
not. To do so the spatial coordinates appearing in that phase which indicates the near field resp.
Fresnel diffraction are replaced by the source extension, i.e.the phase is rewritten in the form

exp
(

i
k

2a
[x2

s + y2
s ]

)
= exp

(
i

k

2a
ρ2

s

)
= exp

(
iπ

γ2λ

a

)
.

Inspecting the the quadratic phase term it can be seen that it has to be taken into account if
a 6 γ2λ, which is nothing else than the range estimation for the pre–wave zone. At the other hand
the contribution can be omitted in the case a À γ2λ, resulting in the wave zone condition.

To study the image formation more in detail the wave propagation through the optical system
is continued. In the next step the resulting field Eq.(3) propagates through the lens. In thin lens
approximation the effect of the lens is described by introducing an additional quadratic phase shift
[26], and the fields at the lens output are given by

Elo
xl,yl

(~rl, ω) = Eli
xl,yl

(~rl, ω) e−i k
2f (x2

l +y2
l ) (4)

with f the focal length of the lens.

In the last step the resulting field Eq.(4) propagates from the lens output to the image plane which
is situated in a distance b away, see Fig. 1. This propagation is described similar to Eq.(3) and the
result reads

Ei
xi,yi
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eikb
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ei k

2b (x2
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i )

∫
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b (5)

with the integration performed over the lens surface. Combining these Equations together results
in the final representation of the field distribution in the image plane as function of the source and
lens properties. However, the variable accessible for a measurement is the intensity in the image
plane (detector) which is given by

d2W

dωdΩ
=

c

4π2
(|Ei

xi
|2 + |Ei

yi
|2) . (6)

The final expression for field and intensity in the image plane depends on the representation of
the source field, if either Eq.(1) or Eq.(2) is applied. According to Ref. [2] if the pre–wave zone
effect is taken into account the representation by Eq.(2) is better suited while in the far field case
the calculation with Eq.(1) is easier to perform. In the following these cases will be considered
separately.

2.2 OTR in the Pre–Wave Zone

The combination of Eq.(2) with Eqn.(3)–(5) results in the following representation for the field
components:
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.
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This expression can be simplified. Firstly it is the intensity which is of interest, therefore according
to Eq.(6) the complex exponentials in front of the integral can be omitted. Secondly it will be
assumed that the condition for imaging is fulfilled which reads in thin lens approximation

1
f

=
1
a

+
1
b

. (8)

In this case the last exponential in the integral cancels out and the field is given by

Ei
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x2

s + y2
s

K1(α
√

x2
s + y2

s) (9)
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)
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(
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.

To proceed further it is suitable to perform the integration in polar coordinates, xs = Rs cosφs, ys =
Rs sin φs, xl = Rl cos ϕl, yl = Rl sin ϕl, xi = Ri cosΦi, yi = Ri sinΦi:

Ei
xi,yi

(ω) = − eω

πλ2γabv2

ρl∫

0

dRlRl

2π∫

0

dϕl exp
(
−i

k
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(10)

×
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(

i
k

2a
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s

) 2π∫

0
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(
−i

k

a
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)
.

The integration over the angles can be carried out directly. Taking into account symmetry consid-
erations and Ref.[27], Eq. 3.915(2) it is

2π∫

0

dφ (cos φ, sin φ) eix cos(Φ−φ) = 2πi (cosΦ, sinΦ) J1(x) (11)

and the fields in the image plane are given by

Ei
xi,yi

(ω) =
2k2e(cosΦi, sinΦi)

λγabv

ρs∫

0

dRs

ρl∫

0

dRl RsRl K1(αRs) J1(
kRsRl

a
) J1(

kRiRl

b
)ei k

2a R2
s . (12)

According to Refs.[1, 2] dimensionless variables are introduced

M =
b

a
, θ =

Rl

a
, rs = k

Rs

γ
, ζ = k

Ri

M
, η =

a

γ2λ
. (13)

Here M is the magnification of the optical system, θ its collection angle with the maximum accep-
tance θm = ρl/a, and η is a measure for the pre–wave zone behavior resp. the Fresnel contribution
due to the finite source size. If η 6 1 the system is in the pre–wave zone, if η À 1 the influence is
negligible. With these replacements Eq.(12) reads

Ei
xi,yi

(ω) =
2e

λMv
(cos Φi, sinΦi) f(θm, γ, ζ, η) (14)

with f(θm, γ, ζ, η) = γ

ρ̃s∫

0

drs rs K1(rs) ei
r2

s
4πη

θm∫

0

dθ θ J1(ζθ) J1(γ rsθ).

The integration over the collection angle can be performed still analytically. With Ref.[28] 11.3.29
and the recurrence relations 9.1.27 therein it is

x0∫

0

dx x J1(ax) J1(bx) =
x0

a2 − b2
(a J2(ax0) J1(bx0)− b J1(ax0) J2(bx0))

=
x0

a2 − b2
(b J1(ax0) J0(bx0)− a J0(ax0) J1(bx0))
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in accordance with [1], and the final form for the fields in the image plane is obtained:

Ei
xi,yi

(ω) =
2e

λMv
(cosΦi, sinΦi) f(θm, γ, ζ, η) (15)

with

f(θm, γ, ζ, η) = γ
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0

drs
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r2
s

4πη

γ2r2
s − ζ2

[ζ J0(ζθm) J1(γrsθm)− γrs J1(ζθm) J0(γrsθm)]. (16)

Eq.(16) is the basis for the calculations of OTR taking into account the pre–wave zone contribution.

