Progress on sFLASH design

V. Miltchev on behalf of the sFLASH team

Armin Azima, Holger Schlarb, Hossein Delsim-Hashemi, Joerg Rossbach, Josef Feldhaus, Markus Drescher, Shaukat Khan, Tim Laarmann, Velizar Miltchev

Motivation

Due to the start up from noise:

 \Rightarrow shot-to-shot fluctuations of the pulse energy

 \Rightarrow the output consists of a number of uncorrelated spikes (poor temporal coherence)

Motivation

goals:

- \Rightarrow high shot-to-shot stability and high peak power (GW level)
- \Rightarrow generation of fully coherent pulses of variable length (20–40 fs FWHM)
- \Rightarrow wavelength range ~12-40 nm
- \Rightarrow reduction of saturation length
- \Rightarrow HHG runs in 'parasitic' mode, i.e. parallel to the normal SASE operation
- \Rightarrow pump probe experiments with fs synchronization

sFLASH schematic set up

Basic set up

Top view

Transport of HHG seed into tunnel

Properties of the HHG radiation

HHG generation

Semi-classical three step model [1,2]:

- 1. Close to the peak of the laser electric field, electron tunnels through the potential barrier formed by the combined Coulomb and laser fields
- 2. It oscillates almost freely in the laser field, gaining kinetic energy
- 3. The energy gained is converted into a high-energy photon through recombination with the parent ion

1. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

2. K. J. Schafer, et.al., Phys. Rev. Lett. 70, 1599 (1993).

Properties of the HHG radiation

 The interaction between the intense laser pulse with rare gas atoms results in the generation of higher-odd harmonics of the driving laser frequency (HHG)

• The HHG radiation forms '*combs*' in frequency and time domains, resulting in *as* pulse structures separated by half driving laser period

Properties of the HHG radiation

Energy of the HHG pulse

from B. McNeil et.al.,

New Journal of Physics 9 (2007) 82

Recent HHG experimental results scaled by energy and wavelength. The unconnected points are taken with an 800 nm fundamental, and are scaled to a fundamental pump pulse energy of 14 mJ.

The minimum pulse energy needed for seeding ~1nJ @ 30fs

- spatial overlap between electron bunch and HHG pulse
- \Rightarrow good pointing stability of optical laser
- \Rightarrow eventually fast orbit feedback in seed undulator
- stable HHG parameter (pulse energy, chirp, frequency ...)
- good temporal overlap between electron bunch and laser pulse
- with 3th harmonic cavity σ_{t} ~ 250 fs @ few kA peak current
- \Rightarrow time jitter should be much smaller than << σ_t for reliable operation

Modifications of FLASH beamline

Modifications apply to the section between the collimator and SASE undulators

- additional hardware to be installed
 - four HHG undulators: 1x4(m) and 3x2(m)
 - phase shifters, additional steerers
 - mirror chamber to separate HHG radiation and electron beam
 - diagnostics
 - LOLA/screen (due to installation of ACC7 in future)
- ORS+chicane to be moved upstream \Rightarrow HHG undulators closer to input window
- 10(mm) beam pipe in HHG undulator section. Vacuum chamber 15x7.7 mm
- Some quadrupoles should be moved \Rightarrow different optics is required
- Compatibility between SASE operation, HHG, ORS, LOLA is required
- Assure full transmission with no losses

FLASH beamline modifications

The seeding section

- variable gap undulators. min gap about 9 mm. Vacuum chamber inner size 15x7.7 mm
- total undulator length 10 m
- 3 PETRA III undulators of 2 m length + PETRA II undulator of 4m
- λ_u =31.4 mm (PETRA III), 33 mm (PETRA II)
- distance between undulators 70 cm
- FODO-like focusing

Mirror chamber

Optics at different energies

Output radiation properties (simulations)

 consider the seeding beamline and electron optics as presented above

- λu =31.4 mm (PETRA III), 33 mm (PETRA II)
- duration HHG pulse: 20 fs (FWHM)
- energy of the 27th harmonic (29.6 nm): 1 nJ

transverse emittance, $\varepsilon_n = 2 \mu m$ pear current, $I_{peak} = 1.5 \text{ kA}$ bunch length, $\sigma_z = 80 \mu m$ E = 850 MeV rms energy spread 0.2 MeV

Tentative time schedule

- installation and commissioning of HHG generation end 2008
- installation of HHG transfer line in tunnel Feb 2009
- installation of undulators Apr. 2009
- installation of mirror chamber Apr 2009
- installation of HHG-FEL beamline May 2009
- commissioning with beam Aug 2009

work in progress

- design and construction of phase shifters ('Efremov' institute)
- construction of diagnostic blocks for undulator intersections
- vacuum chambers to be ordered (external company)
- design and construction of mirror chamber (T. Laarmann)

• ...