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1 Introduction

Linac-based X-ray-free-electron lasers (XFELs) require very short bunches of high-
brightness electron beams with peak currents of the order of kilo-Amperes. These
bunches cannot be produced directly in guns because space charge forces would de-
stroy the brilliance within a short distance [1]. Increasing bunch peak currents with
longitudinal compression at beam energies high enough to suppress space charge forces
sufficiently to avoid emittance increase cannot be achieved alone by inducing velocity
differences along the bunch. Instead or in addition, dispersive sections like magnet chi-
canes where particle path length depends on energy have to be employed. An energy
chirp induced to the bunch with an rf system upstream of the chicane will then result
in longitudinal bunch compression and peak current increase.

Bunch compression is usually done in stages. On one hand the energy has to be
high enough to avoid too strong self effects, not only by space charge forces but also by
coherent radiation and compression work. A too strong compression in the first stage
leads to tight tolerances, and a too high energy level of that stage increases the effort
for a higher harmonic system needed to linearize and compensate rf curvature and non
linear dispersion. Too high energy in further stages is limited by magnet strengths,
magnet dimensions, chicane dimensions, remaining energy chirp and finally by effects
due to incoherent radiation.

In total, the bunch compression system consists of a sequence of straight accelera-
tion sections, where initially strong space charge forces are reduced by the energy gain,
and chicanes which increase the peak current, which restores the space charge forces
roughly to their initial strength. Then the bunch enters the next stage and the process
is repeated.

It was shown that this staged bunch compression with its interplay of straight sec-
tions where space charge forces are present and magnet chicanes where path length
depends on electron energy can very effective in amplifying small initial intensity mod-
ulations of the bunch [2]. The gain of that amplification at certain wavelengths can be

1



TESLA-FEL-2009-02

strong enough to generate strong beam intensity modulations at the end of the bunch
compression system even if the initial modulation is just provided by shot noise.

This mechanism has been baptized ’micro-bunching instability’. It effects, depend-
ing on the degree of intensity modulation, several aspects of machine operation: the
direct impact on the lasing process is presently discussed and calculated, strong mod-
ulation will cause emittance degradation due to CSR fields in the magnet chicanes and
even small modulations in the optical wavelength regime render OTR screens which
are used to measure transverse beam properties, useless. The LCLS project has been
suffering from the latter.

The same paper which predicts the instability also offers a mitigation: uncorrelated
energy offsets of electrons lead to longitudinal position mixing in the magnet chicanes
and damps the instability. A so-called ’laser heater’, where the electron bunch traverses
an undulator magnet together with a laser beam, increases the uncorrelated energy
offsets of the electrons and suppresses the instability strength to a tolerable level.

In this paper, we present methods to calculate micro-bunching amplification gains
and results for the case of the European XFEL.

1.1 The European XFEL

The European XFEL uses a super-conducting L-band linac to accelerate beams with
peak currents of about 5 kA to an energy of up to 20 GeV. The beam then passes
up to 200 m long undulator magnets, where the SASE process (Self-Amplification of
Spontaneous Emission) produces coherent X-rays with wavelengths down to 1 Å. The
injector incorporates a photoemission radio-frequency (rf) gun that produced bunches
of about 1 nC charge, 50 A current and 5 MeV energy. Space charge forces in the bunch
vary with the radius and longitudinal position. The radial blowup of the bunch is
counteracted by a focusing scheme (known as emittance compensation [3, 4]) that uses
a magnetic solenoid and an accelerating section as shown in Fig. 1. Elaborate numerical
studies using the code ASTRA have been carried out to optimize the injector geometry,
coil arrangement and amplitudes and phases of rf fields. After the first accelerating
module, at a beam energy of 130 MeV, the slice energy spread is increased by a so-
called, laser heater’ (see Fig. 2) from about 1 keV to up to 30 keV. The shape of a
typical laser heater spectrum with 10 keV rms is compared in Fig. 3 with a gaussian
distribution. The required peak current of ≈ 5 kA is achieved in a multi stage bunch
compression system by a longitudinal compression at 500 MeV and 2 GeV, see Fig. 4.
The longitudinal compression by a factor of about twenty in the first stage and totally of
about hundred increases the induced slice energy spread by the same factor to 3 MeV.
This is of the same order as the spread caused by incoherent synchrotron radiation
in the undulator. Simulation calculations have shown that slice energy spread bigger
than that starts reducing SASE intensity. This limits the amount of damping of the
micro-bunching instability the laser heater can provide and requires the optimization
of the bunch compression system with respect to overall micro-bunching gain.
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1.2 Organization of the Report

Compression of the longitudinal distance between two particles can be caused due to
differences of velocities and path lengths. Both depend on energy. In this report we
distinguish a regime where velocity effects are not negligible or even might play a main
role (section 2) from the ultra relativistic regime where the approximation v = c is used
(section 3). A typical parameter characterising velocity effects is the wavelength Lp of
plasma oscillations. The constant velocity theory is applicable if Lp is large compared
to longitudinal linac dimensions or the length to double the energy.

In one dimensional theory the plasma wavelength can be estimated as

Lp ≈ 2πc

(
e

me

ω|Z ′(ω)|
γ3

I

c

)−1/2

with I the beam current, γ the relativistic factor, ω the angular frequency of micro
modulation and Z ′(ω) the longitudinal space charge impedance per length.(Z ′ is esti-
mated in section 3.2.1.) For parameters typical for the European XFEL the plasma
wavelength is plotted in Fig. 6 as function of modulation frequency. The relativistic
factor of 15 and 250 corresponds approximately to the energy before and after the
first accelerating module. It is obvious that the constant velocity theory is applicable
after that module for frequencies below 10 THz. It will be shown that micro-bunch
amplification will be strongly suppressed in beams with initial rms energy spread of 10
keV for larger frequencies.

The low energy part considered in section 2 extends from the gun to the end of the
first accelerating module. Especially effects in the gun are dominated by strong space
charge forces so that simple perturbation theory fails to estimate the evolution of the
bunch shape even without micro modulations. Therefore the tracking code ASTRA
is used to calculate all effects. The approach of ASTRA is described and methods to
solve the space charge problem are discussed. Detailed convergence studies have been
done for a bench mark example based on plasma oscillations and for all computations
of the injector geometry.

For the constant velocity part a linear theory is summarised, extended and applied
in section 3. It is assumed that amplitude and wavelength of the initial modulation are
small. The small amplitude is required for the linearization of self effects while a small
wavelength allows to neglect non linearities caused by external fields (rf curvature and
non linear dispersion). A coasting beam with a superimposed harmonic modulation is
used to calculate a frequency dependent gain function. Longitudinal impedances are
estimated and compared (section 3.2.1). It is shown that space charge effects followed
by coherently radiated fields are most essential. If impedances in dispersive sections
are negligible the problem can be reduced to a discrete system which can be solved
fast and efficient (sections 3.2.2 and 3.2.3.b). A longitudinal impedance depending
on frequency and position in the linac but offset independent is used for dispersive
trajectories leading to a one dimensional integral equation (section 3.2.3) or a reduced
tracking approach (section 3.2.4).

The application uses the space charge model for linear sections (diagnostics and
accelerators) and/or CSR impedances in dispersive sections (bunch compressors). Both
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impedance types are approximated in steady state, the CSR impedance without SC
contributions. It is demonstrated that the linear gain exceeds easily values of 105 for
beams with small energy spread, while longitudinal heating is efficient to reduce the
gain below 102. The influences of SC and CSR impedances are compared and it is found
that good estimations can be achieved without CSR effects in dispersive sections.

Section 4 generalizes the initial conditions of the linear theory for constant velocity
and uses the numerical results from the low energy part to compute the total gain in
the multi stage system of the European XFEL.

1.3 Notation

Longitudinal coordinates along the linac (or beam line coordinates) are written in
uppercase letters as S, A, B. Section 3.2.2 considers particle properties only in discrete
planes as S0, S1, Sa, Sb. To simplify the notation of phase space vectors and transport
matrices we replace in this section the beam line coordinates by their indices that are
either integer numbers or lower case letters. Sections 3.2.3 and 3.2.4 use continuous
beam line coordinates that might be indexed if they are related to a certain reference
plane.

Each particle is represented by phase space coordinates

X =
(
x x′ y y′ z η

)t
with x ,x′, y, y′ the horizontal and vertical trace space coordinates, z is the longitudinal
coordinate into the direction of motion and η = (E − Eref)/Eref is the relative energy
deviation from the reference energy Eref . The linear transformation from reference
plane A to B is

XB = QB←AXA

with the matrix elements

(QB←A)ij = q
(ij)
B←A .

For a set of particles the particle index is written after the position index separated by
a comma; f.i. XB,n or zB,n for the longitudinal coordinate.

The concept of wake fields and impedances is used to calculate the interaction of
particles [20]. The wake function describes the effect of a source particle (in unper-
turbed motion) to a test particle while the wake potential considers a smooth source
distribution. In principle the longitudinal charge density is

ΛA (z) = q
∑

δ (z − zA,i) ,

with q the charge of one particle or macro-particle and the summation over all particles
of the bunch. Usually the charge density is treated as smooth function supposing
that an appropriate smoothing method has been applied that keeps micro and macro
structures but removes shot noise. The calculation of a one dimensional wake potential
as the longitudinal W||(z) assumes further a certain transverse distribution function
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and neglects that the (longitudinal) field depends on the transverse position of the
test particle. With these restrictions the energy change of a particle between reference
plane A and B is

ηBEref,B = ηAEref,A + eW|| (z) .

Here we assumed a longitudinally rigid beam (zB = zA = z). The energy change per
length (beam line position) is

dη

dS
Eref = eW ′

||(z) = eE||

with W ′
||(z) the longitudinal wake potential per length that coincides with the lon-

gitudinal electrical field E||. The impedance is the frequency domain description of
the wake function. Usually an ultra relativistic beam is supposed (with k = ω/c and
z = −t/c). Therefore the longitudinal wake potential is related to the longitudinal
impedance Z(ω) or Z ′(ω) by:

W||(z) = − 1

2π

∫
Z(ω)I(ω) exp(−jkz)dω with I(ω) =

∫
Λ(z) exp(jkz)dz

or

W ′
||(z) = − 1

2π

∫
Z ′(ω)I(ω) exp(−jkz)dω .

