

Results from the Feb 2012 9mA studies

John Carwardine

For: Nick Walker, Gustavo Cancelo, Shin Michizono, Julien Branlard, Christian Schmidt, Valeri Ayvazyan, Vladimir Vogel, Siggi Schreiber, Holger Schlarb, Bart Faatz, Mathias Vogt, Warren Schappert, Wojciech Cichalewski, Olaf Hensler, and others

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Achieving flat gradients ('Pk/Ql' studies)
- Quench studies
- Klystron saturation studies
- Long pulse operation close to gradient limits
- Wrap-up

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Achieving flat gradients ('Pk/Ql' studies)
- Quench studies
- Klystron saturation studies
- Long pulse operation close to gradient limits
- Wrap-up

Background to February 2012 studies

- Cost minimization for the ILC
 - High cost of gradient -> keep gradient overhead to minimum
 - High cost of RF power -> keep rf power overhead to minimum
- Minimize emittance growth due to orbit changes from cavity kicks
 - Minimize changes in cavity kicks -> minimize changes in cavity gradients over the duration of the beam pulse
 - Spread of operating gradients on same RF klystron

ILC: Maximising Energy

Highest Gradient Operation

VT Observed Gradient Limit		35.0 MV/m avg
CM Observed Gradient Limit	3%	34.0 MV/m avg
Operation Gradient Limit	1.5 MV/m	32.5 MV/m avg
Controls margin	3%	31.5 MV/m avg

- ILC baseline parameter: 31.5±20% MV/m accelerating gradient (25-38 MV/m)
- Full individual cavity P_{for} and Q_L control foreseen
 - but not cheap!
 - FLASH only has Q_L adjustment
 - Flat gradient solutions I_B dependent!
- (Positive) slopes on individual cavity gradients 'eat away' gradient overhead
- Goal: <3% change in V over flat top
 including during turn-on

Cavity gradient tilts due to spread in operating gradients on same vector sum

$\delta y'(t) \approx \frac{1}{2} \frac{V_a(t)}{E_{beam}} \cdot \alpha_{cav}$

Cavity alignment pitch: 300 μr RMS

 $\gamma \epsilon_v = 30 \text{ nm}$

1.5% RMS 'voltage tilt' \rightarrow 1 nm $\gamma \epsilon_y$ growth (for entire ILC linac)

Note: $\Delta(\gamma \varepsilon_v) \propto \Delta V_a(t)^2$

Tolerance similar to quench limit overhead (few %)

ILC: Beam Dynamics

- Impacts of random cavity misalignments (tilt) α_{cav}
- Transverse kick to the beam
 - time dependent due to voltage 'slope' $V_a(t)$
- Resulting betatron oscillations
 cause emittance growth
 - different for different bunches along train

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Achieving flat gradients ('Pk/Ql' studies)
- Quench studies
- Klystron saturation studies
- Long pulse operation close to gradient limits
- Wrap-up

• Study questions

- How well can we flatten the cavity gradients?
- How close to quench can we run the cavities?
- How close to saturation can we run the klystron?
- How do we reach full current and full gradient without quenching?
- All the above must be achieved while running maximum current and 800us bunch trains

Machine conditions

- 800us bunch-trains (2400 bunches)
- Average current over 800us: ~4.5mA (1.5nC/3MHz)
- Beam energy: 1GeV
- Average gradients (ACC67): 26.7MV/m avg (13 cavities)
- Max operating gradients (ACC7): 4 cavities above 31MV/m

• ACC67 was focus of study

 We chose to use only 13 of the 16 cavities: ACC6 C5/C6 and ACC7/C1 were detuned

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Achieving flat gradients ('Pk/Ql' studies)
- Quench studies
- Klystron saturation studies
- Long pulse operation close to gradient limits
- Wrap-up

Iterative flattening of cavity gradients (better than +/-0.3% achieved)

Algorithm

- Measure gradient tilt (linear fit)
- Make small change to QL of cavity with worst tilt

12

.

Limits achieved (380 MV)

Long-term stability: cavity flat-top RMS

13 cavities plotted

Each data point is average over

- RMS over flat-top divided by average voltage.
- 100 pulses averaged (20 seconds)

Scale is equivalent relative rms for 1% voltage change over flat-top (tilt) [= 1% / (2*sqrt(3)) ~ 0.29%]

A380 point

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Achieving flat gradients ('Pk/Ql' studies)
- Quench studies
 - Measurement of quench limits
 - Quenches!
- Klystron saturation studies
- Long pulse operation close to gradient limits
- Wrap-up

Quench limit study: approach

Quench limit study: approach

• Measurement approach

- Detune all cavities but cavity being tested
- Only include cavity i in vector sum, run with feedback on
- Increase power below expected quench limit
- Slowly approach limit gradient until quench
- Report quench gradient

