

THE TECHNICAL UNIVERSITY OF ŁÓDŹ
Faculty of Electrical and Electronic Engineering

Master of Engineering Thesis

DESIGN OF RADIATION TOLERANT
TRANSMISSION CHANNEL CIRCUIT

Jakub Mielczarek

Student’s number: 106119

Supervisor:
Grzegorz Jabłoński, PhD

Auxiliary supervisor:

Dariusz Makowski, MSc

Łódź, 2005

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 1

1 INTRODUCTION ... 5

2 OBJECTIVE OF THE THESIS ... 7
2.1 PROBLEM DESCRIPTION .. 7
2.2 PROPOSED SOLUTION.. 8
2.3 POSSIBLE IMPLEMENTATIONS ... 10
3 RADIATION EFFECTS ON ELECTRONIC DEVICES.. 12
3.1 NEUTRON RADIATION... 12

3.1.1 Firm Errors ... 13
3.1.2 Soft Errors ... 14

3.2 GAMMA RADIATION ... 16
4 FAMILIES OF FPGA DEVICES, MICROCONTROLLERS AND THEIR RADIATION

TOLERANCE .. 18
4.1 SRAM BASED FPGA ... 18
4.2 FLASH-BASED FPGA .. 19
4.3 ANTIFUSE FPGA... 20
4.4 RADIATION HARDENED, RADIATION TOLERANT FPGA ... 21
4.5 MICROCONTROLLERS.. 21
4.6 RADIATION INDUCED ERRORS IN FINITE STATE MACHINES AND MICROCONTROLLERS 22
4.7 SELECTION OF THE OPTIMAL DEVICE ... 23
5 RADIATION HARDENING AND MITIGATION TECHNIQUES... 24
5.1 TECHNOLOGICAL HARDENING AND MITIGATION.. 24
5.2 DOUBLE MODULAR REDUNDANCY, TRIPLE MODULAR REDUNDANCY... 27
5.3 HAMMING CODES ... 29
5.4 2-D PARITY CHECKING ... 33
5.5 SCRUBBING... 34
6 PROJECT DESCRIPTION .. 35
6.1 OVERVIEW .. 35
6.2 RADIATION TOLERANT MCU BASED ON PIC16C57... 37

6.2.2 Techniques Employed for SEU Mitigation .. 48
6.2.3 Modified FPGA Design Flow for Improved Radiation Tolerance with TMR.......................... 55

6.3 HARDWARE PLATFORM .. 66
6.3.1 FPGA Development Board .. 66
6.3.2 Transceiver .. 72

6.4 EXEMPLARY APPLICATION – SRAM SEU DETECTOR.. 76
6.4.2 Software for the MCU.. 77
6.4.3 Software for PC ... 82

7 EXPERIMENTAL RESULTS FROM DEUTSCHES ELEKTRONEN-SYNCHROTRON........ 85

8 CONCLUSIONS .. 98

REFERENCES .. 100

APPENDIX A SCHEMATICS AND PCB LAYOUTS ... 103

APPENDIX B EXAMPLES OF VHDL CODE .. 115

APPENDIX C SUMMARY OF DETECTED SEUS.. 128

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 2

Streszczenie
 Niniejsza praca magisterska została wykonana dzięki współpracy Politechniki

Łódzkiej z ośrodkiem Deutsches Elektronen-Synchrotron (DESY) w ramach programu

Coordinated Accelerator Research in Europe (CARE). Ośrodek ten mieści się

w Hamburgu, w Niemczech. DESY specjalizuje się w badaniach dotyczących fizyki

wysokich energii i cząstek elementarnych. Mieszczą się tam również laboratoria biologii

molekularnej, chemii i materiałoznawstwa, wykorzystujące w badaniach promieniowanie

synchrotronowe. Ośrodek DESY został wybrany jako lokalizacja nowej generacji

akceleratora cząstek. International Linear Collider (ILC) jest konstruowany i budowany

w ramach międzynarodowej współpracy ośrodków badawczych i naukowych. Akcelerator

ten umożliwi przyspieszanie elektronów i pozytonów do energii rzędu 1 TeV. Będzie

to możliwe dzięki zastosowaniu niedawno opracowanej i jeszcze testowanej technologii

Teraelectronvolt Superconducting Linear Accelerator (TESLA). Technologia ta opiera się

na nadprzewodzących wnękach rezonansowych wykonanych z czystego niobu. Fala

elektromagnetyczna o częstotliwości 1,3 GHz przyspiesza elektrony i pozytony.

W końcowym etapie przyspieszania cząstki są poddawane kolizji. Produkty kolizji być

może pozwolą na zweryfikowanie istnienia bozonu Higssa. Strumień

wysokoenergetycznych elektronów posłuży również jako źródło promieniowania w laserze

rentgenowskim X-Ray Free Electron Laser (X-FEL). To źródło koherentnego

promieniowania rentgenowskiego będzie w stanie wytwarzać impulsy o czasie trwania

rzędu 80 femtosekund, pozwalając na obserwację m.in. drgań struktur krystalicznych

czy kolejnych etapów podczas zachodzenia reakcji chemicznych.

Akcelerator ILC będzie kontrolowany przez zaawansowane, głównie cyfrowe,

systemy sterowania. Systemy te oparte zostaną o urządzenia programowalne FPGA

i procesory sygnałowe DSP. Akcelerator został zaprojektowany z wykorzystaniem tylko

jednego tunelu. Będzie on mieścił zarówno tor przyspieszający wykonany

ze wspomnianych wnęk rezonansowych, jak i wymienione systemy sterowania. Takie

rozwiązanie sprawi, iż urządzenia elektroniczne będą narażone na wpływ szkodliwego

promieniowania gamma i neutronów. Wynikiem tego mogą być awarie urządzeń

elektronicznych, polegające m.in. na nieprzewidywalnych zatrzymaniach pracy modułów,

ich funkcjonowaniu w sposób niezgodny z zaprogramowanym lub trwałe uszkodzenia

tychże urządzeń. Dlatego też, ważnym aspektem projektu ILC jest ilościowe zbadanie

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 3

i opisanie potencjalnych, negatywnych skutków wpływu promieniowania gamma

i neutronów na urządzenia elektroniczne. Co więcej, konieczne jest opracowanie sposobów

łagodzenia tychże skutków lub zapobiegania im.

Część praktyczna wykonana w ramach niniejszej pracy magisterskiej

koncentruje się na zaprojektowaniu i wykonaniu niezawodnego, niewrażliwego na pewne

skutki promieniowania neutronowego, układu cyfrowego. Głównym zadaniem

powyższego układu jest umożliwienie i obsługa niezawodnej komunikacji pomiędzy

różnymi urządzeniami elektronicznymi, znajdującymi się w tunelu akceleratora,

a centralnym systemem, znajdującym się poza wpływem promieniowania. Potrzeba

opisanej komunikacji rodzi się z dwóch powodów: konieczności poddania urządzeń

elektronicznych testom w środowisku promieniowania gamma i neutronowego,

oraz monitorowania poziomu promieniowania w tunelu akceleratora. Układ został

zaprojektowany, wykonany, uruchomiony i poddany testom w tunelu akceleratora

LINAC II w ośrodku DESY. Testy odbyły się na przełomie sierpnia i września 2005 roku.

Na projekt układu złożyło się wiele etapów. Praca zawiera opis każdego z nich.

Przed przystąpieniem do fazy projektowania, przestudiowano wpływ promieniowania

gamma i neutronów na układy elektroniczne. Następnie przeprowadzono analizę

dostępnych układów programowalnych pod kątem wrażliwości na promieniowanie,

kosztów i możliwości wielokrotnego programowania. Do implementacji układu

niewrażliwego na promieniowanie wybrano układ programowalny FPGA oparty

na wbudowanej pamięci Flash. W układzie FPGA został zaimplementowany

mikrokontroler oparty o rdzeń procesora PIC16C57, który jest szeroko wspieranym

standardem. Do opisu układu cyfrowego użyto języka VHDL. Na część praktyczną pracy

złożyło się kilka etapów. Pierwszym było zaprojektowanie i zmontowanie płytek

drukowanych. Kolejnym, wspomniany opis układu w języku VHDL. Ostatnim etapem

było napisanie oprogramowania na zaimplementowany mikrokontroler. Dzięki temu

oprogramowaniu, wykonane urządzenie może funkcjonować jako detektor zjawisk Single

Event Upset (SEU) w pamięci SRAM. Detektor taki może zostać wykorzystany

w zautomatyzowanym systemie pomiaru strumienia neutronów w tunelu akceleratora.

Dodatkowo powstało oprogramowanie na komputer PC, pozwalające na przetestowanie

wykonanego urządzenia, podczas gdy pełniło ono wspomnianą funkcję detektora. Podczas

72-godzinnego testu urządzenie niezawodnie pracowało w obecności promieniowania

gamma i neutronowego. W tym czasie bezbłędnie realizowało zaprogramowaną funkcję

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 4

detektora SEU w pamięci SRAM. Komunikacja z komputerem PC, umieszczonym

poza tunelem akceleratora przebiegała również bezbłędnie.

Mikrokontroler zaimplementowany w układzie FPGA został częściowo

uodporniony na promieniowanie wyłącznie na poziomie języka VHDL. Do tego celu

zostały użyte kody Hamminga i potrójna redundancja. Metoda uodparniania oparta

na potrójnej redundancji została sformalizowana w postaci algorytmu. Pozwala

ona na rozdzielenie procesu opisu układu cyfrowego od procesu uodpornienia na wpływ

promieniowania neutronowego. Dzięki temu nie jest wymagana ingerencja w kod

źródłowy VHDL. Ograniczeniem opracowanej metody jest wsparcie wyłącznie

dla układów FPGA ProAsic Plus firmy Actel. Dalsze badania są niezbędne,

aby zweryfikować jej realizowalność dla innych rodzajów układów FPGA.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 5

1 Introduction
The present master’s thesis was carried out in cooperation with Deutsches

Elektronen-Synchrotron (DESY). DESY is a high-energy particle physics research centre,

located in Hamburg, Germany. It also incorporates molecular biology and chemistry

laboratories, taking advantage of synchrotron radiation. The centre has been chosen

as a home site for a new generation particle collider, which will be designed and built

in an international collaboration. The International Linear Collider (ILC) will accelerate

electrons and positrons to energies of up to 1 TeV. The capability will be enabled

by the newest, currently being tested in TESLA Test Facility 2 (TTF2) site in DESY, Tera

Electronvolt Superconducting Linear Accelerator (TESLA) technology. In this technology,

pure niobium, superconducting cavities fed with 1.3 GHz electromagnetic wave accelerate

the electrons and positrons, bringing them into collisions. The products of collisions might

verify the existence of the Higgs’ particle, being considered the origin of matter’s mass.

The highly energetic streams of electrons will be also the basis for X-Ray Free Electron

Laser (X-FEL). This coherent source of ca. 80-femtosecond X-ray pulses of high brilliance

will facilitate the observation of crystalline structure oscillations and give empirical insight

into subsequent steps of chemical reactions.

The ILC will be controlled by sophisticated, mostly digital, electronic control systems. The

systems will be based on Field Programmable Gate Array (FPGA) devices, and Digital

Signal Processors (DSPs). Since the main accelerator tunnel will confine both

the accelerating cavities and the electronic control systems, the latter will be exposed

to influence of mixed neutron and Bremsstrahlung gamma radiation. Both constituents

of the mixed radiation have detrimental effects on electronic devices, ranging

from inducing halts or infinite loops, functional interrupts to severe, permanent damage.

The effects may be short or long term ones. Therefore, it is vital for the ILC project

to quantify the damage effects and take measures against them.

This project concentrates on designing and implementing a reliable, radiation tolerant

transmission channel circuit, enabling flexible and reliable communication between

electronic devices located in the accelerator tunnel and central system located

in radiation-free environment. The need of such communication channel arises from two

necessities: testing electronic devices in the accelerator’s radiation environment,

monitoring neutron and/or gamma radiation level in the accelerator tunnel. The detailed

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 6

requirements for the radiation tolerant device and its exemplary application are described

in Chapter 2.

Before the design phase commenced, the influence of neutron and gamma radiation

on electronic devices was thoroughly studied. The summary of the study can be found

in Chapter 3.

The assumption was made, that the transmission channel circuit should be built based

on Commercial Off-The-Shelf (COTS) components only. Therefore, as documented

in Chapter 4, various families of suitable electronic devices were considered

for the implementation and the optimal one has been chosen.

Investigation of already developed and well-tested techniques improving radiation

tolerance of digital systems was carried out. The most valuable techniques are described

in Chapter 5.

The transmission channel circuit was described in Very High Speed Integrated Circuit

Hardware Description Language (VHDL) and implemented in a Flash-based FPGA device.

The circuit is based on industry standard PIC16C57 CPU. Some of the mitigation

techniques described in Chapter 5 were implemented to improve the radiation tolerance

of the transmission channel circuit. During this process a semi-automatic technique

for mitigating sequential designs on the VHDL level was developed and used in the

project. A printed circuit board was designed and assembled to facilitate prototyping of the

circuit. The board, together with designed and assembled auxiliary hardware was used

during in-field tests. Finally, software for the CPU was developed, to demonstrate device’s

capabilities and test it in field. Chapter 6 gives the full description of the project.

The physically implemented transmission channel circuit, together with auxiliary hardware

was subject to tests in DESY, in August and September 2005. The radiation tolerant device

was installed in LINAC II accelerator, whose radiation environment is harsher than that

of TTF2 and the planned ILC. The device was placed in close vicinity

of the electron-to-positron converter, guaranteeing high doses of the mixed radiation

reaching the device. Description of experiments, which were carried out and the obtained

results are presented in Chapter 7.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 7

2 Objective of the Thesis
The aim of this master’s thesis is to design a radiation tolerant device, which will

enable reliable exchange of information between accelerator tunnel and a monitoring

station (e.g. personal computer) located outside the tunnel. Operation of the device will be

demonstrated in a useful application.

This chapter gives details on the origins of the necessity of such design,

and briefly describes the main idea behind the solution.

2.1 Problem Description

The International Linear Collider (ILC) tunnel will house both array

of superconducting accelerating cavities and sophisticated electronic control systems

(mainly digital), responsible for controlling the collider. Such an arrangement exposes

the electronic systems to mixed gamma radiation and neutron influence, of doses

and intensities greater by orders of magnitude than that occurring in regular conditions.

Therefore measures need to be taken to harden electronic devices against radiation,

neutralize or mitigate its negative effects. Moreover, the points of failure, due to radiation,

of the systems must be identified and evaluated. For that purpose a reliable communication

channel must exist between devices under test, located in the accelerator tunnel,

and a monitoring station, installed outside the tunnel, e.g. in the accelerator hall.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 8

2.2 Proposed Solution

Communication channel in the accelerator environment will be subject

to the mixed radiation and electromagnetic interference from high-power klystrons, electric

vacuum pumps and nearly omnipresent control electronics (see Figure 2.1).

Figure 2.1. Service hall of LINAC II accelerator.
a) Array of high-power klystrons; b) Control electronics;

c) High-power waveguide with SLED (SLAC Energy Doubler);
d) Vacuum pump

a) b)

c) d)

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 9

Thus, a reliable channel must meet following requirements:

• Transmission channel circuit hardened against radiation or radiation

tolerant,

• Transmission medium immune to electromagnetic interference (EMI).

The transmission medium does not need to be radiation protected, as neither gamma rays

nor neutrons generate Single Event Effects (SEE – see section 3.1) in known media.

The only observed degradation of medium under gamma radiation is described in section

3.2.

Apart from the above requirements, the channel must enable the following:

• Full-duplex serial communication between monitoring station

and transmission channel circuit - serial communication reduces the number

of necessary signal lines,

• Set of basic control signals (reset, power-off) for the transmission circuit

and/or the device under test. The channel circuit may provide those signals

for the Device Under Test (DUT), or the lines may be shared, thus reducing

the number of control lines,

• Deliver power to the communication circuit and the DUT from power

supply located outside the accelerator tunnel.

The most valuable solutions are universal ones, allowing easy accommodation to new

conditions. To make this requirement and the ones mentioned above feasible, a transceiver,

in a broad sense, is needed on the side of the monitoring station. The transceiver should

interface common communication media and standards supporting serial communication,

pass control signals from monitoring station and deliver power to the devices in tunnel.

The general block diagram of proposed communication channel set-up is presented

in Figure 2.2.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 10

Figure 2.2. Block diagram of proposed communication channel. 1 – radiation hardened or
tolerant communication circuit, 2 – communication, control signal and supply

transceiver, 3 – monitoring station, 4 –DUT, (A) - accelerator tunnel,
(H) - accelerator hall. The power supply unit is not included.

2.3 Possible Implementations

The proposed block diagram in Figure 2.2 is a high-level abstraction

of the design. Choice has to be made on the components used for implementing it.

To make the devices easy to build, commercial off-the-shelf (COTS) components will be

used. This lowers the cost, and enables to avoid problems arising from limited components

availability.

The transmission channel circuit should be flexible enough, to interface

it to various devices, with only minor or no changes to the circuit’s configuration. It is not

acceptable, that for every type of device to be interfaced, a different circuit must be built,

starting from the schematic and printed circuit board level. This would increase the cost

of a single device significantly, and extend design time a number of times. The circuit

should be also able to accommodate different signalling standards and protocols.

The design, which will meet the requirements, calls for a programmable

or re-programmable transmission channel circuit. Programmability or re-programmability

is available in many COTS component families, just to mention re-programmable

serial communication signals: TXD, RXD

control signals: POWER-OFF, RESET

power supply and common

communication between channel circuit and DUT

2

1

4 3

(A)
(H)

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 11

integrated circuits like: GAL, PLD, and FPGA devices, microprocessors,

and microcontrollers. In this particular design, however, FPGA devices

and microcontrollers are the field of interest. Both provide abundant resources, thus greatly

lowering the number of required components and decreasing the complexity of design

on the PCB level.

The channel circuit must be a command driven system, with a degree of autonomy.

It should support a well-established serial communication protocol. The EIA-232 protocol

is sufficient as a carrier, for a more reliable, frame-based protocol. The possibility

of employing signalling standard other than EIA-232 should be also available. There must

exist a means of guaranteeing reliability of communication, e.g. through Cyclic

Redundancy Check (CRC). The types of devices, which can be interfaced

to the transmission channel circuit, may not depend on circuit’s architecture, should be

handled in a general Input/Output manner. The main task for the circuit will be testing

of electronic devices in the radiation environment. The core functions for this, such

as proper communication with a DUT through control signals and buses should be

implemented in the channel circuit, not the monitoring station. Simple, but extremely

useful, application for the circuit could be detector of Single Event Upsets (SEUs – see

section 3.1.2) in a Static Random Access Memory (SRAM). In this case the DUT would be

the SRAM. The memory would be tested for occurrence of SEUs. The task for the channel

circuit would be writing and reading the memory, accomplished through proper use

of chip’s address and data buses, accompanied by assertion of control signals. The block

diagram of such application is shown in Figure 2.3. The number of available I/Os must be

sufficient for a wide range of SRAM modules, i.e. 8 I/Os for data bus, at least 20 I/Os

for address (1 MB address space), at least one I/O for Chip Select (CS), one for Write

Enable (WE) and one for Output Enable (OE). This gives a total of at least 31 I/O lines.

Figure 2.3. Block diagram of an exemplary application of the transmission channel circuit

Transmission Channel Circuit

DUT - SRAM

Address

Data

Control

I/
O

 p
or

ts

EI
A-

23
2

SRAM driver

Protocol Handling

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 12

3 Radiation Effects on Electronic Devices
This chapter briefly describes the adverse effects of neutron and gamma

radiation on electronic devices and optical components. The emphasis is put on soft errors,

particularly Single Event Upsets (SEUs), since the main goal of this project is to minimize

their effects.

3.1 Neutron Radiation

The detrimental neutron radiation is the dominating component of accelerator’s

radiation environment. Electronic devices operating under neutron irradiation suffer

damage. The damage can be done through different mechanisms. They are

the displacement damage and Single Event Effects (SEEs).

Since neutrons have no electronic charge, they cannot interact

with semiconductor material atoms electrically. However, being 1840 times heavier

than an electron, they interact with semiconductor lattice atoms through collisions.

The collisions result in dislodging or displacing the lattice atoms from their lattice sites.

The atoms are forced to take up interstitial positions within the crystal, resulting

in distortion of lattice structure. This effect, as being of mechanical nature, is significant

due to high-energy neutrons, such as cosmic ones, thus being a serious problem in space

applications. Among results of the damage are resistivity changes and bipolar transistor

gain degradation [1]. The displacement damage may have reversible nature.

The semiconductor lattice structure may be restored. This self-healing of a device is

referred to as annealing. It relies on thermal motion of the defects. The displaced atoms

migrate from interstitial to vacancy positions. On the other hand, the migrating atoms may

form stable associations with impurity atoms in the semiconductor structure. This will

enhance the degradation, as such associations are defects in the lattice.

The second type of neutron effect on electronic systems is an indirect one.

As mentioned earlier, there are no direct electrical interactions of neutrons

with semiconductor atoms. Nevertheless, neutrons can induce ionisation through secondary

processes [1]. The most important in the context of this project is the generation of alpha

particles within semiconductor lattice. Low-energy neutrons, in particular thermal

neutrons, dominate the neutron-energy-spectrum of the electron accelerator housed

in a concrete containment. Under such conditions the neutron capture reaction in Boron

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 13

(10B) atoms, present in silicon chips as dopant and used in passivation layers, takes place.

The product of the reaction can be either 7Li ion or 4He ion. The 4He ion (an alpha particle)

is probably the agent for triggering SEE in silicon devices [2]. Alpha particles also

emanate from heavy elements, contaminants of chip package material, being potential

sources of SEEs in commercial electronics. Such problems are avoided, by proper

passivation of semiconductor structures. Unfortunately, this protection is ineffective

in case of neutron-induced alpha particles, since they are generated in the very bulk

of silicon.

The Single Event Effects are further subdivided into firm and soft errors, briefly

characterized in sections 3.1.1 and 3.1.2.

3.1.1 Firm Errors

The firm errors may result in permanent damage to the electronic device,

rendering a device or its component unusable, posing potential threat to other system’s

components. The most popular firm error is Single Event Latch-up.

Single Event Latch-up takes place when parasitic thyristor in CMOS device

(Figure 3.1) is switched into low-impedance (“on”) state. The transition into “on” state is

initiated by a charged particle (e.g. alpha particle) depositing charge in the structure,

thus creating a current pulse. The current pulse switches the thyristor into conducting state

and causes excessive current flow between power terminals through the device.

If the power is not immediately switched off, the excessive heat can permanently damage

the silicon device.

Figure 3.1. Parasitic thyristor in CMOS inverter structure (p-well technology) [3]

The other two known firm errors due to SEE consider power devices. The SEGR

(Single Event Gate Rupture) and SEB (Single Event Burnout) are effects, which lead

to the permanent damage of power MOSFET transistors. Since susceptibility to firm errors

can be improved on technological level only, these phenomena are not described in detail.

n+ p+ p+ n+ n+ p+

p-well

Vout
(-)VSS (+)VDD

Vin

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 14

3.1.2 Soft Errors

The soft errors are much less severe than the firm ones. There is no direct

permanent damage done to silicon devices due to soft SEE. The only impairment caused, is

on the functional and performance level of the subject system. Digital systems are exposed

to two types of soft errors in the radiation environment. These are Single Event Upset

(SEU) and Single Event Transient (SET).

