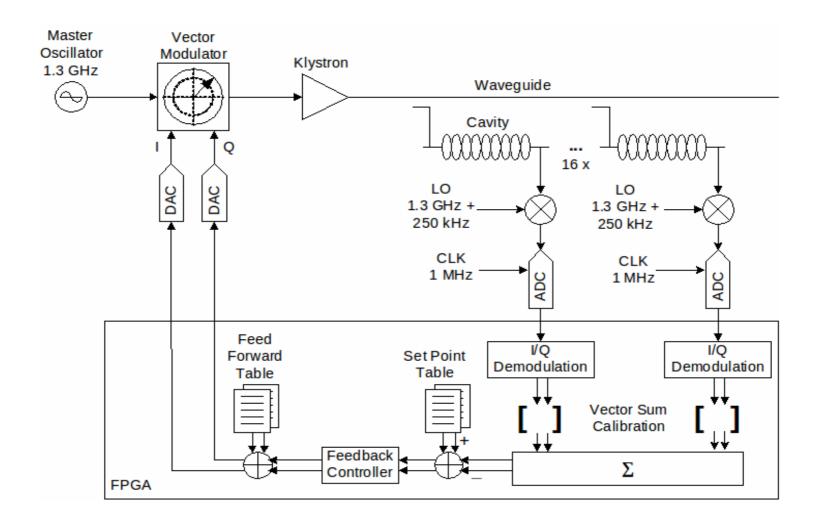
Cavity Frequency Measurement and Initial Tuning at FLASH

V. Ayvazyan, T. Delfs, Z. Geng, W. Koprek, G. Kreps

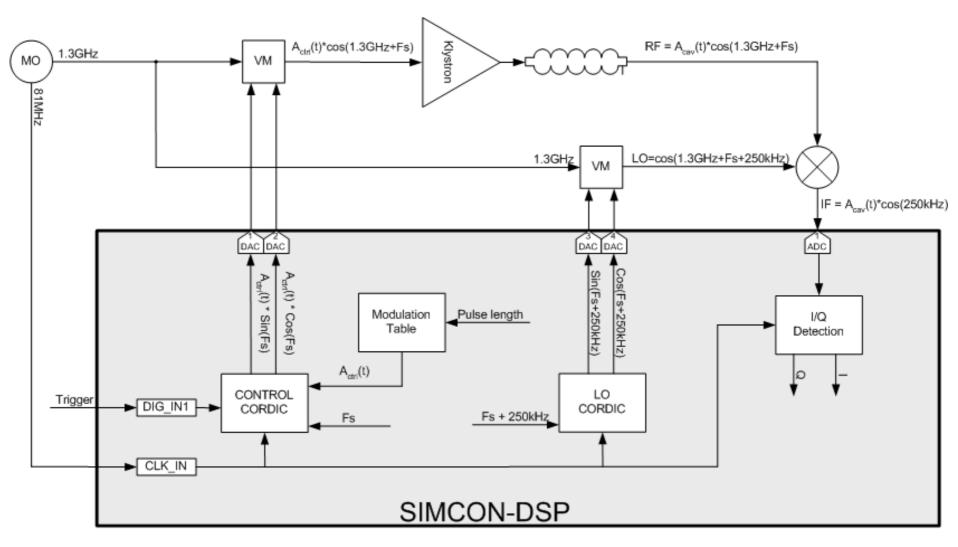
FLASH Seminar, DESY, Hamburg, 02 Nov. 2010

Goals

- Remote cavity tuning at FLASH and test stands
 - Remote and simultaneous frequency measurement of all cavities (no need to go into the tunnel)
 - Make use of standard RF distribution system, klystron, LLRF system, Master Oscillator etc.
- Check tuner step motors under warm conditions to exclude mistakes of connectors, wires and software
- Tuning of the cavities at the 1.3 GHz after cool down
- Relax the cavities to initial frequencies before warming up
- Test of the procedure with warm SC cavity
 - low power from klystron
 - checking the frequency range and resolution
- FLASH commissioning in March/April 2010
 - Check of tuner motors
 - Tuning of the cold cavities

