

DESY Schichtgänger Ausbildung

Strahlprofilmessung bei FLASH

Katja Honkavaara

- OTR Monitore und Kamerasystem
- Drahtscanner (Wirescanner)
- Beispiel: Phaseneinstellung mit OTR Monitore

- Transversale Strahlverteilung = Strahlgröße und Strahlform
- Elektronenspeicherring: transversale Strahlverteilung typischerweise im stabilen
 Gleichgewichtszustand → gaußförmiges Profil → Messung der Strahlgröße normalerweise ausreichend
- Linac: die Strahlverteilung ist komplizierter
 - variiert entlang des Linacs,
 - von Schuss zu Schuss, und
 - von Tag zu Tag

Beispiele für Strahlform bei verschiedenen Betriebsbedingungen

FLASH Linac

Übergangsstrahlung (OTR)

- Der Elektronstrahl überquert die Grenze zwischen Vakuum und Radiatorschirm (z.B. Al, Si+Al, poliertes Si) → Übergangsstrahlung wird emittiert
- Der sichtbare Teil des Spektrums heißt optische Übergangsstrahlung = Optical Transition Radiation (OTR) = Sichtbares Licht

Katja Honkavaara, DESY Schichtgänger Ausbildung

Alle anderen 18 Schirme: 2 OTR Schirmen (+ Kalibrationsmarke)

6

HELMHOLTZ

GEMEINSCHAFT

FLASH

Free-Electron Laser in Hamburo

in Hamburg

Alle anderen 18 Monitore:

Standard OTR-System mit 3 Bildvergrößerungen

Standard OTR-Monitore

- OTR-Monitore bestehen aus Schirm mit optischem System
- Betrachtung des Strahls mit digitaler CCD Kamera
- Ferngesteuert, 3 verschiedene Bildvergrößerungen

Jede Linse ergibt eine andere Vergrößerung Wichtig: Nur eine Linse einfahren

- Linsen 0.25 und 0.38: bilden fast den ganzen Schirm ab Wird benutzt, um den Strahl zu finden
- Linse 1.0: bildet nur die Schirmmitte ab, hat die größte Vergrößerung und die beste Auflösung, wird für die Messungen benutzt

Katja Honkavaara, DESY Schichtgänger Ausbildung

Bild der Kalibrationsmarken

Verschiedene Auslesesysteme

FLASH

Free-Electron Laser in Hamburo

6

HELMHOLTZ

GEMEINSCHAFT

DES

Betrieb der Schirme im GUN Abschnitt Free-Electron Lase

FLASH

in Hamburg

Betrieb der DOOCS-Kameras

FI ASH

Free-Electron Lase

- 21 Kameras sind mit LabView kontrolliert
- Image Server PC in BKR
- Wichtig: Benutze diesen PC nur zur Kamerakontrolle
- Auf keinen Fall mit LabView spielen

Katja Honkavaara, DESY Schichtgänger Ausbildung

Kamera-Parameter Panel (LabView)

Betrieb der Kameras

Reset der Kameras

Bild des Strahls \rightarrow Logbuch

LabView Kameras: 'Grab Image' Tool in DOOCS

HELMHOLTZ

DES

Beispiel für Strahlbilder

Strahloptik im DBC2 Abschnitt nicht angepasst

Beispiel für Strahlbilder

Strahloptik im DBC2 Abschnitt angepasst

Drahtscanner kombiniert mit OTR

- 12 Drahtscanner-Stationen (kombiniert vertikal und horizontal)
 - Montiert gemeinsam mit OTR Schirm in Vakuumkammer
 - Bewegung um 45 Grad relativ zur Strahlrichtung
 - Noch nicht wirklich benutzerfreundliche Bedienung
 - Typischer Einsatz: Emittanz-Messung

WS_INT

-

(24)-

Scanlength + 4500 um

ScanSpeed

config

TD

0.263

n] 4e+04

1e+04

4.10.07

7 h

13 h 4.10.0

Drahtscanner im Undulator

- 7 Drahtscanner-Stationen entlang der Undulatoren (getrennt für horizontale und vertikale Richtung)
 - Nicht wirklich benutzerfreundliche Bedienung
 - Einsatz durch Anwendungsprogramm (z.B. Programme zur Emittanz-Messung oder "Run Multiple Scans")

🗶 ws_main
Main Wirescanner Menu
before anything> Check for Initialization Undulator WS
User Applications
matlab interface WS Tool Measure emittance in BC2 / undulator F. Loehl
DCOCS server interfaces WS DBC2 WS UND E. Sombrowski
DOOCS interface View All Undulator WireScanners
ROOT interface Run Multiple Scans
Expert Panels
Overviews
all WS
Undulator Wirescanners PhotoMult. for Und. WS

- Die OTR-Monitore werden bevorzugt benutzt, weil
 - Ein 2-dimensionales Bild zeigt mehr als ein Profil
 - Nachteil der Drahtscanner: Linac läuft mit 5 Hz
 → während des Scans können nur 5 Punkte pro Sekunde aufgenommen werden
 - \rightarrow eine Messung mit genügend Punkten dauert lange
 - Die Benutzung der OTR Monitore ist einfacher
 Die Einstellungen der Drahtscanner sind kompliziert (Scanstart, Scanweite, HV der Photomultiplier etc) und müssen per Hand angepasst werden
- Nachteil der OTR-Monitore
 - Schirme müssen eingefahren werden, die Messung ist destruktiv (Strahlverlust)
- Dort wo der Strahlverlust nicht akzeptabel ist, müssen die Drahtscanner benutzt werden (Undulatoren)

Beispiel: Einstellung ACC1 Phase

Aufgabe: ACC1 Phase on-crest einstellen

1. Schirm 3BC2 einfahren

2. Kamera 3BC2 starten (wenn nötig, Farbtafel wechseln)

3. ACC1 Panel wählen

Beispiel: Einstellung ACC1 Phase

4. ACC1 Phase justieren

Ziel: minimieren der horizontal Strahlgröße auf dem Schirm 3BC2

- 5. Das Strahlbild ins Logbuch drucken, und die ACC1 Phase notieren
- 6. Schirm 3BC2 ausfahren (wichtig!) und Kamera 3BC2 stoppen

INFO

otr_win: TTF2.DIAG/SCREEN/11BC3/

11BC3

Aufgabe: ACC2/3 Phase on-crest einstellen

4. ACC2/3 Phase justieren

Ziel: minimieren der horizontal Strahlgröße auf dem Schirm 3BC2

- 5. Das Strahlbild ins Logbuch drucken, und die ACC2/3 Phase notieren
- 6. Schirm 11BC3 ausfahren (wichtig!)

Katja Honkavaara, DESY Schichtgänger Ausbildung

Einstellung ACC4/5/6 Phase: Benutze Schirm 5ECOL und ACC4/5/6 Panel