The impedance per length Z ′ and the modulation gain G are considered in the
following as function of different parameter sets. The most general form of Z ′ is written
in curly brackets, for instance Z ′{ω, S, γ(S), σ(S), ...}, with the first parameter the
angular frequency and the other parameters as beam or geometry properties that may
be related to the beam line coordinate S. The impedance per length is a local quantity
and therefore ω has also ‘local’ meaning. The short notation in round brackets Z(ω)
is used for integrated impedances while

Z ′[S] = Z ′{ω0 × C(S), S, γ(S), σ(S), ...}

pronounces the dependency on the beamline coordinate and the suppressed angular
frequency is initial frequency ω0 at the entrance S0 times the compression factor C(S).
The gain function G{k0, S0 → S} is the modulation gain from the initial wavenumber
k0 at S0 to the local position S. It may be written as function of the beam line
coordinate G[S] = G{k0, S0 → S} supposing a certain initial wavelength or as function
of ‘compressed’ frequency

G̃(ω) = G{ω/(cC(S)), S0→ S}

supposing a certain beam line position.
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2 Low Energy Model

Here, the low energy regime is considered to be the first 14.5 m of the European XFEL
wherein the bunch is accelerated to an energy of 130 MeV. This part belongs to the
injector and includes the rf gun (Figure 7) and the first acceleration section [6]. The
rf gun cavity is a normal conducting 1.3 GHz cavity of one and a half cells with a
high accelerating field of 60 MV/m at the cathode. A solenoid with a maximum field
of 0.2 T is centered at 0.4 m downstream of the cathode. After a drift of about 3 m
follows the first accelerating section with two times four cavities at ≈ 3.3 m. The rf
field has a maximal amplitude of 23 MV/m for the first four cavities and 34 MV/m
for the next four cavities, respectively. The fields of the solenoid and the cavities are
plotted in Figure 8 and 9.

The bunch charge is given with 1 nC which results in a current of approximately
50 A. For the simulations, the laser profile is modeled as a flat top shape with a 20 ps
full width at half maximum (FWHM) and a rise and fall time of 2 ps. The transverse
profile of the bunch is assumed to be radially uniform with a radius r0 = 1.5 mm. In
principle, the rotational symmetry is kept until the bunch exits the first accelerator
section.

2.1 Tracking Code ASTRA

The simulations for microbunch amplifications at low energies were performed with the
tracking code ASTRA (A space charge tracking algorithm) [7]. The program package
ASTRA has been successfully used in the design of linac and rf photoinjector systems.
The ASTRA suite originally developed by K. Flöttmann tracks macro particles through
user defined external fields including the space charge field of the particle cloud.

The first version of ASTRA allowed for the calculation of space charge fields of
bunches with azimuthal symmetry only. A further development was the implementa-
tion of a FFT-based Poisson solver for full 3D space charge calculations with free space
boundary conditions [8]. Recently, a new set of 3D Poisson solvers has been imple-
mented in ASTRA by G. Pöplau. These Poisson solvers are an improved FFT Poisson
solver based on the integrated Green’s function and iterative algorithms, among them
the state-of-the-art multigrid Poisson solver.

The space-charge calculations are performed within the tracking procedure, where
the trajectories of N macro particles are computed by means of the relativistic equa-
tions of motion given by [9]

dγivi

dt
=

q

m
(Ei + vi ×Bi),

dxi

dt
= vi =

γivi√
γiv2

i /c
2 + 1

, i = 1, . . . , N.
(1)

Here, xi and vi are the position and the velocity of the macro particle i, while q and
m are the charge and the mass of an elementary particle, where the macro particles
represent the distribution of all particles in a bunch. Further, γi := (1 − v2

i /c
2)−1/2

denotes the Lorentz factor and c the speed of light. The electric field Ei and the
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magnetic flux Bi are the superposition of external and self-induced fields (the so-called
space charge forces) at the position of the i-th macro particle. Instantly with a change
in position of the particles the space charge field changes as well. The field has to
be recomputed after certain time steps of the numerical integration of the relativistic
equations of motion (1).

2.2 2D Space Charge Model

The 2D space charge model assumes that the 3D particle distribution of the bunch
is cylindrically symmetric. Hence, the space charge calculations can be reduced to
formulas in 2D. The bunch is longitudinally discretized into Nlong equidistant slices
and transversally into Nrad rings. The radial grid height can be varied by the factor
Cell var between one and two. For our simulations we chose Cell var = 2, which means
that the inner ring has the double height of the outer ring. The static field of the bunch
is calculated in the average rest frame. The calculation is performed by numerically
integrating over the rings, where a constant charge density is assumed. More details
can be found in the ASTRA manual [7].

2.3 3D Space Charge Model

A widely used method for the calculation of 3D space charge fields is the particle mesh
method (PM) described e. g. in [10]. The space charge fields are calculated again in the
average rest frame of the bunch. For the PM approach generally, a rectangular box, in
the following denoted as Ω, is constructed around the bunch. Then, a Cartesian grid
is defined inside the box and the values of the space charge density � are assigned at
the grid points by a volume-weighted distribution of the charge of the macro particles.
Let ε0 denote the dielectric constant and G the Green’s function given by

G(x, y, z) =
1

r(x, y, z)
with r = r(x, y, z) =

√
x2 + y2 + z2.

The potential φ can be calculated either by the convolution with the Green’s function

φ(x, y, z) =
1

4πε0

∫∫∫
R3

G(x− x′, y − y′, z − z′)�(x′, y′, z′) dx′ dy′ dz′ (2)

or by Poisson’s equation

−Δφ(x, y, z) =
�(x, y, z)

ε0
in Ω ⊂ R

3. (3)

The application of a Poisson solver provides the potential φ at the mesh points.
In ASTRA two different solver types are available. One of these methods is the

widespread FFT Poisson solver which uses formulation (2). With the approach (2) the
potential of the bunch decays asymptotically with r−1 in free space. The FFT Poisson
solver itself provides a periodic solution but the potential has the correct behavior in
the region of interest (see [10] and subsection 2.3.1).
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The second approach is a fast iterative solver based on multigrid. It is applied on
Poisson’s equation (3) together with the boundary conditions

φ(x, y, z) = 0 on ∂Ω1,
∂φ(x, y, z)

∂n
+

1

rb(x, y, z)
φ(x, y, z) = 0 on ∂Ω2,

(4)

where rb(x, y, z) denotes the distance between the center of the bunch and the boundary.
On the surface ∂Ω = ∂Ω1∪∂Ω2 (∂Ω1∩∂Ω2 = ∅) perfectly conducting boundaries (∂Ω1)
or open (free space) boundaries (∂Ω2) can be applied. The second equation of (4)
approximates free space boundary conditions with an asymptotic decay of r−1. This
approximation can be applied properly if the computational domain is large enough.
For a long bunch (according to the transformation into the rest frame) as it occurs in
the first accelerating section the enlargement of Ω would be so big that this approach
is no longer efficient.

2.3.1 FFT Poisson Solver

The FFT Poisson solver is based on the integral approach (2), which is discretized with
step sizes hx, hy, hz in x-, y- and z-direction, respectively. It yields

φi,j,k =
hxhyhz

4πε0

∑
i′,j′,k′

Gi−i′,j−j′,k−k′ · �i′,j′,k′, (5)

where φi,j,k, Gi−i′,j−j′,k−k′ and �i′,j′,k′ refer to the values of the related functions at the
mesh points. Applying the Discrete Fourier Transformation (DFT) the relation

ϕ̂l,m,n = Ĝl,m,n�̂l,m,n (6)

is obtained from (5) due to the convolution theorem. The circumflex denotes the DFT
and (l,m, n) the harmonic wave numbers. The inverse DFT provides the potential at
the grid points. It is well-known that the DFT can be efficiently calculated by Fast
Fourier Transformation (FFT) algorithms.

It is shown in [11, 12] that the FFT Poisson solver together with the standard
Green’s function does not calculate the fields correctly if the bunch is either very long
or very short. Thus, the idea of the integrated Green’s function G̃ is introduced in [13]
with

G̃(x, y, z) =

∫ xi′+hx/2

xi′−hx/2

dx′
∫ yj′+hy/2

yj′−hy/2

dy′
∫ zk′+hz/2

zk′−hz/2

dz′G(x− x′, y − y′, z − z′).

The analytical formula for the integral is given in [11] with∫∫∫
1

r(x, y, z)
dx dy dz =

− z2

2
arctan

xy

zr(x, y, z)
− y2

2
arctan

xz

yr(x, y, z)
− x2

2
arctan

yz

xr(x, y, z)

+ yz ln(x+ r(x, y, z)) + xz ln(y + r(x, y, z)) + xy ln(z + r(x, y, z)).
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Only recently this solution method was implemented in ASTRA and successfully ap-
plied [14, 15].

The mesh for the FFT Poisson solver is equidistant and the number of steps has to
be a power of 2. More precisely, the bunch is longitudinally discretized into Nlong =
Nz − 2Nz0 − 1 steps, where Nz = 2t and Nz0 is a small number of steps that is used
to model some additional space around the bunch (default Nz0 = 2). Thus, the bunch
is discretized for instance by Nlong = 251 mesh cells if Nz = 256. The same concept
is used for the discretization in transverse direction, i. e. the bunch is discretized into
Nx − 2Nx0 − 2 and Ny − 2Ny0 − 2 steps, respectively. The Poisson solver itself is
performed on a grid with 2Nx×2Ny×2Nz mesh points, but no extra space is required
as for the FD approach (see subsection 2.3.2) if the bunch becomes long in the rest
frame. The space charge density is set to zero at the additional grid points and the
(integrated) Green’s function is extended periodically due to [10, 11].

2.3.2 Iterative Poisson Solvers

Iterative Poisson solvers require a different approach. Firstly, the Laplacian in (3) is
discretized. The discretization by second order finite differences (FD) with simultane-
ous consideration of the boundary conditions (4) provides a linear system of equations

Au = f, (7)

where u denotes the vector of the unknown values of the potential and f the vector
of the given space charge density at the grid points. Since the matrix A is sparse,
iterative solvers can be applied efficiently.

During the simulations it turned out that the numerical noise of the calculated field
was quite high for bunch energies above 50 MeV. The FFT space charge routine pro-
vided less numerical noise and could be applied with much less effort than the iterative
solvers. Thus, only the FFT Poisson solver with the integrated Green’s function was
used as 3D space charge model for the simulations.

2.4 Plasma Oscillations

For charged bunches at low energy the periodic oscillation between a current density
modulation and an energy modulation is referred to as plasma oscillation. Hereby
space charge forces transform a current density modulation into an energy modulation.
On the other side an energy modulation is transformed into current modulation due
to large relative velocity spread in the low energy regime [16].

A self consistent, analytical model for longitudinal plasma oscillation in a relativistic
electron beam is given by Geloni et al. in [17]. Furthermore, these authors benchmark
the tracking code ASTRA with the analytical results in [18], where the 2D space charge
routine is used. We applied the experimental setup given in [18] in order to confirm
the results for the plasma oscillation and further to benchmark the 3D space charge
routine of ASTRA with the results obtained in [18].