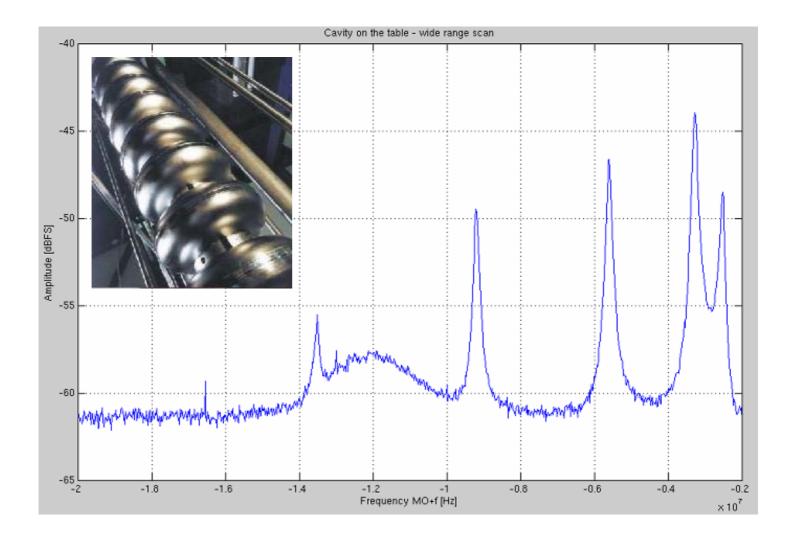

Measurement conditions

	Warm	Cold
Quality Factor	1.0e4	3.0e6
Frequency range [MHz]	1298.0 +/-0.4	1300.0 +/-0.4
Frequency step from pulse to pulse [kHz]	10	0.5
Measurement points (RF pulses)	80	1600
Frequency sensitivity [kHz]	25	1


Requirements for the Frequency Sweeping System

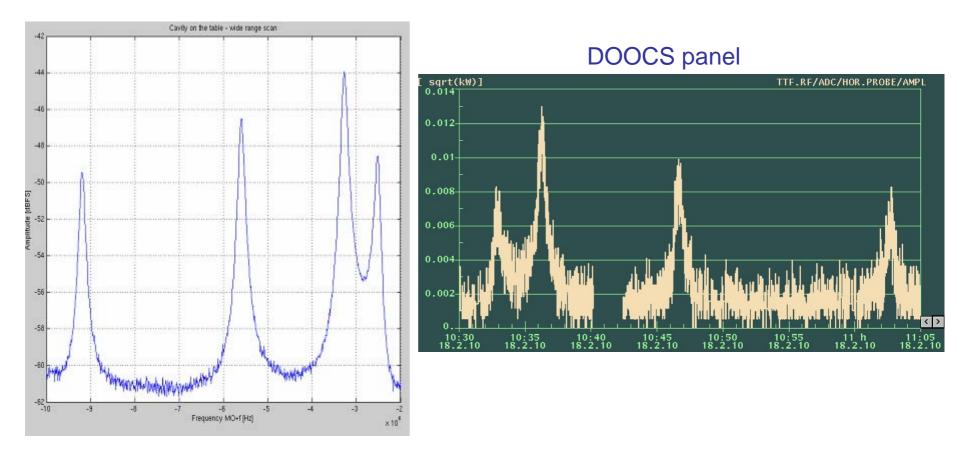
- Sweeping with constant reference frequency 1.3GHz from Master Oscillator
- Frequency range from -2.4 MHz to +0.4 MHz relative to 1.3GHz
- Frequency resolution at least 0.5 kHz
- Standard methods for field detection by diagnostic ADCs using DOOCS