Single Event Upset (SEU) concerns data storage elements. Memory cells such

as Static Random Access Memory (SRAM), Dynamic Random Access Memory (DRAM)

and Master-Slave edge-triggered Flip-Flops are subject to this detrimental phenomenon.

The effect of SEU is distortion of data stored in the cell, simply called a bit-flip.

The bit-flip takes place if either logic ‘1’ was written into the cell, but a logic ‘0’ is read,

or ‘0’ was written and ‘1’ is read. The mechanism of SEU is briefly explained

for the 6-transistor SRAM cell shown in Figure 3.2 [3]. The cell consists of two

cross-coupled CMOS inverters (T1-T3 and T2-T4) with access transistors (T5, T6) added.

Figure 3.2. The 6-transistor SRAM memory cell. T5 and T6 are n-type access transistors,
T1 and T2 are p-type load transistors, T3 and T4 are n-type drive

transistors [3].

The bit-flip in the cell of Figure 3.2 may proceed in two different scenarios, depending

on the data, which is stored in the cell. If a ‘1’ is stored, the transistors T2 and T3 are

conducting (“on”) whereas T1 and T4 are non-conducting “off”. If an ionising particle,

such as previously mentioned alpha particle, crosses the transistor’s T4 or T1 channel

region, it may ionise the area. This creates electron-hole pairs and may switch the affected

Word
line

Word
line

VDD

VSS

Bit line Bit line

T1

T3

T2

T4

N1
N2

T5 T6

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 15

transistor into the “on” state, temporarily. If this happens, a low-voltage spike at node N2

is created. The ‘0’ spike is propagated to the input of T1-T3 inverter and effectively

latched into the cell. The scenario for the ‘0’-to-‘1’ bit-flip is similar. The difference is

that in this case the vulnerable transistors are the T2 and T3. None of the “on” transistors

can be switched “off” by ionisation.

Apart from impairing the data stored by a system or system’s state, the SEU can

temporarily transform system’s functionality. This is a severe problem of SRAM based

Field Programmable Gate Array (FPGA) devices (briefly characterized in section 4.1).

Such an event is referred to as Single Event Functional Interrupt (SEFI). The rate at which

SEU occur depends strongly on the packing density and fabrication technology

of the affected integrated circuit. The higher the packing density is, the greater is the SEU

rate. The feature size of circuit’s fabrication technology is also an important factor.

As scaling down progresses, the vulnerable area decreases. However, the supply voltage is

usually also decreased and the frequency of operation rises. These effects,

when cumulated, yield increased SEU sensitivity of sequential systems.

Single Event Transient affects combinatorial circuits only. It manifests itself

by transient changes of voltage levels on signal lines, either being input to combinatorial

blocks, or the outputs from them. An SET occurs if e.g. a block is driving an output

in the logic ‘1’ state, and a transient ‘0’ is observed, which does not correspond to input

vector. The SETs are mainly caused by ionising particles, particularly heavy ions.

If an SET is latched in a storage element, it may be perceived as SEU.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 16

3.2 Gamma Radiation

Gamma radiation is the high-energy electromagnetic radiation. The wavelength

of high-energy gamma rays is of the order of fractions of an angstrom, i.e. of the order

10-8 cm. Their interaction with matter is through three types of phenomena:

the photoelectric effect, the Compton effect and pair creation. The damage caused

by gamma radiation is ionisation damage [1]. Its level is determined by the Total Ionising

Dose (TID) – the dose of ionising energy absorbed by the subject material

– and the material type. Among the effects of gamma on electronic devices and structures,

is the erasure of Flash memories. Flash memory is based on floating-gate MOSFET

transistors, shown in Figure 3.3 [3]. The transistors act as non-volatile storage cells.

Figure 3.3. Floating-gate MOSFET transistor [3]

The memory cell is in programmed state (stores logic ‘1’), when charge is accumulated

in the floating gate. When the programmed structure is exposed to gamma irradiation

of high TID, the accumulated charge is gradually liberated from the floating gate, finally

resulting in erasure of stored data, as confirmed experimentally [4]. Since gamma radiation

is electromagnetic wave, it can be relatively easily shielded, by means of iron or lead slabs

of proper thickness [1]. Other materials composed of elements of high “Z” (atomic)

number may also be used for the purpose.

Gamma radiation causes also detrimental effects in optical devices. Current experimental

results show limited tolerance of COTS (Commercial-Off-The-Shelf) optical components

to gamma irradiation [5], [6]. The effects comprise reduction of LED transmitter efficiency

and decreased SNR (Signal-To-Noise Ratio) at the P-I-N receiver [6]. Vulnerable element

of optical component assemblies is the optical lens, which purpose is to increase

the coupling efficiency of light into the fibre. The lens tends to lose clarity at high radiation

doses. While the latter effect is a permanent one, the decrease of SNR is reversible

if radiation is removed. Apart from the transducers, the optical fibre is also affected

Floating
gate

Control
gate

Drain Source

Insulator

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 17

by the gamma radiation [7]. The optical fibre suffers increase of attenuation per length

unit, proportional to the TID. This effect is less significant if the fibre is “live”, i.e. if it is

intensively used. A fibre, which was subject to gamma radiation, will gradually self-heal

provided it is used intensively while radiation is removed. This effect is referred

to as photobleaching.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 18

4 Families of FPGA Devices, Microcontrollers and

Their Radiation Tolerance
This chapter gives a brief insight into families of FPGA devices available

on the market. Microcontrollers are also briefly described. Every device family is

characterized in respect of its re-programmability and radiation vulnerability. Finally

radiation influence on Finite State Machines and microcontrollers is explained,

and the choice of the device for the main component of the transmission channel circuit is

justified.

Considering FPGA devices as candidates for the main component has its

additional explanation in the fact, that these circuits will be broadly used in the control

systems of the ILC. Engineers have recently completed and tested a prototype of cavity

controller, implemented in an FPGA. Hence, it is vital to investigate the influence

of radiation on the FPGA devices. Building the transmission channel circuit based on such

a device, would allow conducting this investigation simultaneously with the main task

of the circuit.

4.1 SRAM Based FPGA

The SRAM (Static Random Access Memory) based FPGA device is the most

widely used one. Numerous medical, automotive, as well as entertainment and multimedia

applications are built based on the devices. The greatest market for them is, however,

telecommunications [8]. SRAM-based FPGA device is re-programmable. Most of FPGA

devices are constructed following a common architecture, presented in Figure 4.1.

Configuration of SRAM based FPGA is stored in SRAM, during the device’s operation

period. Since SRAM is volatile, the configuration is permanently stored in a non-volatile

memory (ROM, EEPROM or Flash) and uploaded to the FPGA upon its start-up. Some

most advanced devices are capable of being partially re-configured during full operation.

The necessity of the external memory increases complexity of the PCB design.

On the other hand, the use of SRAM enables the FPGA to operate at high frequencies.

As described in section 3.1.2, an SRAM memory cell is highly susceptible to SEU.

This poses high risk on proper device operation under neutron irradiation, as the functional

configuration of the device will unpredictably change in result to such an event.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 19

Figure 4.1. Architecture diagram of a typical FPGA device

This problem has been confirmed by an independent study [9]. The consequence of that

will be circuit malfunction, a SEFI, or even device damage. To remedy the malfunction,

the FPGA must be restarted, thus loading a valid configuration from non-volatile memory.

This greatly degrades performance, due to delays caused by configuration uploads

to FPGA or even renders the device unusable, if the Mean Time Between Functional

Interrupt (MTBF) is too short for a required task to complete. The problem of detecting

such changes poses additional difficulty [10], [11]. Storing the configuration

in a non-volatile memory does not make it fully immune to radiation. Experiments [4] have

shown, that e.g. Flash memory is erased under high TID. The device may also be damaged

by a SEL. The advantage of SRAM based FPGA devices is low cost per device

and unlimited number of programming cycles.

4.2 Flash-based FPGA

The Flash-based FPGA device is a relatively new technology, the first devices

were introduced to the market in 2002. The only company offering such devices is Actel

[12]. The device is, similarly to SRAM based one, re-programmable. However, it is

different from the SRAM FPGA in two respects. First, it does not require external

non-volatile memory to store the configuration. This enables simpler PCB design, reduces

required component count. Second, during operation of the device, the configuration is not

transferred to SRAM. The Flash-based FPGA stores its configuration in (as the name

implies) Flash memory. Flash is non-volatile, thus configuration is retained

after power-off. What is the greatest advantage of the device is that the configuration is

. . .

. . .

. .
 .

. .
 .

I/O pads

Configurable
Logic Block

(CLB)

Routing
lines

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 20

used directly from Flash during device’s operation. This is achieved by implementing

configurable interconnections by means of flash-switches (details can be found in Actel’s

Flash devices datasheets [13]). The benefit of such architecture is the “live at power-up”

capability of the devices – there is no time delay for configuration upload, since no upload

takes place. Flash memory is also immune to soft neutron-induced effects [14], rendering

the FPGA’s configuration resistant to unpredictable change due to SEU. However,

as mentioned in section 3.2, contents of Flash may be erased by gamma radiation,

if exposed to it for extended time. The drawback of using Flash-based FPGA is lower

maximum frequency, at which complicated designs can run, as compared to that of SRAM

FPGA. Also the available resources are less numerous, when the most powerful devices

of both families are compared. The price per available number of equivalent system gates

and a limit on programming cycles the device can sustain also favours SRAM based

devices.

Other FPGA devices, referred to as Flash-based, are also available on the market

[15]. The Flash is embedded into the FPGA, eliminating the need of external non-volatile

memory for storing configuration. However, as in SRAM based devices, the configuration

is copied to that memory for the period of device’s operation. This imposes the same

limitations on device reliability as in case of SRAM FPGA.

4.3 Antifuse FPGA

Antifuse devices use metal-to-metal connections created during programming,

to define device’s configuration. Hence, they are programmable only once (are not

re-programmable). Because they use permanent metal-to-metal connections, they are

the least volatile and least susceptible to radiation of any programmable logic technology

in terms of configuration. This applies to both neutron and gamma radiation. They also are

capable of operating at the highest frequencies, because the all-metal routing path is faster

than one where interconnections pass through transistors. Their main drawback

in the context of this project is the lack of re-programmability. When developing prototype

of a device, multiple iterations of the design are unavoidable. The device, before reaching

its final stage, must be verified in the field. Choosing a one-time programmable (OTP)

device would require larger expenditures. Also the flexibility of the device would be

compromised, as adding new components (e.g. signalling encoders or decoders) would

require using a new one.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 21

4.4 Radiation Hardened, Radiation Tolerant FPGA

For markets demanding level of design’s reliability greater than regular (space,

aerospace, defence and military), dedicated FPGA device families were developed.

The effort put into the development of Radiation Hardened devices is focused

on preventing SEEs from occurring. Some of these hardening methods will be briefly

described in section 5.1. Radiation Tolerant devices offer lower reliability than Radiation

Hardened ones. The SEEs are not prevented from occurring, but their negative effects are

mitigated. This improves the reliability to a level acceptable in respective applications.

Both types of devices have been in the market for less than few years. Since the technology

is the newest in the FPGA sector, the most sophisticated and used in very specialized

applications only, the prices of the Radiation Hardened and Radiation Tolerant devices are

beyond financial range of this project. An exemplary price of a Radiation Hardened FPGA

can range from €5 000 to €20 000 per one item. What is even more discouraging, available

Radiation Hardened devices are one-time programmable, being based on antifuse

technology. The Radiation Tolerant devices are available from different vendors in two

types: SRAM based [16], and antifuse based [17].

4.5 Microcontrollers

Microcontrollers can be briefly described as microprocessors fabricated

with embedded program memory for storing executable code or hard-coded data (ROM,

EPROM, EEPROM or Flash), Random Access Memory for volatile program data

(SRAM), communication interfaces (e.g. UART, SPI, I2C) and general-purpose I/O ports

(GPIO), just to mention the most common. These devices are present in virtually every

electrical appliance. Their fixed hardware configuration can be, on one hand, an advantage,

providing a design error-free platform for software development. On the other hand, it is

a severe limitation. Supporting communication standards other than those available

in embedded hardware requires either adding sophisticated external components

(specialized integrated circuits) or developing software routines for that purpose. The latter

solution, however, compromises overall system performance, particularly speed, and is not

always feasible. The former – increases complexity of design, and introduces additional

potential points of failure. The main drawback of fixed hardware architecture, in addition

to those described, is inability to implement SEE protection mechanisms

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 22

other than system-level redundancy, which is firstly complicated to manage, and secondly

best for manned equipment, not for autonomous [1]. The protection against SEU is

particularly vital, since CPU registers in the microcontroller are implemented in SRAM.

The same is true for stack, FIFO (First Input-First Output) instances of communication

devices, and embedded RAM. The advantages of microcontrollers are: low price and well

established development support at reasonable prices. Their generality, attained through

software, is a strong pro, as well.

4.6 Radiation Induced Errors in Finite State Machines

and Microcontrollers

The transmission channel circuit, as described in section 2.3, must be

implemented as a Finite State Machine, other speaking, as a sequential system. Therefore,

before commencing the design phase, possible failures arising from influence of radiation

on FSMs must be identified.

Sequential systems, or FSMs, base their operation on states. States are

information on the history of system’s activity and its current status. In a particular instant

of time, an FSM can find itself in only one particular state. Transitions between states can

be either conditional or unconditional. In hardware, states are represented as data, stored

in registers. In FPGA devices, registers are built using either Master-Slave D-type

Flip-Flops or SRAM cells. Since both are memory elements, then, as described in section

3.1.2, are susceptible to SEU, in principle [18]. For sequential system, such an event may

have disastrous consequences. Randomly negating one bit in the state register drives the

FSM into unintended state. Hence, the required flow of state transitions is discontinued.

The FSM may be driven either into a valid or invalid state. Being driven into the former,

the system would still operate, however incorrectly. If driven into the latter, the system

could enter an infinite loop or destroy volatile, but valuable data. In either case, system will

encounter a malfunction.

Microcontrollers face similar problems. As mentioned in section 4.5, their

working and status registers are implemented in SRAM cells. The same may apply

to embedded RAM and other memory components. A SEU in any of them will falsify

the data causing software to produce erroneous results, errors in communication or even

collapse of the whole system. Apart from that, the hardware may behave unpredictably.

Currently executed instruction, latched in Instruction Register can be changed by SEU,

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 23

making the MCU operate in a random manner. Moreover, the FSM, which manages

the MCU’s datapath, will fail due to SEU, as well.

To summarize, both FSMs and microcontrollers are built of components

vulnerable to neutron radiation. Their behaviour will be unpredictable due to SEUs.

4.7 Selection of the Optimal Device

Several factors need to be taken into account, when deciding which of the,

briefly presented, device families to choose for the main component of the transmission

channel circuit. Since a prototype will be developed, re-programmability is very important.

The specific environment, in which the final device must operate, requires the devices

functional configuration to remain intact under irradiation, at least between possible

servicing interventions. To meet the requirements, either a microcontroller

or a Flash-based FPGA should be used. However, microcontrollers, having fixed hardware

platform, cannot be protected by any SEE hardware mitigation techniques, moreover, may

force the designer to use third-party components, also sensitive to radiation.

The Flash-based FPGA was chosen to house the main circuit of the transmission

channel. It offers re-programmability and functional configuration unchanged under

radiation (except TID effects and SEL), during devices operation, for extended periods

of time. It gives flexibility on hardware level of the design, without the need to redesign

from schematic and PCB. Hardware mitigation methods can be implemented and tested

for effectiveness. However, the great flexibility offered by software, being the attribute

of microcontrollers, is also highly demandable, as changes to e.g. communication protocol

can be introduced without FPGA re-configuration. The ideal solution would be to merge

the reliability and hardware flexibility of Flash FPGA with software flexibility

of a microcontroller. Therefore, the decision to implement a microcontroller in the

Flash-based FPGA was made. The Actel ProAsic Plus APA600 FPGA was chosen,

as offering 600k equivalent system gates, yet being affordable. This, and other devices

from this line, has another advantage, important in novel designs, and generally

in the embedded systems market. Their FlashLock feature makes it virtually impossible

to reengineer the design, disabling the possibility to copy it by competitive companies

or individuals [19].

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 24

5 Radiation Hardening and Mitigation Techniques
This chapter is a brief summary of well known and used mitigation and

hardening techniques. Section 5.1 highlights hardware hardening and mitigation against

different types of SEEs. The remaining sections focus on mitigating SEUs. Most

of the techniques were developed especially for high-reliability applications, such as space

exploration, medical, military or satellite communications. Others come directly

from telecommunications, where are used for improving transmission reliability, but can

be adopted for mitigation, as well. The techniques can be characterised in two categories.

Technological, realisable in hardware only, usually through modified fabrication processes

of integrated circuits. Software, which can yield a system or module, which is radiation

tolerant, but not hardened. This means, that the circuits operate properly up to specified

levels of radiation, possibly with some loss of performance. The software techniques can

be realised in either hardware or software, depending on the platform.

5.1 Technological Hardening and Mitigation

The most effective, robust techniques allowing to harden electronic devices

against radiation are those applied at the lowest, technology, level. They involve modified

cells, being the building blocks of integrated circuits, altered structure of transistors

and properly selected compounds for passivation of integrated circuits. The manufacturing

technology can also decrease circuit’s radiation sensitivity. The Complementary Metal

Oxide Semiconductor (CMOS) technology is inherently more radiation resistant than e.g.

N-type Metal Oxide Semiconductor (NMOS) one. Even greater radiation resistance is

achieved in Silicon On Insulator (SOI) technology. It enables complete elimination

of latch-up, due to lack of parasitic thyristor (see section 3.1.1). Additional advantages

of SOI are: greater attainable frequency of operation, decreased power consumption.

The drawback is the cost, as compared to standard CMOS.

Protection on higher levels of hardware has also been developed. Particular attention was

paid to hardening SRAM cells, being the most frequent point of failure. One of approaches

toward reducing SRAM vulnerability to ionising particles is to add series resistors

on the cell’s feedback paths (see Figure 3.2 for schematic of SRAM cell). The modified

cell is shown in Figure 5.1.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 25

Figure 5.1. SRAM cell with resistors in feedback paths

The benefit coming from this solution is an effective RC low-pass filter. The filter is

composed of an added resistor and input capacitance of an inverter. Short transient spikes

on N1 or N2 nodes can now be filtered-out by the RC network. This reduces

the probability of such a spike being latched in the cell.

At this point it is important to mention, that the Actel ProAsic Plus devices are intrinsically

hardened in a similar way. Figure 5.2 shows an elementary configurable logic cell

of a ProAsic Plus FPGA [20].

Figure 5.2. Elementary configurable logic cell of Actel ProAsic Plus FPGA [20]

Word
line

Word
line

VDD

VSS

Bit line Bit line

T1

T3

T2

T4

N1
N2

T5 T6

R

R

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 26

When the tile is configured as a storage element, a master-slave D-type flip-flop is created.

Equivalent circuit is shown in Figure 5.3.

Figure 5.3. A Master-Slave D-type Flip-Flop

Such configuration is accomplished by closing the flash switches encircled in Figure 5.2.

A flash switch is depicted in Figure 5.4

.

Figure 5.4. Flash switch of Actel ProAsic Plus FPGA [20]

One switch in Figure 5.2 is enclosed in a rounded rectangle. This is the only switch,

which finds itself in a feedback path. This feedback constitutes to the slave latch

of the flip-flop. If a voltage spike is generated by ionised particle in any of the components

along the feedback path, it can potentially generate an SEU. The slave latch will be more

resistant to such effects, as an RC filter is present in its feedback path. The RC network is

composed of resistance of the flash switch and the input capacitance of multiplexer.

The flip-flop is radiation hardened during part of the clock cycle. It is the part, during

which the transistor gating the Master flip-flop is conducting. At the same time

the transistor which gates the Slave flip-flop is non-conducting, i.e. the feedback path

of Slave flip-flop is closed, sustaining the stored binary value.

SlaveMaster

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 27

Other hardware mitigation techniques usually comprise Triple Modular Redundancy

(TMR, describer in section 5.2). The TMR is applied to flip-flops or latches, with voting

circuits being tripled, as well. An example of flip-flop tripled on the latch and voter level is

shown in Figure 5.5.

Figure 5.5. D-type Flip-Flop hardened with TMR [21]

5.2 Double Modular Redundancy, Triple Modular Redundancy

The technique of modular redundancy is most widely used in high-reliability

applications. There are various kinds of this scheme, depending on the number of single

module replications. Thus, there is Double (DMR) and Triple (TMR) Modular

Redundancy – the most common, there may also be Quintuple Modular Redundancy

(QMR) or other of higher order (xMR). This scheme is used from car or aircraft control

and safety systems, power plant systems to military and space ones. Either the whole

system or subsystem can be replicated or only its most vulnerable modules. There may be

two types of modular redundancy. First when only one system or module is operating

at given time. The module or system is diagnosed. Once it undergoes malfunction it is

disconnected and the back-up system or module takes over its function. The additional

entity is referred to as cold reserve. The second is based on voting. In DMR two entities

function in parallel, performing the critical tasks in the same instants of time. The scheme

is also referred to as hot reserve. The outcomes of the task, coming from the two entities

are fed to a voter, or simply a comparator (see Figure 5.6). Whenever the results are

different an error is signalled. The redundant system has entered an erroneous state.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 28

It cannot recover from it, as there is sufficient information only to detect the error, no

correction is possible. The two modules or systems produced different results, but it is

unknown which one is correct. Therefore, the systems must be restarted, in order

to initialise them with known and correct values.

Figure 5.6. The idea of DMR

TMR is more capable. In this scheme every critical entity is tripled. A voter, more

sophisticated than the comparator in DMR scheme, is fed with outputs from every entity.

The voter decides on the result, by performing majority voting (see Figure 5.7). The result

is as indicated by at least two entities. If the representation of outputs from the entities is

binary, the voter is always able to decide, it is never confused. Hence, the TMR scheme is

not only capable of detecting an error, but also correcting it. For the reason, it is able

to sustain system’s operation if an error is encountered. This capability can pose a potential

threat. If two or all three modules are corrupted by error, the TMR will not notice it,

and proceed as if the error was not present or was corrected. The limitation of TMR is

that it can correct single errors only.

Figure 5.7. The idea of TMR

Many times a designer faces a dilemma, which xMR technique to choose. Both DMR

and TMR are capable of detecting system’s malfunction. The DMR requires a restart

Module A

Module B Majority
Voter

RESULT

Module C

ERROR

Module A

Module B

Comparator

RESET = ERROR

RESULT

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 29

in such a situation, thus destabilising the system and compromising performance.

The TMR scheme allows for continuous operation, at higher cost, however. TMR requires

more resources than DMR and a more sophisticated voter. The tripled entities must be well

synchronised not to generate some transient states at the voter output. For applications,

which do not require continuous operation the DMR scheme is an optimal choice.

The TMR should be applied in critical high-reliability designs.

In every xMR scheme the voting circuit becomes the vulnerable element, as not being

replicated. Measures must be taken to minimise its sensitivity to radiation.

5.3 Hamming Codes

Hamming codes belong to the family of Forward Error Correcting (FEC) codes.