2.3 OTR in the Far Field

If the condition η À 1 holds, i.e. the lens is in the far field (a À γ2λ), the contribution of the source
term exp(ik(x2

s+y2
s)

2a ) can be additionally neglected. Omitting the complex exponentials in front of
the integral in Eq.(7) as before and assuming the condition for imaging in thin lens approximation
according to Eq.(8), the fields in the image plane are determined by

Ei
xi,yi

(ω) =
ie

2π2λ2abv

∫
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d2Σl

∫
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(17)
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(
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b

)
exp

(
−i

k(xsxl + ysyl)
a

)

which has to be compared with the relevant expression for the pre–wave zone case Eq.(9). The
exponentials in this equation can be rearranged

Ei
xi,yi

(ω) =
ie

2π2λ2abv

∫
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d2Σl

∫
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d2Σs

∫
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and keeping in mind the relation for the δ-function

+∞∫

−∞
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+∞∫

−∞
dys ei(ky−kyl/a)ys = 2πδ(kx − k

xl

a
) · 2πδ(ky − k

yl

a
)

the integration over the source area and the wave numbers can be carried out:

Ei
xi,yi

(ω) =
ie

πλabv

∫

Σl

d2Σl
1

(xl/a)2 + (yl/b)2 + (1/βγ)2
xl, yl

a
e−i k

b (xixl+yiyl). (19)

As before it is suitable to perform the integration in polar coordinates, xl = Rl cos ϕl, yl = Rl sin ϕl,
xi = Ri cosΦi, yi = Ri sinΦi. In this case the field can be rewritten in the form

Ei
xi,yi

(ω) =
ie

πλabv

ρl∫

0

dRl
R2

l /a

(Rl/a)2 + (1/βγ)2

2π∫

0

dϕl (cos ϕl, sin ϕl) e−i k
b RiRl cos(Φi−ϕl) (20)

and the angular integration is performed with Eq. (11), resulting in

Ei
xi,yi

(ω) =
2e

πλabv
(cos Φi, sinΦi)

ρl∫

0

dRl
R2

l /a

(Rl/a)2 + (1/βγ)2
J1(

kRiRl

b
). (21)

Introducing the same dimensionless variables Eq.(13) as in the previous section, the fields in the
image plane are finally obtained:

Ei
xi,yi

(ω) =
2e

λMv
(cosΦi, sinΦi) f(θm, γ, ζ, η) (22)
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with (assuming β = 1)

f(θm, γ, ζ) =

θm∫

0

dθ
θ2

θ2 + 1/γ2
J1(ζθ). (23)

Eq.(23) is the basis for the calculations of OTR in the far field zone. Comparing the results for
far field OTR with the ones taking into account the pre–wave zone effect one can see that the
general structure of the fields Eq.(15) resp. Eq.(22) is the same, the difference is represented by
the function f(θm, γ, ζ, η) which describes the specific properties of the imaging process. Therefore
in the following only this part is considered.

According to Ref.[2] the field can be further simplified, keeping in mind that typically the accep-
tance angle θm of the lens is much larger than the OTR cone opening angle, i.e. that θm À 1/γ.
In this situation Eq.(23) can be rewritten to a very good precision as

f(θm, γ, ζ) ≈
∞∫

0

dθ
θ2

θ2 + 1/γ2
J1(ζθ)−

∞∫

θm

dθ J1(ζθ), (24)

and there exist analytical expressions for both integrals (Ref.[27], Eq. 6.566(2) resp. 6.511(9)):

f(θm, γ, ζ) =
1
γ

K1(ζ/γ)− 1
ζ

J0(ζθm) = ζ−1 [ζ/γ K1(ζ/γ)− J0(ζθm)] . (25)

A further simplification can be performed in the ultra relativistic limit taking into account that
ζ/γ → 0, and consequently in this limit z K1(z) → 1. Therefore in this limit the relation

f(θm, ζ) = ζ−1 [1− J0(ζθm)] (26)

holds, i.e. the imaging properties of OTR are independent on the beam energy.

3 Imaging with OTR

To demonstrate the modification of radiation properties in the near field, in a first step the evolution
of the wave front from the source is considered. The intensity distribution at the entrance side of
the lens is calculated which corresponds to the radiation angular distribution at the location of the
lens. Hereafter the OTR imaging properties are studied taking into account the influence of the
pre–wave zone. The image of a single particle is calculated according to Eq.(16) and the influence
on the resolution is studied. In close analogy to the diffraction limited image distribution of a point
source in classical optics (point spread function, PSF) the quantity |f(θm, γ, ζ, η)|2 is referred as
single particle function (SPF) in the following according to Ref.[15].

3.1 Angular Distribution in the Near Field

Keeping in mind the derivation of the OTR near field image, by inspecting Eq.(14) it can be seen
directly that the angular distribution in the lens plane is described by the term

fL(γ, θ, η) =

ρ̃s∫

0

drs rs K1(rs) J1(γ rsθ) ei
r2

s
4πη . (27)

If the lens is in the far field (i.e. ei
r2

s
4πη → 1) and the target extensions are assumed to be large

enough (ρs → ∞) the integration over the source area can be carried out directly taking into
account Ref.[27], Eq. 6.521(2). The result reads

fL(γ, θ) =
1
γ

θ

θ2 + 1/γ2
, (28)

i.e. it is the standard far field angular distribution.
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Figure 2: OTR near field angular distribution in the lens plane, calculated according to Eq.(27).
The parameters were chosen such that they correspond to the calculations with dimensionless
parameters in Refs.[1, 16]: η1 = 0.1

2π , η2 = 1
2π , η3 = 10

2π . With the XFEL maximum beam energy
of 20 GeV, a typical observation wavelength of λ = 500 nm, and η determined by Eq.(13) the
respective observation distances a are obtained.

In Fig.2 calculations for the angular distribution |fL(γ, θ, η)|2 with fL according to Eq.(27) are
shown. The parameters are chosen such that they correspond to calculations presented in Refs.[1,
16]. As can be seen the angular distribution is strongly affected, even at a distance of about 10
m between lens and target. The consequence is that in the case of an OTR monitor setup for the
XFEL the lens is situated deeply in the pre–wave zone.

Taking into account the experience with OTR monitors at FLASH, a reasonable distance would be
a = 0.5 m which corresponds there to a 1:1 magnification of the optical system [7]. In Fig.3 calcula-
tions of the OTR near field angular distribution are shown together with the far field approximation
for various beam energies. For smaller beam energies the angular near field distribution approaches
the form of the far field approximation. Fig.4 shows again the near field angular distribution for
the same parameters and the XFEL maximum beam energy of 20 GeV, but over a wider range in
the lens plane.

