Bright harmonic radiation from Argon Ions Brendan Dromey

Queens University Belfast

M. Zepf

Queens University Belfast

M. Landreman, S. Hooker

Clarendon Laboratory, Oxford University, Oxford

P. Foster, A.J. Langley, C. Hooker, D. Neely, Rutherford Appleton Laboratory, Didcot, Oxford

Outline

- Brief description of the underlying physics
 - Theory of HHG from laser gas interactions
 - Quasi Phase Matching of HHG from laser gas interactions
 - Propagation of intense laser pulses in hollow capillaries
- Experimental Setup and Multimode beating
- Results

High Harmonic Generation from gas targets Strong Field Model

- The electron is accelerated in the electric field of the laser
- Photon of energy $E = hv = I_p + 3.2 U_p$ is emitted
- Only odd harmonics emitted: Symmetry

Phasematching HHG from Gases

$$L_c = \frac{\pi}{\left|\Delta k\right|}, \quad \Delta k = k_q - qk_0$$

where L_c is called the coherence length, Δk the mismatch between the wavevectors of the qth harmonic k_q and the fundamental k_0

For phase matching it is desired that

$$\Delta k \longrightarrow 0$$

Harmonic and driver remain in phase – coherent build up of HHG Signal grows quadratically over the length of the medium

Quasi Phase Matching HHG from Gases

$$\Delta K = mK - |\Delta k| \approx 0$$
 where $K = \frac{2\pi}{L}$

and
$$L = 2mL_c$$

 L_c the coherence length, is the distance over which HHG remains in phase and hence adds constructively

Harmonic generation is switched off periodically such that there is only emission from regions that are in phase.

(m (odd only) is the order of the process)

Quasi phasematching

As the intensity increases to achieve higher cut off energy in the harmonic spectrum $\Delta ke_q(t)$ increases

 \Rightarrow QPM period shortens accordingly

For very high orders L_c is on the order of a few microns

Quasi Phase Matching Schemes

Efficient generation of harmonics over an **interaction length** >> L_c

• **Peatross**: Counter propagating light => Selective zoning of harmonic generation by a standing field modulation

S. Voronov et al., Phys. Rev. Lett., 87, 133902 (2001).

• Murnane: Modulated Capillaries

=> Switching on and off harmonic generation via intensity modulations in a capillary

A. Paul et al., Nature, 421, 51 (2003)

Propagation of Intense Ultrashort pulses in gas filled capillaries

Courtois et al Phys. Plas., 8, 3445 (2001)

Intensity modulations in a hollow capillary from **multimode beating**

For a Gaussian TEM_{00} free space mode

• Most energy coupled into the fundamental mode, EH_{11} , for $\frac{1/e^2 \text{ radius}}{\text{Capillary Bore radius}} = \frac{W_o}{a} = 0.64$

- More energy coupled into higher order modes for $\frac{W_0}{2} < 0.64$
- More energy coupled into higher order modes for greater density of gas in capillary

Intensity profile for optimal coupling

However even for a coupling coefficient of TEM₀₀ $\frac{W_0}{a} = 0.64$

 \Rightarrow Significant intensity modulations over the attenuation lengths of the dominant modes

Capillary length (cm)

Intensity profile in capillary for $\frac{W_0}{a} = -0.2$

Harmonic source term in capillary

The resulting harmonic source term $\sim I^7$

Significant modulation of Harmonic source term $>10^2$ on/off ratio

 \Rightarrow Dramatically reduced total ion fraction: <0.01

Imperfect m=1 QPM process possible

Experimental evidence for Bright QPM HHG from Ar ions

Previous water window efficiency \Rightarrow Conversion Efficiency $<10^{-9}$

QPM HHG from Argon:

25th Harmonic in argon dependence with pressure

Summary

- QPM via intensity modulations due to fundamental and higher order mode beating in a hollow gas filled capillary
- Very bright water window harmonic emission from Argon ions conversion efficiency >10⁻⁶
- Brightness ~ 10^{21} photons s⁻¹ mm⁻² mrad⁻² (0.1% bandwidth)
- Flux ~ 10^{10} photons per second (10Hz system)
- Typically tens of nJ per harmonic peak