They stem from digital communications, where are used for increasing communication

reliability. They are also used in ECC computer memories. Hamming Codes rely on adding

redundant bits to the transmitted word of information. The redundancy is used

at the receiver to detect and correct errors. Hamming Codes are capable of detecting

and correcting all single-bit errors within a word. Detection of double errors is

also possible, but the amount of redundant information is insufficient to correct

such errors. The theory behind Hamming Codes is based on matrix multiplication in finite

field (Galois Field) arithmetic [22]. The Hamming rule ensures that all single-bit errors are

correctable - the distance between two codewords is equal to 3, i.e. any two codewords

of a particular Hamming Code differ in at least three positions, in binary. Hamming Code

can be constructed for any m ≥ 2, where m is the number of check bits.

The Hamming rule is given by:

12
12

−−=

−=

mk
n

m

m

The k is the length of the data vector, n designates the length of codeword and m is

the number of check bits. Code with such parameters is a perfect code. For the code

to have the double error detecting capability, additional check bit is required, thus

the double error detecting, single error correcting Hamming Code has m+1 check bits.

Its length n is 2m. Generally, such code is designated (n, k) Hamming Code. From

the engineer’s point of view the conclusions following from the matrix operations are most

valuable, as they provide him with a straightforward method to implement Hamming

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 30

Codes without the need of matrix operations. This is explained on an example of (8, 4)

double error detecting, single error correcting Hamming Code.

The parity check bits are located at positions p, which fulfil the condition:

pi =2 ,

for non-negative integer i, such that p < n. Therefore, for the exemplary code the check

bits are placed at positions: 1, 2 and 4. The additional check bit for double error detection

is placed at position 0. The check bits are even-parity bits for groups of data bits. The data

bits, starting from the least significant, are assigned the remaining positions within

the codeword, starting from the lowest position available. The resultant codeword is shown

in Figure 5.8.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

D3 D2 D1 C3 D0 C2 C1 C0

Figure 5.8. Structure of (8,4) Hamming Code codeword. ‘D’ – data bit, ‘C’ – check bit

The binary representation of check bit’s position (cb) determines the bits for which it is

computed. The binary value is used as a mask. Every position (bp), except position 0, is

masked with the value. If the result of masking is the check bit position (cb), then the bit

at position (bp) contributes to the computation of check bit. For the (8, 4) code one obtains

groups of bits shown in Table 5.1. The additional check bit at position 0 is a parity check

over all codeword’s bits.

Table 5.1. Contribution of codeword’s bits to parity checks

Check bit position Bits in the group
1 3, 5, 6
2 3, 5, 7
4 5, 6, 7
0 1, 2, 3, 4, 5, 6, 7

When the codeword is received, the data bits along with check bits are used to compute

a syndrome. The additional check bit is not employed in the computation of syndrome. It is

used along with all the other bits to make additional parity check. The syndrome

computation is parity check for all the bit groups, except 0th bit group. The syndrome is

composed of computed parity values.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 31

The position of a value in the syndrome is given by:

()codewordtheinpositionbitchecksgroupS position 'log2=

If the value of syndrome is zero and parity check for the additional bit passes,

the codeword was received correctly. If the syndrome is zero, but additional parity check

fails, the additional parity bit is corrupted by error. It is a single error, correctable

by the code. In another case, when syndrome is non-zero and additional parity check fails,

the additional bit is correct, but one of the others is corrupted. Again, a correctable single

error has been encountered. In the last case, when syndrome is non-zero and additional

check passes, the received codeword has a double error. The value of syndrome in case

of a single error indicates the erroneous position. In this way not only the data bits can be

recovered, but also the check bits.

The described interpretation was used throughout this project to implement purely

combinatorial Hamming Code encoders and decoders. Examples are shown in Figure 5.9

and Figure 5.10.

Hamming Codes are suitable for protecting both, memory arrays and distributed registers.

output_1[1]

output_1[2]

output_1[4]

output_1[0]

output[7:0]

input[3:0] [3:0]

[3:1]
[4]
[0]

[2:0]

[3]
[1][0]

[1]

[3]
[2][0]

[2]

[3]
[4][1]

[2]

[3]
[2]
[1]

[0][4]
[0]
[1]
[2]

Figure 5.9. Purely combinatorial encoder for (8,4) Hamming Code

Parity
computation

Additional
check bit

computation

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 32

output_1[0]

output_1[1]

output_1[2]

output_1[3]

un1_single_error

un1_double_error

demux_to_xors.tmp_out43

demux_to_xors.tmp_out37

demux_to_xors.tmp_out38

demux_to_xors.tmp_out39

demux_to_xors.tmp_out40

demux_to_xors.tmp_out41

demux_to_xors.tmp_out42

syndrome_computation_c.syndr_out_1[0]

syndrome_computation_c.syndr_out_1[1]

syndrome_computation_c.syndr_out_1[2]

syndrome_computation_c.dbe_parity

double_error

single_error

output[3:0][3:0]

input[7:0] [7:0]

[3]
[0]

[2]

[5]
[1]

[4]

[6]
[2]

[5]

[7]
[3]

[6]

[0]
[1]
[2]

[0]
[6][1]

[2]

[0]
[0][1]

[2]

[0]
[1][1]

[2]

[0]
[2][1]

[2]

[0]
[3][1]

[2]

[0]
[4][1]

[2]

[0]
[5][1]

[2]

[7]
[5]

[0]
[1]
[3]

[7]
[6]

[1]
[2]
[3]

[7]
[6]

[2]
[4]
[5]

[7]
[6]
[5]
[4]
[3]
[2]
[0]
[1]

Figure 5.10. Purely combinatorial decoder for (8,4) Hamming Code

Single error
correction for

data bits

Additional
parity check

Syndrome
computation

Decoding
erroneous

position from
syndrome

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 33

5.4 2-D parity Checking

The 2-D (two-dimensional) parity is a technique used for protecting memories

or their blocks. In contrast to Hamming Codes, this method is not suitable for mitigating

single words of data. The idea of 2-D parity is explained in Figure 5.11. The memory is

first subdivided into blocks of known size. The size should be adjusted according

to expected rate of SEUs and memory read attempts. Every block contains an even number

of words. Such a cluster may be treated as a binary matrix, with words being its rows,

while vectors of bits of the same significance, the columns of the matrix. For every row

and column a parity bit is assigned. The even-parity scheme is used, i.e. the number of ‘1s’

of a row or column along with the parity bit is always even. The value of the parity bit is

chosen to satisfy the condition, parity generation. The even-parity can detect any odd

number of errors, but is unable to detect a double error. The simple parity is also unable

to correct any error, since there is no information available on its location. This is not

a limitation of the 2-dimensional parity. It is capable of correcting all single-bit errors

within the protected block. The method is also capable of detecting a double-bit error

within either a row or a column, but its correction is not possible. The drawback of 2-D

parity, as compared to Hamming Codes, is the inability to read the word of data and correct

it on the fly, since the parity bits must also be read. Since at least three read cycles are

necessary, read data has to be temporarily stored, resulting in jeopardizing it due to SEU.

Figure 5.11. 2-D parity and single-error correction example

Bit

Address

3 2 1 0 Row
parity

0x00 1 0 0 1 0

0x01 1 1 1 0 1

0x10 0 0 1 0 1

0x11 0 1 0 1 0

Column
parity 0 0 0 0

Bit

Address

3 2 1 0 Row
parity

0x00 1 0 0 1 0

0x01 1 1 1 0 1

0x10 0 0 0 0 1

0x11 0 1 0 1 0

Column
parity 0 0 0 0

Single error within 4x4 block

Incorrect parity
values due to error

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 34

5.5 Scrubbing

Scrubbing cannot be used as a standalone technique of mitigation. It has no

inherent error detection or correction capabilities. This technique requires redundancy

of data capable of correcting errors e.g. TMR, Hamming Codes or 2-D parity.

Other techniques, which enable error detection or correction, are well suited, too.

The general idea behind scrubbing is refreshing. It is executed periodically. The memory,

its block or other data storage entity is sequentially read, word by word. The employed

mitigation technique is used to assess whether data within read word is correct or not.

In the latter case, the error correction follows, according to the mitigation technique.

The corrected data is written back and the process continues, until whole storage space has

been swept. Scrubbing is an important technique, as it prevents errors from accumulating.

By carefully choosing and adjusting mitigation technique and the rate at which scrubbing

is executed, one can minimise the risk of encountering a non-correctable error. In this way

system stability is sustained for extended periods of time. There are drawbacks

of scrubbing, too. The resource, which is being refreshed, cannot be accessed

by the system. This requires the system to be halted if it claims the refreshed resource.

Another solution could be executing scrubbing partially, for resources not being currently

used. This, however, is not possible e.g. for memory storing program code. Therefore,

the system will suffer some loss of performance if scrubbing is employed. It is important

to state, that scrubbing itself is vulnerable to radiation, since an FSM handles it and should

be mitigated.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 35

6 Project Description
This chapter gives a description of the implemented transmission channel circuit.

The overall structure of the circuit is presented, followed by a more detailed description.

The techniques, which were employed to improve circuit’s radiation tolerance are further

described and assisted with relevant examples of code. Next, the designed hardware

platform is presented. Finally, the software for an exemplary application, namely SRAM

SEU detector, is described.

6.1 Overview

The transmission channel circuit was implemented in FPGA. As it was

mentioned in section 4.7, to achieve high flexibility, the circuit relies on a microcontroller

core. The microcontroller chosen is Microchip’s [23] PIC16C57 [24]. The Microcontroller

Unit (MCU) was significantly augmented, the details are described in section 6.2. In order

to demonstrate the functionality of the circuit, a complete communication channel was

built, with the MCU at one end, and a PC at the other. The PC functions as a monitoring

and command station. The medium chosen for transmission of signals is a full-duplex

optical fibre, however other media are also supported. In order to interface the optical

signals to the PC and meet requirements described in section 2.2, the transceiver was built,

as well. The diagram shown on Figure 6.1 depicts the structure of the complete

communication channel. The PC communicates with the MCU via serial port,

in conformance to EIA-232 protocol. The serial communication signals can be further

carried, apart from optical link, over differential EIA-485 or again EIA-232. On the MCU

side an UART is responsible for serial transmission. The EIA-232 and EIA-485 signals are

carried over 20-wire ribbon cable, together with RESET and POWER-OFF signals

and power supply. To support MCU’s re-programmability, external Flash and SRAM

modules are installed. The MCU communicates with external devices, such as DUT

(Device Under Test) by means of GPIO (General-Purpose Input/Output) ports.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 36

Figure 6.1. Detailed block diagram of the communication channel set-up

PC
Parallel Port Serial Port

Power

Supply

O
pt

ic
al

 T
X

O
pt

ic
al

 R
X

MAX232

O
pt

ic
al

 R
X

O
pt

ic
al

 T
X

Buffer

M
AX

48
5

MAX232

Power
Unit

5V
 lo

gi
c

MAX485

UART

PIC16C57-
based

MCU core SRAM

Flash

General Purpose I/O (GPIO)

MAX232

MAX485 Power
Unit

Tr
an

sc
ei

ve
r

Tr
an

sm
is

si
on

 C
h

an
n

el
 C

ci
rc

u
it

POWER-OFF RESET

20-wire
ribbon

Full-duplex
fibre optic

cable

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 37

6.2 Radiation Tolerant MCU Based on PIC16C57

The transmission channel circuit is based on the PIC16C57 microcontroller [24].

The MCU is designed in the Harvard architecture, what speeds-up program execution

and enables pipelining. The MCU core is of RISC (Reduced Instruction Set Computer)

type. There are only 33 instructions [24], most of them need one machine cycle to execute.

The CALL and GOTO instructions take two cycles to execute. The MCU has 2048-word

program memory and 128-byte register file, arranged in 4 banks (0 - 3). Due to mapping

of some registers into bank 0 and the fact that some Special Function Registers

and peripheral devices are mapped into the register file address space, the effective size

of register file is 72 bytes. This MCU has been implemented in the Actel ProAsic Plus

APA600 FPGA. The functional block diagram is presented in Figure 6.2. The great

advantage of having a flexible hardware platform, compliant with a widely supported

standard, is the ability to develop software for it, and what is more, be capable

of augmenting or changing peripheral hardware without the need to redesign the PCB.

The tools for software development, such as C or Basic compilers for the MCU, are

already present and constantly improved. The basis for developing the MCU was

description of PIC16C5 core written in VHDL. The core is published under GPL (General

Public License) on [26]. The basis core is significantly limited according to PIC16C57

specification. It is also impaired by several errors. Therefore, corrections were necessary,

before the core could be used for the transmission channel circuit. The original code was

written in VHDL (Very High Speed Integrated Circuit Hardware Description Language),

so this HDL (Hardware Description Language) was used for the description of all required

hardware, implemented in the FPGA. The following functional features of the PIC16C57

were either not present, and were added, or needed to be corrected:

• generator of MCU phases and properly operating 2-stage pipeline,

• four banks of registers in the register file,

• mapping registers with addresses 0x0 – 0xF from each bank to registers

0x0 – 0xF in bank 0,

• support for 2048-word program memory,

• assignment of status bits to their proper functions,

• addition and subtraction in ALU (Arithmetic Logic Unit),

• Timer, Prescaler and Option register.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 38

Figure 6.2. Functional block diagram of Radiation Tolerant MCU based on PIC16C57

7

SRAM

2048 x 18

Hamming
Code

Decoder

Instruction
Register

Instruction
Decoder

W

ALU

STATUS

TRIS A PORT A

PC

256-word
STACK

TMR0

PrescalerOPTION

FSR

General
Purpose

Register File

(emb. SRAM)
41 bytes

TRIS B PORT B

TRIS C PORT C

PORT D

PORT E

PORT F

PORT G

TRIS F

TRIS G
TRIS E

TRIS D

Q Phase
Generator

Master
Reset

Register File
Scrubber

Program
Memory
Scrubber

Stack
Scrubber

Code
Loader

Flash
Programmer

CRC32
Co-processor

UART

SEU
Registers

SEU
Monitor

FLASH
512k x 8

MUX/
DMUX

FLASH

Q1
Q2
Q3
Q4
Q1b

Q1,Q2,
Q3,Q4

BUSY
RUN

BUSY
RUN

 BUSY RUN

HALT

BUSY
RUN

DE RESET
SCRUBBERS RUN

Double Error

Double
Error

Double
Error

Increment

Single Error

Single
Error

 Flash
Programmer

 FLASH

 CRC32
Co-processor

I/O pins

I/O pins

I/O pins

I/O pins

I/O pins

I/O pins

I/O pins

TXD
RXD

External RESET
only

Internal
Reset

Double
Error

Signals

Single
Error

Signals

Increment

CLK/4

8 DATA BUS

8 DATA
18 ADDR

18

12

12

System
Arbiter HALT

8

LI
TE

R
AL

S

8

9 DIRECT ADDRESS

5
DIRECT RAM

ADDRESS 7

7

IN
D

IR
EC

T
AD

D
R
ES

S

17

12

Increment

13

11 8

Q3,Q4

8

11

11 ADDR
18 DATA

6 BUSY S-S

BUSY
RUN

 BUSY RUN

6 RUN S-S

8 DATA
18 ADDR

8

8

8

8

8

8

8

DOUBLE
ERROR
RESET

 SCRUBBERS RUN

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 39

The internal watchdog was not embedded due to existence of monitoring station,

which also performs the function of an external watchdog.

To further extend the functionality of the circuit, several additional components were

added. The main features of the modified MCU are summarised in Table 6.1.

Table 6.1. Summary of components of the modified MCU based on PIC16C57

Component Purpose

7 GPIO ports, 8 independent I/Os each Enables convenient communication
with DUT

256-word deep stack,
extended from 2 words

Improves reuse of code, effectively
decreasing its size

CRC32 co-processor

Computes and verifies CRC32 for blocks of
data, significantly decreasing size of code
required for accomplishing this task;
speeds-up program execution by taking-off
computational load from the MCU core

UART

Handles serial communication compliant
with EIA-232 protocol; takes-off
communication handling from the MCU
core, speeding-up program execution and
reducing code size

Code Loader After Reset or Power-On copies code from
Flash to SRAM for faster code execution

Flash programmer

Handles Flash programming; extends
programmability of PIC16C57
(the Microchip’s device is OTP)
to re-programmability

System Arbiter
Manages the MCU core and all embedded
components, which require access
to external memory

The most important requirement for the transmission channel circuit is improved radiation

tolerance. For that reason the MCU is backed by specialised components. Moreover,

to enable observability of SEUs in the MCU a monitor was also embedded.

The components are summarised in Table 6.2.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 40

Table 6.2. Summary of components necessary for improved radiation tolerance and
diagnosis of the MCU

Component Purpose

Program Memory Scrubber

Scrubs the Program Memory. If during
scrubbing a single error in the memory is
encountered, the appropriate SEU register is
incremented.

Register File Scrubber Scrubs register file
Stack Scrubber Scrubs stack

SEU Monitor
Monitors groups of components for
occurrence of SEU. Once a SEU is spotted,
the appropriate SEU register is incremented.

SEU registers
Store the number of SEUs detected in the
MCU. Content of such register is
automatically cleared by hardware after
reading.

Master Reset
Monitors for occurrence of double error in
any of the SRAM components, resets
the MCU if such error is spotted

Most relevant components are further described. Details on scrubbers and Master Reset

can be found in section 6.2.2.1. The map of register file is collected in Table 6.4.

The Status register bits have in some cases different function than in the Microchip’s

PIC16C5. These differences have no impact on compatibility with existing tools

for the MCU. The Status register bits, which have different function than original are

described in Table 6.3.

Table 6.3. Modified Status Register bits

Bit Function Original function

3

Scrubbers Run flag.
Set by hardware every time the scrubbers were run.
Cleared by software.
Enables software to check if scrubbers were run.

Power down. Used in
conjunction with SLEEP
instruction, which is not
implemented.

7

Double Error Reset flag.
Set by hardware prior to performing soft reset caused
by double error in SRAM components.
Cleared by software.
Enables software to determine the cause of last
restart:
‘1’ – double error caused
‘0’ – power-on or normal reset

Not used

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 41

Table 6.4. MCU’s register file map

Address Register name Component Description
0x00 Indirect
0x01 TMR0
0x02 PCL
0x03 STATUS
0x04 FSR
0x05 PORTA
0x06 PORTB
0x07 PORTC

None [24]

0x51 SEU_RS_SS SEU detected in Program Memory Scrubber
or Stack Scrubber

0x52 SEU_A_RS_CL SEU detected in System Arbiter, Register
File Scrubber or Code Loader

0x53 SEU_CRC32

SEU register

SEU detected in CRC32 co-processor

0x54 CRC32_GEN CRC32
co-processor Input/Output register

0x55 FP_CMD_STAT
0x56 FP_BLS_L
0x57 FP_BLS_M
0x58 FP_BLS_H
0x59 FP_BA_LN_L
0x5A FP_BA_LN_H
0x5B FP_BUFF

Flash
programmer Table 6.10

0x5C PORTD
0x5D PORTE
0x5E PORTF
0x5F PORTG

I/O port Additional I/O ports

0x70 TRISD
0x71 TRISE
0x72 TRISF
0x73 TRISG

Tri-state control

Control the mode of each I/O pin (either
input or output), depending on the stored
value: ‘1’ – input; ‘0’ – output (compliant

with PIC16C5)

0x74 SEU_IO_TRIS SEU detected in I/O ports’ registers or their
TRIS registers

0x75 SEU_PC_IR_STACK SEU detected in Program Counter,
Instruction Register or Stack

0x76 SEU_W_FSR_STAT SEU detected in W register, FSR register or
Status register

0x77 SEU_FILE_REG SEU detected in Register File
0x78 SEU_PROG_MEM SEU detected in Program Memory
0x79 SEU_UART_RX SEU detected in UART receiver
0x7A SEU_UART_TX SEU detected in UART transmitter
0x7B SEU_UART_TX_FIFO SEU detected in UART transmitter FIFO
0x7C SEU_UART_RX_FIFO SEU detected in UART receiver FIFO
0x7D SEU_OTHER

SEU register

SEU detected in other components
0x7E UART_DATA Data register
0x7F UART_STAT UART Status/configuration register

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 42

The modified MCU has two modes of operation:

• Software Upgrade Mode,

• Normal Mode.

In the Software Upgrade Mode no special protection mechanisms, apart from TMR

and Hamming Codes, are active, but programming external Flash memory is enabled.

On the contrary, in the Normal Mode, all the protection mechanisms are active, but Flash

programming is disabled for safety reasons. In the implemented MCU, the mode is

selected by a dedicated jumper (section 6.3.1). In each mode a different program is

executed. The System Arbiter recognizes the selected mode and appropriately runs Code

Loader. Both programs are stored in Flash memory. Table 6.5 shows the organisation

of data in the Flash.

Table 6.5. Organisation of data in the external Flash memory

Sector Start Address Content Size [words / bytes]

0 0x00000

“Firmware” – program for
downloading new software and
programming it into the Flash.
Protected by Hamming Codes

2048 / 6144

1 0x10000

The “normal” program. Any code
placed at this location cannot

program the Flash. When this code is
executed, it is fully protected with all
available mechanisms. Protected by

Hamming Codes

2048 / 6144

7 0x70000 Pre-computed table used by CRC32
co-processor. 256 / 1024

CRC32 co-processor

The function of CRC32 co-processor is to calculate the 32-bit Cyclic

Redundancy Check (CRC32) value for a block of data. CRC32 is widely used in data

storage and transmission, as it enables to verify whether a block of data is error-free.

It does not enable to correct errors, merely detect them. In this project, the CRC32 was

used for reliable data transmission. The method for calculating the CRC32 is table-based.

The table with pre-computed values is stored in external Flash memory, sector 7.

It occupies 1024 bytes, starting from the first address – each table entry is 4-bytes long,

there are 256 entries. The implemented method of calculating CRC32 is essentially

the same, as one used in RadMon [4]. The CRC32 for a block of data is computed

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 43

byte-wise, i.e. for each byte of data the CRC32 value is updated and taken as initial

for the next byte, until all bytes were processed. The final result is the last CRC32 value.

Listing 6.1 is a piece of code, which illustrates this method.

Listing 6.1. Method for calculating CRC32 – code in C++
crc_accum = 0xdeadbeef;
for (j = 0; j < data_blk_size; j++){

i = (static_cast<int>(crc_accum >> 24) ^ *data_blk_ptr++) & 0xff;
crc_accum = (crc_accum << 8) ^ crc_table[i];

}
return crc_accum;

There is one register in the address space of register file, dedicated for the co-processor

(address 0x54, i.e. bank 2, register 0x14). Upon reset, the CRC32 value is initialised with

value 0xDEADBEEF. To calculate CRC32 for a block of data, consecutive bytes must be

written to the register. A rule must be followed, when writing to CRC32 co-processor.

In assembly, every two write attempts must be separated by at least one another

instruction. Properly writing the bytes is the responsibility of software. After whole data

block has been written, the computed CRC32 value can be read by software from

the CRC32 register. To properly read computed CRC32, the read instruction may not

directly follow the last write one, moreover, two read instructions may not follow each

other directly. Since the register is 8-bits wide, the four bytes of CRC32 are available

in following sequence: byte3, byte2, byte1, byte0. Thus, the resultant CRC32 is

0xbyte3byte2byte1byte0. The co-processor provides the CRC32 bytes in this order,

for convenience. When transmitting a frame, the frame is sent byte by byte, at the same

time the CRC32 for it is updated. Once frame data has been transmitted, the CRC32

follows. The bytes should be transmitted in byte3, byte2, byte1, byte0 sequence.

