2nd FEL user period at FLASH

Katja Honkavaara, Bart Faatz, Siegfried Schreiber DESY

FLASH Seminar October-13, 2009

FLASH at DESY Hamburg

FLASH design goals reached in 2007

Lasing with a complete bunch train of 800 bunches at 13.4 nm

Electron beam energy of 1 GeV and lasing at 6.5 nm

o weeks after the may mum beam energy of 1 giga-electronvolt was reached,

the control room announ

ced another milestone: "Or

the evening of October 4,

wavelength of 7 nanometer (nm) at FLASH for the first

time." Only 24 hours later

the FLASH team achieved

the facility's design value of 6.5 nm. In FLASH, the elec-

trons are accelerated to an

energy of 986 megaelectron

we observed lasing at a

Design-Strahlenergie für FLASH erreicht! Elektronenstrahl mit 6 Modulen erstmals auf 1 GeV beschleunigt

FLASH Reaches Design Beam Energy! Electron beam accelerated to 1 GeV with 6 modules for the first time

Der Durchbruch passierte wieder in einer Nachtschicht, genauer am 21.9.2007, um 0:57 Uhr. Dieses Mal ging es um das Erreichen der geplar ten maximalen Strahlenergie. "Ziel: Betrieb mit höchster Energie – Ergeb nis: 1 GeV Energie !! Gemessenes Spektrum der spontanen Emission ~ 6,3 nm", so der Eintrag

vas achieved during a niaht shift, to be precise September 21 at 0:57 a.m. This time, the aim vas to reach the planned naximum beam energy. Goal: Operation to maxi-

num energy—Achieveents: 1 GeV/II Spectrum f spontaneous emission neasured: ~ 6.3 nm.' Wahrend der letzten Wartungspause: Einbau des Beschleunigermoduls Nr. 6 in den FLAGH-Tunnel. During the last shutdown: Installation of accelerato module no. 6 in the FLASH tunnel. reads the entry in the electronic logbook.

im elektronischen Logbuch Das Team im Kontrollraum beobachtete im Wellen-

s usual, the breakthrough

Wellenlängen-Weltrekord bei FLASH: 6.5 Nanometer! Geplanter Designwert für die Laserblitze erzielt

Wavelength World Record at FLASH: 6.5 Nanometers! Design value for laser flashes reached

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

Organization of beam time

- > FLASH runs 7 days / week, 24 hours / day
- beam time overbooked by a factor of ~ 3
- > 2nd user period: Nov-26, 2007 Aug-16, 2009
 - ~ 300 days has been scheduled for user operation
 - distributed in 4-week blocks
- between user blocks: study weeks
 - FEL physics studies
 - improvements of the FLASH facility
 - preparation of the next user block
 - general accelerator studies

2-3 weeks three times per year related to e.g. XFEL and ILC

	52	24.Dec - 30.Dec	5	Maintenance
January	1	31.Dec - 6.Jan	5	
2008	2	7.Jan - 13.Jan	4	Accelerator studies
	3	14.Jan - 20.Jan	4	
	4	21.Jan - 27.Jan	2	FEL studies
February	5	28.Jan - 3.Feb	2	
	6	4.Feb - 10.Feb	3	
	7	11.Feb - 17.Feb	1	User Run
	8	18.Feb - 24.Feb	1	
	9	25.Feb - 2.Mar	1	
March	10	3.Mar - 9.Mar	1	
	11	10.Mar - 16.Mar	2	FEL studies
	12	17.Mar - 23.Mar	2	
	13	24.Mar - 3.Jan	3	
April	14	31.Mar - 6.Apr	1	User Run
	15	7.Apr - 13.Apr	1	
	16	14.Apr - 20.Apr	1	
	17	21.Apr - 27.Apr	1	

Time distribution during 2nd user period

	2007	2008				2009						
Block	1	2	3	4	5	6	7	8	9	10	11	12
SASE	71	79	75	67	69	68	81	78	79	75	75	90
Tuning	14	13	16	24	18	21	12	13	13	12	7	5
Set-up	2	1	1	1	2	1	1	1	1	1	1	0
Maint.	4	4	2	2	1	3	2	3	3	2	2	1
Down	9	3	6	6	10	7	4	5	4	10	15	4

numbers in %

Photon wavelengths

- > more than 30 different wavelengths between 6.8 nm and 40.5 nm delivered for users
- > most requested wavelengths
 - shortest ones (7-8 nm)
 - around 13 nm (availability of multilayer mirrors)