From the figures presented it is clear to see that the angular distribution exhibits a strongly
oscillating structure which is drastically broadened in comparison to the far field approximation.
Furthermore it is also important to note that the location of the first maximum remains unchanged
in all cases and does not coincide with the far field maximum 1/γ.

Following the discussion in Ref.[1] the position of this maximum can be estimated by inspecting
Eq.(27). Keeping in mind that the function rs K1(rs) is continuously decreasing while J1(γ rsθ)
and exp(i r2

s

4πη ) exhibit an oscillatory behavior, and that J1(γ rsθ) is a real function, the integral
in Eq.(27) achieves its maximum at a value Rl0 in the lens plane where the overlap between
both oscillating functions is maximal. This condition can be reformulated such that the zeroes of
<[exp(i r2

s

4πη )] and J1(γ rsθ) coincide, i.e.

r2
s

4πη
=

π

2
and γ rsθ0 = 3.8317 .

Resolving for θ0 = Rl0/a and rewriting the condition in physical variables rather than in dimen-
sionless ones results in the position of the first maximum in the lens plane

Rl0 ≈ 0.8624
√

aλ . (29)
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Figure 3: Comparison of the OTR near field angular distribution in the lens plane Eq.(27) with
the far field distribution Eq.(28) for various beam energies. Parameters of calculation: a = 0.5 m
and λ = 500 nm.
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Figure 4: OTR near field angular distribution in the lens plane (a = 0.5 m) for a 20 GeV electron
beam and an observation wavelength of λ = 500 nm.

8

TESLA-FEL 2008-01



This condition is indeed independent on the particle beam energy and the value of Rl0 = 431 µm
coincides very good with the calculations as presented in Figs.3,4.

3.2 OTR Imaging in the Pre–Wave Zone

After the demonstration that the OTR angular distribution strongly depends on the distance
from the source to the observation point and that for a reasonable monitor size in case of XFEL
diagnostics the lens will be deeply located in the pre–wave zone, now the SPF in the image plane
is investigated for various cases. Basis for the calculations of image generation in this section is
Eq.(16) for the near filed case and Eqn.(23), (25) for the far field resp. the approximative far field
case.

Fig.5 shows calculated SPFs in the image plane taking into account the near field contribution.
The parameters correspond to the ones of Fig.2 for the angular distributions. In order to keep
the lens aperture θm constant the lens diameter was scaled in the same way than the distance a
between target and lens. While in the case of the angular distribution the near filed effects are
clearly visible, in the case of imaging the curves for various distances coincide perfectly, i.e. the
influence of the pre–wave zone effect is negligible as already assumed in Ref.[15].
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Figure 5: OTR near field image according to Eq.(16). The parameters correspond to the ones of
Fig.2. The optical system was assumed to perform a 1:1 imaging, and the lens aperture θm was
kept constant assuming a lens diameter of ® 50.8 mm for the minimum distance of a = 12.19 m.

In order to study the pre–wave zone influence more in detail and to compare with the far field
calculations Eqn.(23) and (25), Fig.6 shows various calculations for a 1:1 optical imaging system
(i.e. a = b) with the distance a between source and lens as parameter. Similar as before the lens
aperture θm is kept constant, i.e. with varying distance a the lens diameter is scaled in the same way.
As can be seen only at very small distances far away from to be realistic for an imaging system the
pre–wave zone effect influences the image formation. From these calculations it can be concluded
that near field contributions are negligible with parameters realistic for the XFEL. Furthermore
it can be seen that the accuracy of the approximative far field calculation Eq.(25) is sufficient to
describe the image formation for the parameters under investigation here. As consequence in the
following sections the calculations are restricted to the case of far field imaging.
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Figure 6: OTR images with near field calculation Eq.(16), far field calculation Eq.(23) and approx-
imative far field calculation Eq.(25) for a 20 GeV electron beam, a 1:1 optical imaging system and
an observation wavelength λ = 500 nm. The lens aperture θm was kept constant assuming a lens
diameter of ® 50.8 mm for the maximum distance a = 0.5 m.

3.3 OTR Imaging in the Far Field: Influence of the optical System

So far only the evolution of the wave front in view of the pre–wave zone effect was under investi-
gation. While inspecting Eqn.(23), (25) and (26) which are the basis of the far field calculation it
can be seen that the SPF strongly depends on the lens aperture θm. In this subsection therefore
the influence of the lens diameter is studied more in detail.

Fig.7 shows a comparison of SPFs for various lens diameters which are commercially available. The
calculations have been performed assuming Eq.(23). From this it is clear to see that the resolution
of the OTR monitor is strongly determined by the lens diameter resp. the numerical aperture of
the optical system, in close analogy to imaging in classical optics.

In the following an estimate for the monitor resolution will be given. In accordance with the
diffraction limited resolution of a point source in classical optics the resolution is defined as the
first minimum of the SPF (apart from the central minimum). Due to the fact that for the parameters
presented here the SPF is well described by the analytical approximation Eq.(25), it is sufficient
to inspect this equation more in detail which has the general form K1(x)−1/x J0(x). While K1(x)
is continuously decaying, J0(x) shows oscillatory behavior. Due to the fact that both functions are
subtracted from each other, the first minimum apart from the central one is determined by the
second maximum of J0(x) which is located at x0 = 7.0160, i.e. the resolution is defined by

ζ0 θm = 7.0160 .

Rewriting this condition in physical variables rather than in dimensionless ones the result for the
monitor resolution reads

Ri0 ≈ 1.12
Mλ

θm
, (30)

i.e. the resolution of an OTR monitor is fully determined by the magnification M , the wavelength
of observation λ and the acceptance angle θm of the optical system. With the parameters of Fig.7
and according to Eq.(30) the resolutions are estimated to be 5.6 µm (® 100 mm), 11.0 µm (® 50.8
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mm), 22.0 µm (® 25.4 mm), and 44.8 µm (® 12.5 mm) which is in very good agreement with the
calculations shown in Fig.7.