This simplifies CRC32 verification on the receiver side. The whole received frame

with the CRC32 bytes is subject to CRC32 calculation. If the result is 0x00000000,

the frame was received correctly [27].

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 44

UART

The Universal Asynchronous Receiver Transmitter (UART) handles

transmission and reception of serial data in compliance with the EIA-232 protocol.

It enables full-duplex communication. The component supports only 8-N-1 signalling,

which means: every frame contains 8 bits of data, there is no parity checking, there is one

stop bit. The UART supports eight selectable baud rates, namely: 115200 bps, 57600 bps,

38400 bps, 28800 bps, 19200 bps, 9600 bps (default, selected upon reset), 1200 bps

and 600 bps. The input RXD signal is sampled sixteen times per bit. The receiver has

one-byte buffer. It manifests its status by means of following flags (active high): DREADY

(a byte has been received), FRM_ERR (a byte has been received, but framing error

occurred – there was no stop bit). The transmitter is non-buffered. Its status is manifested

by the flag BUSY (active high), active when a byte is being transmitted. Due to lack

of support for interrupts in the MCU, the receiver is further buffered by a 256-byte FIFO

(First Input First Output), implemented in SRAM embedded in the FPGA. The same FIFO

holds the value of framing error flag, corresponding to each byte stored in the FIFO.

Dedicated FSM handles reading data and the flag from receiver and storing it in the FIFO.

The MCU reads directly from the receiver FIFO. The transmitter is buffered by 256-byte

FIFO at the input. The MCU writes data directly to the FIFO, not the transmitter.

Dedicated FSM handles reading data from FIFO and commanding transmitter to send it,

once the component is idle. Having a FIFO at the input to the transmitter speeds-up

the process of sending data blocks, since the CPU does need to wait while transmitter

sends a byte. This is true if the FIFO is not filled-up with data, which may occur

for the slowest baud rates. The data register of the UART is mapped to register file address

space. The value of the address is 0x7E, i.e. bank 3, register 0x1E. When MCU reads

from the address, the head of the receiver FIFO is read, i.e. the oldest byte in the FIFO.

When MCU writes to the address, the data is written to the transmitter FIFO. The status

of UART is available for reading at address 0x7F, i.e. bank 3, register 0x1F. Reading

the status returns current baud rate settings and following flags: receiver FIFO full, data

in receiver FIFO available, transmitter FIFO full, framing error for last read byte. Writing

the status register, which becomes configuration register for that time, is only necessary

to change the baud rate. Table 6.6 gives a detailed description of the UART’s status

register, while Table 6.7 lists supported baud rate values of configuration register.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 45

Table 6.6. Detailed description of UART Status Register

Bit
Number Name Meaning Reset

value

0 F_ERROR '1' when last read byte was received with framing error,
'0' otherwise (updated every new byte is read by MCU) 0

1 TX_BUSY '1' when transmitter FIFO is full – no data should be
written, '0' otherwise 0

2 RX_READY '1' when receiver FIFO is not empty – byte(s) is/are
available for reading, ‘0’ otherwise 0

3 RX_FULL '1' when receiver FIFO is filled up with data in at least
75% 0

4 BR0 baud rate select bit 0 0
5 BR1 baud rate select bit 1 1
6 BR2 baud rate select bit 2 0
7 - not used, read as ‘0’ 0

Table 6.7. Baud rates supported by UART

Baud rate [bps] Baud rate select bits
(BR2, BR1, BR0)

Configuration register
value

600 (0,0,0) 0x00
1200 (0,0,1) 0x10
9600 (0,1,0) 0x20
19200 (0,1,1) 0x30
28800 (1,0,0) 0x40
38400 (1,0,1) 0x50
57600 (1,1,0) 0x60
115200 (1,1,1) 0x70

Code Loader

The component is responsible for copying executable code from external

non-volatile Flash memory to external volatile SRAM memory. Depending on the mode

of MCU operation, the code is copied either from the 0th sector or the 1st sector.

After a word is assembled and written in SRAM, the data is read back for verification.

If verification succeeds, next address is processed, if not, another attempt is made,

until verification passes successfully. Code Loader is run automatically by System Arbiter

after a Power-On or Reset. While it is copying code, it sets BUSY flag.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 46

Flash Programmer

The Flash Programmer is used for programming the external Flash memory.

The component has been designed to extend the MCU with capability to be

re-programmed. The original PIC16C57 is OTP, hence there are no dedicated instructions

for accessing program memory, particularly writing it. The external Flash is not available

in the CPU address space. The Flash Programmer is in fact an embedded device,

which could be used in other designs, as well. The programmer comprises two

sub-components: 7 kB data buffer and programmer FSM. The data buffer can be accessed

by both MCU and the FSM, with restrictions. The MCU is only allowed to write

to the buffer, the FSM can only read it. The Flash Programmer supports three operations:

• Erasing the whole Flash - Chip Erase,

• Erasing a particular sector of the Flash – Sector Erase,

• Programming the Flash from a given starting address, with block of data

of given length (the length of the block may not be larger

than 7 kB - the size of the data buffer).

The binary representation of commands is summarised in Table 6.8.

Table 6.8. Summary of commands supported by Flash Programmer

Command Binary representation Parameters
Chip Erase 0001 0000 (0x10) None

Sector Erase 0010 0sss (0x2S) Sector number “sss” (0 – 7)
to be erased

Program 0011 0000 (0x30) None

Once programming is complete, the status of the operation can be read from the Flash

Programmer’s status register – Table 6.9.

Table 6.9. Possible values for status of Program command

Status value Meaning
0x00 Programming completed successfully

0x01
The Flash failed to be programmed. This may be caused by an
attempt to program a non-erased location or a malfunction of

Flash’s embedded programming circuitry

0x02
The Flash was programmed, but verification of programmed data
failed, i.e. the data read from Flash did not match the one stored in

the buffer

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 47

The MCU communicates with the Flash Programmer through registers, mapped

in the address space of the register file. The registers are collected in Table 6.10. To issue

a command, the MCU has to write proper value to the Command/Status register. Writing

data to the buffer is more complicated. The first step is to set proper address in the buffer,

by setting Buffer Address Low/High appropriately. Next, the MCU must write the data

to the Buffer Data Input register. Before the Program command is issued, software must

ensure that:

• proper start address is written in the Start Address Low, Start Address

Middle and Start Address High – the addresses determine the location

in Flash, from which programming will commence,

• proper length of the data block stored in the buffer is written in the Buffer

Address Low/Length Low and Buffer Address High/Length High registers.

No wait routines need to be implemented in software while Flash Programmer operates.

The System Arbiter halts the MCU during this period, i.e. the software execution is paused.

Table 6.10. Flash Programmer registers

Address Name Function
0x55

(bank 2, register 0x15) Command/Status Writing command or reading status

0x56
(bank 2, register 0x16) Start Address Low Low byte of the starting address in Flash

for programming
0x57

(bank 2, register 0x17)
Start Address

Middle
Middle byte of the starting address in Flash

for programming
0x58

(bank 2, register 0x18) Start Address High High byte of the starting address in Flash
for programming

0x59
(bank 2, register 0x19)

Buffer Address Low
/ Length Low

Low byte of buffer address, when MCU
writes data to the buffer; low byte of data
block length, when Program command is

issued

0x5A
(bank 2, register 0x1A)

Buffer Address
High

/ Length High

High byte of buffer address, when MCU
writes data to the buffer; high byte of data
block length, when Program command is

issued
0x5B

(bank 2, register 0x1B) Buffer Data Input Writing data to the buffer at address
specified in above buffer address registers

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 48

System Arbiter

The System Arbiter manages the MCU and other components comprising

the transmission channel circuit. It grants or denies access to external memory bus to Code

Loader, CRC32 Co-processor, Flash Programmer and MCU. When the MCU is

in Software Upgrade mode, System Arbiter switches off the scrubbers. When MCU is

in Normal mode, System Arbiter never grants access to the external memory bus to Flash

Programmer, but periodically runs scrubbers. The frequency of running scrubbers is

hard-coded in VHDL and set to 1 250 000 instruction cycles. Since the MCU is clocked

at 5 MHz, scrubbers are started once every 1 second. All three scrubbers are run in parallel,

as they scrub different resources.

6.2.2 Techniques Employed for SEU Mitigation

This section gives insight into the techniques, which were used to mitigate

the effects of SEU. Techniques for components based on SRAM, both embedded in the

FPGA and external are described separately from those applied to sequential components,

which were implemented in the FPGA. The only non-mitigated component is the Flash

Programmer, since its usage is disabled in the radiation environment for safety reasons.

6.2.2.1 SRAM Components

There are a few components in the transmission channel circuit, which rely

on SRAM modules. The following rely on SRAM embedded in the FPGA: stack, UART

receiver FIFO, UART transmitter FIFO, register file and Flash Programmer buffer.

The program memory is located in external SRAM. The Flash Programmer is not used

in the Normal mode of MCU, which is dedicated for radiation environment. Hence,

the buffer is not mitigated.

In chapter 5 various techniques for protecting memory were described.

In the project, Hamming Codes were chosen to protect SRAM components. They require

greater redundancy of data than 2-D Parity, when it comes to mitigating blocks of data,

but are more suitable for mitigating single words. A short summary of Hamming Codes

employed for protection of the earlier mentioned components is given in Table 6.11. Every

code has the double error detection capability. This capability is made use of by the Master

Reset component. This component monitors the double error indication output of every

Hamming Code decoder. If a double error is spotted, a soft restart of the system is

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 49

performed. Any double error is not correctable by Hamming Code. Therefore, the system

enters an erroneous state, from which it cannot recover by means other restart.

The program memory is monitored on falling edge of phase Q4, when an instruction is

latched into the Instruction Register. The register file is monitored for double error

in the middle of phase Q4, on when result of an ALU operation is stored. The stack is

monitored for double errors if address is popped from it. The error will cause restart if it is

spotted in the middle of phase Q4, when popped address is latched into the Program

Counter. Every restart performed by the Master Reset is preceded with setting Double

Error Reset flag in the Status Register. The UART FIFOs are not monitored for double

errors, since existence of one does not result in malfunction of the system, merely

communication error, which is easily detectable due to CRC32 and recoverable

by retransmission.

Table 6.11. Hamming Codes employed for protecting SRAM components

Component Hamming Code
Program Memory (18, 12)

Register File (13, 8)
Stack (16, 11)

UART transmitter FIFO (13, 8)
UART receiver FIFO (14, 9)

The redundancy in the form of Hamming Codes has to be embedded in the description

of the design. There is no algorithm for automatic or semi-automatic generation of such

redundancy. The main reason for this is the way embedded SRAM components are

instantiated in the design description for the ProAsic Plus FPGA family. It is best to let

the instantiation be handled by ACTGen tool, a part of Libero IDE. In the initial phase

of the process the required width of the SRAM block must be entered. The width

corresponds to the length n of a (n, k) Hamming Code. Having such SRAM block, the only

components left are the Hamming Code encoder at the input to the block and Hamming

Code decoder at the output, suitable for the required code. These can be automatically

generated by a piece of software, written for this occasion.

The Program Memory is, in this design, external to FPGA. It stores program code

protected by (18, 12) Hamming Code. Every protected instruction is one 18-bit word.

The process of program code protection takes place before the code is programmed

into Flash. After a program is written, compiled and linked, an Intel HEX File or Binary

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 50

file is generated. If only the former is available, it should be converted into Binary file.

The Binary file is simply a raw image of Program Memory with the program code placed

in it. The next step is to read every 12-bit instruction from the Binary file and protect it

with Hamming code. This task is performed by a piece of software running on PC

under MS-DOS or Windows. The result is a file with image of memory with protected

program code. The file must be downloaded and programmed into Flash memory

in Software Upgrade mode. Both the software upgrading code and the normal code must

be protected by Hamming Code, otherwise the program code will not be understood

by the MCU. During the “firmware” upgrade process, there exists a risk, that the operation

will be interrupted while programming of flash memory is in progress. The vulnerable time

is very short – less than 10 seconds. However, a power failure during this period will

render the MCU incapable of being programmed in system. In such a case the flash module

needs to be programmed externally. After correct software upgrading code is written,

the MCU will re-gain its in-system programmability.

For data, which may be stored for extended period of time in SRAM, before being read

by the MCU, such as data stored in register file or stack, simple protection by Hamming

Codes may appear to be insufficient. The errors originating from SEUs will accumulate

with time. It is probable, that a word will be affected by SEU more than once, rendering

the data non-correctable. The result would be system reset or failure. To counteract

this effect scrubbing needs to be employed. As it was described in section 5.5, scrubbing

means periodically reading data from memory, correcting errors if any occurred,

and writing back the data. Scrubbing is employed for protection of register file, stack

and program memory. The described in section 6.2 System Arbiter is responsible

for starting scrubbers periodically. Scrubbing of program memory is essential, as it cannot

be written by the MCU, merely read. The UART’s FIFOs are not scrubbed. Data is not

stored in the components for extended periods of time, therefore the threat of multiple

errors by accumulation is not significant. Moreover, if multiple errors occurred

within a byte, they would not impair system stability as it was mentioned earlier

in this section.

There is a drawback coming from scrubbing. Since it operates on memory components,

which are used by MCU, the latter has to be halted during operation of scrubbers.

This results in decreased MIPS value of the MCU, slower program execution. The time

required by scrubbers to complete one pass is the time needed by Program Memory

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 51

Scrubber to scrub the program memory. This results from the fact that all scrubbers are run

in parallel, and the mentioned scrubber refreshes the largest memory in the system,

hence the others complete their tasks earlier. Every scrubber is clocked at 5 MHz.

The Program Memory Scrubber must read, correct and write back 2048 words.

The scrubber FSM has six states, and it will enter all six in the worst case, which is

when every word is in error. The time required to scrub all 2048 words under such

conditions is:

ms46.20024576.010
5
120486 6 ==⋅⋅⋅= −

St

Now it is possible to compute the effective MIPS value, taking into account that scrubbers

are run every second, and knowing that it takes 800 ns to execute one instruction.

MIPS1.2471246925
10800

99754.01
9 ==

⋅
=

−
= −

inst

s
eff t

t
MIPS

For comparison, the nominal value of MIPS for this MCU is 1.25 (5 MHz clock,

every instruction takes four clock cycles to execute). Therefore, scrubbing causes decrease

in the speed of computations by 0.25% - unnoticeably.

6.2.2.2 Sequential Components

The technique employed for protecting sequential components, such as FSMs

or others, which rely on storing information in distributed memory elements

– i.e. flip-flops – is TMR (Triple Modular Redundancy). As described in section 5.2

the TMR scheme enables to correct single errors on the level of tripled module. Since

the transmission channel circuit is meant to facilitate communication, possibly with device

being subject to tests, it should operate without human intervention. For that reason it is

wise to apply the TMR scheme on the lowest possible level, according to [1]. Since it is

impossible to alter the structure of logic tiles in the FPGA, the lowest possible level

attainable from HDL is a single logic module. In the design, every D-type flip-flop is

tripled. The three outputs are fed to the inputs of majority voting circuit (see Figure 6.3).

The majority voting circuit outputs the value indicated by at least two flip-flops.

Since there are only two logic levels, either ‘0’ or ‘1’, possible at the output of each

flip-flop, it is always feasible to decide, i.e. choose the majority. Obviously, it may happen

that an error will be double, then TMR makes a wrong decision, imposed by double error.

Probability of such situation is, however, safely small.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 52

q

un2_q

un4_q

Q

Q

Q2

Q1

Q0

Figure 6.3. a) Glitch-free majority voting circuit for TMR scheme applied to single
flip-flops; b) The truth table for voter function

The voting circuit is glitch-free, which means that there are no transient spikes

at the output whenever one of the inputs changes. This is an important issue, since such

glitches could be potentially latched into following flip-flop stages, resulting in arbitrary

errors. The radiation tolerance or immunity of the majority voter is an important issue.

The circuit is not protected against the influence of radiation. The SEU effect poses no

threat on proper operation of the circuit, since the voter is purely combinatorial. The threat

for such circuit is the SET effect, as described in section 3.1.2. This effect is mainly caused

by heavy energetic ions. In the environment of the ILC or LINAC II accelerator, such ions

are not expected at all. Moreover, the area occupied by a single voter is relatively small.

It occupies only two cells in the FPGA. For these reasons the intrinsic radiation tolerance

of the voter is accepted as sufficient. On the other hand, it is impossible to design a 100%

radiation immune device on the level of HDL.

Complete tripled D-type flip-flop is depicted in Figure 6.4.

Q0 Q1 Q2 Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

a) b)

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 53

DFFS

ff0

DFFS

ff1

DFFS

ff2

q

un2_q

un4_qun4_e

Q

un11_e un6_e e

E

Q

SET

D
CLK

SET
CLK
D

Q

SET
CLK
D

Q

SET
CLK
D

Q

Figure 6.4. D-type flip-flop mitigated with TMR scheme; Q output driven by majority
voting circuit; single error detection circuit added – output E.

The complete TMR D-type flip-flop is extended with error indication output.

Whenever one of the sub flip-flops is altered by SEU, the single error detection output is

set. This may provide information on the level of vulnerability of distributed memory

elements of FPGA to SEU. Due to the fact that the error detecting circuit is sensitive

to changes on every input separately, it is prone to produce glitches at the output.

The problem is particularly visible for large designs, where delays of output signals

from the sub flip-flops are unequal due to differences in routing lengths. In such a case

the error detecting circuit produces “false alarms”. The glitches settle as soon as all inputs

are stable. Such problems were encountered as described in chapter 7.

The algorithm for applying the TMR scheme for every flip-flop is described in section

6.2.3.

The purpose of employing TMR scheme to sequential components is improving their

reliability in the presence of radiation causing bit flips. As it was described in section 4.6,

SEU induced errors may put an FSM into undefined state, an infinite loop or a halt.

Every such situation can be escaped from without redundancy. It will not allow an FSM

to operate with higher reliability for extended time in the presence of radiation, but will

enable automatic soft restarting of the FSM, thus reducing or eliminating the need

of supervisory. It is necessary to define all possible state transitions, and design the FSM

in such a manner, that from every unused state a path will lead to the initial one.

There also exist special encoding styles of the states. An encoding of a state is its binary

representation. The so-called “one-hot” encoding is most reliable. In this scheme every

state is represented as vector of ‘0s’ with only single ‘1’, e.g. “010”, “100”. Every state

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 54

of an FSM is encoded with vector of the same length, and the single ‘1’ is placed

in different location for each state. Therefore every single-bit error and some multiple-bit

ones are spotted, as an undefined state and the FSM is brought to the initial state.

This happens provided that the result of the errors does not yield a valid state description.

Once a register is mitigated with TMR, it should also be refreshed periodically, not to let

errors accumulate. This, however, is done automatically. The clock is always supplied

to the register’s flip-flops, it is never gated or disconnected (see Figure 6.5).

If the condition for writing a new value to the register is not met, the value from output is

written back on every active clock edge. This provides sufficient rate of refreshing

register’s contents.

inp_pad_0_.G_1

inp_pad_1_.G_1

inp_pad_2_.G_1

inp_pad_3_.G_1

outp_pad_0_.G_1

outp_pad_1_.G_1

outp_pad_2_.G_1

outp_pad_3_.G_1
rst_pad.G_1

we_pad.G_1

outp_3_.IQ

R

outp_2_.IQ

R

outp_1_.IQ

R

outp_0_.IQ

R

outp_1.G_3

0

1

outp_2.G_3

0

1

outp_3.G_3

0

1

outp_4.G_3

0

1

clk_pad.G_1

we

rst

clk

outp[3:0][3:0]

inp[3:0] [3:0] [0][0]

[1][1]

[2][2]

[3][3]

[0][0]

[1][1]

[2][2]

[3][3]

[3]QD

[2]QD

[1]QD

[0]QD

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

Figure 6.5. 4-bit register rising-edge active with asynchronous reset and synchronous
write enable

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 55

6.2.3 Modified FPGA Design Flow for Improved Radiation Tolerance

with TMR

This section gives a detailed description of the algorithm developed for applying

TMR scheme for D-type flip-flops in the Actel’s ProAsic Plus devices. The method can be

applied to any device from this family. Modifications would be necessary to accommodate

the technique for other device families, but this was not verified. For employing this

scheme and better understanding its description, it is advised to read [28].

The starting point in applying the TMR scheme is description of a component in VHDL,

such as one presented in Listing 6.2, describing a simple 3-bit up counter

with asynchronous reset.

Listing 6.2. Exemplary 3-bit up counter described in VHDL
-- counter_3bit.vhd
-- A simple 3 bit up counter with asynchronous reset active low.
-- Counts on positive edge of the clock.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity Counter_3bit is
port(
 RST, CLK : in std_logic; -- asynchronous reset and clock inputs
 Q : out std_logic_vector(2 downto 0) -- the count value in binary
);
end entity Counter_3bit;

architecture Behavioural of Counter_3bit is
signal count : integer range 0 to 7; -- signal storing the count value
begin
 FSM : process (RST, CLK) is –- the counter FSM
 begin
 if RST = '0' then –- asynchronous reset active low
 count <= 0;
 elsif rising_edge(CLK) then –- count up on rising edge of CLK
 if count = 7 then -– check range for behavioural simulation
 count <= 0; -- roll-over
 else
 count <= count + 1; -- count up
 end if;
 end if;
 end process FSM;
 Q <= conv_std_logic_vector(count, 3); -- convert integer into binary

end architecture Behavioural;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 56

The 3-bit counter is interpreted on RTL (Register Transfer Logic) level as shown in Figure

6.6.

un12_count[30:32]
+

count[2:0]

R
Q[2:0][2:0]

CLK

RST

[2:0]
[30:32]

1
[2:0]Q[2:0][30:32] D[2:0]

Figure 6.6. RTL schematic of the 3-bit counter

It is clearly visible, that the count value is stored in a register (3-bit register), which will be

implemented in the distributed D-type flip-flops.

The next step, after assuring that counter works properly in simulation, is to synthesize

the component. The process of synthesis is handled by dedicated tools. It follows

the process of compilation, which transforms every description into RTL description.

The RTL description is then used as a prerequisite for the synthesis process. During

synthesis the RTL is mapped to the resources available in a particular FPGA device [28].

Therefore, the synthesis results in a netlist, which can be either an industry standard EDIF

netlist or a structural VHDL description. The VHDL description is much more

human-readable and can be easily modified. Listing 6.3 shows a VHDL netlist

after synthesis of the 3-bit counter. Further actions are less tedious if the synthesis tool

does not insert I/O pads into the netlist automatically. Such feature can be switched-off,

e.g. in Synplify or Synplify Pro, which comes with Libero IDE following has to be done

to switch the I/O insertion off: open Project -> Implementation Options –> Device

and make sure that the Disable I/O Insertion checkbox is checked.