Following the numerical experiment in [18] we considered a cylindrically shaped
bunch with uniform particle distribution. The transversal dimension was r0 = 1.0 mm
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and the bunch length lb = 2.2 cm. The bunch propagated with kinetic energy Ekin =
6.0 MeV. The total charge of the bunch was set to Q = 3.3 nC such that the cur-
rent yielded I = 45 A. The particle distribution was computed with the program
generator [7] that generated the corresponding input distribution for ASTRA.

Then, the current was modulated with an amplitude of ρm = 0.05 = 5% and a
wavelength λ = 1 mm. The modulation was generated by shifting the z-components
of the macro particles due to

z = z0 −m sin(
2π

λ
z0) (8)

with the modulation index m = λρm

2π
. Whereas the simulations in [18] are performed

with 12·106 macro particles we obtained comparable results with 1·106 macro particles.
Furthermore, the bunch was focused by means of a solenoidal field Bz = 7 T in

order to suppress the transverse evolution of the bunch. The bunch was tracked along
a distance of 7 m with a maximal time integration step of 10 ps. The tracking distance
corresponds to the characteristic plasma oscillation length λp = 7.31 m given in [18].

The space charge calculations were performed both with the 2D and the 3D model
of ASTRA. The parameters for the 2D model were set due to [18]: we used 10 radial
rings with Cell var = 2. The bunch length was discretized with Nlong steps. In [18] it is
shown that at least 20 steps per wavelength are necessary in order to obtain acceptable
results. Figures 10 and 11 show the evolution of current and energy modulation along
the tracking distance of 7 m for the different numbers Nlong = 100, 200, 400, 800. They
confirm the results of Geloni et al.: whereas a discretization with 100 and 200 steps
was not sufficient, the results obtained with 400 and 800 steps coincide very well.

The 3D space charge calculations were performed with Nx = Ny = 32, Nx0 =
Ny0 = Nz0 = 2 and Nz = 64, 128, 256, 512, respectively. Figures 12 and 13 represent
the results for plasma oscillation calculated with the 3D space charge method. They
show very good agreement with the 2D space charge routine. As for the 2D case it
turns out that at least 20 steps per wavelength are necessary in order to achieve the
theoretical result.

2.5 Simulations for the first 14.5 m of the European XFEL

The simulations for the low energy part were started at the cathode and finished after
the first accelerator section according to the set up described above. Thus, the bunch
was tracked over the first 14.5 m of the European XFEL. There the bunch has achieved
an energy of 130 MeV.

In order to simulate the space charge oscillation dynamics in the low energy region
ASTRA was used together with full 3D space charge calculations. It turned out that
the application of the 2D model of ASTRA is also possible because the bunch maintains
the cylindrical symmetry until the end of the first accelerating section. A convenient
side effect was that the simulation times with the 3D FFT solver were less than 50% of
the simulation times with 2D space charge calculations considering the same number
of macro particles. Since 3D space charge calculations were not yet implemented for
field calculations at the cathode, the simulations were started at the cathode with 2D

10



TESLA-FEL-2009-02

λ[mm] N Nz � steps/λ
1.20 5,000,000 256 35
1.00 5,000,000 256 29
0.75 5,000,000 512 44
0.50 5,000,000 512 29
0.35 5,000,000 1024 41
0.20 10,000,000 1024 23

Table 1: Number of macro particles N , number of longitudinal steps Nz and resulting
number of steps per wavelength for different wavelengths.

space charge calculations. Thus, the unmodulated bunch was tracked to the position
of 0.07 m, where the mirror charges for field calculations at the cathode were switched
off. Here, the bunch had a length of ca. 8.6 mm. The particle distribution at 0.07 m
was now modulated by shifting the z-position of the particles due to equation (8) with
ρm = 5%. Then the tracking was proceeded with the modulated particle distribution
applying the 3D space charge model.

For the 3D space charge calculations the bunch was transversally discretized into
Nx = Ny = 32 steps with Nx0 = Ny0 = 2. Longitudinally the discretization had to be
adapted to the wavelength of the modulation because at least 20 steps per wavelength
were needed for the simulations (see subsection 2.4). That means that the number
of particles had to be increased with decreasing wavelength. The number of macro
particles N and the number of longitudinal steps Nz with the corresponding number of
steps per wavelength for the simulations are given in Table 1. The particle distribution
was investigated at the following positions: 0.07 m (after the cathode, start of the
simulation with modulated particle distribution), 2.0 m (drift), 3.0 m (drift, entrance
to the accelerating section), 8.8 m (location after the first four cavities), 14.5 m (exit
of the first accelerating section). Assuming the current and energy modulation of the
form

I(z) = I0 + Î cos(
2π

λ
z − ϕ), (9)

E(z) = Eref + Ê cos(
2π

λ
z − ψ) (10)

the related amplitude and phase shift were calculated by Fourier analysis. Hereby only
the core of the bunch was considered in order to avoid edge effects from head and
tail. Figures 14–17 demonstrate the influence of the longitudinal resolution for λ =
1.0 mm and λ = 0.75 mm. Thus, the result given for plasma oscillation (section 2.4)
that at least 20 steps per wavelength are required is confirmed. The Figures 18 and
19 summarize the simulation results for the wavelength from λ = 1.2 mm down to
λ = 0.2 mm. They show the amplitude of the modulation of relative current and the
modulation of energy, respectively. A change in phase is represented in a change in
sign of the related amplitude. Such a shift in phase can be observed for wavelengths
equal to or smaller than λ = 0.75 mm for the current modulation and for wavelengths
equal to or smaller than λ = 0.35 mm for the energy modulation. Figure 20 represents
the results at the location of 14.5 m for the different wavelength. It shows the linear
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dependency of current and energy modulation with respect to the wavelength. The
quantity Δϕ = ϕ−ψ is the difference in phase between current and energy modulation.
Here, it can be observed that a phase shift occurs with λ = 0.75 mm which is caused
by the phase shift in the current modulation.

3 Velocity Independent High Energy Model

3.1 Gain Mechanism

The amplification of longitudinal density fluctuation in a charged particle beam is re-
lated to the coupling of density to energy and vice versa, see Fig. 21 from [5]. The
mechanism of energy modulation is caused by longitudinal self fields that are char-
acterised by longitudinal wakes W||(z), or in frequency domain by the longitudinal
impedance Z(ω). The coupling from energy to the relative position z of a particle in
a bunch is known as longitudinal dispersion and characterised by the corresponding
element of the transfer matrix q(56). In the velocity independent high energy regime
dispersion is caused only by the energy dependency of trajectories and therefore by dif-
ferent path lengths between reference planes. Dispersion and energy chirp are created
by purpose in the European FEL to compress bunches. The undesired fluctuation of
the chirp due to self fields leads to a fluctuation of the compression factor and might
superimpose a current modulation that is larger than the compressed initial fluctuation.

In multi stage compression systems the density and energy variations might be
amplified by many orders of magnitude until saturation and beyond. A counter measure
is to increase the energy spread of particles with the same longitudinal position. Such
particles, that have been initially in the same slice, will be smeared in longitudinal
direction and level micro modulations to some extend.

We distinguish between systems where the modifications of energy and longitudinal
density is decoupled from systems where they happen simultaneously. The first type
can be treated as discrete system, the latter needs continuous phase space manipula-
tions. Multi stage bunch compression systems are of the first type if self fields in the
compression chicanes are neglected. Bunch compressors with self fields belong to the
second type.

3.2 Linear Gain Model

3.2.1 Impedances

In frequency domain an axial beam current is described by the density

J(r⊥ + zez) = I ezψ(r⊥) exp(j(ω − z/βc)) ,

with ψ(r⊥) the transverse density and I the total current. The longitudinal electrical
field in a cylindrical structure is

E(r⊥ + zez) · ez = Ez(r⊥) exp(j(ω − z/βc)) .

12
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For ωr/cγ � 1 with r a typical transverse beam dimension, the variation of the
longitudinal field in the beam is nearly negligible and the longitudinal impedance per
length can be defined either by

Z ′ = −I−1

∫
Ez(r⊥)ψ(r⊥)dr⊥ ,

or by

Z ′ = −I−1 Ez(0) .

The concept of a steady state impedance per length is generalized in c) for circular
motion. Geometric impedances are usually calculated per structure, cavity or module
but it is useful (for comparisons) to express them per length as it has been done in d).

a) Space charge impedance in free space

The longitudinal space charge impedance is deduced from Maxwells equations for
free space. Using Amperes and Faradays laws, the wave equations are satisfied by the
electromagnetic potentials:(

Δ− 1

c2
∂2

∂t2

)(
φ
A

)
=

( −ε−1ρ
vμρez

)
, (11)

where ρ is the charge density and v = βc a constant longitudinal velocity along the z
coordinate. Both equations yield:

A = vεμφez =
β

c
φez , (12)

with β = vc−1. For symmetry of revolution the potential φ and the space charge
density are represented by the following relations:(

ρ(r, t)
φ(r, t)

)
=

(
f(r)
h(r)

)
exp(jω(t− z/βc)) . (13)

Adopting cylindrical coordinates the homogeneous part of (11) becomes w.r.t. (12)
and (13):(

r2 d
2

dr2
+ r

d

dr
−
(
rk

γβ

)2
)
h(r) = 0 . (14)

Here γ represents the Lorentz factor and k = ωc−1. The general solution of this
modified Bessel differential equation is given by the modified Bessel function of the
first I0(ξr) and second K0(ξr) kind, with ξr = kr

βγ
. (In later chapters the constants

Iν have the meaning of dc currents) Upon using the electromagnetic potentials the
z-component of the electric field yields:

Ez =
k

jγ2β

{
I0(ξr)
K0(ξr)

}
exp(jω(t− z/βc)) , (15)

13
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the corresponding magnetic field yields:

Hϕ = − β

Z0

k

γ2β

{
I1(ξr)
−K1(ξr)

}
exp(jω(t− z/βc)) , (16)

as a general solution. The parameter Z0 means the free space impedance (Z0 =√
μ0/ε0). According to the boundary condition of the electromagnetic field the com-

putation domain of Eq. (15) and (16) is separated as follows:

Ez =
k

jγ2β
exp(jω(t− z/βc))

{
I0(ξr)/I0(ξR) r < R ,
K0(ξr)/K0(ξR) r > R ,

(17)

and

Hϕ = − β

Z0

k

γ2β
exp(jω(t− z/βc))

{
I1(ξr)/I1(ξR) r < R ,
−K1(ξr)/K1(ξR) r > R ,

(18)

where R is the beam radius. Upon using Ampere’s law the current of the beam yields:

2πR
(
H
(
R+
)−H (R−)) = I . (19)

A hollow straw beam satisfies this assumption. Using (19) and (18) the space charge
impedance per length in free space is:

Z ′ (ω) = −jZ0

4π

ω

cγ2
T

( |ω| r
cγ

)
with γ 	 1 , (20)

where T (x) represents a function that depends on the transverse beam profile and x
the characteristic transverse beam dimension. For a hollow beam with finite radius rh

but infinitely small thickness the shown straw beam derivation yields

r = rh, T (x) = Th(x) =
2/x

K1(x)/K0(x) + I1(x)/I0(x)
.