Furthermore keeping in mind that the diffraction limited resolution of a point source in classical
optics is defined via the radius of the Airy disk which is RAiry ≈ 0.61Mλ

θm
, it follows that the

resolution of an OTR monitor is about two times larger than the one for a point source.
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Figure 7: Influence of the optical system acceptance angle on the OTR images, assuming far field
conditions according to Eq.(23). Parameters of calculation: 20 GeV electron beam, 1:1 magnifi-
cation (a = b = 0.5 m), and an observation wavelength λ = 500 nm. The lens apertures were
chosen such that they correspond to standard commercially available achromatic lenses. For better
visibility the different curves are scaled in amplitude as indicated in the legend.

3.3.1 Improvement of Resolution

Two important aspects can be directly deduced from Eq.(30). Firstly the lens aperture should be
chosen reasonable large. In the same manner there should be additionally no further obstacles like
the extraction window of the vacuum chamber which reduces the free aperture of the optical system,
because it affects the monitor resolution in the same way. Secondly the wavelength of observation
should be chosen as small as possible, keeping in mind the detector sensitivity (at FLASH for
example digital CCD cameras, model Basler A301f are used [7] which have a sensitivity from
about λ = 400 nm up to 1000 nm with the maximum at 500 nm [29]). If in a single shot image the
OTR intensity is sufficient enough it is recommended to use narrow band optical filters, preventing
the resolution to be smeared out. The use of bandpass filters has the additional advantage that
chromatic errors due to the optical system can be minimized in advance. These chromatic errors
can also be reduced by the use of achromatic or even apochromatic lenses, but an achromat is
corrected only for two wavelengths (F line at 486.1 nm and C line at 656.3 nm in spectroscopic
notation) and an apochromat for three (F, C and d line at 587.6 nm), consequently a residual
spectrum remains [30].

Apart from these considerations an other possibility to improve the OTR monitor resolution which
was discussed already in Refs.[14, 15] is to introduce a mask just in front of the lens. Due to the
fact that the expression of a diffraction limited resolution is nothing else than another formulation
of the uncertainty principle, the effect of the mask can be interpreted as increasing the uncertainty
in the momentum (→ mask out small emission angles) for to reduce the uncertainty in the position
(→ improve resolution) - or in other words, while blocking the photons emitted under small angles
the intensity in the tails of the SPF is reduced. Mathematically the effect of the mask is described
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starting from Eq.(23)

f(θm, γ, ζ) =

θm∫

θb

dθ
θ2

θ2 + 1/γ2
J1(ζθ). (31)

Similar to the derivation of Eqn.(25) resp. (26) it is assumed that θm, θb À 1/γ, which results in
the following expression:

f(θb, θm, ζ) =

∞∫

θb

dθ J1(ζθ)−
∞∫

θm

dθ J1(ζθ) ,

= ζ−1 [J0(ζθb)− J0(ζθm)] . (32)

In Fig.8 the influence of the mask on the SPF in the image plane is calculated for typical parameters
under consideration for the XFEL. As can be seen the effect of the mask is to suppress the oscillatory
structure of the SPF, resulting in a resolution improvement. At the other hand the usage of a mask
leads to an additional decrease of the intensity.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

R
i
 [µm]

|f(
θ b,θ

m
,ζ

)|2

 

 
no mask
mask: 5mm
mask: 10mm
mask: 20mm

Figure 8: Influence of the mask in front of the lens on the SPF according to Eq.(32) for various
mask diameters, assuming far field conditions and θm, θb À 1/γ. Parameters of calculation: 20
GeV electron beam, 1:1 magnification (a = b = 0.5 m), wavelength λ = 500 nm, and lens diameter
® 50.8 mm.

In the following a short estimate for an optimum mask size will be given in the approximation
of the analytical expression Eq.(32). Inspecting the form of this equation, the SPF is determined
by the difference of two Bessel functions J0, while each of these functions exhibits an oscillatory
behavior. The idea is to cancel out the oscillations of the first Bessel function with the ones of the
second function in the outer tail. To a very good approximation this can be achieved if the first
zero of the Bessel function J0(ζθb) coincides with the third zero of the function J0(ζθm), i.e. for
the condition

ζθb0 = 2.4048 and ζθm = 8.6537 .

From these conditions it follows directly that the diameter of the mask is related to the diameter
of the lens by

®b = 0.2779 ®m , (33)

i.e. the optimum mask size is independent from beam energy and observation wavelength in the
approximation under consideration and is simply determined by the lens diameter. Fig.9 shows
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Figure 9: Calculation of the SPF for a mask with optimized size according to Eq.(33). Parameters
of calculation: 20 GeV electron beam, 1:1 magnification (a = b = 0.5 m), wavelength λ = 500 nm,
lens diameter ® 50.8 mm, and mask diameter 14.12 mm.

a calculation of the SPF for an optimized mask size according to Eq.(33). As can be seen the
oscillatory structure of the SPF is canceled out over a wide range in the image plane, render it
possible to resolve even the outer tails of the beam profile.

In the calculations presented in this section it was assumed all the time that the mask is perfectly
centered with respect to the optical axis. If it is not the case this will lead to a distortion of the
SPF. However, this effect is not point of investigation in this note and will be investigated at a
later time.

3.3.2 OTR Imaging with misaligned optical System

Up to know it was assumed that the optical system is perfectly aligned, i.e. that condition Eq.(8)
holds. In this case the additional phase factor (written in polar coordinates, i.e. xl = Rl cos ϕl and
yl = Rl sin ϕl)

exp
(
−i

kR2
l

2
(1/f − 1/a− 1/b)

)

appearing in Eq.(7) cancels out, just simplifying the calculation. In the following a slightly mis-
aligned optical system is considered and the impact on the resolution is studied. To do so a perfectly
aligned system with object distance a0 and image distance b0 is considered for which the condition
for imaging is still valid, i.e.

1
f
− 1

a0
− 1

b0
= 0 .