Schematic of the RF Station

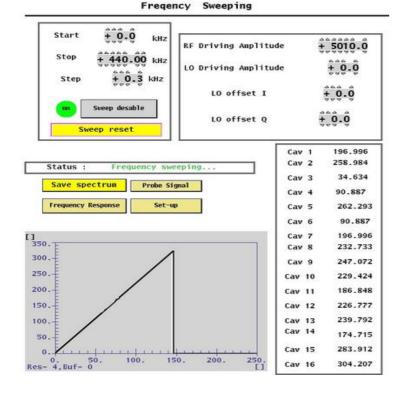


Hardware and Software of the Measurement Setup

Measurements: Warm SC Cavity on a Table

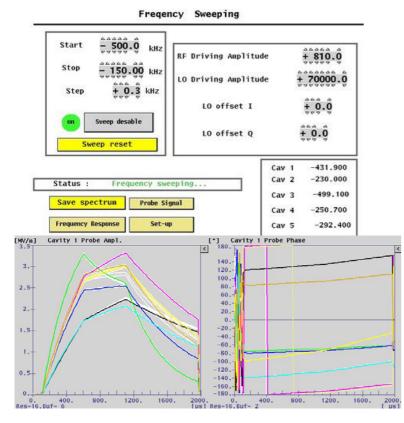

Frequency sweep (-2MHz; -20MHz) with step 10kHz

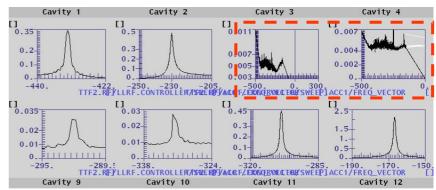
Measurements: Warm SC Cavity on a Table


Frequency sweep (-2MHz; -10MHz) with step 10kHz

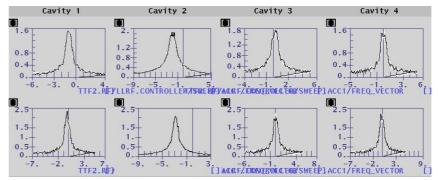
Matlab interface

Integration with LLRF Control System


- New version of firmware for frequency sweeping
- Created DOOCS frequency sweeping procedure server
- Operator Interface
- Automated data logging


Configuration set-up

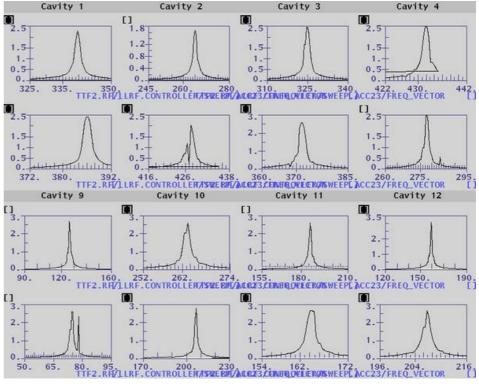
Probe Signal F	lange
Start + 20	. Ô
Stop + 200	Q . Q
Sweep enable	Sweep reset Save spectrum
Firmware tile (Firmware tile (Co Load tirmware (ntrol) flash_master_v50_250k_0x32.ufp
Cavity 1	TTF2.RF/LLRF.MONITORING/C1.ACC1.PROBE/AMPL.TD
Cavity 2	TTF2.RF/LLRF.MONITORING/C2.ACC1.PROBE/AMPL.TD
Cavity 3	TTF2.RF/LLRF.MONITORING/C3.ACC1.PROBE/AMPL.TD
Cavity 4	TTF2.RF/LLRF.MONITORING/C4.ACC1.PROBE/AMPL.TD
Cavity 5	TTF2.RF/LLRF.MONITORING/C5.ACC1.PROBE/AMPL.TD
Cavity 6	TTF2.RF/LLRF.MONITORING/C6.ACC1.PROBE/AMPL.TD
Cavity 7	TTF2.RF/LLRF.MONITORING/C7.ACC1.PROBE/AMPL.TD
Cavity 8	TTF2.RF/LLRF.MONITORING/C8.ACC1.PROBE/AMPL.TD
Cavity 9	TTF2.RF/LLRF.MONITORING/C1.ACC1.PROBE/AMPL.TD
Cavity 10	TTF2.RF/LLRF.MONITORING/C2.ACC1.PROBE/AMPL.TD
Cavity 11	TTF2.RF/LLRF.MONITORING/C3.ACC1.PROBE/AMPL.TD
Cavity 12	TTF2.RF/LLRF.MONITORING/C4.ACC1.PROBE/AMPL.TD
Cavity 13	TTF2.RF/LLRF.MONITORING/C5.ACC1.PROBE/AMPL.TD
Cavity 14	TTF2.RF/LLRF.MONITORING/C6.ACC1.PROBE/AMPL.TD
Cavity 15	TTF2.RF/LLRF.MONITORING/C7.ACC1.PROBE/AMPL.TD
Cavity 16	TTF2.RF/LLRF.MONITORING/C8.ACC1.PROBE/AMPL.TD