According to the free space formulation of the hollow straw beam a beam with uniform
cross section is given in [21]. A pencil beam with the radius rp yields:

r = rp, T (x) = Tp(x) =
4

x2
(1− xK1(x)) .

Furthermore an impedance of a bunch with a gaussian cross section is given in [22].
Using the rms beam size σr, the shape function yields:

r = σr, T (x) = Tg(x) =

∞∫
x2

exp (x2 − t)
t

dt .

For low frequencies |x| � 1 the shape functions become:

Th (x) ≈ 0.232− 2 lnx ≈ −2 lnx/1.123 ,

Tp (x) ≈ 1.232− 2 lnx ≈ −2 lnx/1.852 ,

Tg (x) ≈ −0.577− 2 lnx≈ −2 lnx/0.749 ,

14
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the shape dependent functions T (x) and their approximations are plotted in Fig.
22. The longitudinal space charge impedance is purely imaginary, this indicates a
redistribution of the beam energy without energy losses. We use the real function
X ′(ω, r, γ) = jZ ′(ω) to characterize it:

X ′(ω) =
Z0

4π

ω

cγ2
T

( |ω| r
cγ

)
. (21)

b) Space charge impedance in beam pipes

Assuming that the beam with radius r = rh is moving inside of a smooth cylindrical
beam pipe with the radius r = rp the impedance is investigated as a superposition
of two hollow free space beams. The current of the inner beam is assumed as I. In
order to account metallic resistive wall conductivities a surface impedance boundary
condition is used. The current density of a hollow beam with current I and radius rh

is:

J (r, I, rh) = I exp (jω (t− z/βc)) · ez
δ (r − rh)

2πr
.

The electromagnetic field yields:

E (r, I, rh) = I exp (jω (t− z/βc)) · (Er (r, rh) er + Ez (r, rh) ez) ,

H (r, I, rh) = I exp (jω (t− z/βc)) ·Hϕ (r, rh) eϕ ,

with

Er (r) =

{
a · I1(krr) 0 ≤ r < rh ,
b1 · I1(krr) + b2 ·K1(krr) rh < r < rp ,

Ez (r, rh) =
1

jγ

{
a · I0(krr) 0 ≤ r < rh ,
b1 · I0(krr)− b2 ·K0(krr) rh ≤ r < rp ,

(22)

Hϕ (r, rh) =
β

Z0

{
a · I1(krr) 0 ≤ r < rh ,
b1 · I1(krr)− b2 ·K1(krr) rh ≤ r < rp ,

(23)

with β =
√

1− γ−2 and kr = ω
cγβ

. At r = rh the electromagnetic field yields in analogy

to (19)

a · I1(krrh) = b1 · I1(krrh) + b2 ·K1(krrh) w.r.t. (22) ,

I

2πrh
= b1 · I1(krrh)− b2 ·K1(krrh) w.r.t. (23) .

The boundary condition at the beam pipe represents the metallic surface which exhibits
an impedance Zs with resistive as well as inductive components. It is known as surface
impedance and it is nearly independent on the curvature of the beam pipe

Zs(ω) =
√
jωμ/κ ,
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with the conductivity κ of the pipe material. Note that the conductivity can be fre-
quency dependent. Adopting this impedance at r = rp the boundary condition for the
electromagnetic field at the pipe wall yields:

Ez = −Zs ·Hϕ .

This boundary condition yields at r = rp w.r.t. the former investigated electromagnetic
fields

b1(
1

jγ
I0(krrp) + Zs

β

Z0
I1(krrp)) + b2(− 1

jγ
K0(krrp) + Zs

β

Z0
K1(krrp)) = 0 .

Finally the beam impedance Z ′ = −Ez(rh)/I follows as:

Z ′ = − Z0

jγβ2πrh

I0(krrh)

I1(krrh)K0(krrh)−K1(krrh)I0(krrh)(
K0(krrh) + I0(krrh)

j/γK0(krrp) + Zs/Z0K1(krrp)

j/γI0(krrp) + Zs/Z0I1(krrp)

)
.

In the case of infinite wall conductivity κ → ∞, the beam impedance is obtained by
the substitution Zs = 0 and the tangential component of the electric field disappears
at r = rp.

c) Impedance from coherent synchrotron radiation

The one-dimensional approach of Borland [23] is widely used to investigate CSR
effects in bunch compression systems. It neglects transverse beam dimensions and
calculates the longitudinal self-field of a one-dimensional beam that is obtained by a
projection of the ’real’ three-dimensional beam to a reference trajectory. As the field of
a one-dimensional beam is infinite on its trajectory a ’renormalized’ Coulomb term is
used [24]. Therefore so called space charge effects are not taken into account. (It has to
be pointed out that a proper mathematical distinction between SC and CSR effects is
not possible. Usually the term SC is associated to effects of a beam in uniform motion
and CSR to propagating waves. The renormalization just extracts a field singularity
that would be in the same way present if the one dimensional beam would be in linear
motion.) The generalized one dimensional approach calculates the longitudinal field of
an arbitrary (but frozen) bunch Λ(z) by convolution with a kernel function [24, 25]:

Erenormalized
|| (z, S) =

1

4πε

0∫
−∞

Λ′(z + u)K̃(S, u)du . (24)

In frequency domain the steady state impedance of a bunch on an arc with radius R0

and large energy (γ � (R0ω/c)
1/3) is

Z ′CSR(ω ≥ 0) = AZ0
3

√
ω

jcR2
curv

, Z ′CSR(ω < 0) = Z ′CSR(−ω) (25)
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with

A =
1

2π

Γ(2/3)
3
√

3
≈ 0.15

[26, 27]. In Figs. 23 and 24 the transient CSR impedance (according to [25]) is compared
with the steady state limit for an sector magnet with 0.5 m length and R0 =10 m. In
the considered frequency range the steady state impedance can be taken only as rough
estimate.

d) Cavity impedance

The longitudinal and transverse wake of bunches with gaussian longitudinal profile
in TESLA cavities and modules is investigated in [28]. It is found that in an infinite
chain of cavities and modules after some length (depending on the bunch length) a
steady state condition is reached. For this condition a pseudo wake function (for point
sources) was convoluted and fitted to numerically calculated wakes of bunches with σ
down to 50 μm. The longitudinal pseudo wake of a module with the active length of
La =8.28 m is

wmodule(z) = Wm exp(−
√
z/zm)×

{
0 if s < 0
1 otherwise

,

with Wm = 344 · 1012 V/C and zm =1.74 mm. Therefore the impedance per active
length is

Z ′acc(ω) = −
∫

wmodule(z)

cLa

exp(jωz/c)dz . (26)

The Fourier transformation was calculated numerically although it can be solved ana-
lytically. The result is compared an discussed in the following.

e) Some impedances in the European XFEL

Some impedances per length are compared in Fig. 25 for typical beam parameters
in the European XFEL and energies of 130 MeV, 500 MeV, 2 GeV and 17.5 GeV. The
cavity impedance is nearly energy independent so that the same curve appears on all
sub-diagrams. For low frequencies the impedance is essentially caused by cavities and
other sources of ’geometric’ wakes. In the frequency range of interest the free space
impedance increases and is usually larger. The frequencies for an initial modulation
wavelength of 0.1 and 1 mm are marked. Due to the compression at 500 MeV with
C = 20 and at 2 MeV with C = 5 the window is shifted to higher frequencies. Although
the space charge impedance drops with γ−2 it is in the marked window the major
contribution to the total impedance. The influence of PEC boundary conditions and
finite conductivity (copper) are also shown. (The radius of the beam pipe corresponds
to the radius of TESLA cavities of 38 mm for sub-diagrams (a) to (c) und to the
radius of the beam distribution system of about 20 mm in (d).) Only at 17.5 GeV the
influence of metallic conductivity seems to be relevant.
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Important for micro bunching effects is the integrated impedance between disper-
sive sections as it is calculated in Fig. 26 for the ’high energy part’ before BC1, the
linac between BC1 and BC2 and the linac from BC2 to the collimator. For these cases
the integrated space charge impedance is large compared to the cavity impedance. The
effect of higher harmonic cavities is not considered. The integrated effect of resistive
wall conductivity is small compared to the integrated free space impedance and is also
neglected.

3.2.2 Discrete Approach: Only Space Charge Effects

a) Single stage, no uncorrelated energy spread

The charge density Λ0(z0) and relative energy deviation η0(z0) at the entrance S0 as
function of the initial longitudinal position z0 are

Λ0(z0) = Λ0 · (1 +m cos(kz0))

η0(z0) =
E ′0
E0 z0

with Λ0 = I0/c the dc part, m the modulation index, λ = 2π/k the modulation
wavelength, E0 the reference energy and E ′0 the slope of the linear energy chirp. The
bunch is accelerated by an rf system that increases the reference energy and chirp to E1
and E ′1. In the linac from S0 to the entrance of the bunch compressor S1 a longitudinal
space charge impedance

X1←0(ω) =

S1∫
S0

X ′f{ω, r(S), γ(S)}dS

is experienced due to the longitudinal field

E||(S, z0) = mI0X
′
f{kc, r(S), γ(S)} sin(kz0)

at the position S with γ(S) the local relativistic factor. The impedance calculation
assumes a round beam with local beam radius r(S) that is interpolated from the hor-
izontal and vertical beam dimensions given by the emittances and the beta functions.
The longitudinal coordinate and relative energy deviation at the entrance of the bunch
compressor are

z1(z0) = z0

η1(z0) =
E ′1
E1 z0 +

mI0X1←0(kc)

E1/e sin(kz0) .

The bunch compressor is characterized by the transport matrix element q
(56)
2←1. Therefore

the longitudinal phase space coordinates after the bunch compressor are

z2(z0) = z0 + q
(56)
2←1η1(z0)

η2(z0) = η1(z0) .
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Due to the energy modulation the compression factor depends on the relative longitu-
dinal position:

C̃(z2(z0)) =

(
dz2
dz0

)−1

=

(
1 + q

(56)
2←1

E ′1
E1 + q

(56)
2←1

mI0X1←0(kc)k

E1/e cos(kz0)

)−1

.