Listing 6.3. VHDL netlist of the 3-bit counter
library ieee;
use ieee.std_logic_1164.all;
library APA; -- library with components (various configurations of a

-- logic tile, aka. CLB) specific for ProAsic Plus

entity Counter_3bit is
 port(Q : out std_logic_vector(2 downto 0); RST, CLK : in
 std_logic); -- I/O definition
end Counter_3bit;

architecture DEF_ARCH of Counter_3bit is

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 57

Listing 6.3 (cont.)
-- Declaration of components specific for the ProAsic Plus architecture
component XOR2FT
 port(A, B : in std_logic; Y : out std_logic);
 end component;

 component DFFC
 port(CLK, D, CLR : in std_logic; Q : out std_logic);
 end component;
 component PWR
 port(Y : out std_logic);
 end component;
 component INV
 port(A : in std_logic; Y : out std_logic);
 end component;
 component NAND2
 port(A, B : in std_logic; Y : out std_logic);
 end component;
 component XOR2
 port(A, B : in std_logic; Y : out std_logic);
 end component;
 component GND
 port(Y : out std_logic);
 end component;
-- declaration of signals
 signal \count[0]_net_1\, \count[1]_net_1\, \count[2]_net_1\,
 \un12_count_1.N_9_i_i_0\, CO2_0_o2_n, RST_i_0,
 \count_i_0[0]\, SUM1_0_x2_n, \VCC\, \GND\ : std_logic;

begin

 Q(2) <= \count[2]_net_1\;
 Q(1) <= \count[1]_net_1\;
 Q(0) <= \count[0]_net_1\;

 un12_count_1_SUM2_0_x2 : XOR2FT –- component instatiation

 port map(A => \count[2]_net_1\, B => CO2_0_o2_n, Y =>
 \un12_count_1.N_9_i_i_0\);

 \count[1]\ : DFFC –- a D-type flip-flop
 port map(CLK => CLK, D => SUM1_0_x2_n, CLR => RST_i_0, Q
 => \count[1]_net_1\);

 PWR_i : PWR
 port map(Y => \VCC\);

 \count_i[2]\ : INV
 port map(A => RST, Y => RST_i_0);
 un12_count_1_CO2_0_o2 : NAND2
 port map(A => \count[0]_net_1\, B => \count[1]_net_1\, Y
 => CO2_0_o2_n);

 \count_i[0]\ : INV
 port map(A => \count[0]_net_1\, Y => \count_i_0[0]\);

 \count[0]\ : DFFC –- a D-type flip-flop
 port map(CLK => CLK, D => \count_i_0[0]\, CLR => RST_i_0, Q
 => \count[0]_net_1\);

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 58

 Listing 6.3 (cont.)
 un12_count_1_SUM1_0_x2 : XOR2
 port map(A => \count[0]_net_1\, B => \count[1]_net_1\, Y
 => SUM1_0_x2_n);

 GND_i : GND
 port map(Y => \GND\);
 \count[2]\ : DFFC –- a D-type flip-flop
 port map(CLK => CLK, D => \un12_count_1.N_9_i_i_0\, CLR =>
 RST_i_0, Q => \count[2]_net_1\);

end DEF_ARCH;

To mitigate the three flip-flops, which store the count value, with the TMR scheme,

processing of the netlist is required and further described.

The GND and PWR components should be removed. They are a means of introducing

constant ‘0’ and ‘1’ respectively, thus used for tying signals or outputs permanently to ‘0’

or ‘1’. If in a design a signal or output is permanently tied to ‘0’ or ‘1’, it will be connected

to /GND/ or /VCC/ signal, respectively. Those signals are outputs from the two above

components. Therefore, after removing the components, the mentioned signal or output

must be explicitly assigned either ‘0’ or ‘1’.

After removal of GND and PWR components, netlist is ready for the proper TMR

processing. At first, every D-type flip-flop component must be substituted by its TMR

equivalent. The set of TMR flip-flops has been prepared during implementation

of the project. In ProAsic Plus, there are following types of D-type flip-flops [28]:

• DFF

• DFFC

• DFFS

• DFFB

• DFFL

• DFFLC

• DFFLS

• DFFLB

• DFFI

• DFFCI

• DFFSI

• DFFBI

• DFFLI

• DFFLCI

• DFFLSI

• DFFLB

The “DFF” is the simplest D-type flip-flop rising edge active. If “DFF” is followed by “L”,

it means the flip-flop is falling edge active. The letter “C” means that the flip-flop

possesses an asynchronous CLEAR input, active high; “S” stands for asynchronous SET

active high, and “B” designates that the flip-flop has both CLEAR and SET inputs,

both asynchronous and active high. Finally, if an “I” is appended at the tail, the output

from the flip-flop is inverted. Latches are neither described nor considered in the TMR

scheme, as well designed synchronous system should not involve them. However,

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 59

if needed, should be mitigated in exactly the same manner as flip-flops. For every flip-flop

of the ProAsic Plus architecture a TMR counterpart has been designed, which differs

in two respects from the basic version. First, the name of every TMR flip-flop starts

with “TMR_” and next, one of the enumerated character sets follows. For example, a TMR

counterpart of a rising edge flip-flop with asynchronous CLEAR is TMR_DFFC.

The second difference between the two flip-flop families is the interface. The TMR

flip-flops have an additional diagnostic output, which indicates whether an error has been

spotted in any of the sub flip-flops. This output may or may not be used, it is the matter

of design requirements. If information on SEU in FPGA flip-flops is needed, the output

will be used, on the cost of more resources consumed. If only mitigation is required, no

information on SEU is necessary, the output may be left unused. In the latter case fewer

resources should be allocated to the design, as the synthesis tool should automatically

remove some unused gates.

To mitigate a flip-flop the following steps must be taken. First, every DFF* component

declaration must be substituted by TMR_DFF* declaration, as shown in Listing 6.4.

Listing 6.4. Substitution of DFF* component declarations with their TMR counterparts
 component DFFC
 port(CLK, D, CLR : in std_logic; Q : out std_logic);
 end component;

 component TMR_DFFC
 port(CLK, D, CLR : in std_logic; Q, E : out std_logic);
 end component;

The next step is to change every instantiation of DFF* component into instantiation of

TMR_DFF* component, as shown in Listing 6.5.

Listing 6.5. Changing instantiation of DFF* into instantiation of TMR_DFF*
 \count[0]\ : DFFC
 port map(CLK => CLK, D => \count_i_0[0]\, CLR => RST_i_0, Q
 => \count[0]_net_1\);

 \count[0]\ : TMR_DFFC
 port map(CLK => CLK, D => \count_i_0[0]\, CLR => RST_i_0, Q
 => \count[0]_net_1\, E => seu_count_0);

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 60

In the example of Listing 6.5 the single error detection output has been used,

and connected to signal “seu_count_0”. If the single error detection outputs are used,

the respective signals must be declared in the signal declaration section – see Listing 6.3.

The single error detection signals from all flip-flops of a component may be propagated

to its additional output(s) in any desired manner. One must only remember to add

the needed outputs to the entity declaration – see Listing 6.3. In this project, for every

component the indications were “or-ed” and propagated as single error signal for the whole

component. Having completed the described steps, one should arrive to a netlist,

describing 3-bit counter mitigated by TMR, as shown in Listing 6.6.

Listing 6.6. The netlist of a 3-bit counter mitigated with TMR
-- tmr_counter_3bit.vhd
-- The 3-bit counter mitigated with TMR
-- Additional output (SE) was added to propagate the single error
-- indications
library ieee;
use ieee.std_logic_1164.all;
library APA;

entity TMR_Counter_3bit is
 port(Q, SE : out std_logic_vector(2 downto 0); RST, CLK : in
 std_logic);
end TMR_Counter_3bit;

architecture TMR_DEF_ARCH of TMR_Counter_3bit is
 component XOR2FT
 port(A, B : in std_logic; Y : out std_logic);
 end component;

 component TMR_DFFC
 port(CLK, D, CLR : in std_logic; Q, E : out std_logic);
 end component;

 component INV
 port(A : in std_logic; Y : out std_logic);
 end component;

component NAND2
 port(A, B : in std_logic; Y : out std_logic);
 end component;
 component XOR2
 port(A, B : in std_logic; Y : out std_logic);
 end component;

 signal \count[0]_net_1\, \count[1]_net_1\, \count[2]_net_1\,
 \un12_count_1.N_9_i_i_0\, CO2_0_o2_n, RST_i_0,
 \count_i_0[0]\, SUM1_0_x2_n: std_logic;

-- Single error detection signals
 signal seu_count_0. seu_count_1, seu_count_2 : std_logic;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 61

Listing 6.6 (cont.)
begin
 Q(2) <= \count[2]_net_1\;
 Q(1) <= \count[1]_net_1\;
 Q(0) <= \count[0]_net_1\;

 un12_count_1_SUM2_0_x2 : XOR2FT
 port map(A => \count[2]_net_1\, B => CO2_0_o2_n, Y =>
 \un12_count_1.N_9_i_i_0\);

 \count[1]\ : TMR_DFFC
 port map(CLK => CLK, D => SUM1_0_x2_n, CLR => RST_i_0, Q
 => \count[1]_net_1\, E => seu_count_1);

 \count_i[2]\ : INV
 port map(A => RST, Y => RST_i_0);

 un12_count_1_CO2_0_o2 : NAND2
 port map(A => \count[0]_net_1\, B => \count[1]_net_1\, Y
 => CO2_0_o2_n);

 \count_i[0]\ : INV
 port map(A => \count[0]_net_1\, Y => \count_i_0[0]\);

 \count[0]\ : TMR_DFFC
 port map(CLK => CLK, D => \count_i_0[0]\, CLR => RST_i_0, Q
 => \count[0]_net_1\, E => seu_count_0);

 un12_count_1_SUM1_0_x2 : XOR2
 port map(A => \count[0]_net_1\, B => \count[1]_net_1\, Y
 => SUM1_0_x2_n);

 \count[2]\ : TMR_DFFC
 port map(CLK => CLK, D => \un12_count_1.N_9_i_i_0\, CLR =>
 RST_i_0, Q => \count[2]_net_1\, E => seu_count_2);

-- The single error detection signals collected into one signal by OR
-- operation
 SE <= seu_count_0 or seu_count_1 or seu_count_2;

end TMR_DEF_ARCH;

The name of the entity has been prefixed with “TMR_” to distinguish it from the original

one. To stay consequent, the architecture name has also been prefixed with “TMR_”.

Once the netlist has been processed, the component is saved under the new name.

In this manner a new component is created, which can be used as any other one,

from the phase of design description. This means that the created TMR counter can be

further used in a structural description of a larger system, and instantiated as a usual

component. Exactly this approach was used during the design of the radiation tolerant

MCU. The described process of mitigation is not limited to components only,

whole unpartitioned designs can be protected in this manner as well. However, bottom-up

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 62

approach is encouraged, as it enables easier testing, which should be done for every

mitigated component.

Handling Hi-Z

In the ProAsic Plus devices there is no direct support for the high-impedance ‘Z’

logic state through tri-state buffers in the bulk of the FPGA. The Hi-Z can only be directly

implemented at the I/O pads. If the TMR mitigation is to be applied on per component

basis and some components are based on three-valued logic, the components need special

treatment in the process of mitigation. To illustrate this, the 3-bit counter will be extended

by output enable pin, which, when driven low puts the Q output into high-impedance state

- Listing 6.7. The Hi-Z requires no particular treatment if mitigation is applied

on the top-level entity.

For components involving the high-impedance, a wrapper is required. The TMR cannot be

directly applied. The wrapper entity has the same interface as the original one.

Modification is required for the architecture of the original entity. The high-impedance

description must be moved to the wrapper. Since the OE input will not be used

in the modified entity, it can be removed. Afterwards, the source component is mitigated

according to the described algorithm. After completion a TMR version of the source

component is obtained. This resultant mitigated component must be encapsulated

in the wrapper. Listing 6.8 shows the VHDL code for the wrapper of the counter.

The modified counter is exactly the same as one shown in Listing 6.2, while the mitigated

one is as that of Listing 6.6. The wrapper is a purely combinatorial circuit. Hence, it is not

necessary to mitigate it against SEU.

Thus obtained component, mitigated with TMR and having the capability of putting its

outputs in the high-impedance state can be further used in structural descriptions of more

complex systems or treated as the top-level entity and implemented.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 63

Listing 6.7. The 3-bit counter with OE and Hi-Z
-- counter_3bit_HiZ.vhd
-- A simple 3 bit up counter with asynchronous reset active low.
-- Counts on positive edge of the clock.
-- The OE pin is output enable, actibe high. When low, puts the Q output
-- into high-impedance state

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity Counter_3bit_HiZ is
port(
 RST, CLK : in std_logic; -- asynchronous reset and clock inputs
 OE : in std_logic; -- output enable pin
 Q : out std_logic_vector(2 downto 0) -- the count value in binary
);
end entity Counter_3bit_HiZ;

architecture Behavioural of Counter_3bit_HiZ is
signal count : integer range 0 to 7; -- signal storing the count value
begin
 FSM : process (RST, CLK) is -- the counter FSM
 begin
 if RST = '0' then -- asynchronous reset active low
 count <= 0;
 elsif rising_edge(CLK) then -- count up on rising edge of CLK
 if count = 7 then -- check range for behavioural simulation
 count <= 0; -- roll-over
 else
 count <= count + 1; -- count up
 end if;
 end if;
 end process FSM;
 Q <= conv_std_logic_vector(count, 3) when OE = '1' else (others =>
'Z"); -- output the count value if OE is active, otherwise put Q into HiZ

end architecture Behavioural;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 64

Listing 6.8. The wrapper for the 3-bit counter
-- wrap_counter_3bit.vhd
-- Wrapper for the 3-bit counter
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

-- The interface is identical to that of the original HiZ counter
entity Wrap_Counter_3bit is
port(
 RST, CLK : in std_logic;
 OE : in std_logic;
 Q : out std_logic_vector(2 downto 0)
);
end entity Wrap_Counter_3bit;

architecture Structural of Wrap_Counter_3bit is
component TMR_Counter_3bit is
port(
 RST, CLK : in std_logic;
 Q : out std_logic_vector(2 downto 0)
);
end component TMR_Counter_3bit;

signal encap_Q : std_logic_vector(2 downto 0);
begin
 encap_counter : TMR_Counter_3bit –- encapsulate mitigated counter
 port map
 (
 RST => RST,
 CLK => CLK,
 Q => encap_Q
);

 Q <= encap_Q when OE = '1' else (others => 'Z"); -- realise HiZ

end architecture Structural;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 65

Summary

The algorithm for mitigating sequential components has been described. Below is a short

summary of the steps, which need to be undertaken in the mitigation process.

1. Describe the component using VHDL – any style of description is possible,

particularly behavioural.

2. If the component employs high-impedance, transform the component into

one without Hi-Z, and describe wrapper for the component.

3. Synthesize the sequential component.

4. Process the obtained VHDL netlist:

a. Replace every occurrence of “DFF” with “TMR_DFF” – in this way

TMR flip-flop components are declared and instantiated instead

of the normal ones.

b. Add the “E” – single error detection – port to the declaration

of every TMR_DFF* component.

c. Connect single error detection outputs of the TMR_DFF*

components if necessary.

d. Propagate the single error signals, if used, to the output

of the component – remember to add required I/O to the port clause.

e. Prefix the original entity and architecture name with “TMR_”.

5. Save the processed netlist under original name prefixed with “TMR_”

in the place where HDL files of the project are stored.

6. Test the mitigated component or design.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 66

6.3 Hardware Platform

This section describes the hardware platform, on which the MCU was

implemented and tested. The platform was designed according to the requirements

described in section 2.2. Every PCB was designed and assembled exclusively for this

project. Only COTS (Commercial Off-The-Shelf) components were used.

Apart from external memory chips there is no component, which relies on data storage

or is sequential. Therefore, no mitigation techniques were employed for the components.

It was proved during tests that such techniques would not be necessary.

6.3.1 FPGA Development Board

The MCU was implemented in the Actel ProAsic Plus APA600 FPGA.

Since there are no development boards for this FPGA available, a PCB was designed

and assembled. The design is based on Actel ProAsic Plus Development Board,

which comes either with APA75, APA150 or APA300 device. The necessity to design

the board, gave the ability to include on it many additional components, not present

on the stock development board. The board’s overview is shown in Figure 6.7. Full

schematic and PCB layout are attached in Appendix A. Following resources are available

on the PCB:

• APA600 FPGA in PQ208 package (the board can house any other ProAsic

Plus device in PQ208 package) [20],

• AMD Am29LV040B 512 kB Flash memory – sub-divided into 8 sectors

of 64 kB size [29]. The memory chip is installed in a PLCC32 carrier.

This enables off-the-board programming or simply replacing the module

with another one,

• Renesas EDAC R1LV1616H-I 16 Mbit SRAM capable to operate in x16-bit

or x8-bit word mode [30]. The memory has built-in Error Detection

and Correction circuitry,

• Full-duplex 820 nm optical link based on Agilent COTS HFBR-1414

transmitter and HFBR-2412 receiver compatible with ST connectors,

capable of transmission speeds from DC to 5 Mbits [31], [32], [33], [34],

[35],

• differential point-to-point EIA-485 full-duplex link [36],

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 67

• full-duplex EIA-232 link [37],

• two clock generators with 3.3 V compatible outputs: 40 MHz

and 3.6864 MHz – easily divisible for standard EIA-232 baud rates [38],

• regulated 12 V, 5 V, 3.3 V, 2.5 V [39], [40],

• 8 LEDs, 8 mono-stable push buttons,

• over 140 available I/O pins connected to the FPGA.

Figure 6.7. The designed FPGA development board

Some resources are connected to the FPGA through jumpers, which allow deciding

if and which resource is used. The LEDs and buttons are permanently connected.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 68

The symbolic view of the PCB is shown in Figure 6.8, together with explanation

and designation of all jumpers.

Figure 6.8. Symbolic view of the FPGA development board with main components
explained

To configure the serial communication channel following jumpers must be properly set:

1) (13) - RXD Master select: allows choosing the source of signal for receiver.

When set in position 1-2, external source connected to Header 3 pin 1 is connected

to FPGA; when set in position 2-3, one of the on-board sources is connected.

The external source must produce either 3.3 V logic levels. The voltage may not

swing above 3.3 V, as the I/O pads of the FPGA are not tolerant to higher voltages.

2) (14) – TXD Master select: allows to direct signal from transmitter

to either an external transducer (Header 3 pin 2) or other component (position 1-2)

or to one of the on-board components (position 2-3). This jumper was installed

to decrease overall current consumption. The external device, which is fed

with the signal, must be input-compatible with 3.3 V logic levels.

1. Optical TX
2. Optical RX
3. EIA-232 female

connector
4. 20-pin male header
5. Master On-Off switch
6. Power Connector
7. Power Connector
8. Power Out/In male

header
9. FlashPro Lite

programmer connector
for APA programming

10. RXD select
11. TXD select
12. MAX RXD select
13. RXD master select
14. TXD master select
15. RXD LED
16. TXD LED
17. Reset button
18. APA600
19. Flash
20. Flash enable
21. SRAM
22. SRAM enable
23. Clock select 1
24. Clock select 2
25. Header 1
26. Header 2
27. Header 3
28. Header 4
29. Buttons
30. LEDs

(1) (2)

(3)

(4) (5)

(6)

(7)

(8)

(9)

(10)
(11) (12)

(13)

(14)

(15) (16)

(17)

(18)
(19) (20)

(21)

(22)

(25)

(26)

(27)

(28)

(23) (24)

(29)

(30)

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 69

3) (10) – RXD select: selects the type of on-board source for receiver. When set

in position 1-2 the source signal will be collected from copper lines (either EIA-232

or EIA-485), when in position 2-3, the signal from optical receiver (2) will be

passed on to jumper (13).

4) (11) – TXD select: if the jumper (14) is in position 2-3, this jumper further couples

signal from transmitter either to copper lines (position 1-2) or the optical

transmitter (position 2-3).

5) (12) – MAX RXD select: this jumper allows choosing which copper serial link will

feed signal to the receiver. When set in position 1-2 the EIA-232 is selected,

while when configured in 2-3 the EIA-485 signal is coupled.

Table 6.12 gives a summary of possible configurations of both TXD and RXD lines

for on-board circuitry.

Table 6.12. Possible serial line configurations

Jumper settings
(14) always in 2-3

Jumper settings
(13) always in 2-3 TXD signal

transmitted by
(11)

RXD signal
received from

(10) (12)
EIA-232 1-2 EIA-232 1-2 1-2
EIA-485 1-2 EIA-485 1-2 2-3

Optical TX
HFBR-1414 2-3 Optical RX

HFBR-2412 2-3 Any

The jumpers (23) and (24) allow to choose the clock sources fed to the FPGA.

Jumper (23) couples clock signal to Global Pad 24 of the FPGA from Header 2 pin 19

– external source if installed in position 1-2. The clock from on-board 40 MHz generator is

coupled when the jumper is installed in position 2-3.

Jumper (24) couples clock signal to Global Pad 30 of the FPGA from Header 2 pin 23

– external source if installed in position 1-2. The clock from on-board 3.6864 MHz

generator is coupled when the jumper is installed in position 2-3.

The on-board Flash and SRAM memories can be disconnected from FPGA pins by means

of their enable jumpers. The Flash memory is disconnected by placing jumper (20)

in the 1-2 position. The memory is connected to the FPGA, when the jumper is placed

in position 2-3. Disconnecting the SRAM memory is accomplished by installing jumper

(22) in position 1-2, while connecting it – by installing the jumper in position 2-3.

The connection or disconnection is realised through tri-state buffers embedded

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 70

in the memory modules. The enable jumpers simply pass proper logic levels to the CE

(Chip Enable) inputs of the memory modules.

The Reset signal can be fed from various sources, too. The on-board source is the Reset

button (17). The communication header (4) has a dedicated pin for Reset, as well (Table

6.13). Yet another source of Reset might be connected to the Header 3 pin 15, which

further connects to Global I/O pad 128 of the FPGA, which is permanently connected

to the Reset signal, hence signals from all sources meet at this pin. There are two

conditions, which must be fulfilled by each Reset signal. The signal is active low, i.e. will

reset the circuits implemented in FPGA when its value is logic ‘0’. The inactive voltage

level is ‘1’, which must be represented voltage compatible with 3.3 V levels. Voltages

higher than 3.3 V are not allowed.

The communication header (4) is described in detail in Table 6.13.

The board must be powered from a regulated DC power supply. The input voltage must not

exceed 35 V. If the on-board regulated 12 V is required, the minimum value of the DC

input voltage is 19 V, otherwise the value may not fall below 6 V.

The VDDP voltage, which supplies I/O pads of the FPGA, is permanently set to 3.3 V.

The PCB was designed and assembled before it was decided which MCU will be

implemented in the FPGA. After the choice was made, it appeared that the 16-bit wide data

bus offered by the on-board SRAM is not wide enough. All PIC16C5 cores have 12-bit

instruction word. Employing Hamming Code to protect every instruction word further

extends the instruction word to 18 bits (see Table 6.11). To stay directly compatible

with PIC16C5, i.e. let the MCU fetch every instruction in a single cycle, additional SRAM

was required. An expansion board was designed and assembled. It houses the additional

SRAM. The board was designed with an exemplary application of the transmission

channel circuit in mind – SRAM SEU detector. A snapshot of the expansion board is

shown in Figure 6.9. The schematic of the expansion board and PCB layout are attached

in Appendix A.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 71

Figure 6.9. Photograph of the designed expansion board

The additional SRAM memory is not visible on the photograph, since it is soldered

on the bottom side of the PCB. The vertically oriented rectangular PCB with clearly visible

memory chip is a module of SRAM memory, being subject to test. More information

on this is given in section 6.4. The expansion board is equipped with a proprietary RadMon

socket for standardised interfacing to tested memories. The symbolic view

of the expansion board is presented in Figure 6.10.