- Cavities 3 & 4 no change of frequency
- Motor current needs to be raised 40%

First RF on ACC1 after cavity tuning, 07.04.2010

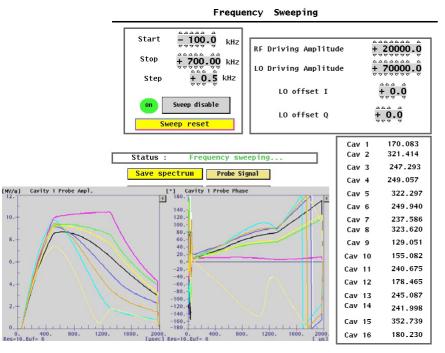


ACC1 spectrum after fine adjustment

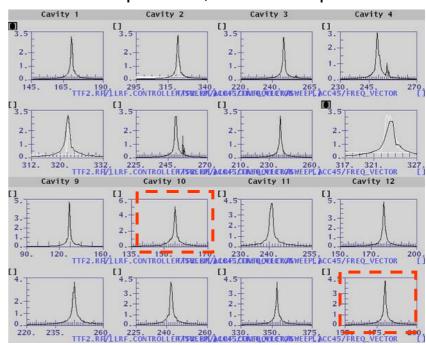


ACC1 spectrum, initial sweep

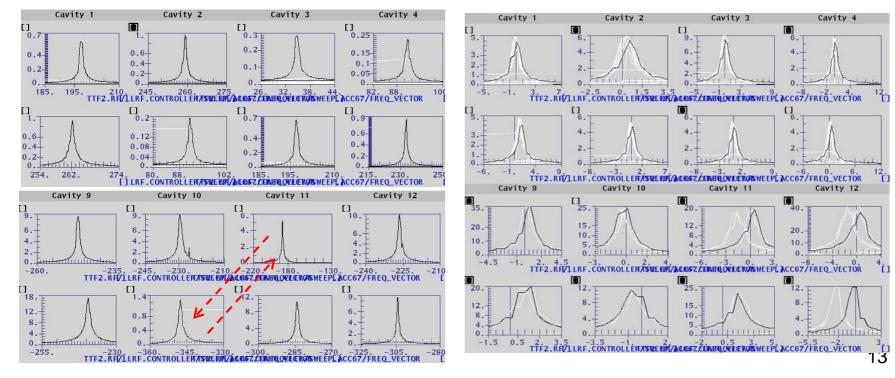
The frequencies are mirrored with respect to 1.3GHz (i. e. wrong sign)



Frequency spread range: 74kHz - 430kHz


ACC23 spectrum, initial sweep

- ACC4 is OK
- ACC5: cavities 2 & 8 no changes on frequency
- Motor current needs to be raised 50%


First RF on ACC5 after cavity tuning, 09.04.2010

ACC45 spectrum, initial sweep

- ACC6 is OK
- ACC7: bad signals, wrong cabling
- ACC7: cavity 3 and cavity 6 are interchanged