We assume that the modulation index m is sufficiently small and neglect nonlinear
terms. Therefore the unmodulated and modulated compression factors are

C = (1 + q
(56)
2←1E ′1/E1)−1 ,

C̃(z2) = C − CmI0X1←0(kc)k

E1/e cos(k2z2) +O(m2) ,

with k2 = Ck. The longitudinal charge density after the compressor Λ2(z2(z0)) is the
product of the initial density Λ0(z0) and the modulated compression factor C̃(z2(z0)):

Λ2(z2) = CΛ0

(
1 +m

(
1− q(56)

2←1k2
I0X1←0(kc)

E1/e
)
· cos(k2z2)

)
+O(m2) .

It can be written in the form

Λ2(z2) = Λ2 (1 +mG · cos(k2z2)) +O(m2) , (27)

with the unmodulated line charge density Λ2 = CΛ0 and the modulation gain

G = 1− q(56)
2←1k2

I0X1←0(kc)

E1/e . (28)

The gain factor may be considered as functionG{k, S0 → S2} of the initial wave number
k, the position S0 of initial modulation and the position S2 of amplified modulation.

Note that this derivation assumes purely imaginary impedances. In four magnet
bunch compression chicanes as they are foreseen for the European XFEL q

(56)
2←1 is a

positive quantity. In the frequency range under consideration (ωσr/cγ � 1) X1←0 is
also positive so that the second term takes a negative value. Therefore single stage gain
curves to large absolute values start necessarily with a zero crossing at low frequencies
followed by a high gain regime with 180 deg phase shift that reaches its extremum
when kX1←0(kc) gets maximal.

b) Single stage with uncorrelated energy spread

We consider a longitudinal and modulated charge density Λ0(z0) as before but an
uncorrelated energy spread is now superimposed to the systematic chirp. Therefore
the beam is characterized by the longitudinal phase space density ψ0(z0, η0) with

ψ0(z0, η0) = Λ0(z0)Fη

(
η0 − E

′
0

E0 z0
)

.

Fη(η) with
∫
Fη(η)dη = 1 describes the energy spread of longitudinal slices. The

compression smears each slice longitudinally. This can be expressed by a convolution
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of the smearing function hFη(hz2) and the compressed longitudinal charge density
Λ2(z2) :

Λ
(u)
2 (z2) =

∫
Λ2(z2 − u)hFη(hu)du ,

with h = E0/E1q(56)
2←1 and Λ2(z2) calculated by Eq. (27). For simplicity we assume a

symmetric energy distribution Fη(η) = Fη(|η|) and write the density analogously to
Eq. (27) as

Λ
(u)
2 = Λ2 (1 +mG(u) cos(k2z2)) +O(m2) ,

with the modified gain

G(u) = G

∫
cos

(
k2q

(56)
2←1

E0
E1η
)
Fη(η)dη . (29)

F.i. the gain function G(u){k, S0 → S2} for a Gaussian energy distribution with the
rms spread σηE0 is

G(u){k, S0 → S2} = G{k, S0 → S2} exp

(
−1

2

(
Ckq

(56)
2←1

E0
E1ση

)2
)

. (30)

For large absolute values this result agrees with the estimation in [2]. In the following
we do not explicitly distinguish gain factors with or without uncorrelated energy spread
and therefore suppress the upper index ‘(u)’.

Fig. 27 shows the gain curves in the European XFEL due to pure space charge effects
upstream of the first bunch compressor. For initial distributions with uncorrelated rms
energy spread of 10 keV the maximal gain can be kept below 20. A feature of all gain
curves of laser heated initial distributions is sinc(x) like behavior that is also found in
the Fourier spectrum of the density function in Fig. 3.

c) Multi stages, no uncorrelated energy spread

The schematic setup of a multi stage bunch compression system and the used no-
tation are shown in Fig. 28. Without uncorrelated energy spread (Fη(η) = δ(η)) the
particle energy is a unique function of the relative bunch coordinate. At reference plane
a (with beam path coordinate Sa) the line charge density and the relative energy offset
are:

Λa(za) = Λa�{1 +mGa exp(−jkaza)}
ηa(za) = �

{E ′a
Ea

za − jmHa exp(−jkaza)

}
.

This reference plane is either the entrance of the complete multi stage system (a = 0)
or it coincides with the exit of a previous bunch compression chicane or dispersive
section. Ga = Ga{k, S0 → Sa} is the gain of amplitude modulation and Ha stands for
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energy modulation. The scheme starts with G0 = 1 and H0 = 0. The stage ‘a → c’
includes an rf system and impedance between plane a and b = a+ 1. The range of the
dispersive compressor is between b and c = a + 2. The transformation from plane ‘a’
to plane ‘b’ is characterized by the phase space manipulation(

zb

ηb

)
=

(
1 0
E ′b←a

Eb
Ea
Eb

)(
za

ηa

)
−
(

0
1

)
�
{
m
GaIaZb←a(kac)

Eb/e
exp(−jkaza)

}
. (31)

The compression transformation is(
zc

ηc

)
=

(
1 q

(56)
c←b

0 1

)(
zb

ηb

)
.

As the longitudinal and transverse phase space are decoupled we consider only the
longitudinal sub-matrix (matrix elements q(55), q(56), q(66) and q(66)). The transport
matrix of stage ‘c← a’ is

Qc←a =

(
1 q

(56)
c←b

0 1

)(
1 0
E ′b←a

Eb
Ea
Eb

)
.

The matrices from the entrance of the complete multi stage system to a reference plane
between stages follows from the recursive application of:

Qc←0 = Qc←aQa←0 .

The total compression ratio from the entrance of the complete multi stage system to
reference plane ‘c’ is Cc = 1/q

(55)
c←0. Consequently the compressed line charge density,

current and wavenumber are Λc = CcΛ0, Ic = CccΛ0 and kc = Cck. The line charge
density and relative energy offset after the stage coincides formally with that at its
entrance:

Λc(zc) = Λc�{1 +mGc exp(−jkczc)}
ηc(zc) = �

{E ′c
Ec
zc − jmHc exp(−jkczc)

}
.

The gain Gc and energy modulation coefficient Hc are determined by the recursive
relation(

(Gc − 1)/kc

Hc

)
= Qc←a

(
(Ga − 1)/ka

Ha

)
− jIaGaZb←a(cka)

Eb/e

(
q

(56)
c←b

1

)
. (32)

Fig. 29 shows the gain curves for the two stage system of the European XFEL that
considers the linacs and impedances after ACC1 and the bunch compressors BC1 and
BC2. Without uncorrelated energy spread the gain after BC2 exceeds about 105 for
initial modulation wavelength λ =0.1 mm.
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d) Multi stages with uncorrelated energy spread

We consider the setup in Fig. 28 for an initial longitudinal phase space density
ψ(z0, η0) = Λ0(z0)Fη(η0). A phase space point z0, η0 at the entrance of the complete
compression system is mapped to the entrance of a certain stage ‘c← a’ as(

za

ηa

)
= Qa←0

(
z0
η0

)
+ �
{
m

(
ga(η0)
ha(η0)

)
exp(−ikz0)

}
and to the exit of the same stage as(

zc

ηc

)
= Qc←0

(
z0
η0

)
+ �
{
m

(
gc(η0)
hc(η0)

)
exp(−ikz0)

}
.

ga/c(η0) and ha/c(η0) are auxiliary functions that vanish in the 0th reference plane and
can be calculated for all other planes with the recursive equation:(

gc(η0)
hc(η0)

)
= Qc←a

(
ga(η0)
ha(η0)

)
−IaGaZb←a(kac)

Eb/e
exp
(
−ikaq

(56)
c←0η0

)(
q

(56)
c←b

1

)
. (33)

The line charge density in plane c is calculated from the initial phase space density and
the mapping equation by

Λc(ẑc) =

∫
ψ0(z0, η0)δ (zc(z0, η0)− ẑc) dz0dη0 ,

or

Λc(ẑc) =

∫
ψ0(z0(ẑc, η0), η0)

q
(55)
c←0 + �{−ikmgc(η0) exp(−iz0(ẑc, η0))}

dη0 ,

where z0(zc, η0) is defined by the implicit equation

z0 =
zc

q
(55)
c←0

− q
(56)
c←0

q
(55)
c←0

η0 − �
{
m
gc(η0)

q
(55)
c←0

exp(−ikz0)
}

.

This can be solved:

Λc(ẑc) = Λc�{1 +mGc exp(−ikczc)}+O(m2) .

The complex gain factor Gc follows from the integration to first order as:

Gc =

∫
(1 + ikcgc(η))Fη(η) exp

(
ikcq

(56)
c←0η
)
dη . (34)

The successive application of Eqs. (33) and (34) determines the gain to all stages.
To reduce the large gain predicted in Fig. 29 it is foreseen to increase the un-

correlated energy spread. Supposed the spread Fη(η) is gaussian with an rms value
of 10 keV the maximal total gain is reduced to values below about 30 as shown in
Fig. 30. Gain curves for the laser heater spectrum in Fig. 3 with the same rms value
are plotted in Fig. 31. The maximal gain after compressor BC2 is kept below about 100.
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3.2.3 Integral Equation Method

a) Method

A linear integral equation theory has been developed by [29] and [30] to calculate
the amplification of microbunching. It considers transverse motion and dispersive
trajectories but self effects are treated as offset independent. (Offset independent
wakes and impedances see section 3.2.1 and especially section 3.2.1.c.) The initial four
dimensional phase space distribution is

ψ0(x0, x
′
0, z0, η0) = ψ⊥(x0, x

′
0)Λ0(z0)ψη(η0) , (35)

with the initial coordinates x0, x
′
0, z0, η0 and

Λ0(z) = Λ0�{1 +m exp(−jkz)} .
The longitudinal electrical field observed at longitudinal particle coordinate z at beam
line position S is

E||(z, S) = �{E||(S) exp(−jk(S)z)
}

with E||(S) the complex amplitude and k(S) the local wave number as defined below.
To first order in the modulation index m the initial point in phase space is mapped to⎛⎜⎜⎝

xB

x′B
zB

ηB

⎞⎟⎟⎠ = QB←0

⎛⎜⎜⎝
x0

x′0
z0
η0

⎞⎟⎟⎠

+

B∫
0

dS ×QB←S

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠�{ E||(S)

E(S)/e
exp(−jk(S)zS)

}
(36)

at the beam line position B. Note that the uppercase letters A, B and S are now real
beam line positions. QB←A is the linear (unperturbed) transformation from plane A
to B. The longitudinal density function is

Λ(z, S) = C(S)Λ0�{1 +mG(S) exp(−jk(S)z)}+O(m2)

with C(S) = 1/q
(55)
S←0 the local compression factor, k(S) = kC(S) the local wave number

and G(S) = G{k, S0 → S} the local gain. The modulated part of the density is related
to the longitudinal electrical field by the impedance:

E||(S) = −Z ′{ω = ck(S), S, ...} × cΛ0C(S)mG(S)

= −Z ′[S]× cΛ0C(S)mG(S) .