In a slightly misaligned system with a = a0 + ∆a resp. b = b0 + ∆b the condition reads

1
f
− 1

a0

1
1 + ∆a/a0

− 1
b0

1
1 + ∆b/b0

.

For small alignment errors (∆a, b ¿ a0, b0) it is

1
f
− 1

a0

(
1− ∆a

a0

)
− 1

b0

(
1− ∆b

b0

)
=

1
f
− 1

a0
− 1

b0
+

∆a

a2
0

+
∆b

b2
0

=
∆a

a2
0

+
∆b

b2
0

, (34)
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Figure 10: Calculation of the SPF taking into account a misaligned optical systems for various
misalignments ∆z (with z object resp. image distance). Parameters of calculation: 20 GeV electron
beam, 1:1 magnification (a = b = 0.5 m), wavelength λ = 500 nm, and lens diameter ® 50.8 mm.
The impact on the SPF is the same for a misalignment +∆z or −∆z.

and the additional phase factor is given by

exp
(
−i

kR2
l

2

[
∆a

a2
0

+
∆b

b2
0

])
= exp

(
−i

k

2
θ2

[
∆a +

∆b

M2

])
. (35)
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Figure 11: Calculation of the SPF for an aligned and a misaligned optical system, taking into
account the influence of the mask discussed in the previous section. Parameters of calculation: 20
GeV electron beam, 1:1 magnification (a = b = 0.5 m), wavelength λ = 500 nm, and lens diameter
® 50.8 mm. For the mask the optimized diameter of 14.12 mm was assumed.
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The integration over the lens aperture was carried out at the end in the derivation of far field OTR,
therefore the additional phase factor is simply attached to the result Eq.(23):

f(∆z, θm, γ, ζ) =

θm∫

0

dθ
θ2

θ2 + 1/γ2
J1(ζθ) e−i k

2 θ2 (∆a+ ∆b
M2 ) (36)

with ∆z the misalignment either in image or in object distance. Eq.(36) is the basis for the
discussion of the misalignment of the optical system presented in the following.

In Fig.10 calculations of the SPF for different misalignments are shown with typical parameters
for the XFEL. The magnification was chosen as M = 1, i.e. a misalignment in the object distance
has the same impact on the SPF than a misalignment in the image distance according to Eq.(36).
As can be seen, due to a misaligned optical system either in object or in image plane, the SPF and
consequently the resolution is strongly affected. For the same set of parameters but a lens with
larger diameter the difference between perturbed and unperturbed SPF is even more pronounced
because of the θ2 dependence of the phase term in Eq.(36). However, the resolution (defined as
the first minimum of the SPF apart of the central one) remains still better than for smaller lens
diameters.

Assuming somehow arbitrary that the broadening of the SPF should not exceed more than 50%,
for the calculations shown in Fig.10 the consequence is that the absolute accuracy in the alignment
of the optical system should be better than 250 µm (increase from ∼ 10 µm to 15 µm). The future
XFEL OTR monitors should be provided therefore with accurate alignment stages for lens and/or
detector.

In the previous section the use of a mask was discussed in order to improve the monitor resolution
by suppressing the oscillatory behavior of the SPF in the tails. In Fig.11 a comparison is shown for
typical XFEL parameters and the maximum allowed misalignment of 250 µm, taking into account
the influence of the mask. The calculations were performed for the optimized mask diameter of
14.12 mm (for a lens diameter of 50.8 mm). As can be seen, by means of the mask it is again
possible to slightly improve the monitor resolution.
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Figure 12: Calculation of the SPF for a misaligned optical system with ∆z = 250 µm with the
mask diameter as parameter. Parameters of calculation: 20 GeV electron beam, 1:1 magnification
(a = b = 0.5 m), wavelength λ = 500 nm, and lens diameter ® 50.8 mm.

In Fig.12 SPFs calculated for the same parameters are shown with the mask diameter as parameter.
It follows that the most suitable mask diameter now is about 8.5 mm, i.e. slightly smaller than
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Figure 13: Beam imaging with backward OTR from an inclined target. Due to the screen inclination
different parts from the beam are located at different object distances.

without taking into account the optical misalignment. If for example ∆z = 100 µm is assumed, the
best condition is achieved with a mask diameter of about 12 mm. From the calculations presented
here it can be concluded that as larger a misalignment in the optical system, as smaller the mask
diameter in order to suppress the oscillatory structure in the tails of the SPF.

So far it was assumed that the longitudinal shift ∆z is due to a misalignment of the object resp.
image plane. At the other hand keeping in mind that conventional OTR diagnostics is based on
backward emitted radiation from an inclined target with respect to the beam axis, it follows directly
that an extended object like a beam profile will not be exactly located in the object plane of the
lens because of the inclination. For better illustration the situation is sketched in Fig.13. The case
is considered that the location of the beam center on the screen coincides with the object distance
a0. Due to the finite extensions of the object (beam) the tails appears at different locations, slightly
shifted away from a0 by an amount ±∆a. This longitudinal shift causes a blurring of the image
in the outer parts, i.e. the tails of the beam are imaged with degraded resolution in comparison
to the center. The situation becomes worse for large beam profiles and for large screen inclination
angles. Assuming a somehow idealistic rectangular beam profile with size σ = ± 250 µm and a
screen inclination of Ψ = 45◦ as shown in Fig.13, then the difference in the object distance is
∆a = ±σ tanΦ = ± 250 µm. If a screen inclination angle of Ψ = 20◦ is chosen, the shift in the
object distance reduces to ∆a = ± 91 µm which improves the situation. For the design of the XFEL
OTR monitors other geometries than the conventional 90◦ backward observation ones should at
least be considered.
Alternatively in order to maintain the focus over the whole target screen an other option to be
considered is to rotate the camera in Scheimpflug condition. Such a scheme was already realized
in the FNAL proton and antiproton OTR monitors [31].