ACC67 spectrum before tuning

ACC67 spectrum after fine adjustment

Documentation

- Complete and detailed commissioning documentation has been done
- Excel document with links to FLASH logbook
- User Manual: http://msk.desy.de

-273.15	°C.
OΚ	

ACC2 04/2010 commissioning

31000 steps will cause a difference of 25 kHz

		Date	Iso-Vac.	Beampipe	Temp	CAV 1	CAV 2	CAV 3	CAV 4	CAV 5	CAV 6	CAV 7	CAV 8
		TT.MM.JUJJ	y/n	status	K (elvin)	kHz	kHz	kHz	KHZ	kHz	kHz	kHz	kHz
	Tuner-resonance-run												
	act. value of steps					70400	70400	70400	70400	70400	70400	70400	70400
	1 act. frequency	08.04.2010	У	borrowed	2K	1299673	1299783	1299727	1299618	1299667	1299623	1299681	1299764
	2 run to abs. stepvalue					0	0	0	0	0	0	0	0
	3 frequency after run					1299662	1299736	1299667	12995559	1299615	1299574	1299629	1299725
	true frequency					1300339	1300265	1300325	1300431	1300385	1300427	1300371	1300277
	4 A F					-11	-47	-60	-49	-52	-49	-52	-41
	5 run to abs. stepvalue					477200	372200	456100	607100	542500	600900	522600	390300
	6 frequency after run					1300005	1300005	1299999	1299988	1299987	1299994	1299985	1300040
	7 Δ F					343	269	332	419	372	420	356	317
	8 run to abs. stepvalue					483800	379400	454800	590200	523100	59200	501300	447300
	9 frequency after run					1300000	1300000	1300000	1306000	1300000	1300000	130000	1300
1	OΔF					-5	-5	1	12	13	6	15	-40

Measured frequency(difference to 1.3 GHz) are mirrored. Le. After correction of sign

<u>-273.15 °C.</u> 0 K ACC5 04/2010 commissioning

31000 steps will cause a difference of 25 kHz

	Date	Iso-Vac.	Beampipe	Temp	CAV 1	CAV 2	CAV 3	CAV 4	CAV 5	CAV 6	CAV 7	CAV 8
	TT.MM.JJJJ	y/n	status	K (elvin)	KHZ							
Tuner-resonance-run												
act. value of steps					70400	70400	70400	70400	70400	70400	70400	70400
1 act. frequency	08.04.2010	у	borrowed	2K	1300129	1300155	1300240	1300178	1300245	1300241	1300352	1300180
2 run to abs. stepvalue					110400	140400	110400	140400	110400	140400	110400	140400
3 frequency after run					1300098	1300139	1300211	1300146	1300214	1300189	1300275	1300164
4 A F					-31	-16	-29	-32	-31	-52	-77	-16
5 run to abs. stepvalue					249500	35700	408800	346300	412000	407800	497700	432400
6 frequency after run					1299996	1299992	1299992	1299993	1299991	1299992	1300037	1299993
7 A F					-102	-147	-219	-153	-223	-198	-238	-171
8 run to abs. stepvalue					243500	345500	397300	335400	398600	395600	550800	422700
9 frequency after run					1300000	1300000	1300000	1300001	1300000	1300000	1300000	13000
10 Å F					4	8	8	8	9	9	-37	7

Conclusions

- Automated and simultaneous scan of many cavities speed up setup of FLASH, and modules where commissioned within two days including software debugging
- Developed important procedure for large scale machines like XFEL & ILC
- Cavity characterization in wide range of frequency ±20 MHz with high resolution 0.1 kHz
- Safe solution for warm cavities possible measurement of very small field gradient (only 10kW forward power per cavity at CHECHIA and CMTB)
- No need for hardware change for the sweeping procedure (RF reference signal from MO)

Acknowledgements

We want to express our thanks to our colleagues for the advise and help:

C.Albrecht, C.Gindler, O.Hensler, F.Hoffmann, M.Hoffmann, D.Kostin, G.Moeller, P.Pototzki