The local gain can be calculated as solution of the one dimensional integral equation

G (B) = G(0) (B) +

B∫
0

K (B, S)G (S) dS (37)
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with

G(0)(B) =

∫
dx0dx

′
0dη0 × ψ⊥(x0, x

′
0)ψη(η0) exp

⎛⎝jk (L(B))t

⎛⎝ x0

x′0
η0

⎞⎠⎞⎠ (38)

the gain without longitudinal self fields (or without impedance), the kernel

K(B, S) =
−jkq(56)

B←S

q
(55)
B←0q

(55)
S←0

cΛ0Z
′[S]

E(S)/e∫
dx0dx

′
0dη0 × ψ⊥(x0, x

′
0)ψη(η0) exp

⎛⎝jk (L(B)− L(S))t

⎛⎝ x0

x′0
η0

⎞⎠⎞⎠ (39)

and

L(S) =
1

q
(55)
S←0

⎛⎜⎝ q
(51)
S←0

q
(52)
S←0

q
(56)
S←0

⎞⎟⎠ , Z ′[S] = Z ′{ω = ck(S), S, ...} .

The transverse and energy parts of the phase space integrals can be separated and they
can be integrated analytically for Gaussian density functions (see [29, 30] and appendix
A).

b) Only Space Charge Effects - “SC model”

The integral equation method is a generalisation of the model of section 3.2.2 and can
be used to derive an equivalent formulation. Therefore we distinguish ranges without
and with transverse dispersion according to Fig. 28. Nondispersive parts are between
S2m and S2m+1, dispersive sections range from S2m+1 to S2m+2. The impedance in
dispersive sections is set to zero, for the rest the same model is used as in discrete
approach. The transverse and longitudinal phase spaces are not coupled by transport
matrices if both boundary planes are in sections without transverse dispersion:

QB←A =

⎛⎜⎜⎜⎝
q

(11)
B←A q

(12)
B←A 0 0

q
(21)
B←A q

(22)
B←A 0 0

0 0 q
(55)
B←A q

(56)
B←A

0 0 q
(65)
B←A q

(66)
B←A

⎞⎟⎟⎟⎠ .

The transverse matrix elements are determined by the optics of the focusing lattice.
The longitudinal matrix elements satisfy:

q
(55)
B←A = q

(55)
Sb←Sa

,

q
(56)
B←A = q

(56)
Sb←Sa

E (A)

E (Sa)
,
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q
(65)
B←A = q

(65)
Sb←Sa

E (Sb)

E (B)
,

with Sa < A < Sa+1, Sb < B < Sb+1, a and b even. In sections without transverse
dispersion the function G(0)(B) and the kernel of the integral equation simplify to

G(0)(B) = Ψη

(
kq

(56)
B←0/q

(55)
B←0

)
K(B, S) =

−jkq(56)
B←S

q
(55)
B←0q

(55)
S←0

cΛ0Z
′[S]

E(S)/e
Ψη

(
k

(
q

(56)
B←0

q
(55)
B←0

− q
(56)
S←0

q
(55)
S←0

))
with

Ψη(k) =

∫
dη × ψη(η) exp(jkη) .

The kernel K(B, S) vanishes if both coordinates are in the same section Sb < S ≤
B < Sb+1 or if the source coordinate is inside of a dispersive section (according to our
assumption that there is no impedance). Therefore the gain function G(B) is piecewise

constant for Sb < B < Sb+1 as well as G
(0)
b . These constant gain factors G

(0)
b , Gb can

be calculated from the matrix equation

(Gb) =
(
G

(0)
b

)
+ (Kb,a)(Gb) , (40)

with

G
(0)
b = Ψη

(
kq

(56)
Sb←0/q

(55)
Sb←0

)
,

Kb,a =

{
K+

b,a for b > a

0 otherwise
,

K+
b,a =

−jkq(56)
Sb←Sa

q
(55)
Sb←0q

(55)
Sa←0

cΛ0Za

E(Sa)/e
Ψη

(
k

(
q

(56)
Sb←0

q
(55)
Sb←0

− q
(56)
Sa←0

q
(55)
Sa←0

))
,

Za =

Sa+1∫
Sa

Z ′[S]dS .

Formulations Eq. (34) and Eq. (40) are equivalent to each other.

c) Example: Dispersion in the Collimator

The bunch compression system (see Fig. 4) is followed by the main linac to 17.5 GeV
and a collimation system that includes dispersive elements (see Fig. 5). The energy,
transverse beam size and integrated impedance of the linac are plotted in Fig. 26.

Supposed the collimation system might be represented by a single dispersion coef-
ficient q

(56)
coll the gain calculation has to consider three stages. This was assumed for the

calculations in Figs. 32a and b. In Fig. 32a the influence of a small dispersion coeffi-
cient q

(56)
coll is investigated, that changes the total compression factor by only few percent.
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Nevertheless the additional stage is of strong influence to the total microbunching gain
and might increase it by a factor of about five for q

(56)
coll = −0.6mm. This figure assumes

on crest acceleration in the main linac so that the chirp is not altered. It is known
that the cavity wake (of an unmodulated bunch) counteracts to the chirp and nearly
compensates it. This effect is considered in Fig. 32b that assumes that the chirp is
compensated by the rf system. The curves with and without chirp are nearly identical.

Although the choice of a certain q
(56)
coll could lower the gain curves in the most

important frequency range, it seems to be reasonable to avoid such compensations and
to design a collimation system with low additional q

(56)
coll . Fig. 33a shows the dispersion

parameter from 0 (the beginning of the collimator) to a certain length L. The resulting
gain curve of a system with more then 40 stages and space charge effects on all the
drifts in the collimator is shown in Fig. 33b. The gain curve for this design is nearly
unchanged by the collimation section. The space charge effects of the drifts on the
energy level of 17.5 GeV are considered but negligible.

d) Only Coherent Synchrotron Radiation Effects - “CSR model”

This model is complementary to the “SC model” as it considers a CSR impedance
in dispersive sections but no space charge effects. The CSR impedance and its steady
state model

Z ′{ω, S, ...} = AZ0
3

√
ω

jc(Rcurv(S))2

for bending magnets (with the curvature radius Rcurv) has been discussed in sec-
tion 3.2.1.c. Although it has been shown that the “switched” steady state impedance
is a very rough approximation of the transient impedance, this model produces gain
curves that are in good agreement to results obtained by direct particle tracking in
presence of the renormalized longitudinal field according to Eq. (24) or simplified ver-
sions (f.i. [23, 31]). This has probably two reasons: fast oscillations of the impedance
with the beam line coordinate S are not seen due to averaging effects and errors from
the transients “into the magnet” cancel partially with errors from missing contributions
after the magnet or “into the drift”. In [32] an edge radiation impedance is used to
consider contributions “after the magnet”. A complete selfconsistent two dimensional
model that does not artificially distinguish between “SC” and “CSR” effects is de-
scribed and used in [33]. In this report we follow this approach and use the “switched”
steady state impedance.

The application of Eqs. (37, 38, 39) uses a constant reference energy E(S) = E and
the transport matrix QB←A regards the magnetic lattice of the compressor and a chirp
generating matrix

Q0+←0 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 ch 1

⎞⎟⎟⎠
at its entrance as the initial distribution Eq. (35) is unchirped. The chirp coefficient ch
is chosen so that the compression factor C = 1/(1 + chq

(56)
cmpr) reaches the design value
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Cd with q
(56)
cmpr the dispersion coefficient of the compressor. The required phase space

integrals for gaussian initial density functions

ψ⊥(x0, x
′
0) =

1

2πε0

exp

(
− 1

2ε0

(
x0

x′0

)t(
γ0 α0

α0 β0

)(
x0

x′0

))
,

ψη(η0) =
1√

2π ση

exp

(
−1

2

(
η0

ση

)2
)

,

with ε0, α0, β0, γ0 the initial twiss parameters and ση the uncorrelated energy spread,
are listed in appendix A.

Microbunching gain curves for the first and independently for the second bunch
compressor of the European XFEL have been calculated by the “CSR model”. The gain
curves for BC1 and different distribution functions and rms values of the uncorrelated
energy spread are shown in Fig. 34a. The gaussian energy spread of 1 keV is typical
for the source distribution without additional longitudinal heating. The maximal gain
for that case is 4. If the energy spread is increased to 10 keV the gain is kept below
1.5 and drops for modulation wavelengths below 0.2 mm. The initial conditions for
the second bunch compressor have been chosen according to the working point: the
initial current is increased by the compression factor 20 of BC1 to 1 kA and due to
conservation of phase space density the uncorrelated energy would be increased by the
same factor. The gain curves are plotted in Fig 34b. These curve are quite similar to
that of BC1 with compressed wavelengths.

e) SC and CSR Effects

The results of a one stage gain calculation with space charge and coherent radiation
effects for the bunch compressors of the European XFEL can be seen in Figs. 35a and
b. This calculation considers the space charge impedance in the preceding linac and
the steady state CSR impedance in a certain compressor. For 10 keV uncorrelated
energy spread the maximal gain is increased to about 10 in each of the compression
stages. This demonstrates in comparison to Fig. 34 that micro bunch amplification is
essentially driven by space charge effects.

3.2.4 Tracking Method

The one dimensional integral equation method avoids the discretization of phase space
but the integration range increases with the total length of the system and the number
of stages. Alternatively the perturbation in phase space can be tracked.

a) Method

The macro particle approach uses a set of N particles with initial charges qn, initial
positions

X0,n =
(
x0,n, x

′
0,n, 0, η0,n

)t
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and initial perturbations

δX0,n = (0, 0, δz0,n, 0)t

for n = 0, 1, ...N − 1. The unperturbed particles start in one slice and it is sufficient
to track only these particles. Nevertheless we consider an arbitrary number R of slices
that are equispaced in one period λ0. Therefore the ‘slice’ index r and the total index
i = n+ rN range from 0 to R− 1 and 0 to RN − 1 respectively. The properties of this
extended particle set are

qn+rN = qn ,

X0,n+rN = X0,n + λ0
r

R
ez ,

δX0,n+rN = �
{
δX0,n exp

(
j2π

r

R

)}
.

