Bunch Arrival Time Monitors

Function & Applications

Czwalinna, Marie Kristin Hamburg, 17.11.2017

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

BAM System Overview

How do the BAMs work

& How can I know whether I can trust their measurement.

BAM Installations at FLASH

Customer of the Optical Synchronisation System.

Operation Principle of the BAM

RF Signal height is dependent on e- bunch charge.

Overview Panel of BAMs

How to know whether the BAMs are OK.

On-Crest Phase Measurement

How to evaluate whether or not the scan does make sense.

On-Crest Phase Tool

Where to find it & how to use it

Matlab Script used for the scans of the RF modules

5. FLASH 1 & FLASH 2 ready for operation!

- 1. Select the RF station you would like to scan, then click "Start".
- 2. Be patient, the tool is taking data and evaluates the fit to the data points. Then check whether the fit curve looks OK (see next slide); if so, press the button "Yes" (not visible in this screenshot)
- 3. Wait for the tool to set the new reference phase. The tool will tell you, when it is ready for a new scan.
- 4. Then repeat with the next station.

On-Crest Phase Measurements

Intra-Train, Feedback (Iongitudinal) (arrival time)

or simply: Fast BAM Feedback.

How to check whether the feedback operates as intended.

Fast BAM Feedback on ACC1 Amplitude

How to get to the controls panel

PLEASE make sure, that this Feedback is OFF when loading a new file OR during SASE Tuning !

(Still) Only available for FLASH1 bunch trains. Normally, FL2 bunches should not be influenced from FB action on FL1.

DESY. | BAMs@FLASH | Czwalinna, M.K., 17.11.2017

Fast BAM Feedback on ACC1 Amplitude

Controls panel and How to use it.

- 1. Be sure that at least the BAM.3DBC2 is OK.
- 2. This FB is switched on last, after RF settings had been tuned to final values & shortly before handing the machine over to the users.
- 3. Open this controls panel.
- **4.** Adjust the BAM SP (set-point) value (see example) Usually between 25'000 and 35'000 start with center value of the bunch-train data
- 5. Click on Enable Checkbox.
- If SASE drops a little, try to fine-tune the BAM SP on the hundreds digit.
- Open the "Arrival Time Jitter Display" (Matlab tool) : select BAM.4DBC3.
- Arrival Time Jitter displayed should be around 20fs. (see next slide)

Also, FB reduces the arrival time jitter.

→ Check with BAM.4DBC3!

Fast BAM Feedback on ACC1 Amplitude

How to check the feedback operation.

Keep these 3 panels opened & print to logbook from time to time.

ACC1 :

Might want to adjust the FL1 Amplitude Set-point, To shift the green set-point curve Onto the black measurement curve. In case you see here rather big oscillations, Better switch the feedback OFF, And inform an Expert.

Slow Arrival Time Feedback

Ways to optimise the feedback operation.

Slow RF Feedback(s)

Comment on the slow BAM Feedback.

-

-

-

Slow RF Feedback(s)

BAMs are stabilising the energy in parallel to the compression FBs.

Example:

BAM.4DBC3 on ACC23 amplitude.

Optimisation possible via following knobs:

- FB Gain (see slide before)
- No. of Samples used for Averaging: Usually, the BC2 feedbacks average less (= react more often) than the BC3/energy FB loops.
- Limits around the Target Value.

As shown here, the FB is acting fine!

But possible problem: If the corrections applied are jumping in single & big steps up and down, the gain of this feedback loop is too large.

Some more or less useful information

Whom to inform, if problems appear.

Experts to call in case of questions...

At MSK:

version: 21.08.2017 Sorry, is already outdated.