Figure 6.10. Symbolic view of the designed expansion board

The socket for Memory Under Test (MUT) (1) is used in the exemplary application

of the transmission channel circuit, detector of SEUs in MUT. The additional SRAM

1. MUT (Memory Under
Test) proprietary socket

2. Additional SRAM for
program memory (bottom
side)

3. Additional SRAM enable
jumper

4. Select Software Upgrade
Mode jumper

5. Power connector
6. Power good LED
7. Header 1
8. Header 2
9. Header 3
10. Header 4

(1)

(2)

(3)

(4)

(5)(6)

(7)

(8)

(9)

(10)

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 72

module for program memory is capable of being connected to or disconnected

from the address and data buses. It is realised in exactly the same manner

as in the development board. The SRAM is connected to the bus, hence the FPGA,

when jumper (3) is installed in position 1-2, disconnected when the jumper occupies

position 2-3. There is an error on the Top Overlay of the PCB. The enable and disable

positions of the jumper are swapped. In section 6.2 the two modes of MCU’s operation

were described. The mode is selected by means of jumper (4). When the jumper is

installed, the MCU operates in the Software Upgrade Mode. The Normal mode is selected

by removing the jumper, leaving the two pins unconnected. This jumper is named “FLASH

PRG_EN” on the PCB, since its implicit function is disabling or enabling the MCU

to program the Flash. After selection of the mode has changed (jumper was installed

or de-installed), the system must be restarted, by means of the Reset signal or button.

The expansion board connects to the development board by means of the general-purpose

I/O pins collected in headers.

The power is delivered to the board via connector (5). Both ground and 3.3 V must be

supplied from the development board through wires. The LED (6) indicates that power

supply is connected correctly, by emanating red light.

6.3.2 Transceiver

In the radiation-free environment a transceiver is necessary, as stated in earlier

sections. The transceiver PCB has also been designed and assembled. Its photograph

is presented in Figure 6.11, while symbolic view is depicted in Figure 6.12. The complete

schematic and PCB layout can be found in Appendix A. The function of the transceiver is

to provide a centralised connection between various communication interfaces and media.

From the point of view of a monitoring station (e.g. a PC) the following communication

interfaces are available:

• EIA-232 based on MAX232 [37],

• EIA-485 based on MAX485 [36],

• 5 V logic.

The interfaces available from the FPGA point of view are as follows:

• EIA-232,

• EIA-485,

• Optical link identical to the one described in section 6.3.1.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 73

Figure 6.11. The transceiver PCB

Figure 6.12. Symbolic view of transceiver PCB

1. EIA-232 socket for PC
(DB9)

2. Parallel port socket for PC
(DB25)

3. Parallel port VCC select
4. RJ-45 socket for EIA-485
5. Header for 5V logic
6. 20-pin header
7. PC RXD select
8. FPGA RXD select
9. EIA-232 socket for FPGA

(DB9)
10. Optical transmitter
11. Optical receiver
12. Reset button
13. Power connector
14. Power connector
15. Master On-Off switch

(5)

(2)

(3)

(4)

(1)

(6)

(7)(8)

(9)

(10)(11)

(12)

(13)

(14)

(15)

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 74

Selecting proper communication link set-up is fairly easy. The only choice that has to be

made applies to the source of received signal. The jumper (7) is used to select the source

of communication received from the monitoring station. Installing the jumper in position

1-2 causes that signal coming from the EIA-232 socket (1) is transmitted to the FPGA.

When this jumper is installed in position 3-4, FPGA will receive signal coming from

EIA-485 socket (4). Finally the logic signals will be transmitted to FPGA if the jumper is

set in position 5-6. Regardless of the selected source, the signal from monitoring station is

transmitted via all three available interfaces to the FPGA.

In a similar manner the source of signal coming from the FPGA is selected by jumper (8).

Again, regardless of the selected source, the received signal is transmitted via all three

available interfaces to the monitoring station. If jumper (8) is installed in position 1-2,

the signal coming from FPGA over EIA-232 will be transmitted to the monitoring station.

To transmit signal, which was received from FPGA’s EIA-485, the jumper must be placed

in location 3-4. Finally, to use the optical link for reception of data from FPGA, jumper (8)

must be set in position 5-6.

The parallel port socket (2) enables passing the Reset and Power-Off signals

from the monitoring station to the FPGA. Both 3.3 V and 5 V logic levels are supported,

and selected by means of jumper (3) (position 1-2 selects 3.3 V, position 2-3 selects 5 V).

The transceiver board should be powered from a regulated DC voltage supply. The input

DC voltage may range from 6 V to 35 V. The supplied power can be delivered to

the FPGA board if the two are connected with 20-wire ribbon cable, described in Table

6.13. In that case the input voltage must follow the guidelines given in section 6.3.1.

The master on-off switch (15) will toggle power on or off on both FPGA and transceiver

boards, if the supply to FPGA is carried over the 20-wire ribbon cable.

It is important to provide proper voltage levels on the Reset and Power-Off inputs

of the parallel port socket, when FPGA board and transceiver are interconnected

with the 20-wire ribbon cable. It this requirement is not fulfilled, the 5 V regulator

on FPGA board will be switched-off. Hence no power will be delivered to the FPGA

and communication circuitry.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 75

Table 6.13. Description of the 20-pin header

Pin
number Signal name Function

1
2
3
4

GND Common / Ground

5 EIA-485 RX Inverting

6 EIA-485 RX Non-Inverting

EIA-485 received from FPGA.
NOTE: In the FPGA connector, corresponding TX

signals are located on these pins
7
8 GND Common / Ground

9
10
11
12
13
14

Supply The DC power supply delivered to FPGA

15 EIA-485 TX Non-Inverting

16 EIA-485 TX Inverting

EIA-485 transmitted to FPGA.
NOTE: In the FPGA connector, corresponding TX

signals are located on these pins
17 EIA-232 RXD EIA-232 received from FPGA
18 EIA-232 TXD EIA-232 transmitted to FPGA

19 nPower-ON / Power-OFF
Active high Power-Off signal for 5 V regulator on

the FPGA board (connected to pin 3, i.e. D1,
of the parallel port)

20 Reset Active low reset (connected to pin 2, i.e. D0,
of the parallel port)

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 76

Figure 6.13. The FPGA and transceiver boards interconnected with full-duplex fibre optic
link and 20-wire ribbon cable

6.4 Exemplary Application – SRAM SEU Detector

The SRAM SEU detector demonstrates the capabilities of the designed radiation

tolerant microcontroller and the communication channel components. Such a detector can

be used as a module of a radiation tolerant system for on-line measurement of neutron

fluence in the ILC, LINAC or other accelerator facility. Such measurements are vital

for assessing radiation dose absorbed by electronic devices. This is important for both,

accelerator’s control systems operating in radiation environment, to estimate remaining

lifetime, and various devices under test, while their performance in radiation environment

is examined. The SRAM memory, as explained in section 3.1.2 is particularly vulnerable

to neutron induced SEUs. Therefore, it can be used as a neutron sensor [4]. Installing

memory chips with various packing densities and sizes can alter the sensitivity

of the detector. The communication between the MCU and Memory Under Test (MUT) is

realised through MCU’s GPIO ports. The MUT is installed in a proprietary RadMon

socket. This facilitates replacement of the memory modules and establishes a common

interface, regardless of the memory used. The arrangement is schematically depicted

in Figure 6.14.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 77

Figure 6.14. Schematic representation of SRAM SEU detector

The detection of SEUs in the MUT is based on the bit-flip effect described in section 3.1.2.

The major task of the detector is to spot the distortion of data and immediately report

it to the monitoring station or another central system. The detector must listen

to the commands coming from the central system and react in an appropriate way. Reliable

exchange of information is accomplished according to proprietary frame-based RadMon

protocol. Every frame is appended with CRC32 checksum.

6.4.2 Software for the MCU

The MCU is responsible for detecting SEUs. This task is accomplished

in the following way. The MUT module address space is subdivided into two sectors

of equal size. The sectors are designated Low and High. Before the MCU commences SEU

detection, it initialises the memory by writing it with known contents, upon reception

of a proper command. The pattern for initialisation is a parameter to the command.

The received pattern is written into the MUT in a pair-wise manner. The same data is

written at location n in the Low sector and location n in the High sector. The memory cells

of address n form the pair of cells. Once all locations have been written, the detection

process starts. The detection is accomplished by continually reading data from a pair

of cells and comparing it. If data read from cell of Low sector does not match the data read

from cell of High sector, SEU has been spotted and is reported by sending appropriate

information. Finally the contents of the cells are “fixed”, by writing data read from Low

sector cell to the High one. Afterwards the process continues for next pair of cells. If whole

MUT has been swept, the process starts again from the first pair of cells. The central

system can issue a command at any time during detector’s operation. From the moment

of being switched-on, the detector checks each SEU register once every ten seconds

and reports SEUs, which occurred in the MCU. All these tasks are realised in software,

executed by the designed radiation tolerant microcontroller. The software is written in C

MCU

Pr
op

rie
ta

ry
 M

U
T

so
ck

et

MUT

Address

Data

ControlG
PI

O
 p

or
ts

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 78

language, and was compiled in CCSC compiler version 3.203 [41]. Full source code is

available on the attached CD-ROM.

The MCU, similarly as original PIC16C57, has no support for interrupts. Therefore,

the necessary software routines are executed in a round-robin manner. The support

for interrupts would be particularly helpful for receiving data, but is not necessary.

The main loop governing detector’s operation is shown in Listing 6.9. This loop is run

infinitely, after initialisation of the detector.

Listing 6.9. The main loop of SEU detector software
 while (1)
 {
 PORTG = radmon_status; // signal detector’s status by means of LEDs
 run_receiver(); // run the receiver FSM
 start_new_command(); // run new command if any received
 continue_command(); // continue running the command
 check_scrubbing_status(); // see if scrubbers were run
 // and react appropriately
 }

The run_receiver() function runs a software receiver FSM, which is responsible

for reception of data according to the RadMon protocol. The FSM is realised

in the run_rx_fsm() function. Code for the FSM is presented in Listing 6.11.

This fragment of code is very important mostly for one reason. Before the switch clause,

some code in assembly is added. The purpose of this code is to fix a compiler error.

The error was discovered during development of the software. Other compilers were not

tested in this respect. The error was encountered with CCSC compiler and seems to recur

in all switch clauses and can be analysed in assembly, only. The error and correction are

indicated in Listing 6.10.

Listing 6.10. Switch clause error in CCSC compiler and assembly of a fixed code
; Erroneous code
00C0: MOVF 08,F ;0x08 arbitrary
00C1: BTFSC 03.2
00C2: GOTO 0CC
00C3: MOVLW 08

; Fixed code
00C0: MOVF 10,W ;copy variable
00C1: MOVWF 08 ;to 0x08 reg.
00C2: MOVF 08,F ;proceed as before
00C3: BTFSC 03.2
00C4: GOTO 0CE
00C5: MOVLW 08

The compiler assumes that the variable being the subject of switch clause has been stored

in register 0x08 (line 00C0 of erroneous code), but this did not take place. The register

stores an arbitrary value, hence the flow of the clause is unpredictable. After investigating

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 79

each switch clause in the software, it appeared that register 0x08 is always assumed

to store the variable’s value. This was also confirmed by compiling the code several times

– always register 0x08 was used. The remedy was, thus, to manually copy the required

variable’s value into the 0x08 register, to make the switch clause behave properly.

As it was later discovered, the 0x08 register is used, since it is the first register

of scratchpad, used by compiler for some intermediate operations. If the scratchpad is

located at another address, this should be taken into account, when correcting the error.

Another problem encountered with the used CCSC compiler refers to indirect addressing.

If this addressing mode is used by compiler to implement usage of pointers or access

elements of an array in a loop, the program starts to behave unpredictably. The FSR

register is used in indirect addressing mode. The full address of the register being accessed

must be written to the FSR. Reading or writing the indirectly addressed register is

accomplished by performing this operation on the INDF register. Problem lies in the usage

of the FSR. Its second function is to select the register bank for direct addressing modes.

The compiler seems to be ignoring this fact and does not restore proper selection of bank

after completing the indirect access. When following code refers directly to e.g. loop

control variable, there is high chance that incorrect bank is selected for this operation.

As a result the right variable is not accessed, other data is corrupted and loop execution is

not as indicated by source code. Correcting this error is done in assembly, but is not

as straightforward as the former one. Every loop or other case of using indirect addressing

mode should be separately analysed. During this process full addresses of involved

variables are necessary. Attention must be paid to select proper register bank after

the indirect access.

No other compiler errors were encountered. The whole software is not described here in

detail, as it would unnecessarily inflate the thesis’ volume. The code is well documented

and smartly partitioned into functions, those are collected into header files. Therefore, it is

easy to read and understand the code, available on the attached CD-ROM

The operation of the detector follows the flow diagram depicted in Figure 6.15.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 80

Listing 6.11. Software implementation of receiver FSM for SEU detector
 // Fix CCSC switch bug
 #ifdef CCSC_COMPILER
 #asm
 MOVF rx_state, W
 MOVWF 0x08
 #endasm
 #endif //CCSC_COMPILER
 switch (rx_state) {
 case RX_WAIT :
 if (c == BOF) { // beginning of frame received
 set_rx_state_normal();
 // set FS bit - new frame started
 #asm
 BSF radmon_status, RS_FS
 #endasm
 rx_buffer_pt = 0; // reset buffer write pointer
 return; // exit function, nothing to process
 }
 else { // otherwise wait for BOF
 return;
 }
 case RX_NORMAL :
 if (c == SES) { // escape sequence initiated
 set_rx_state_escape();
 return; // exit function without processing character
 }
 else if (c == BOF) { // resync. RX
 #asm
 BSF radmon_status, RS_FS
 #endasm
 rx_buffer_pt = 0; // reset buffer write pointer
 return; // exit function, nothing to process
 }
 break;
 case RX_ESCAPE :
 if (c == BOF_SUBS) {
 c = BOF;
 }
 else if (c == SES_SUBS) {
 c = SES;
 }
 else if (c == BOF) { // resynchronise RX
 #asm
 BSF radmon_status, RS_FS
 #endasm
 rx_buffer_pt = 0; // reset buffer write pointer
 set_rx_state_normal();
 return;
 }
 else { // invalid escape sequence
 set_rx_state_wait();
 return; // exit function, nothing to process
 }
 set_rx_state_normal();
 break;
 default :
 return;
 }

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 81

Figure 6.15. Flow diagram of SEU detector software. ‘Y’ stands for condition satisfied;
‘N’ stands for condition not satisfied.

Start

Initialise
detector

Send
Restart
Cause

Receive
a byte

New
Command
Ready ?

Start New
Command

Continue
command

Report MCU
SEUs

Byte
properly

received ?

Assemble
frame

Frame
complete?

Handle
respective

communication
error

Scrubbers
run 10

times since
last report ?

Report every
non-zero SEU

register

CRC OK ?

MUT SEU
detection in
progress ?

Read and
compare data

Detected
SEU in MUT

?

Send proper
frame

Execute one
cycle of other

command

Y

Y

Y

Y

Y

Y

Y

N

N

N

N N

N

N

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 82

6.4.3 Software for PC

The PC functions as a monitoring and command station. This functionality is

implemented in software, which was written in C++, compiled using GCC and run

on Slackware Linux. The software conducts an automated experiment. The experiment is

aimed at registering SEUs occurring in the MUT. The information on such events is

delivered by the SEU detector. The flow of the experiment is described in section 7

and depicted in Figure 7.5.

Every frame sent from the PC to SEU detector and every frame received from the SEU

detector are archived in a common log file. Total number of SEUs detected in MUT

and communicated to the PC is constantly updated. All SEUs, which occurred in the MCU

and were reported, are handled in the same way. The software enables PC to communicate

with detector in compliance with the RadMon protocol. The RadMon protocol is

a frame-based one. The structure of a frame is depicted in Figure 6.16.

Beginning of Frame
(BOF)

Frame
length Frame number Frame type Data block CRC32 checksum

0x55 1 byte 1 byte 1 byte 1 – 253
bytes 4 bytes

Figure 6.16. Frame of the RadMon protocol

There are two special characters defined in the protocol: BOF = 0x55, SES = 0xAA. If any

byte within a frame, except the first BOF, is equal to 0x55 or 0xAA, then is it substituted

by an escape sequence. Therefore, there are two escape sequences. Substitution of BOF

yields ‘SES 0x01’, while substitution of SES gives ‘SES 0x02’.

The frame types supported by PC software listed in Table 6.14.

Frame length

CRC32

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 83

Table 6.14. Frame types originating from PC

Frame type value Frame type name Description

0x01 PC_REG_DUMP Request detector to send
registers dump

0x02 PC_ECHO_REQ Request detector to echo
a message

0x07 PC_GEN_MUT_SEU
Request detector to generate
a SEU in MUT at given
address

0x0B PC_MUT_DUMP Request detector to send
contents of MUT

0x0D PC_BREAK_MUT_RW Request detector to give up
MUT reading or writing

0x0E PC_MUT_WRITE_PATT Request detector to write
MUT with given pattern

0x0F PC_DIAGN_REQ Request detector to reply
to diagnostic data

0x12 PC_SEND_VERSION Request detector to send
version information

0x1E PC_RESTART_CAUSE Request detector to report
cause of last restart

0x1F PC_SEU_REGS_REQ Request detector to dump
SEU registers

The PC does not acknowledge any message, only the detector is obliged to acknowledge a

message, which does not yield an immediate result in the form of a frame with response.

The Table 6.15 summarises frames, which are sent by the detector.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 84

Table 6.15. Frames originating from the detector

Frame type value Frame type name Description
0x01 PIC_REG_DUMP Dump of detector’s registers
0x02 PIC_ECHO_REPLY Reply to echo request
0x04 PIC_MUT_DUMP Contents of MUT
0x05 PIC_DIAGN_DATA Reply to diagnostic request
0x06 PIC_VERSION_REPLY Version information

0x07 PIC_ACK_7 Acknowledgment to PC
frame 0x07

0x0B PIC_MUT_SEU Report on SEU in MUT
0x0C PIC_CORE_SEU Report on SEU in MCU

0x13 PIC_ACK_13 Acknowledgment to PC
frame 0x13

0x14 PIC_ACK_14 Acknowledgment to PC
frame 0x14

0x1B PIC_MUT_WRITTEN Notification on MUT writing
completion

0x1C PIC_CMD_DENY
Command denied, not
executable in current
detector state

0x1D PIC_CMD_NIMP Command denied, since not
implemented

0x1E PIC_RST_CAUSE Cause of last restart
0x1F PIC_SEU_REGS_DUMP Contents of SEU registers

0x20 PIC_FRERR Notification on reception of
a byte with framing error

0x21 PIC_RX_FULL Notification on receiver
FIFO filled up in 75%

0x22 PIC_CRC_BAD Notification on reception of
a frame with bad CRC32

Full source code of the software for PC is available on the attached CD-ROM. Every

crucial block is documented with comments. The code has been partitioned into several

files, for easier handling and clear indication of logical interdependencies.

The program runs in daemon mode, being unnoticeable for user. It takes control over one

serial port and parallel port. There is no possibility to communicate with the software

from outside, e.g. via TCP. Such functionality could be added in the future.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 85

7 Experimental Results from Deutsches

Elektronen-Synchrotron
The SRAM SEU detector was tested in DESY (Deutsches

Elektronen-Synchrotron). The test was run from the 30th of August 2005

till the 2nd of September 2005, a total of 72 hours. The purpose of the test was to verify

the designed MCU’s behaviour under the mixed gamma and neutron irradiation.

Once results were available, conclusions were drawn on the effectiveness of techniques

improving radiation tolerance, which were implemented. The device was installed

in the LINAC II linear lepton accelerator. The LINAC II was chosen as the test site,

due to much higher neutron doses present there, than in the TTF or TTF2 sites. Testing

the device in harsher conditions than those in which it is intended to operate, gives

additional confidence margin if tests are successful. The LINAC II accelerator is used

for filling electron (PETRA) and positron (DORIS) storage rings through an accumulating

ring (PIA) at the DESY facility. There are two modes of operation of the accelerator,

depending on the storage ring being filled. These are the electron mode and positron mode.

In the electron mode, the electrons, generated in the electron gun, are accelerated

and passed via PIA to the PETRA ring. In this mode the level of neutron radiation is low

compared to that present in the other mode, as previous experiments with SRAM memories

have shown. The mode desired for testing radiation tolerance of electronic devices is

the positron mode, when DORIS is filled. The production of positrons starts

from generating electrons, by the abovementioned electron gun. After being accelerated,

the electrons are directed to hit tungsten target, in the form of a filament. The target is

referred to as electron-to-positron converter, since as the result of the collision electrons

are absorbed and positrons are produced. This process is accompanied by generation

of high number of neutrons. The neutrons are moderated by surrounding obstacles

and reach electronic devices as thermal neutrons [42]. These neutrons, as described

in section 3.1 have the detrimental effect on the devices under test. The neutron energy

spectrum in LINAC II tunnel is shown in Figure 7.1.

The SEU detector was placed in about five meters distance from the converter. About two

meters farther, area is restricted due to high radiation doses, despite the shield.

The experimental set-up in the accelerator is shown in Figure 7.3. In the place the device

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 86

was installed radiation is so intensive that after the test, the whole device was

too radioactive to be transported back to Poland. It emitted gamma radiation at the rate

of 156 μSv/h, while other, non-activated objects emit gamma at about 0.1 μSv/h or less.

The activation is, short-term. Mainly copper is activated. The Cu isotope half-life is

very short, ca. 20 minutes. After a cool down period of ca. one week, for that level

of activation, transporting is possible.

Figure 7.1. Energy spectrum of neutrons in LINAC II tunnel (b)

The monitoring station (PC computer running Linux operating system) together

with transceiver was placed on the test bench. The test bench was located in radiation-free

environment, namely the accelerator’s service hall, see Figure 7.4. The RESET

and POWER-OFF signals from PC were fed through parallel-port cable to the transceiver,

and next from the transceiver to the SEU detector over 20-wire ribbon cable. In the same

manner power and ground were delivered from the power supply to the tested device.

The communication between PC and detector was carried over 50 meters long full-duplex

62.5/125 micron multimode optical fibre. The bitrate was set to 9600 bps. The optical fibre

was installed in the accelerator three months before the test (in May 2005).

During the three months time the fibre was not used and subject to mixed gamma and

neutron irradiation. This allowed for a qualitative evaluation of radiation influence on

transmission reliability over optical fibre. As stated further, no communication errors were

observed.

Figure 7.2. Interfacing 5 V signals to the detector

380Ω

3.3V Zener
diode

VMUT VOUT

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 87

The tested memory (MUT – Memory Under Test) was a standard RadMon memory

module with 2 x 512 kB SRAM. According to the datasheet [43] the K6T4008C1B-GB70

SRAM is powered from 5 V. The detector is configured to be compatible with 3.3 V logic

levels, and its inputs are not tolerant to 5 V signals. Therefore a voltage limiting circuit was

added on every output pin of the memory, to limit the 5 V levels to 3.3 V levels.

The circuit, shown on Figure 7.2, follows Actel’s recommendation on interfacing ProAsic

Plus devices to 5 V logic [44]. No modifications were necessary for the signal levels input

to the memory, as it is input-compatible with 3.3 V logic.