The relations of the particle coordinates of the extended particle set to that of the
‘slice’ set for an arbitrary position S are

XS,n+rN = XS,n + ez
2π

k(S)

r

R
,

δXS,n+rN = �
{
δX̃S,n exp

(
j

2π

k(S)

r

R

)}
, (41)

with the complex perturbation δX̃S,n that has to be calculated by tracking. Therefore
we apply Eq. (36):

XB,i + δXB,i = QB←0 (X0,i + δX0,i)

+

B∫
0

dS ×QB←Seδ�
{
E||(S)

E(S)/e
exp (−jk(S)(zS,i + δzS,i))

}

to derive an update equation for the perturbation:

δXB,i = QB←AδXA,i

+

B∫
A

dS ×QB←Seδ�
{
E||(S)

E(S)/e
exp (−jk(S)(zS,i + δzS,i))

}
.

The term δzS,i in the exponential function contributes to second order and is therefore
neglected:

δXB,n+rN = QB←AδXA,n+rN

+

B∫
A

dS ×QB←Seδ�
{
E||(S)

E(S)/e
exp

(
−jk(S)(zS,n +

2π

k(S)

r

R
)

)}
.
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Indeed this equation is consistent with Eq. (41) so that it is sufficient to apply the
update equation to the complex perturbation of only one slice:

δX̃B,n = QB←AδX̃A,n +

B∫
A

dS ×QB←Seδ�
{
E||(S)

E(S)/e
exp (−jk(S)zS,n)

}
. (42)

For numerical integration in small steps Δ = B − A the integral
∫ B

A
f(S)dS is ap-

proximated by f(A)Δ. To obtain the modulation amplitude and the longitudinal field
E||(S) the longitudinal charge density of “point particles” has to approximated by a
continuous line charge density:

Λ(z, S) =
∑

i

qiδ(z − (z,i + δz,i)) = Λ(S) + �
{

Λ̃(S) exp(−jk(S)z)
}

+ ... .

By Fourier analysis the modulation amplitude, electrical field and amplification follow
to first order as:

Λ̃(S)

Λ(S)
=

jk(S)
∑
n

qnδz,n∑
n

qn
,

E||(S) = −Z ′(ω = ck(S), S)× cΛ̃(S) ,

G(S) =
1

C(S)

Λ̃(S)

Λ̃(0)
. (43)

For numerical simulations the initial macro particle distribution was chosen on an
equidistant grid in three phase space dimensions x, x′, η and the macro charges qn where
set proportional to the local phase space density. The initial perturbation δz

(0)
0,n = δz

assumes a constant displacement of all particles in the slice. As all nonlinear terms
have been skipped the gain factor does not depend on the initial amplitude δz even if
the calculated modulation amplitude gets larger than the unmodulated part.

b) SC and CSR Effects

The two stage bunch compression scenario of the European XFEL has been investi-
gated by the tracking method. To obtain results comparable to the methods of sections
3.2.2 and 3.2.3 the same impedance models were used.

The curves in Fig. 36a show the gain after the first compression stage without
impedances, with either space charge or CSR impedance and with both effects. The
damping without impedances is caused by longitudinal smearing of the initial un-
correlated energy spread. This frequency dependency is proportional to the Fourier
spectrum of the laser heater spectrum in Fig. 3. The curve with only the space charge
impedance is in good agreement to the corresponding one stage gain in Fig. 31. The
CSR and SC+CSR curves agree to Fig. 34a and 35b.

The curves in Fig. 36b show the gain from the exit of rf module ACC1 (130 MeV)
to the exit of the second bunch compressor. The curve with only space charge effects
agrees with that in Fig. 31. The gain for SC+SCR effects simultaneously is only slightly
increased.
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3.2.5 Amplification of Shot Noise

In the following the rms fluctuation of the compressed current due to initial shot noise
is estimated. Therefore we represent the initial current i(t) by N discrete charges

i(t) = e
∑

δ(t− tν)

with ν from 0 to N − 1. We neglect the sign of the particle charge and assume that
the macroscopic distribution is sufficiently smooth and microbunching effects are only
driven by the discrete structure of the distribution. The Fourier transformation is

I(ω) =

∫
i(t) exp(−jωt)dt = e

∑
exp(−jωtν) .

The ensemble average 〈|I(ω)|2〉 can be written as

〈|I(ω)|2〉 =

∫
dt0...dtN−1 × e2

∑
exp(−jω(tν − tμ))p(t0)...p(tN−1) .

Both indices ν, μ of the double summation range from 0 to N − 1. It is assumed that
the probabilities p(t) for charges at arrival time t are independent and identical for all
particles. Therefore the integration can be simplified to

〈|I(ω)|2〉 = e2N + e2
∑
ν �=μ

∫
dtνdtμ × exp(−jω(tν − tμ))p(tν)p(tμ)

and further to the well known result

〈|I(ω)|2〉 = e2N + e2(N2 −N)|P (jω)|2

with P (ω) the Fourier transformation of p(t). The first term describes white noise, the
second stands for the macroscopic shape of the current pulse. Note that the assump-
tion of independent probabilities is violated if the longitudinal (or temporal) position
of particles is altered by self effects causing microbunching. Therefore the ensemble
average of current distributions in later reference planes of a bunch compression system
might be even below e2N .

We apply linear theory and assume that the shape part is linearly compressed while
the white noise is amplified by the gain factor G̃(ω)

〈|IC(ω)|2〉 ≈ e2N |G̃(ω)|2 + e2(N2 −N)|P (jω/C)|2 ,
with G̃(ω) = G{ω/(cCB), S0 → SB} the gain factor for the initial wavenumber ω/(cCB).
The linear gain theory assumes a coasting beam or at least a probability function p(t)
with very long and uniform flat top. We define the rms fluctuation Irms that is super-
imposed to the flat top of the compressed pulse by the following equation

I2
rmsT =

1

2π

∞∫
−∞

e2N |G̃(ω)|2dω .
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For this definition we assumed a long rectangular current pulse of duration T and
applied Parseval’s formula. With N = TI/e a direct relation between the compressed
current I = CI0, the gain function G and the rms fluctuation is found:

Irms =

√√√√√eI

π

∞∫
0

|G̃(ω)|2dω . (44)

The rms fluctuation for the gain curves in Fig. 36b with the total compression factor
C = 100 and I = 5 kA are:

without self effects 0.1 A
only CSR effects 0.6 A
only SC effects 28.3 A
SC and CSR effects 29.9 A

These numbers assume white shot noise in the interface plane to the velocity indepen-
dent high-energy model. Note that the curves in Fig. 36b are plotted as function of
the modulation frequency before compression while the integral in Eq. (44) considers
the frequency of the compressed modulation.

4 Low- and High-Energy Model

4.1 Linear Gain Model

Linear gain effects of the low energy part (gun to exit of first accelerating module) and
the velocity independent part (after first accelerating module) are combined. Therefore
we assume that an initial density modulation Λ̃0 at the start of the low energy model
is converted to a density and energy modulation with the amplitudes Λ̃A and ẼA in the
interface plane A between the models. These amplitudes are complex quantities and
kA is the wavenumber. The effects of these amplitudes are calculated separately and
superimposed. The density modulation

ΛA(z) = �
{

Λ0 + Λ̃A exp(−ikAz)
}

in the interface plane A is amplified to

ΛB,I(z) = CBΛ0�
{

1 +
Λ̃A

Λ0
GB exp(−ikBz)

}

in the interface plane B, supposed there is no initial energy modulation. Formally the
effect of the energy modulation can be characterized by a function HB that describes
the conversion of ẼA to the density modulation

ΛB,E(z) = CBΛ0�
{

1 + ẼAHB exp(−ikBz)
}
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in the interface plane B, supposed there is no initial density modulation. The sensitivity
of density to initial energy modulation is proportional to the sensitivity of the gain
function GB to the very first impedance

Z1 =

C∫
A

Z ′(z)dz

that also produces energy modulation in the plane C at the entrance of the first dis-
persive element. Therefore the conversion function is

HB = −1

e

GB −G0
B

Z1cλ0
(45)

with G0
B the gain function as calculated without the first impedance. The superposition

of the effects of initial density and energy modulation lead to the distribution

ΛB(z) = CBΛ0�
{

1 +

(
Λ̃A

Λ0

GB + ẼAHB

)
exp(−ikBz)

}

and the total linear gain is

Gtot =
Λ̃A

Λ̃0

GB + Λ0
ẼA

Λ̃0

HB . (46)

4.2 Application to European XFEL

The gain and conversion functions G and H have been calculated from the exit of
the first accelerating module to the exit of the optimized collimation system (compare
Fig. 33a) with space charge fields in non dispersive sections. The results are plotted
in Figs. 33b and 37. For instance for an initial wavelength of 0.1 mm the gain and
conversion factor are G ≈ 20 and H ≈ 3 · 10−5/eV. No initial density modulation but
1 keV energy modulation would cause 3% amplitude modulation at the exit.

The total gain from a reference plane 7 cm after the cathode to the end of the
collimation section is calculated from the curves in Figs. 20, 33b, 37 and Eq. (46).
The result is plotted in Fig. 38. GI and GE are the two terms of Eq. 46 and Gtot is
the total gain. For wavelengths between 0.7 and 1.2 mm the total gain is between 8
and 12 and is essentially driven by energy modulations. To achieve a fluctuation of the
compressed current of few percent, the fluctuation of the current in the gun has to be
of the order of permille for that range of wavelengths.

It has to be noted that the total gain is lower than that of the high energy part.
Therefore the rms current fluctuation calculated from Eq. (44) for white shot noise in
the interface plane to the high energy part might be over estimated. Fig. 38 covers
only a part of the frequency range contributing to the integral.
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5 Conclusion and Summary

The amplification of micro modulations has been investigated for particle beams with
low transverse emittance and high longitudinal density as they are required for FEL
systems. A low energy regime starting from the gun is distinguished from a high
energy regime where velocity dependent effects are negligible. The low energy regime
was investigated by numerical methods. For the high energy regime linear theories are
summarized and extended. The methods are applied to the European XFEL.

The numerical simulation of the low energy part by ASTRA starts at the photo
cathode and considers all effects up to the end of the first accelerating module at
the energy level of ∼ 130 MeV. Therefore the complex interaction of external fields
and self fields are taken into account as well as non linearities. The stimulation of
micro modulations and the analysis was chosen to investigate linear effects. The micro
modulation was created few centimetres after the cathode by a small manipulation
of the longitudinal particle position. Extensive convergence studies have been done
for modulation wavelengths between 0.2 and 1.2 mm. (The lower limit is due to the
numerical effort for simulations with high resolution, the upper is due to the finite
bunch length and field non linearities.) Plasma oscillations have been observed and
and an artificial model was used to study numerical properties of the simulation. For
the considered wavelength range the initial modulation of 5% was suppressed to less
that 1% with a zero crossing in the middle of the interval. The amplitude of energy
modulation is about 5 keV for long wavelength decreasing to about 1 keV for the lowest
wavelength.