Down time during user experiments

Typical user operation parameters:

Wavelength range (fundamental)	6.8 – 47 nm
Average single pulse energy	10 – 100 µJ
Pulse duration (FWHM)	10 – 50 fs
Peak power (from av.)	1 – 5 GW
Average power (example for 500 pulses/sec)	~ 15 mW
Spectral width (FWHM)	~ 1 %
Peak Brilliance	10 ²⁹ - 10 ³⁰ B

max single

average

B = photons/ (s mrad² mm² 0.1%bw)

all wavelengths included

	Week	Average SASE level (μJ)	Fraction long pulse trains	Collimation <= 1mm
2007	48-51	18		2 %
	7-11	28	22 %	
	14-17	22	20 %*	5 %
2008	26-29	13		6 %
	33-36	10		16 %
	43-45	22		
	48-51	34		2 %
2009	7-10	27	maximum	
	14-17	23	bunches limited	
	20-23	26	to 30 / train	3 %
	26-28	26		10 %
	31-33	27		14 %

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

* reduced to 30 bunches due to energy / charge chirp

Unstable operation summer 2008

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

2008

2008

2008

29.6. 2008

26.6. 2008

13.7.

10.7.

2008

Example from August 2008

Example from Summer 2009

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

main improvements

- LLRF, especially RF-gun: improved vector sum calibration
- cathode laser stability: improved master rf signals, changed optics + exchanged BBO
- education of operators, improvements of tools and operation panels
- > on-going improvements
 - feedback for pulse train stability: RF and beam based
 - beam based alignment, dispersion & orbit correction
 - BPMs, especially in undulator
 - online spectrometer / photon BPMs

RF-gun stability before and after recalibration: phase stability improved by more than a factor of 2

-0.1

0

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

3

time [min]

4

5

2

7 nm FEL user run summer 2009

FEL user experiments

> world-wide unique light source

- in the wavelength range of 47 nm to 6.8 nm
- ultra-short FEL pulses (femtosecond range)
- unprecedented brilliance
- > experiments on
 - diffraction imaging
 - solid state-, plasma-, and cluster-physics
 - femtosecond-chemistry, molecular-biology
 - · · · ·
- > single-shot measurements
- > pump-and-probe experiments
- ~ 60 publications + ~10 submitted on photon science experiments performed at FLASH
 - hasylab.desy.de/facilities/flash/publications/selected_publications

Distribution of study subjects

Developments totally ~ 3600 hours

Note: 2 weeks dedicated for full beam loading experiment in September 2009 not included

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

- more details in the coming FLASH seminar
- ILC driven international collaboration

Full beam loading experiment in September 2009

- > demonstration of long-pulse high beam-loading operation
- - important experiment also for FLASH and XFEL

- stable operation with 800 bunches, 3 nC at 1MHz (800 us pulse) over 15 hours
- several hours of ~1600 bunches. ~ 2.5 nC at 3MHz (530 us pulse)
- > > 2200 bunches, 3nC (3MHz) for short periods
- beam power to dump up to 22 kW >

Upgrade 2009/10

- > 5 months upgrade shutdown started September-21, 2009
- major modifications for the FLASH facility
 - exchange of RF gun and ACC1, new steerers BC2 section
 - installation 3rd harmonic (3.9 GHz) module incl. RF system
 - installation of a 7th accelerating module (ACC7) \rightarrow 1.2 GeV (5 nm)
 - installation of an experiment for seeded VUV radiation "sFLASH"
 → replacement of electron beam line between collimators and SASE undulators (~ 40 meters)
 - upgrades of RF stations (new modulators RF-2 and RF-3) and waveguide distribution
 - upgrades of photon diagnostics

FLASH, October-9, 2009

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

FLASH, October-9, 2009

FLASH, October-9, 2009

Honkavaara / Faatz / Schreiber | FLASH Seminar | 13-Oct-2009

Summary

> FLASH is a world-wide unique light source

- in the wavelength range of 47 nm to 6.8 nm
- ultra-short FEL pulses (10 to 50 fs)
- unprecedented brilliance
- Juring the 2nd user period (Nov-26, 2007 Aug-16, 2009)
 - ~ 7600 hours of beam time was scheduled for user FEL experiments
 - up-time 93%, SASE delivery 75%
- > several tens of different experiments have been successfully carried out
- > many improvements stabilizing SASE performance
- > upgrade shutdown started end of September 2009
- commissioning of the upgraded facility in spring 2010
- > 3rd FEL user period starting in summer 2010