4 Preliminary Design Considerations

In this section some basic design considerations for the layout of an OTR monitor optical system will
be outlined, assuming a perfect aligned system without central mask for resolution improvement.
Starting point is the estimate for the OTR resolution including the optical system Eq.(30), based
on the first minimum of the SPF. However, the expression derived there describes the SPF in the
image plane. For a direct comparison of the resolution with the beam size in the source plane it is
suitable to disregard the magnification M of the optics, and the OTR resolution reads

σOTR = 2.24
aλ

®l
(37)

with ®l the lens diameter, keeping in mind the definition Eq.(13) of the collection angle θm.

The discussion of the design of an optical system in terms of the object distance a is not practicable,
it is more convenient to have in mind the total optical path length L = a + b (because of space
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requirements), the magnification M = b/a (because of the camera field of view), and the focal
length f of the lens. By means of these relations, Eq.(8) can simply be converted in the following
applicable forms

f =
M

(M + 1)2
L

a = (1 + 1/M)f =
1

1 + M
L

b = (1 + M)f =
M

1 + M
L.

Inserting a in Eq.(37) results in an equation for the OTR resolution, taking into account the
appropriate parameters for the monitor design:

σOTR = 2.24
λ

®l

L

1 + M
. (38)

According to this equation it is clear that for a high resolution OTR monitor design the use of a
short distance L optical system with high magnification M and large lens diameter ®l has to be
aimed, and the observation wavelength λ should be as small as possible.

For an estimate of the OTR monitor resolution the pixel size ∆p of the CCD camera has additionally
to be taken into account. Keeping in mind that ∆p is related to the image plane, for a direct
comparison with the beam size it has to be re–projected in the source plane, and the resolution
contribution is

σCCD = ∆p/M . (39)

The total resolution is achieved by quadratical summation of both contributions

σ =
√

σ2
CCD + σ2

OTR . (40)
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Figure 14: Calculated resolutions and focal lengths for an OTR monitor as function of the magni-
fication. The parameters of calculation are λ = 500 nm, pixel size ∆p = 10 µm, and (a) ®l 50.8
mm, L = 1 m, (b) ®l 80 mm, L = 1 m, (c) ®l 80 mm, L = 1.5 m, (d) ®l 80 mm, L = 0.8 m.
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Fig.14 shows calculations of the monitor resolution as function of the magnification M together with
the functional dependency of the focal length f according to Eqs.(38)–(40). With the requirement
of a total resolution σ ≈ 10 µm and the calculations presented, it can be concluded that this
demand will only be fulfilled with a magnification M > 1. Then again, a large magnification and
good resolution typically requires the use of large diameter and short focus lenses, which are not
easy to find commercially. However, achromatic lenses with ®l 80 mm and f = 310 resp. 160 mm
exist (see e.g. [32]), and with a proper choice of the parameters the resolution can be achieved.

At the one hand a magnification M > 1 helps to reduce the alignment requirements for the image
distance as can be seen from Eq.(36). At the other hand it should be pointed out that the use of
a magnification M > 1 restricts the field of view of the CCD camera, and in some cases it might
be possible that the requisite field of view restricts the monitor resolution. One way to balance
both effects is to reduce the optical path length L. Fig.15 shows the result of such optimization,
assuming a commercially available achromatic lens with ®l 80 mm, f = 160 mm (see above) and
observation at λ = 500 nm together with an optical path length of L = 0.65 m. As can be seen
the requirements are nearly fulfilled at a magnification of about M ≈ 1.25.
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Figure 15: Calculated OTR monitor resolutions and focal lengths as function of the magnification
for λ = 500 nm, pixel size ∆p = 10 µm, ®l 80 mm, and L = 0.65 m. At a magnification of about
M ≈ 1.25 the total resolution amounts σ ≈ 10 µm, and the focal length is f = 160 mm which
allows the use of a commercially available achromatic lens [32].

To be more precise according to Eqs.(38) and (40), magnification and optical path length of the
system can be calculated for given lens parameters (f,®l), detector pixel size ∆p and required
resolution σ:

Mopt =
ξ2 +

√
σ2ξ2 + σ2∆2

p − ξ2∆2
p

σ2 − ξ2
(41)

with ξ = 2.24
λf

®l
,

Lopt =
(Mopt + 1)2

Mopt
f . (42)

With the parameters mentioned above this would result in a magnification of Mopt = 1.106 and
a length of Lopt = 0.642 m. For these values the distance between source and lens would amount
only a ≈ 0.30 m, i.e. the lens would be situated very close to the screen.
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According to the definition of the magnification, M represents a positive value. Taking into account
this constraint it follows directly from Eq.(41) that the following condition must hold:

σ > ξ = 2.24
λf

®l
. (43)

Eq.(43) relates the lens parameters (®l, f) and the wavelength of observation λ directly with the
minimum achievable resolution, i.e. if this condition is not fulfilled the optical system will provide
no imaging. If the so called lens factor ξ approaches the resolution the magnification increases
drastically, cf. also Fig.16.
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Figure 16: Magnification of the optical system as function of the lens factor ξ according to Eq.(41),
assuming a resolution of σ = 10 µm and a CCD pixel size of the same value.

As smaller the lens factor in comparison with the monitor resolution, as smaller the required
magnification of the optical system. It is also of interest to inspect Eq.(41) in the limit of small
lens parameter, i.e. for

lim
ξ→0

Mopt =
∆p

σ
. (44)

As can be seen from this equation together with Fig.16 the minimum magnification of the optical
system is defined by the pixel size ∆p and the resolution σ. This result is not surprising because
the limit ξ → 0 represents nothing else than the statement that the OTR resolution Eq.(38) is
negligible in comparison to the the CCD resolution Eq.(39), and therefore the total resolution
Eq.(40) is determined by the latter contribution.

For illustration in the following two example calculations are performed for an optimization of the
OTR monitor resolution (disregarding from influences like lens errors, alignment tolerances . . .).
For a high resolution monitor with a required resolution of σ = 1 µm, a CCD camera with pixel
size ∆p = 5 µm, and assuming a lens with f = 40 mm, ®l 50.8 mm, in case of observation at λ =
500 nm (i.e. ξ = 0.882) the monitor parameters are Mopt = 14.82 and Lopt = 0.845 m. In case of
observation at λ = 400 nm (i.e. ξ = 0.706) both parameters are reduced, resulting in Mopt = 8.18
and Lopt = 0.41 m.