Figure 7.3. The experimental set-up inside the LINAC II accelerator

Shield

Restricted

area

Electron/positron

converter

FPGA

board

20-wire

ribbon cable

Fibre optic

cable

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 88

Figure 7.4. The monitoring station (a PC running Linux OS) with transceiver connected, in
the accelerator hall

Two types of tests were run, designated Experiment I and Experiment II. During both,

the detector was performing its main function – detecting SEUs in the MUT. Experiment I

followed the scenario depicted on Figure 7.5. After resetting the detector, the PC listened

for a frame carrying information on the cause of detector’s restart. If this was not properly

received, the detector was restarted. Due to an unidentified problem with restart,

the procedure repeated several times, before synchronisation was reached.

After it succeeded, the PC requested dump of detector’s registers and MCU’s SEU

registers. Every request and following requests were attempted three times, before decision

on a failure was made. No additional attempts were taken once answer from the detector

was correct. Every failure followed by detector restart. After reporting its status,

the detector was commanded to write the MUT with 0xFF pattern. Once acknowledgment

for the command was received, a timeout period of 120 seconds started. If it expired

and no information on MUT writing completion was received, the detector was restarted.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 89

After the detector has successfully written the MUT (reported by sending a proper frame),

the monitoring phase started. In this phase the PC recorded all information coming

from the detector and reacted appropriately to SEU reports. Both MUT and MCU SEUs

were tracked and their numbers recorded. Every five minutes periodic diagnostics

were executed. The diagnostics comprised dumping detector’s registers, dumping SEU

registers and generating one SEU in MUT at address calculated from current time.

The number of generated SEUs was recorded. If the diagnostics did not pass, the detector

was restarted. If during any phase of the experiment the restart cause frame was received

again, the cause was recorded (either due to a glitch on RESET or POWER-OFF line,

or due to a double error in any of MCU’s SRAM components) and the detector restarted.

This is not shown in Figure 7.5. The summary of Experiment I is presented in Table 7.1.

Table 7.1. The summary of main events during Experiment I

Time Event Comment
2005-08-30 12:11:41 Experiment Started The beginning of experiment
2005-08-30 14:03:55 Detector Restart Caused by “bug”, which was fixed later on.
2005-08-30 14:20:48 Detector Restart As above
2005-08-30 14:47:55 Detector Restart As above
2005-08-30 15:39:53 Detector Restart As above

2005-08-30 18:07:42 Experiment Finished Monitoring daemon killed. Debugging code
added.

2005-08-30 18:08:05 Experiment Started Monitoring daemon restarted.

2005-08-30 19:45:08 Detector Restart Caused by “bug” – confirmed by added
debugging code.

2005-08-30 21:31:57 Detector Restart As above
2005-08-30 21:58:40 Detector Restart As above
2005-08-30 21:58:54 Detector Restart Problem with previous restart.

2005-08-31 00:49:32 Experiment Finished Monitoring daemon killed. Analysis of
collected debugging data. “Bug” fixed.

2005-08-31 00:50:50 Experiment Started Monitoring daemon restarted after fixing
“bug”.

2005-08-31 20:35:31 Experiment Finished

Experiment I finished.
Total detector restarts: 8
Detected MUT SEUs due to neutrons: 335
Detected MCU SEUs due to neutrons: 0

The flow of Experiment II was modified. To increase the level at which detector’s registers

were utilised, put more load on stack and UART, a diagnostic frame was sent every

second, during the monitoring phase. If the answer was incorrect, the detector was

restarted. Putting more load on the detector slowed down the rate at which MUT was

swept, however without noticeable effects to the experiment. The increased load allowed

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 90

for better evaluation of communication reliability and channel BER (Bit Error Rate). It also

increased the chance to observe SEUs in the detector itself as more of its resources were

used. Summary of events for Experiment II is presented in Table 7.2.

Table 7.2. Summary of main events during Experiment II

Time Event Comment
2005-08-31 20:42:22 Experiment Started The beginning of Experiment II

2005-08-31 20:47:30 Experiment Finished Monitoring daemon killed. Spotted “bug” in
the added diagnostic routine.

2005-08-31 20:47:49 Experiment Started Monitoring daemon restarted. Fixing “bug”.

2005-08-31 20:12:44 Experiment Finished Monitoring daemon killed. Test complete.
Bug fixed.

2005-08-31 21:13:09 Experiment Started Monitoring daemon restarted. Normal
operation mode.

2005-09-02 12:17:31 Experiment Finished

Experiment II finished.
Total detector restarts: 1
Detected MUT SEUs due to neutrons: 208
Detected MCU SEUs due to neutrons: 5

Appendix C contains listing of SEUs registered in the MUT during both experiments. Full

track of the experiment is available on attached CD-ROM. The PC used

for the experiments had incorrect time settings. To obtain the real time from log file, one

must add 40 minutes to the logged time. Table 7.3 summarizes the results of both

experiments.

Table 7.3. Summary of Experiment I and Experiment II

Restarts Day MUT SEUs MCU SEUs
PC performed Double Error

2005-08-30 101 0 8 0
2005-08-31 238 2 3 0
2005-09-01 120 2 0 0
2005-09-02 56 1 0 0

Only single errors were detected in the pairs of cells. There was no such situation that both

cells making up the pair were in error. There is a non-zero probability that the two cells

had exactly the same error, and such a situation would not be considered an SEU

by the detector. However, for the sake of extremely low value of that probability, it can be

assumed, that such situation did not take place. There were no multiple errors, in the sense,

that only one cell was affected, but more than one bit was distorted. The distribution

of SEU was approximately equal for both modules making up the MUT. The module

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 91

located on the bottom side of PCB exhibited 226 SEUs in total, whereas the one on the top

side - 289. Other speaking, 56% of the total number of detected SEUs was located

in the top module, 43% in the bottom one.

The four restarts on 30th of August, during Experiment I, were not caused by detector

instability. Their origin was a previously unrecognised logic error in PC software,

particularly the receiver state machine. Whenever the detector sent a frame,

which contained an escape sequence, the PC would treat the sequence as erroneous

and discard the frame. In this manner acknowledgments containing any escape sequence,

coming from the detector were not accepted. After third unsuccessful attempt to send

a command again and receive acknowledgment, the detector was restarted. The problem

was solved by correcting the code for the receiver state machine between 23:50 the 30th

and 00:10 the 31st. From that time no restarts were observed during Experiment I.

The Experiment II was started on the 31st, at about 21:00. In total three restarts

of the detector were necessary, due to an error in the newly run diagnostics on the PC side.

The error was immediately corrected. From that moment the detector operated perfectly

without interruptions.

The exchange of information between the detector and the PC proceeded without errors.

There were no framing errors in detector’s UART, no frames were received incorrectly

on either side, for all of them the CRC check always passed. The amount of exchanged

data allows estimating the BER (Bit Error Rate) of the communication channel.

This estimation is based on the total number of transmitted bits (start and stop bits of the

used EIA-232 transport protocol are included, as vital for proper communication).

The BER achieved during the experiment is zero. The estimated BER of the channel is

calculated as the reciprocal of the total number of the bits, since none of them was

transmitted in error – no communication errors occurred.

BER < 6.12 * 10-8

The obtained value of BER is rather large as based on relatively small amount

of exchanged raw data - only ca. 1.5 MB. A longer lasting experiment would allow

evaluating the parameter more precisely.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 92

Figure 7.5. The flow of experiment conducted in LINAC II. ‘N’ stands for condition
not satisfied; ‘Y’ stands for condition satisfied.

Start Experiment

Restart Detector

Rx: Restart

Cause ?

Request Version

Rx: Version

Info ?

Request Register

Dump

Rx: Register

Dump ?

Request SEU

Register Dump

Rx: SEU

Reg. Dump

?

Request Write MUT

(data: 0xFF)

Rx: ACK ?

Request Generate

MUT SEU (addr.:

0x1234)

Rx: ACK ?

Monitoring MUT

for SEU started

Receive Frame +

log frame

Time elapsed from

last diagnostics

≥ set time ?

Run periodic

diagnostics

Diagnostics

Passed ?

RX CRC

correct ?

Request Status

Monitoring

MUT?

N

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Start Experiment

Listen for Signals

Terminate?

Finish Experiment

Y

N

Receive + log frame

MUT written?

Timeout?

N Y

Y

N

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 93

The SEU, which were spotted in the MCU, require a separate comment. If one browses

the log file from the experiments, will notice, that a significantly greater amount of SEU

in the MCU was reported. These SEU were noticed in the OTHER and UART_RX SEU

registers. These registers hold the number of SEUs detected in a group of non-critical

components of the MCU and the UART’s receiver, respectively. As mentioned in section

6.2.2.2 the SEU indicating circuit is not glitch-free. Therefore, the glitches may cause

“false alarms”, which was confirmed during tests in the laboratory. These two groups

of components were the only ones burdened with the influence of glitches. No other

component exhibited the burden. Therefore, all the SEU reports regarding the OTHER

and UART_RX registers were ignored, as not being confident. However, five SEU were

reported to have occurred in the UART transmitter component, as detailed in Table 7.4.

Table 7.4. SEU in MCU’s UART transmitter

Date Time Component Group
2005-08-31 22:54:19 UART TX
2005-08-31 23:16:53 UART TX
2005-09-01 01:50:47 UART TX
2005-09-01 12:53:54 UART TX
2005-09-02 03:38:08 UART TX

The following facts support the position that these SEU were caused by neutrons:

• No “false alarms” were reported for UART transmitter component

in the laboratory,

• Strong correlation of time instants at which the SEU were reported

with reports concerning SEU in MUT, moreover the MCU SEUs occurred

at instants of higher neutron number, as indicated by denser number SEUs

in MUT,

• No time periodicity of the SEU (there was some in case of the earlier

mentioned “problematic” components”),

• Only five occurred – the “problematic” components reported a total of over

4000 SEUs.

If neutrons caused the SEU, then the Triple Modular Redundancy coped with them,

sustaining correct operation of the transmitter. This is further proved by the fact that

no communication errors occurred during the experiments, particularly no such errors

occurred in the time vicinity of the discussed SEU reports. The fact that SEU occurred

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 94

in user flip-flops of the FPGA is also of great importance, as it justifies the need to protect

designs implemented in FPGA devices against these effects. There were no reports

on SEUs in the embedded SRAM components of the FPGA. This can be explained

by several facts. The size of used embedded SRAM was only 297 bytes (256 for stack, 41

for register file). Taking into account that packing density of the SRAM is low (total of 14

kB for the whole FPGA) and that it is fabricated in 0.22 μm CMOS technology further

justifies lack of registered SEUs. A longer lasting experiment would definitely yield SEUs

in the embedded SRAM. There were no SEUs in the ECC program memory as well.

The EDAC circuitry of the chip has corrected all single-bit errors, if any occurred.

There are no means to verify that, as EDAC is transparent to the device, which uses the

memory.

The best way to show correlation between SEUs detected in the MUT and the activity

of LINAC II is to use cumulative plot. Obtained experimental data has been post-processed

to yield such a plot, presented in Figure 7.6. Additionally, the SEUs detected in the MUT

and MCU during the experiments are presented against LINAC II activity. In types of plots

the activity is determined by the value of PIA current. During highest activity levels

of LINAC II, the PIA current attains, or slightly overshoots 25 mA. The plots in Figure

7.7, Figure 7.8, Figure 7.9 and Figure 7.10 show SEUs for each day of experiments.

During the first experiment an interesting coincidence took place. On the 30th an SEU was

detected in the same pair of memory cells twice, with ca. 5 hours time separation.

The relevant events are extracted in Table 7.5.

Table 7.5. SEU in the same pair of MUT cells

Date Time Data Low Data High Address
Low

Address
High

2005-08-30 16:09:06 DF FF F72F4C DF2F4C
2005-08-30 21:51:41 FE FF F72F4C DF2F4C

The probability of such an event is ca. 1E-6.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 95

SEUs in MUT against PIA current

0

100

200

300

400

500

2005-08-30
12:00:00

2005-08-31
00:00:00

2005-08-31
12:00:00

2005-09-01
00:00:00

2005-09-01
12:00:00

2005-09-02
00:00:00

2005-09-02
12:00:00Time

Accumulated PIA current Accumulated MUT SEUs

Figure 7.6. Accumulated Single Event Upsets in Memory Under Test against accumulated
activity of LINAC II qualified in terms of accumulated PIA current. The value of

PIA current in [mA] has been divided by 125 to scale it down for better
observability of PIA – SEU correlation.

The analysis of cumulative plot of Figure 7.6 yields interesting observations. First of all,

it proves that the detector functioned correctly. During the periods while the LINAC II was

not operating, the number of MUT SEUs does not rise, remains flat. The second

observation is the existence of two strong slopes of the accumulated MUT SEUs. The same

can be stated about the accumulated PIA current. The greater slope of MUT SEUs

correlates with the smaller one of PIA current and vice versa. The greater slope of PIA

current clearly indicates, that during the time PIA current was high. However, during

that time SEUs in MUT were less frequent than for lower values of PIA, corresponding

to the smaller PIA slope. The lower values of PIA current correspond to the positron,

i.e. DORIS mode of the accelerator. This mode is characterised by much higher level

of neutron radiation than the electron, i.e. PETRA mode, and PIA current smaller than

10 mA. This is clearly confirmed by the frequently occurring SEUs in the tested SRAM.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 96

Figure 7.7. Single Event Upsets detected in the Memory Under Test against activity of
LINAC II, qualified in terms of PIA current on the 30th of August.

The time instants, at which the detector reported SEUs in MUT are marked as
red crosses.

SEUs in MUT and MCU - 31.08.2005

0

5

10

15

20

25

30

35

2005-08-31
00:00:00

2005-08-31
02:24:00

2005-08-31
04:48:00

2005-08-31
07:12:00

2005-08-31
09:36:00

2005-08-31
12:00:00

2005-08-31
14:24:00

2005-08-31
16:48:00

2005-08-31
19:12:00

2005-08-31
21:36:00

2005-09-01
00:00:00

 PIA curent [mA] vs. Time

Figure 7.8. Single Event Upsets detected in the Memory Under Test against activity of
LINAC II, qualified in terms of PIA current on the 31st of August.

The time instants, at which the detector reported SEUs in MUT are marked as
red crosses.

Two SEUs in the detector’s MCU were detected – marked as orange squares.

SEUs in MUT - 30.08.2005

0

5

10

15

20

25

30

2005-08-30
12:00:00

2005-08-30
13:12:00

2005-08-30
14:24:00

2005-08-30
15:36:00

2005-08-30
16:48:00

2005-08-30
18:00:00

2005-08-30
19:12:00

2005-08-30
20:24:00

2005-08-30
21:36:00

2005-08-30
22:48:00

2005-08-31
00:00:00

PIA current [mA] vs. Time

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 97

SEU in MUT and MCU - 1.09.2005

0

5

10

15

20

25

30

2005-09-01
00:00:00

2005-09-01
02:24:00

2005-09-01
04:48:00

2005-09-01
07:12:00

2005-09-01
09:36:00

2005-09-01
12:00:00

2005-09-01
14:24:00

2005-09-01
16:48:00

2005-09-01
19:12:00

2005-09-01
21:36:00

2005-09-02
00:00:00

PIA current [mA] vs. Time

Figure 7.9. Single Event Upsets detected in the Memory Under Test against activity of
LINAC II, qualified in terms of PIA current on the 1st of September.

The time instants, at which the detector reported SEUs in MUT, are marked as
red stars.

Two SEUs in the detector’s MCU were detected – marked as orange squares.

SEI in MUT and MCU - 2.09.2005

0

5

10

15

20

25

30

2005-09-02
00:00:00

2005-09-02
01:12:00

2005-09-02
02:24:00

2005-09-02
03:36:00

2005-09-02
04:48:00

2005-09-02
06:00:00

2005-09-02
07:12:00

2005-09-02
08:24:00

2005-09-02
09:36:00

2005-09-02
10:48:00

2005-09-02
12:00:00

PIA current [mA] vs. Time

Figure 7.10. Single Event Upsets detected in the Memory Under Test against activity of
LINAC II, qualified in terms of PIA current on the 1st of September.

The time instants, at which the detector reported SEUs in MUT, are marked as
red stars.

One SEU in the detector’s MCU was detected – marked as orange square.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 98

8 Conclusions
The objective of this project was to design and physically implement a radiation

tolerant transmission channel circuit. The device was required to enable reliable

communication between a device under test and a central system. The radiation tolerant

circuit ought to have a degree of autonomy, flexible hardware configuration and capability

of being conveniently interfaced to various types of devices under test. The objective has

been accomplished. All the requirements for the radiation tolerant transmission channel

circuit have been met, particularly tolerance to radiation. The circuit operated without

failures for 72 hours under mixed gamma and neutron irradiation. The only breaks

in operation were either due to software problems on PC or change in experiments.

Various techniques were employed for mitigating the effects of SEUs, namely Hamming

Codes backed with Scrubbing and the well-established Triple Modular Redundancy.

The TMR has presumably sustained system’s operation five times, during the tests

in LINAC II, DESY. There was no situation, when Hamming Codes had the opportunity

to mitigate an effect of SEU. Tests of longer duration are necessary to thoroughly verify

the system and the mitigation techniques.

Communication between the radiation tolerant device and PC proceeded without errors,

was reliable. It was proved, that it is possible to apply well-established SEU mitigation

techniques on the level of HDL. The developed semi-automatic mitigation technique

employing the well-known TMR scheme was successfully used throughout the project.

Its main advantage is the independence of VHDL source code. No modifications need

to be introduced to the source code of hardware description, except for one special case

of high-impedance. This enables to design radiation tolerant digital systems in exactly

the same manner as common digital systems. The tested design is post-processed

on the VHDL netlist level and its radiation tolerance improved. This technique also enables

to mitigate already existing designs, which were not originally meant to be radiation

tolerant. The current limitation of the technique is its support for Actel ProAsic Plus

FPGAs only. It might be desirable to add support for other FPGA device families.

The hardware platform was based on COTS components only, none of the used electronic

components were hardened against radiation. This renders the involved costs a fraction

of a price of available radiation tolerant or hardened programmable devices. However,

the designed system has been mitigated to SEUs only, which might prove to be insufficient

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 99

during long-term tests. On the other hand, VHDL or other HDL relies on a fixed hardware

technology, which is the only level, on which the full suite of SEE mitigation

and hardening mechanisms can be adopted.

The mitigating capabilities of adopted techniques should be in future quantified in terms

of specific radiation doses, which the mitigated circuit is able to withstand.

The drawback of employed techniques is compromised performance of the system.

Particularly the maximum attainable frequency is decreased when the TMR scheme

or Hamming Codes are applied. The effect of Scrubbing is periodical pauses in system’s

operation, hence decreased computational capability. The effects caused by TMR

and Hamming Codes could be potentially reduced if dedicated floorplanning of the FPGA

resources was involved, but generally the speed penalty is unavoidable if these techniques

are employed.

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 100

References
[1] G. C. Messenger, M. S. Ash, “The Effects of Radiation on Electronic Systems”,

Van Nostrand Reinhold Company, 1986

[2] B. Mukherjee, D. Makowski, D. Rybka. M. Grecki, S. Simrock, “Interpretation of

the Single Event Upset in Static Random Access Memory chips induced by low

energy neutrons”, 12th International MIXDES Conference, 22-25 June 2005

[3] S. M. Sze, “Semiconductor Devices”, John Wiley & Sons, 2002

[4] D. Makowski, M. Grecki, B. Mukherjee, B. Świercz, S. Simrock, “Radiation

Tolerant System for Neutrons Fluence Measurement”, April 2005

[5] M. Gastal, P. Moreira, “Radiation Qualification of Commercial Off-The-Shelf

P-I-N Receivers for the TTC System”, 9th Workshop on Electronics for LHC

Experiments, September/October 2003

[6] F. Berghmans, M. Van Uffelen, A. Nowodzinski, A. Fernandez Fernandez,

B. Brichard, A. Gusarov, M. Decréton, “Radiation Effects in Optical

Communication Devices”, Proceedings Symposium IEEE/LEOS Benelux Chapter,

2000

[7] M. Ott, S. Macmurphy, M. Dodson, “Radiation Testing of Commercial off the

Shelf 62.5/125/250 Micron Optical Fibre for Space Flight Environments”, Sigma

Research and Engineering, NASA Goddard Space Flight Centre

[8] “All is Not SRAM - A survey of flash, antifuse, and EE programmable logic”,

http://www.fpgajournal.com/articles/sram.htm

[9] “Radiation Results of the SER Test of Actel, Xilinx and Altera FPGA instances”,

iRoC, October 2004

[10] F. G. de Lima Kastensmidt, G. Neuberger, R. F. Hentschke, L. Carro, R. Reis,

"Designing Fault-Tolerant Techniques for SRAM-Based FPGAs," IEEE Design

and Test of Computers, vol. 21, no. 6, pp. 552-562, November/December 2004

[11] Single Event Upset, Altera,

http://www.altera.com/products/devices/stratix/features/stx-seu.html

[12] Actel website, http://www.actel.com

[13] Actel’s devices datasheets, http://www.actel.com/techdocs/ds/default.aspx

[14] “APA750 and A54SX32A LANSCE Neutron Test Report”, ACTEL, December

2003

http://www.fpgajournal.com/articles/sram.htm
http://www.altera.com/products/devices/stratix/features/stx-seu.html
http://www.actel.com/
http://www.actel.com/techdocs/ds/default.aspx

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 101

[15] Instant-On FPGA Solutions: ispXPGA, Lattice Semiconductor Corporation,

http://www.latticesemi.com/products/fpga/xpga/index.cfm

[16] Aerospace and Defence Applications, Xilinx,

http://www.xilinx.com/products/silicon_solutions/market_specific_devices/aero_de

f/capabilities/aero_def_app.htm

[17] Aerospace & HiRel devices datasheets, Actel,

http://www.actel.com/products/aero/ds.aspx

[18] J. J. Wang, “Radiation Effects in Field Programmable Gate Arrays”, 9th Workshop

on Electronics for LHC Experiments, September/October 2003

[19] FlashLock: Security in Actel Flash FPGAs, Actel,

http://www.actel.com/products/rescenter/security/solutions/flash.aspx

[20] ProAsic Plus Datasheet, Actel,

http://www.actel.com/documents/ProASICPlus_DS.pdf

[21] RTSX-S RadTolerant FPGAs Datasheet, Actel,

http://www.actel.com/products/aero/ds.aspx

[22] S. Moschoyiannis, “Group Theory & Error Detecting/Correcting Codes Technical

Report”, University of Surrey, December 2001

[23] Microchip website, http://www.microchip.com

[24] PIC16C5x Datasheet, Microchip

[25] C. Peacock, “Interfacing the Serial/RS-232 Port”, January 1998,

http://www.senet.com.au/~cpeacock

[26] OpenCores, http://www.opencores.org/

[27] Weidong Lu, “Designing TCP/IP Functions In FPGA”, TU Delft, 2003,

http://ce.et.tudelft.nl

[28] ProAsic and ProAsic Plus Macro Library Guide, Actel, 2004

[29] Am29LV040B Datasheet, AMD, http://www.amd.com

[30] R1LV1616H-I 16M SRAM Datasheet, Renesas, http://www.renesas.com

[31] Agilent HFBR-0400, HFBR-14xx and HFBR-24xx Series Low Cost, Miniature

Fiber Optic Components with ST®, SMA, SC and FC Ports Datasheet, Agilent,

http://www.agilent.com

[32] “Inexpensive dc to 32 MBd Fiber-Optic Solutions for Industrial, Medical, Telecom,

and Proprietary Data Communication Applications”, Agilent’s Application Note

1121, Agilent, http://www.agilent.com

http://www.latticesemi.com/products/fpga/xpga/index.cfm
http://www.xilinx.com/products/silicon_solutions/market_specific_devices/aero_def/capabilities/aero_def_app.htm
http://www.xilinx.com/products/silicon_solutions/market_specific_devices/aero_def/capabilities/aero_def_app.htm
http://www.actel.com/products/aero/ds.aspx
http://www.actel.com/products/rescenter/security/solutions/flash.aspx
http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/products/aero/ds.aspx
http://www.microchip.com/
http://www.senet.com.au/~cpeacock
http://www.opencores.org/
http://ce.et.tudelft.nl/
http://www.amd.com/
http://www.renesas.com/
http://www.agilent.com/
http://www.agilent.com/

