

Tuning and maintaining SASE

Bart Faatz

From beginner to expert level

Maintaining SASE at a given level Obtaining SASE after maintenance

Changing energy/wavelength SASE from scratch

Physics

- 1. Electron beam quality \rightarrow laser/cathode/charge
- 2. Large current density \rightarrow compression/focusing
- 3. Overlap photons/electrons \rightarrow orbit

- 1. Compression (RF phases and gradients)
- 2. Orbit undulator (entrance correctors)
- 3. Dispersion (orbit collimator)
- 4. Charge (space charge effects)
- 5. Optics (beam sizes/quads)

For users: Poynting stability/position

Panels for SASE

SASE Tuning

Vector sum

RF parameters: compression/wavelength

RF (phase/amplitude) in 0.1 steps

ACC1 phase regulated by pyro signal

Pyro Feedback

The pyro/phase feedback is **ON**.

Target value: -0.0480 (a.u.)

Gain: -4.00

The pyro signal is determined by looking at **bunch 1** at pyro **9DBC2.1**. The feedback controls the phase of **ACC1**.

Closing (MATLAB) window STOPS FEEDBACK: DON'T CLOSE

ACC1 phase regulated by pyro signal

But info on ALL pyro's is important

ACC1

ACC1+ACC2&3 NOT regulated ACC1+ACC2&3+ACC456 NOT regulated

SASE Tuning

Correctors: entrance angle/offset

Correctors in 0.01 to 0.001 steps (hysteresis)

SASE Tuning: Injector

Focusing of beam

Charge control

SASE Detectors

GMD during user operation: Keep SASE

Detector in FBD or Tunnel

11

Settings can only be changed by experts

User changing apertures

13

Petra had a problem with a magnet power supply

	Ene	Energy		Photons		Test \	ersion	
1	#	Signal		Мах		Mean	RMS	
ſ	Ion	1.080e	+01	3.2176	;+01	2.424e+01	1.366e-01	
l	A11	1.467	e+01	8.566	5e+01	2.406e+0	1 6.410e+00	
l	1	2.594	e+00	6.973	3e+01	6.967e+0	0 1.083e+00	
l	2	9.387	e+00	8.222	e+01?	1.702e+0	1 7.082e-01	
l	3	1.555	e+01	8.218	Be+01	2.206e+0	1 5.471e-01	
l	4	8.534	e+00	8.169)e+01	2.493e+0	1 4.411e-01	
l	5	2.226	e+01	8.290)e+01	2.669e+0	1 4.194e-01	
l	6	1.242	e+01	8.372	?e+01	2.802e+0	1 4.144e-01	
l	7	1.635	e+01	8.476	5e+01	2.763e+0	1 3.974e-01	
l	8	2.382	e+01	8.275	6e+01	2.700e+0	1 3.946e-01	
l	9	1.779	e+01	7.922	e+01?	2.659e+0	1 3.910e-01	
l	10	1.275	e+01	8.566	5e+01	2.734e+0	1 3.987e-01	
	11	2.293	e+01	7.894	le+01	2.736e+0	1 3.948e-01	
I	12	1.169	e+01	8.308	3e+01	2.713e+0	1 4.021e-01	

Tuning while users are measuring

Phase/gradient changes \rightarrow arrival time changes \rightarrow wavelength changes

Orbit changes \rightarrow transport changes

 \rightarrow transmission changes (spot on samples)

We are almost blind to these changes: •TEO Photon BPM online spectrometer autocorrelation

SASE Detectors: tuning after maintenance

Start with ZERO SASE, but known settings

ReadBack Value (RBV), SetPoint (SP)

SASE tuning for longer wavelength

MCP voltage much too low=+50V/too high=-50V

Calibration by use of external file: NOT automatic

Tuning for longer wavelength: layout detector

Normal use

MCP1 MCP2 MCP3 MCP4 1	MCP5	Position 1 Tau	40.9999					
HV 1100.0 1100.0 -50V +50V	Print	Out Fe88 Fe80 Cu60 Au65 At-r						
Bunch(es): 5 Energy: 954.1 M	🔷 MCP3 🛛 out	Angle Axis						
Rate: 5 Hz Wavelength: 6.9 mm								
Observe from Therear 1000 by 2007-10-05 Wirror Out M 30 M 45								
00:28:30 Aperture = 10 mm								
Charge: # 1 Charge: min								
0.50136 0.47675	Start	Stop	All Hist					
Counters 302 Delay: 50	Mean calc:	0	-0.013322					
302 Samples: 1	Pyro for max:	-0.078556	4					
/home/ttflinac/measurements/mcp/mcp_2007_10_05_00_27_11.mcp								

Mesh targets moved in

Mirror targets moved in

MCP3 and MCP4 can be moved in under an angle (with target) or on-axis (blocking radiation to any other detector)

Position of the FEL beam

PERFECT

			С	E:YAG					
Info:	Online		TCP: dis	connected		Came	ra: 20	508888	0
								Images	
							on	S	TOP
								Help	
			and the second				Brigh	tness	444 + 5
								Gain	
							Shi	utter	+ 90 + 90
								Trigge	r
							on	Grab) Mode
off	auto	mid bits 1	ow bits hig	n bits lo	og12 log	16	Rate	[Hz]	5
		Too	1 Box —				R	AW Imag	e ——
	BG Subtrac	tion	X & Y Spect	trum	Camera			Image	
	Histogra	n R	egion of Int	terest	Toolbox				
		St	atus					DAQ -	
			0k				send Da	ata -> I	DAQ
Video	Mode:	Form	nat_O, Mode_	6: 640×480	Mono 16bpp			Expert	
Bits p	er Pixel:	16 He	ight: 480	Fram	e: 531			Server	
ImageP	oints:	307200 W	idth: 640		7.5 fps			Timing	

YAG screen between MCP and GMD: blocks GMD

New MCP07 detector CAN block the YAG screen

> •MCP3 or 4 on-axis •Mirror in

SASE Detectors

What is moved into the beam

Beam loss is visible as SASE on MCP

Beam Loss = SASE?

RMS

YAG screen out again, SASE 12-15 uJ av

MCP combined with YAG screen (with mesh in)

Wavelength change/Start from Scratch

CALL THE EXPERT