Micro bunching in the high energy part is due to longitudinal self fields before
and in dispersive sections. Important sources of self fields for short wavelengths are
the SC and CSR impedance. The SC impedance is considered for linear sections
without dispersion. (The longitudinal bunch population is frozen.) A steady state CSR
impedance (that excludes SC contributions) is used for bunch compressor chicanes.
Effects in a multi stage system of sections with longitudinal dispersion (usually bunch
compressors) in linear sections (accelerators and diagnostic) are described by linear
theory. The micro bunching gain calculation can be simplified and reduced to a discrete
system if impedances in dispersive sections are negligible. An efficient scheme for such
calculations has been described. Otherwise a one dimensional integral equation has to
be solved or particles have to be tracked.

The theory was applied to single and multi stage setups with and without un-
correlated energy spread close to the European XFEL. Without uncorrelated energy
spread the amplification of micro modulations can be many orders of magnitude (105

for λ = 0.1mm) by space charge effects alone. This can be reduced if the uncorrelated
energy spread is increased by a laser heater. Results are shown for a gaussian spectrum
and for a realistic laser heater spectrum, both with the rms energy spread of about
10 keV. The one stage gain in bunch compressors due to CSR (without SC) is below
1.5. The total gain in the high energy part is kept below about 100 for SC and CSR
impedances. For large values the gain curve with only SC effects agrees good with
that for both impedances. Therefore fast and efficient optimizations with the discrete
scheme (based on only SC impedances) are possible.
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The results of calculations for the low and high energy part have been combined.
Although the density modulation from the gun is strongly reduced in the interface
plane, the co-existing energy modulation causes a gain below 12 in the given frequency
range. The maximum is for λ = 0.9 mm.
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A Some phase space integrals

The analytic solutions of the phase space integrals in Eqs. (38) and (39) are calculated
for gaussian transverse and longitudinal density distributions:

ψ⊥(x0, x
′
0) =

1

2πε0

exp

(
− 1

2ε0

(
x0

x′0

)t(
γ0 α0

α0 β0

)(
x0

x′0

))
,

ψη(η0) =
1√

2π ση

exp

(
−1

2

(
η0

ση

)2
)

.

The three dimensional integral in Eq. (38) is separated to the product of I1(B) and
I2(B) with

I1(B) =

∫
dx0dx

′
0 × ψ⊥(x0, x

′
0) exp(jk (L1(B)x0 + L2(B)x′0)) ,

I2(B) =

∫
dη0 × ψη(η0) exp(jk L3(B)η0) ,

with the solutions:

I1(B) = exp

(
−ε0k(B)2

2

(
q

(51)
B←0

q
(52)
B←0

)t(
β0 −α0

−α0 γ0

)(
q

(51)
B←0

q
(52)
B←0

))
,

I2(B) = exp

(
−1

2

(
q

(56)
B←0k(B)ση

)2
)

.

The three dimensional integral in Eq. (39) is of the same type and separated to the
product of I3(B, S) and I4(B, S) with

I3(B, S) =

∫
dx0dx

′
0 × ψ⊥(x0, x

′
0) exp(j (Δ1x0 + Δ2x

′
0)) ,

I4(B, S) =

∫
dη0 × ψη(η0) exp(j Δ3η0) ,

Δ = (L(B)− L(S))k ,

and the solutions:

I3(B, S) = exp

(
−ε0

2

(
Δ1

Δ2

)t(
β0 −α0

−α0 γ0

)(
Δ1

Δ2

))
,

I4(B, S) = exp

(
−1

2
(Δ3ση)

2

)
.
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Figure 1: 3D sketch of the injector with one rf gun and TESLA module (yellow) per
beamline. The rf gun and bending magnets are drawn in blue.

Figure 2: LCLS laser heater. From [5].
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Figure 3: Normalized uncorrelated energy spectra, solid: laser heater with typical
parameters for 10 keV rms, dashed: gaussian distribution.

Figure 4: 3D sketch of the two stage bunch compression system. The modules of the
third harmonic rf (red) are upstream of the first bunch compressor.

39



TESLA-FEL-2009-02

1nC
50 A 1 kA 5 kA

7 MeV 130 MeV 500 MeV 2 GeV 17.5 GeV

4 modules 12 modules 100 modules

3rd

injector

bunch compressor

main linac

collimation section
beam switchyard

beam distribution

mm100)56( ≈q mm17)56( ≈q

undulator

Figure 5: 3D sketch and block diagram of the accelerator complex. The length of the
main linac of about 1.2 km is suppressed. The length of the collimation system is about
230 m.
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Figure 6: Wavelength of plasma oscillations for I = 50 A and typical impedances.
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Figure 7: Sketch of rf gun.
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Figure 8: Solenoid field.

Figure 9: Cavity fields along the first 14.5 m of the European XFEL.
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Figure 10: Relative current modulation in % for the plasma oscillation, 2D space charge
model, for different longitudinal resolutions Nlong = 100, 200, 400, 800 steps.
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Figure 11: Energy modulation for the plasma oscillation, 2D space charge model, for
different longitudinal resolutions Nlong = 100, 200, 400, 800 steps.
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Figure 12: Relative current modulation in % for the plasma oscillation, 3D space charge
model, for different longitudinal resolutions Nz = 64, 128, 256, 512 steps.
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Figure 13: Energy modulation for the plasma oscillation, 3D space charge model, for
different longitudinal resolutions Nz = 64, 128, 256, 512 steps.
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Figure 14: Relative current modulation for λ = 1.0 mm, simulations with 500,000
macro particles (Nz = 64) and 5 million macro particles (Nz = 256, 512).
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Figure 15: Energy modulation for λ = 1.0 mm, simulations with 500,000 macro parti-
cles (Nz = 64) and 5 million macro particles (Nz = 256, 512).
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Figure 16: Relative current modulation for λ = 0.75 mm, simulations with 500,000
macro particles (Nz = 64) and 5 million macro particles (Nz = 256, 512).
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Figure 17: Energy modulation for λ = 0.75 mm, simulations with 500,000 macro
particles (Nz = 64) and 5 million macro particles (Nz = 256, 512).
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Figure 18: Relative current modulation along the first 14.5 m of the European XFEL.
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Figure 19: Energy modulation along the first 14.5 m of the European XFEL.
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Figure 20: Amplitude and energy modulation after the first accelerating module due
to a amplitude modulation of 5% at 7 cm after cathode.

Figure 21: An illustration of microbunching instability in a bunch compressor. From
[5].
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Figure 22: Impedance T -functions and their low frequency approximations as used in
Eq. (20) for a beam with round transverse cross section. Th(x) hollow beam, Tp(x)
pencil beam, Tg(x) gaussian beam.
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Figure 23: Transient CSR impedance vs frequency for the transition (a) from a straight
section into an arc, (b) from an arc into a straight section. Radius of arc R0=10 m,
relativistic factor γ → ∞. Parameter is the length after transition. For comparison
the steady state impedance Eq. (25) in the arc is plotted.
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(a) 0.3 THz
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(b) 1.0 THz
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Figure 24: Transient CSR impedance vs beam line coordinate for the transition from a
straight section into an arc with radius R0=10 m and length 0.5 m followed by a drift
for γ → ∞. Real and imaginary part are compared with the steady state impedance
Eq. (25) for (a) f =0.3 THz, (b) f =1 THz and (c) f =3 THz.
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Figure 25: Impedance per length Z ′ for different positions in the European XFEL.
The frequency window indicates the range of of initial modulation with wavelength λ
between 0.1 and 1 mm. (a) 130 MeV, (b) 500 MeV, due to longitudinal compression the
window is shifted to higher frequencies, (c) 2 GeV, 2nd longitudinal compression and
(d) 17.5 GeV, after main linac. (black solid) cavity impedance, (red) SC impedance,
free space, (blue) SC impedance with perfect conducting beam pipe and (green) SC
impedance with copper beam pipe.
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Figure 26: Relativistic factor γ, typical rms beam radius σr vs beam line coordinate
and impedance Z vs frequency, integrated for different sections of the European XFEL.
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Figure 27: Gain curves: single stage end of ACC1 to end of BC1.
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Figure 28: Multi stage bunch compression system.
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Figure 29: Gain curves: two stage without uncorrelated energy spread.
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Figure 30: Gain curves: two stage with gaussian uncorrelated energy spread.
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Figure 31: Gain curves: two stage with laser heater uncorrelated energy spread.
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(b) with and without chirp at 17.5 GeV

Figure 32: Gain curves of a three stage system to the end of the collimation section,
with uncorrelated energy spread of 10 keV rms by a laser heater.
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← λ=1mm ← λ=0.1mm

Gain to the end of BC 1
Gain to the end of BC 2
Gain to the end of collimator

(b) gain curves (10 keV rms, laser heater)

Figure 33: Dispersion and gain curves in an optimized collimation section.
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← λ=1mm ← λ=0.1mm

Gaussian energy distribution, rms = 1keV
Gaussian energy distribution, rms = 10keV
Laser heater distribution, rms = 1keV
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← λ=1mm/C1 ← λ=0.1mm/C2

Gaussian energy distribution, rms = 1keV⋅C1
Gaussian energy distribution, rms = 10keV⋅C1
Laser heater distribution, rms = 1keV⋅C1

(b)

Figure 34: One stage gain curves. (a) BC1 at 500 MeV compression from 50 A to 1 kA
with q56=103 mm, C1 = 20; (b) BC2 at 2 GeV compression from 1 kA to 5 kA with
q56=17.4 mm.
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← λ=1mm ← λ=0.1mm

Gaussian energy distribution, rms = 1keV
Gaussian energy distribution, rms = 10keV
Laser heater distribution, rms = 1keV
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← λ=1mm ← λ=0.1mm

Gaussian energy distribution, rms = 1keV⋅C1
Gaussian energy distribution, rms = 10keV⋅C1
Laser heater distribution, rms = 1keV⋅C1

(b)

Figure 35: One stage gain due to SC impedance in the linac and CSR impedance in
the bunch compressor. (a) Linac from 130 MeV to 500 MeV and BC1; (b) Linac from
500 MeV to 2 GeV and BC2.
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← λ=1mm ← λ=0.1mm

CSR & SC
CSR
SC
no impedances

(a) End of BC1
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← λ=1mm ← λ=0.1mm

CSR & SC
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(b) End of BC2

Figure 36: Gain curves: SC and/or CSR gain from 130MeV to end of BC1 or BC2.
With laser heater, 10 keV.
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← λ=1mm ← λ=0.1mm

Gain to the end of BC 1
Gain to the end of BC 2
Gain to the end of collimator

Figure 37: Current modulation du to initial energy modulation.
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Figure 38: Gain from amplitude modulation at 7 cm after cathode to BC2 exit.
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