Quench limit study : results

ACC6	C1	C2	C3	C4	C5	C6	C7	C8
Measured	36.2	32.3	Skipped (>30MV/m)	Skipped (>30MV/m)	> 17	18.6	29.1	25.1
Reported (Katalev)	34	32	34	32	21	21	29	26

ACC7	C1	C2	C3	C4	C 5	C6	C7	C 8
Measured	28.5	Skipped (>30MV/m)	Skipped (>30MV/m)	Skipped (>30MV/m)	Skipped (>30MV/m)	Skipped (>30MV/m)	27.35	26.7
Reported (Katalev)	29	31	34	30	35	39	27	26

- The cavities which were skipped perform better than 30 MV/m
- Some cavities performed slightly better than expected
- High performing cavities were skipped for reasons explained later
- Globally, good agreement with previously reported limits and recently measured ones

Julien Branlard

Quench event during high gradient operation (26 Feb, 21:57)

Limits achieved (380 MV)

Comparison of quench limits from Katalev Spreadsheet (red) with gradients in 380MeV vector sum(blue) indicate that ACC7/C4 is closest to its quench limits

But... ACC6/C3 and ACC6/C8 were actually the first cavities to quench (...?)

'Mombo' quench event: 25 Feb 05:05:21

- We were adjusting the relative powers to ACC6 and ACC7 to find the maximum usable partial vector sum on ACC7
 - Beam was enabled 700us bunch trains
 - Quench detection was disabled
- ACC7 Cavity 1 was the first to quench
 - Initially, the LLRF controller successfully maintained the ACC67 Vector Sum by increasing the klystron power
 - We even got a full-energy beam pulse with C1 quenched
- There was a cascade of quenches as the LLRF controller tried to maintain the VS by driving the other cavities harder and eventually into quench
- Finally, RF was turned off by a cryo alarm ~1min later

Event #14427309: ACC7 cavity gradients before first quench

Red: this event, Blue: previous event, Green: nominal

Event #14427310: QL drop on C1

Red: this event, Blue: previous event

Event #14427311: C1 quenched, QL drop on C2 and C4

Red: this event, Blue: previous event, Green: nominal

Vector Sum is maintained by driving the other cavities harder

Event #14427312: C2 & C4 quenched, QL drop on C7 & C8

Red: this event, Blue: previous event, Green: nominal

Event #14427313: quenches on C7, C8, C5, C3

Red: this event, Blue: previous event, Green: nominal

Event #14427314: all cavities quenched, except C6

Red: this event, Blue: previous event, Green: nominal

Event #14427315

Red: this event, Blue: previous event, Green: nominal

Event #14427316

Red: this event, Blue: previous event, Green: nominal

Event #14427317

Red: this event, Blue: previous event, Green: nominal

Event #14427318: C6 finally quenches

Red: this event, Blue: previous event, Green: nominal

Event #14427319: all cavities quenched

Red: this event, Blue: previous event, Green: nominal

Event #14427320: all cavities quenched

Red: this event, Blue: previous event, Green: nominal

Event #14427321: all cavities quenched

Red: this event, Blue: previous event, Green: nominal

Event #14427322: all cavities quenched

Red: this event, Blue: previous event, Green: nominal

RF is turned off by a cryo alarm at ~5:06:20

Maximum instantaneous gradients during Mombo quench event

Maximum instantaneous gradients reached on ACC7 vs nominal quench limits

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Quench studies
- Klystron saturation studies
- Long pulse operation close to gradient limits
- Wrap-up

Llrf tuning overhead

FLASH As in RDR, Ilrf tuning overhead is 16% in power.

- Further suppression of rf overhead is requested.
- LLRF overhead covers such as

ilr

(dynamic) microphonics, fluctuation of HV (klystron), beam current, ... (static) Pk and QI tolerance, HV ripple, ...

•Rectangular rf output (not "Step-like") is required because the rf overhead should be examined at flat-top.

- -> high current beam is desired.
- -> filling time should be optimized.
- Near saturation operation is required.
- -> Lower voltage operation of the klystron

RF operation condition

- FLASH HV of klystron was decreased from 108 kV to 86.5 kV.
- 4.5 mA beam was used.
 - Filling time was adjusted to have ~rectangular output.(500us ->660us)
 - Operation point is about -7% (in power) from saturation.

Klystron saturation: disturbance test

Notch applied to Vector Sum setpoint

Stabilities at nominal and near sat.

FLASH Amplitude stability was worse twice at near sat. because of the limitation of rf.

• Phase stability was almost same between nominal and near saturation.