From the estimations presented so far, the following conclusions can be drawn for a high resolution
OTR monitor: (i) the lens requires a large collection angle and a short focal length, and additionally
(ii) the wavelength of observation should be as small as possible. Both statements are consequences
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from Eq.(43). According to Eq.(42), due to the small focal length (iii) the overall optical path length
will be small. To keep the lens parameters in a reasonable range is easier to fulfill if the lens factor
ξ is not to far away from σ, i.e. typically (iv) a large optical magnification is necessary. Finally (v)
the detector pixel size should be as small as possible.

These are in principle the aspects on which the design of the high resolution OTR beam profile
monitor presented in Ref.[18] is based. Nevertheless, from the practical operational point of view
the drawback of such ”short distance L–geometry” is that the camera would have a direct view
to the screen because the small length L would not allow to use a deflecting mirror for detector
protection.

5 Summary

In this note the imaging of OTR was considered from a theoretical point of view with special
emphasis on the design of a transverse beam size monitor for the XFEL. The principle of imaging
was explained in the frame of conventional scalar diffraction theory and basic formulas to calculate
the intensity distribution of a single electron in the image plane (single particle function SPF) were
derived following Refs.[1, 2].

• Based on the theory it was demonstrated that the influence of the pre–wave zone effect is
negligible in the imaging process, although the angular distribution of the radiation at the
location of the lens is strongly affected.

• Detailed resolution studies were performed and it was shown that the OTR resolution is about
two times larger than the diffraction limited one of a point source in classical optics. The
resolution is mainly determined by the wavelength of observation and the collection angle of
the optical system. For the XFEL monitor design the use of narrow–band short–wavelength
radiation and a large angle optical collection system should therefore be considered, carefully
avoiding any additional restrictions of the free aperture.

• The monitor performance can be increased by use of a mask located in front of the lens which
blocks the photons emitted under small angles with respect to the beam axis. With help of
this mask the monitor resolution can be improved and the oscillatory structure of the SPF
can be suppressed. A simple estimate for an optimized mask diameter was derived which is
only a function of the lens aperture.
Nevertheless the use of such mask has to be assessed carefully, keeping in mind the effort for
manufacturing and alignment of this system and additionally taking into account the spatial
resolution of the CCD detector. With help of the formulas derived in this note for the FLASH
OTR monitors for example, the resolution is calculated to be about 10 µm (assuming 1:1
magnification at 500 nm). By usage of a mask the resolution could be reduced by 1–2 µm,
but due to the finite pixel size (9.9 µm × 9.9 µm) of the CCD used in this monitor [7] this
improvement will not be resolved.

• The influence of a misaligned optical system was studied and it was shown that the monitor
resolution strongly depends on the quality of alignment. Therefore in the monitor design
accurate alignment stages should be provided for lens and/or detector.

• Anyhow, due to the inclination of the target screen a residual image blurring remains. For
reduction of this image deterioration it should be considered whether a screen geometry with
reduced inclination angle with respect to the beam axis could be used.

• Finally design considerations for the optical system were outlined. With the help of Eqs.(41),
(42) and (43) it is possible to fix the general OTR monitor parameters based on simple
principles, before more elaborate optical design software as e.g. ZEMAX [33] is applied.
It was shown that a high resolution OTR monitor design requires the use of a short distance
L optical system with high magnification M and large lens diameter ®l, and additionally the
observation wavelength λ should be chosen small.
However, the high magnification might be in contradiction to the required field of view of
the optical system. In order to balance these effects it is possible to reduce the overall length
L of the system with the drawback that the sensitive CCD camera has direct view to the
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OTR screen, which might cause damage of the camera due to a higher radiation background.
Therefore such a solution has to be studied carefully by additional background simulations.

6 Appendix

In this appendix the basic representations for the fields of an ultra relativistic particle moving
with constant velocity will be deduced as they are used as input for the investigation of optical
transition radiation (OTR) resp. optical diffraction radiation (ODR) [1, 2]. Starting point for the
derivation are the Maxwell equations which are applied in cgs units:

~∇ · ~D(~r, t) = 4π ρ(~r, t)

~∇× ~H(~r, t) =
4π

c
~J(~r, t) +

1
c

~̇D(~r, t) (45)

~∇ · ~B(~r, t) = 0

~∇× ~E(~r, t) = −1
c

~̇B(~r, t)

with ~D = ~E and ~H = ~B in vacuum, i.e. ε = µ = 1. By introducing the potentials

~B(~r, t) = ~∇× ~A(~r, t) (46)

~E(~r, t) = −~∇ϕ(~r, t)− 1
c

~̇A(~r, t)

and taking into account the Lorentz gauge

~∇ · ~A +
1
c

∂ϕ

∂t
= 0

the wave equations for the potentials are deduced

~∇2 ~A(~r, t)− 1
c2

∂2

∂t2
~A(~r, t) = −4π

c
~J(~r, t)

~∇2ϕ(~r, t)− 1
c2

∂2

∂t2
ϕ(~r, t) = −4π ρ(~r, t)

which have to be solved. Due to practical reasons the solution of these differential equations is
performed in the frequency domain with the Fourier transform taken in the following form

~A(~r, t) =
∫

dω

∫
d3~k ~A(~k, ω)ei(~k·~r−ωt)

~A(~k, ω) =
1

(2π)4

∫
dt

∫
d3~r ~A(~r, t)e−i(~k·~r−ωt),

and in analogous way for the scalar potential ϕ(~r, t).

(~k2 − ω2

c2
) ~A(~k, ω) =

4π

c
~J(~k, ω) =

4π

c

1
(2π)4

∫
dt

∫
d3~r ~J(~r, t)e−i(~k·~r−ωt)

(~k2 − ω2

c2
) ϕ(~k, ω) = 4π ρ(~k, ω) = 4π

1
(2π)4

∫
dt

∫
d3~r ρ(~r, t)e−i(~k·~r−ωt)

Considering a point-like source with charge e which moves with constant velocity ~v:

~J(~r, t) = e~v δ(~r − ~r(t))
ρ(~r, t) = e δ(~r − ~r(t)).