42

It was possible to operate near saturation (~7% below saturation).
 Performance (amplitude and phase stabilities) satisfy the requirements

- Dynamic fluctuations can be compensated
 - Klystron HV fluctuation
 - Beam current fluctuation
 - Dynamic detuning (microphonics+ Lorentz force detuning) can be compensated.

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Achieving flat gradients ('Pk/Ql' studies)
- Quench studies
- Klystron saturation studies
- Long pulse operation close to gradient limits
 - Quench prevention
 - Ramping pulse length with full current
 - Ramping beam current with full pulse length
- Wrap-up

Goal is to operate close to gradient limits, need to protect against quenching without causing frequent pulse terminations

Three-pronged approach

1. Quench detection (Quench Server)

- Look for sudden drop in Loaded-Q at end of rf pulse
- Inhibit subsequent pulses

2. Over-voltage protection during rf pulse (Gradient Limiter)

- Gradient Limit alarm threshold for each cavity
- Terminate rf pulse as soon any cavity exceeds its threshold

3. Over-voltage soft-limiter during rf pulse (Gradient 'Pre-limiter')

- Gradient Pre-limit threshold for each cavity
- Dynamically ramp down the VS setpoint if any cavity reaches its threshold

- Dynamically ramp down the VS setpoint if any cavity reaches its gradient 'pre-limiter' threshold
 - Implemented on ACC6 just before the start of the 9mA studies
 - It works beautifully!

Vector Sum setpoint and readback

Gradient pre-limiter operation

Vector Sum setpoint is dynamically ramped down as long as any cavity gradient is above its pre-limit threshold

Limiter effect: ACC6/C8 Gradient vs Vector Sum setpoint

47

Automated ramp-up to full current by extending length of bunch-train.

How to ramp up from zero to full current/pulse length with gradients at their limits?

• Without quenching cavities

Option One: start with maximum current but short bunch train

- Correct QLs to achieve flat gradients with short bunch train
- Progressively increase length of bunch train
- Ideally, there would be no corrections to QLs needed

Option Two: start with full bunch train, but low charge

- Correct QLs to achieve flat gradients with the lower charge
- Progressively increase charge
- Continue to adjust QLs to maintain flat gradients as charge is increased

Automated ramp-up to full current by extending length of bunch-train

Study of Method One : start with maximum current but short bunch train

- Iterative algorithm used to correct gradient flat-tops with 400us bunch train
- Increased number of bunches in steps
- Minimal changes required to QLs when number of pulses was increased
- Used gradient pre-limiter to keep gradients below thresholds for beam off period – it worked beautifully!

Bottom line: Method One works!!

By the way, Method Two also works

Gradient Pre-limiter is the key

Outline

- ILC context for the February 2012 studies
- Goals for February 2012
- Achieving flat gradients ('Pk/Ql' studies)
- Quench studies
- Klystron saturation studies
- Long pulse operation close to gradient limits
- Wrap-up

• Studies highlights

- Operated full beam current within ~7% of klystron saturation
- Flattened individual gradients to <<1% peak-peak and 4.5mA/800us operation within 5% of quench
- 'Crash test': 800us/4.5mA -> beam off -> 800us/4.5mA
- Ramped up current from ~zero to 4.5mA with ACC67 gradients approaching quench
- Operated machine into quench with 800us / 4.5mA
- 'Cavity gradient limiter' for dynamically preventing quench

Lessons

- Loaded-Q server worked well we also need some changes
- Various servers and control functions fight each other during recovery (detuning, loaded-Q, gradient flattening,...)
- Were able to recover, but also failed a few times because we did things in the wrong order

Thank you for your attention

Flat Voltage Solutions

With full $P_{for} - Q_L$ control solutions for different currents can be found

For FLASH, power distribution on ACC6-7 is fixed (no individual P_{for} control). However solutions can still be found for a limited range of currents (<6mA)

Vector sum stability

Same time period as cavity stability plots 100 pulses averaged per time step error bar = $\pm 1\sigma$

Same data as LH plot. rms / mean (over 100 pulses) in %

Quench limit study: limitations

• FF is scaled with set point for 16 cavities vector sum, while this approach uses 1 cavity vector sum

 \rightarrow extreme proportional gains are required, Kp = 1000

- FLASH waveguide system is not conditioned for quenches
 - \rightarrow nominal waveguide power is 5 MW
 - \rightarrow a high gradient cavity quench might require 7-8 MW
 - \rightarrow might generates coupler and waveguide sparks

Quench limit study: limitations

- FLASH LLRF system is not calibrated for quench threshold identification →DAC saturation, ADC saturation
- Running in FB around a single cavity can generate a maximum power request to the klystron
 - \rightarrow FB is useful to maintain flat gradient and compensate for LFD
 - →if quench not detected immediately, LLRF request can be max klystron power for next pulse (should always be avoided)

Julien Branlard

Cryo flow during mombo quench event