In this case the integration in the space domain can be carried out directly, resulting in

~A(~k, ω) =
e~v

4π3c
(k2 − ω2/c2)−1

+∞∫

−∞
dt ei(ωt−~k·~r(t))

ϕ(~k, ω) =
e

4π3
(k2 − ω2/c2)−1

+∞∫

−∞
dt ei(ωt−~k·~r(t)).
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With the replacement ~r(t) = ~vt, the integration in the time domain can be performed

+∞∫

−∞
dt ei(ωt−~k·~r(t)) =

+∞∫

−∞
dt ei(ω−~k·~v)t = 2π δ(ω − ~k · ~v)

and the solution for the potentials in the frequency/wave number domain is obtained:

~A(~k, ω) =
e

2π2c
~v

δ(ω − ~k · ~v)
k2 − ω2/c2

ϕ(~k, ω) =
e

2π2

δ(ω − ~k · ~v)
k2 − ω2/c2

.

Inserting both equations in Eq.(46) leads to the representation of the electric field in the fre-
quency/wave number domain,

~E(~k, ω) = i
e

2π2

ω~v − ~kc2

k2c2 − ω2
δ(ω − ~k · ~v) (47)

Eq. (47) is a common representation of the particle electric field (see e.g. Ref. [25]) and is often
used in situations where the form of the surrounding is of minor interest, as for example in the case
of parametric X–rays where only the momentum transfer from the crystal lattice to the virtual
photon field is considered [34]. Sometimes in literature slightly different representations are found
[35], exploiting the property of the δ–function:

~E(~k, ω) = i
e

2π2

ω/c2~v − ~k

k2 − (~k · ~v)2/c2
δ(ω − ~k · ~v),

or if without loss of generality the direction of particle motion is considered to be in z–direction,
i.e. ~v = vêz. As consequence it follows that ω = ~k · ~v = kzv resp. kz = ω/v. Then Eq.(47) is
rewritten in the following form [35]

~E(~k, ω) = i
e

2π2

ω/c2~v − ~k

k2
x + k2

y + α2
δ(ω − ~k · ~v) (48)

with α2 =
ω2

γ2v2
.

This representation of the particle electric field is the basis for the following calculations.

In the case of OTR and ODR the field as function of the wave number is of minor interest because
it is the shape of the target which has to be taken into account. Therefore a representation of the
particle field in the space/frequency domain has to be derived. Rewriting the numerator in Eq.(48)
and performing the Fourier back–transform leads to

~E(~r, ω) = −i
e

2π2v

∫
d3~k

kxêx + ky êy + kz

γ2 êz

k2
x + k2

y + α2
δ(ω/v − kz) ei(kxx+kyy+kzz) . (49)

To solve this equation the individual components have to be treated independently. First of all both
transverse components are considered which are of the same form. In this case the z integration
can be carried out directly, resulting in

Ex,y(~r, ω) = −i
e

2π2v
ei ω

v z

+∞∫

−∞
d2kx,y

kx, ky

k2
x + k2

y + α2
ei(kxx+kyy) . (50)

The wave number integration is carried out independently for both components. Taking into ac-
count symmetry considerations and Ref.[27], Eq. 3.723(4) resp. Eq. 3.914 the solution reads

Ex,y(~r, ω) =
eα

πv
ei ω

v z x, y√
x2 + y2

K1(α
√

x2 + y2). (51)
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For the longitudinal component the z integration can be carried out in a similar way, resulting in

Ez(~r, ω) = −i
eα

2π2vγ
ei ω

v z

+∞∫

−∞
d2kx,y

ei(kxx+kyy)

k2
x + k2

y + α2
. (52)

Again by means of symmetry considerations and Ref.[27], Eq. 3.723(2) resp. Eq. 3.961(2) the
solution can be derived:

Ez(~r, ω) = −i
eα

πvγ
ei ω

v z K0(α
√

x2 + y2). (53)

Eqn.(51) and (53) can be combined to represent the particle electric field in a closed form

~E(~r, ω) =
eα

πv
ei ω

v z

(
K1(α

√
x2 + y2)√

x2 + y2
(xêx + yêy)− i

γ
K0(α

√
x2 + y2) êz

)
(54)

or in cylindrical coordinates with x = ρ cos ϕ and y = ρ sin ϕ:

~E(ρ, ϕ, z, ω) =
eα

πv
ei ω

v z

(
K1(αρ) êρ − i

γ
K0(αρ) êz

)
. (55)

The last two equations are exact representations of the particle field, and they are used for example
in Ref. [23] as input for a vector electromagnetic theory for transition and diffraction radiation.

However, if an ultra relativistic particle is considered the contribution of the longitudinal component
can be neglected due to their γ−1 dependency. In this case the Fourier components of the relativistic
particle are interpreted as plane electromagnetic waves which are purely radial transverse electric
fields (Weizsäcker–Williams approximation or method of virtual photons, c.f. Ref.[25]). In this case
the representation of the particle field is described by Eq.(50) resp. Eq.(51). Both equations serve as
input for the investigation of the imaging properties of OTR and ODR, see for example Refs.[1, 2].

Restricting to the case of an ultra relativistic particle, a measure for the radial extension of the
pseudo photon disc described by Eq.(55)can be defined as weighted average over the disc [36]:

σ =
∫

df ρEρ(ρ, ϕ, z, ω)∫
df Eρ(ρ, ϕ, z, ω)

=

∞∫
0

2πρ dρ ρ Eρ(ρ, ϕ, z, ω)

∞∫
0

2πρ dρ Eρ(ρ, ϕ, z, ω)
=

∞∫
0

dρ ρ2 K1(αρ)

∞∫
0

dρ ρ K1(αρ)

According to Ref.[27], Eq. 6.561(16) the result is given by

σ =
2
π2

λβγ , (56)

or simplified written (with β = 1), the characteristic radius of the pseudo photon disc amounts

σ ≈ λγ . (57)
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