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 102

[33] “Generic Printed Circuit Layout Rules for Agilent’s Low-Cost Fiber-Optic

Components”, Agilent’s Application Note 1137, Agilent, http://www.agilent.com

[34] SN54F00, SN74F00 Quadruple 2-Input Positive-NAND Gates Datasheet, Texas

Instruments, http://www.ti.com

[35] SMD beads EMI suppression products Produktinformation, ELFA,

http://www.elfa.se

[36] Low Power Slew-Rate-Limited RS-485/RS-422 Transceivers Datasheet, Maxim,

http://www.maxim-ic.com

[37] MAX232 Dual EIA-232 Driver/Receiver, Texas Instruments, http://www.ti.com

[38] CFPS-72, -73 Produktinformation, ELFA, http://www.elfa.se

[39] LM1575/LM2575/LM2575HV Simple Switcher® 1A Step-Down Voltage

Regulator Datasheet, National Semiconductor, http://www.national.com

[40] LM78XX Series Voltage Regulators Datasheet, National Semiconductor,

http://www.national.com

[41] CCSC Compiler home website, http://www.ccsc.com

[42] B. Mukherjee, D. Makowski, S. Simrock, “Dosimetry of high-energy electron linac

produced photoneutrons and the bremsstrahlung gamma-rays using TLD-500 and

TLD-700 dosimeter pairs”, NIMA Conference, 2005

[43] “512Kx8 bit Low Power CMOS Static RAM” - K6T4008C1B-GB70 SRAM

Datasheet, Samsung

[44] “Interfacing ProAsic Plus FPGAs with 5V Input Signals”, Application Note, Actel,

March 2004

http://www.agilent.com/
http://www.ti.com/
http://www.elfa.se/
http://www.maxim-ic.com/
http://www.ti.com/
http://www.elfa.se/
http://www.national.com/
http://www.national.com/
http://www.ccsc.com/

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 103

Appendix A Schematics and PCB Layouts

Figure A.1. FPGA board – serial interfaces

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 104

Figure A.2. FPGA board – power supply

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 105

Figure A.3. FPGA board – the FPGA

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 106

Figure A.4. FPGA board – headers and sockets

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 107

Figure A.5. FPGA board – clock generators

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 108

Figure A.6. FPGA board – LEDs and push buttons

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 109

Figure A.7. FPGA board – SRAM and Flash

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 110

Figure A.8. Transceiver board – communication interfaces

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 111

Figure A.9. Transceiver board – power supply

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 112

Figure A.10. Expansion board for FPGA

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 113

Figure A.11. FPGA PCB

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 114

Figure A.12. Transceiver PCB

Figure A.13. FPGA expansion PCB

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 115

Appendix B Examples of VHDL code

Listing B.1. UART receiver
-- UART_RX.vhd
library ieee;
use ieee.std_logic_1164.all;
use work.all;

entity UART_RX is
port(
 RXD : in std_logic; -- serial input line
 RST : in std_logic; -- RESET active high
 CLK : in std_logic; -- clock dependent on baud rate (16x oversampling)
 DOUT : out std_logic_vector (7 downto 0); -- output bus, 8 bits wide
 DREADY : out std_logic; -- flag indicating that received byte is ready, active high

FRM_ERR : out std_logic; -- flag indicating that framing error occured
SE : out std_logic -- single error indication for RadTol version

);
end entity UART_RX;

architecture ARCH_UART_RX of UART_RX is

 -- state constants
 constant rx_t_idle : std_logic_vector(1 downto 0) := "00";
 constant rx_t_rb_start : std_logic_vector(1 downto 0) := "01";
 constant rx_t_rx_byte : std_logic_vector(1 downto 0) := "10";
 constant rx_t_rb_stop : std_logic_vector(1 downto 0) := "11";

 signal sampler_count : integer range 0 to 15;

signal bit_count : integer range 0 to 7;
signal rx_reg : std_logic_vector (7 downto 0);
signal current_state : std_logic_vector(1 downto 0);
signal prev_sin, prev_prev_sin : std_logic;

begin

 fsm : process (RST, CLK) is
 begin
 if RST = '0' then -- RST SEQUENCE

rx_reg <= (others => '0');
FRM_ERR <= '0';
current_state <= rx_t_idle;
sampler_count <= 0;
prev_sin <= '0';
prev_prev_sin <= '0';
DREADY <= '0';
DOUT <= (others => '0');
bit_count <= 0;

 elsif rising_edge (CLK) then -- OPERATION
prev_prev_sin <= prev_sin; -- store last sample of RXD
prev_sin <= RXD; -- sample and hold RXD
if current_state = rx_t_idle then

if prev_sin = '0' and prev_prev_sin = '1' then
current_state <= rx_t_rb_start;
sampler_count <= 7;

else
if sampler_count = 15 then -- sampling data on serial input
sampler_count <= 0;
case current_state is
when rx_t_rb_start =>

if prev_sin = '0' then
current_state <= rx_t_rx_byte;
DREADY <= '0';
FRM_ERR <= '0';

else
current_state <= rx_t_idle;

end if;
when rx_t_rx_byte =>

rx_reg <= prev_sin & rx_reg (7 downto 1);
if bit_count = 7 then

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 116

Listing B.1 (cont.)
current_state <= rx_t_rb_stop;

else
bit_count <= bit_count + 1;

end if;
when rx_t_rb_stop =>

bit_count <= 0;
if prev_sin = '0' then

FRM_ERR <= '1';
end if;
DOUT <= rx_reg;
current_state <= rx_t_idle;
DREADY <= '1';

when others =>
FRM_ERR <= '0';
DREADY <= '0';

current_state <= rx_t_idle;
end case;

else
sampler_count <= sampler_count + 1;

end if;
end if;

end if;
end process fsm;

end architecture ARCH_UART_RX;

Listing B.2. UART transmitter
-- UART_TX.vhd
library ieee;
use ieee.std_logic_1164.all;

entity UART_TX is
port(
 DIN : in std_logic_vector (7 downto 0); -- input byte to be transmitted
 LOAD : in std_logic; -- active high signal indicating that new data for transmission

-- is available can be asserted continously, is ignored during
-- transmission

 RST : in std_logic; -- asynchronous RST
 CLK : in std_logic; -- transmitter CLK, dependent on the set baud rate
 TXD : out std_logic; -- serial output line
 BUSY : out std_logic; -- active high signal indicating that transmission of a byte

-- is in progress transmitter ignores LOAD and input data
-- until current transmission completes

 SE : out std_logic -- single error indication for RadTol version
);
end entity UART_TX;

architecture ARCH_UART_TX of UART_TX is

 type TX_type is (idle, tx_byte);

 signal transmit_reg : std_logic_vector (9 downto 0);
 signal state : TX_type;
 signal bit_cnt : integer range 0 to 9;

begin
 tx_process : process (CLK, RST)
 begin
 if RST = '0' then -- RESET SEQUENCE
 transmit_reg <= (others => '1'); -- clear internal tx register
 BUSY <= '0'; -- clear BUSY flag
 state <= idle; -- RST state
 bit_cnt <= 0;
 elsif rising_edge(CLK) then -- OPERATION
 case state is
 when idle =>
 if LOAD = '1' then -- LOADING DATA
 transmit_reg(8 downto 1) <= DIN; -- load data
 transmit_reg(9) <= '1'; -- set stop bit

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 117

Listing B.2 (cont.)
 transmit_reg(0) <= '0'; -- clear start bit
 state <= tx_byte;
 BUSY <= '1';
 bit_cnt <= 0;
 end if;
 when tx_byte => -- TRANSMITTING DATA

 if bit_cnt = 9 then -- when all transmitted
 state <= idle; -- return to idle
 BUSY <= '0';

 else -- if not all bits transmitted
-- perform shift right
transmit_reg(8 downto 0) <= transmit_reg(9 downto 1);
bit_cnt <= bit_cnt + 1;
state <= tx_byte;

 end if;
 end case;

end if;
 end process tx_process;

 TXD <= transmit_reg(0);

end architecture ARCH_UART_TX;

Listing B.3. UART transmitter FIFO controller
-- UART_TX_FIFO_controller.vhd

library ieee;
use ieee.std_logic_1164.all;

entity UART_TX_FIFO_CONTROLLER is
port(
 RST : in std_logic;
 CLK : in std_logic;
 TX_BUSY : in std_logic;
 F_EMPTY : in std_logic;
 FIFO_RD : out std_logic;
 LOAD : out std_logic;
 SE : out std_logic
);
end entity UART_TX_FIFO_CONTROLLER;

architecture ARCH_UART_TX_FIFO_CONTROLLER of UART_TX_FIFO_CONTROLLER is
 type state_type is (idle, s0, s1, s2);
 signal state, next_state : state_type;

 signal prev_tx_busy, prev_f_empty : std_logic;
begin
 state_logic : process (prev_TX_BUSY, prev_F_EMPTY, state) is
 begin
 next_state <= state;
 case state is
 when idle =>
 if prev_F_EMPTY = '0' then
 next_state <= s0;
 end if;
 when s0 =>
 if prev_TX_BUSY = '1' then
 next_state <= s1;
 elsif prev_TX_BUSY = '0' then
 next_state <= s2;
 end if;
 when s1 =>
 if prev_TX_BUSY = '0' then
 next_state <= s2;
 end if;
 when s2 =>
 if prev_TX_BUSY = '1' then
 next_state <= idle;
 end if;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 118

Listing B.3 (cont.)
 when others =>

 next_state <= idle;
 end case;
 end process state_logic;

 output_logic : process (state) is
 begin
 case state is
 when idle =>
 FIFO_RD <= '1';
 LOAD <= '0';
 when s0 =>
 FIFO_RD <= '0';
 LOAD <= '0';
 when s1 =>
 FIFO_RD <= '1';
 LOAD <= '0';
 when s2 =>
 FIFO_RD <= '1';
 LOAD <= '1';
 when others =>
 FIFO_RD <= '1';
 LOAD <= '0';
 end case;
 end process output_logic;

 state_update : process (RST, CLK) is
 begin
 if RST = '0' then
 state <= idle;
 prev_tx_busy <= '1';
 prev_f_empty <= '1';
 elsif falling_edge(CLK) then
 state <= next_state;
 prev_tx_busy <= TX_BUSY;
 prev_f_empty <= F_EMPTY;
 end if;
 end process state_update;

end architecture ARCH_UART_TX_FIFO_CONTROLLER;

Listing B.4. System Arbiter
-- Arbiter.vhd
library ieee;
use ieee.std_logic_1164.all;

entity ARBITER is
port(
 CLK, RST : in std_logic;
 PRG_LDR_BUSY : in std_logic;
 FL_PRG_EN : in std_logic;
 FL_PRG_CLAIM_BUS : in std_logic;
 FL_PRG_GRANT_BUS : out std_logic;
 CRC_CLAIM_BUS : in std_logic;
 CRC_GRANT_BUS : out std_logic;
 SRAM_SCRB_BUSY : in std_logic;
 REGF_SCRB_BUSY : in std_logic;
 STACK_SCRB_BUSY : in std_logic;

 BUS_FOR_PRG_LDR : out std_logic;
 BUS_FOR_SCRB : out std_logic;
 BUS_FOR_CPU : out std_logic;
 BUS_FOR_FL_PRG : out std_logic;
 BUS_FOR_CRC : out std_logic;

 REGF_FOR_SCRB : out std_logic;
 STACK_FOR_SCRB : out std_logic;

 HALT_CPU : out std_logic;

 PRG_LDR_START_SECTOR : out std_logic_vector(2 downto 0);

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 119

Listing B.4 (cont.)

 RUN_PRG_LOADER : out std_logic;
 RUN_STACK_SCRB : out std_logic;
 RUN_REGF_SCRB : out std_logic;
 RUN_SRAM_SCRB : out std_logic;

 SCRB_DONE : out std_logic; -- sets scrubbing flag in status register

 SE : out std_logic
);
end entity ARBITER;

architecture AR of ARBITER is

constant MAX_SCRUB_COUNTER : integer := 1250000;

type state_type is (start, start_prg_loader, wait_1, check_if_loader_busy,
 loader_complete, run_cpu, run_flash_programmer, wait_for_flash_prg,

run_crc, wait_for_crc, rerun_cpu, check_if_run_scrubbers,
run_scrubbers, wait_2, check_if_scrubbing_done, scrubbing_done

);

type cnt_state_type is (count, notify, verify, wait_for_scrubbers);

signal state : state_type;
signal cnt_state : cnt_state_type;
signal run_scrubbers_now, scrubbers_running : std_logic;
signal scrb_counter : integer range 0 to MAX_SCRUB_COUNTER;

begin
 main_fsm : process (RST, CLK) is
 begin
 if RST = '0' then
 state <= start;
 SCRB_DONE <= '0';
 BUS_FOR_PRG_LDR <= '0';
 BUS_FOR_SCRB <= '0';
 BUS_FOR_CPU <= '0';
 BUS_FOR_FL_PRG <= '0';
 BUS_FOR_CRC <= '0';
 REGF_FOR_SCRB <= '0';
 STACK_FOR_SCRB <= '0';
 HALT_CPU <= '1';
 RUN_PRG_LOADER <= '0';
 RUN_STACK_SCRB <= '0';
 RUN_REGF_SCRB <= '0';
 RUN_SRAM_SCRB <= '0';
 FL_PRG_GRANT_BUS <= '0';
 CRC_GRANT_BUS <= '0';
 scrubbers_running <= '0';
 PRG_LDR_START_SECTOR <= (others => '0');
 elsif rising_edge(CLK) then
 case state is
 when start =>
 -- grant access to flash and sram bus to loader
 BUS_FOR_PRG_LDR <= '1';
 SCRB_DONE <= '0';
 if FL_PRG_EN = '1' then -- if flash programming is enabled
 PRG_LDR_START_SECTOR <= (others => '0'); -- firmware upgrade software

-- starts at 0th address in the
-- flash

 else -- otherwise
 PRG_LDR_START_SECTOR <= "001"; -- the start address of the first

-- 'normal' program
-- is the beginning of the 1st sector

 end if;
 state <= start_prg_loader;
 when start_prg_loader =>
 RUN_PRG_LOADER <= '1';
 state <= wait_1;
 when wait_1 =>
 state <= check_if_loader_busy;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 120

Listing B.4 (cont.)

 when check_if_loader_busy =>
 RUN_PRG_LOADER <= '0';
 if PRG_LDR_BUSY = '1' then
 state <= wait_1;
 else
 state <= loader_complete;
 end if;
 when loader_complete =>
 BUS_FOR_PRG_LDR <= '0';
 BUS_FOR_CPU <= '1';
 state <= run_cpu;
 when run_cpu =>
 SCRB_DONE <= '0';
 HALT_CPU <= '0';
 if FL_PRG_EN = '0' then
 state <= check_if_run_scrubbers;
 else
 state <= run_cpu;
 end if;
 if FL_PRG_CLAIM_BUS = '1' then
 HALT_CPU <= '1';
 state <= run_flash_programmer;
 end if;
 if CRC_CLAIM_BUS = '1' then
 HALT_CPU <= '1';
 state <= run_crc;
 end if;
 when run_crc =>
 BUS_FOR_CRC <= '1';
 BUS_FOR_CPU <= '0';
 CRC_GRANT_BUS <= '1';
 state <= wait_for_crc;
 when wait_for_crc =>
 CRC_GRANT_BUS <= '0';
 if CRC_CLAIM_BUS = '1' then
 state <= wait_for_crc;
 else
 state <= rerun_cpu;
 end if;
 when run_flash_programmer =>
 BUS_FOR_FL_PRG <= '1';
 BUS_FOR_CPU <= '0';
 FL_PRG_GRANT_BUS <= '1';
 state <= wait_for_flash_prg;
 when wait_for_flash_prg =>
 FL_PRG_GRANT_BUS <= '0';
 if FL_PRG_CLAIM_BUS = '1' then
 state <= wait_for_flash_prg;
 else
 state <= rerun_cpu;
 end if;
 when rerun_cpu =>
 BUS_FOR_FL_PRG <= '0';
 BUS_FOR_CRC <= '0';
 BUS_FOR_CPU <= '1';
 state <= run_cpu;
 when check_if_run_scrubbers =>
 if run_scrubbers_now = '1' then
 BUS_FOR_CPU <= '0';
 BUS_FOR_SCRB <= '1';
 REGF_FOR_SCRB <= '1';
 STACK_FOR_SCRB <= '1';
 HALT_CPU <= '1';
 scrubbers_running <= '1';
 state <= run_scrubbers;
 else
 state <= run_cpu;
 end if;
 when run_scrubbers =>
 RUN_SRAM_SCRB <= '1';
 RUN_STACK_SCRB <= '1';

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 121

Listing B.4 (cont.)
 RUN_REGF_SCRB <= '1';
 state <= wait_2;
 when wait_2 =>
 state <= check_if_scrubbing_done;
 when check_if_scrubbing_done =>
 RUN_SRAM_SCRB <= '0';
 RUN_REGF_SCRB <= '0';
 RUN_STACK_SCRB <= '0';

 if (SRAM_SCRB_BUSY = '0' and REGF_SCRB_BUSY = '0'

and STACK_SCRB_BUSY = '0') then
 state <= scrubbing_done;
 else
 state <= wait_2;
 end if;
 when scrubbing_done =>
 SCRB_DONE <= '1';
 BUS_FOR_CPU <= '1';
 BUS_FOR_SCRB <= '0';
 REGF_FOR_SCRB <= '0';
 STACK_FOR_SCRB <= '0';
 scrubbers_running <= '0';
 state <= run_cpu;
 end case;
 end if;
 end process main_fsm;

 scrub_counter : process (RST, CLK) is
 begin
 if RST = '0' then
 scrb_counter <= 0;
 run_scrubbers_now <= '0';
 cnt_state <= count;
 elsif falling_edge(CLK) then
 case cnt_state is
 when count =>
 if scrb_counter = MAX_SCRUB_COUNTER then
 scrb_counter <= 0;
 cnt_state <= notify;
 else
 scrb_counter <= scrb_counter + 1;
 end if;
 when notify =>
 run_scrubbers_now <= '1';
 cnt_state <= verify;
 when verify =>
 if scrubbers_running = '0' then
 cnt_state <= verify;
 else
 cnt_state <= wait_for_scrubbers;
 end if;
 when wait_for_scrubbers =>
 run_scrubbers_now <= '0';
 if scrubbers_running = '1' then
 cnt_state <= wait_for_scrubbers;
 else
 cnt_state <= count;
 end if;
 end case;
 end if;
 end process scrub_counter;

end architecture AR;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 122

Listing B.5. (13, 8) Hamming Code encoder
library ieee;
use ieee.std_logic_1164.all;
entity HAMMING_ENC_8D_5P is
 port (
 input : in std_logic_vector(7 downto 0);
 output : out std_logic_vector(12 downto 0)
);
end entity HAMMING_ENC_8D_5P;

architecture H_ENCODER_FUNC of HAMMING_ENC_8D_5P is
begin
ENCODING_PROCESS : process (input)
 variable temp_data_out : std_logic_vector(12 downto 0);
 variable parity : std_logic_vector(4 downto 0);
 begin
 temp_data_out(3) := input(0);
 temp_data_out(5) := input(1);
 temp_data_out(6) := input(2);
 temp_data_out(7) := input(3);
 temp_data_out(9) := input(4);
 temp_data_out(10) := input(5);
 temp_data_out(11) := input(6);
 temp_data_out(12) := input(7);
 parity(1) := temp_data_out(3) xor temp_data_out(5) xor temp_data_out(7)

xor temp_data_out(9)
xor temp_data_out(11);

 parity(2) := temp_data_out(3) xor temp_data_out(6) xor temp_data_out(7)
xor temp_data_out(10) xor temp_data_out(11);

 parity(3) := temp_data_out(5) xor temp_data_out(6) xor temp_data_out(7)
xor temp_data_out(12);

 parity(4) := temp_data_out(9) xor temp_data_out(10) xor temp_data_out(11)
xor temp_data_out(12);

 temp_data_out(1) := parity(1);
 temp_data_out(2) := parity(2);
 temp_data_out(4) := parity(3);
 temp_data_out(8) := parity(4);
 parity(0) := temp_data_out(1) xor temp_data_out(2) xor temp_data_out(3)

xor temp_data_out(4) xor temp_data_out(5) xor temp_data_out(6)
xor temp_data_out(7) xor temp_data_out(8) xor temp_data_out(9)
xor temp_data_out(10) xor temp_data_out(11)
xor temp_data_out(12);

 temp_data_out(0) := parity(0);
 output <= temp_data_out;
end process;

end H_ENCODER_FUNC;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 123

Listing B.6. (13, 8) Hamming Code decoder
library ieee;
use ieee.std_logic_1164.all;
entity HAMMING_DEC_8D_5P is
port (
 input : in std_logic_vector(12 downto 0);
 output : out std_logic_vector(7 downto 0);
 single_error : out std_logic;
 double_error : out std_logic
);
end entity HAMMING_DEC_8D_5P;

library ieee;
use ieee.std_logic_1164.all;
entity DEMUX is
port(
 slct : in std_logic_vector(3 downto 0);
 output : out std_logic_vector(11 downto 0)
);
end DEMUX;

architecture DEMUX_ARCH of DEMUX is
begin
process (slct)
variable tmp_out : std_logic_vector(11 downto 0);
begin
 tmp_out := "000000000000";
 case slct is
 when "0001" =>
 tmp_out(0) := '1';
 when "0010" =>
 tmp_out(1) := '1';
 when "0011" =>
 tmp_out(2) := '1';
 when "0100" =>
 tmp_out(3) := '1';
 when "0101" =>
 tmp_out(4) := '1';
 when "0110" =>
 tmp_out(5) := '1';
 when "0111" =>
 tmp_out(6) := '1';
 when "1000" =>
 tmp_out(7) := '1';
 when "1001" =>
 tmp_out(8) := '1';
 when "1010" =>
 tmp_out(9) := '1';
 when "1011" =>
 tmp_out(10) := '1';
 when "1100" =>
 tmp_out(11) := '1';
 when others =>
 tmp_out := "000000000000";
 end case;
 output <= tmp_out;
end process;
end DEMUX_ARCH;

library ieee;
use ieee.std_logic_1164.all;
entity Syndrome_computation is
 port (
 input : in std_logic_vector(12 downto 0);
 syndr_out : out std_logic_vector(3 downto 0);
 dbe_parity : out std_logic
);
end Syndrome_computation;

architecture Syndrome_computation_arch of Syndrome_computation is
begin
 syndr_out(0) <= input(1) xor input(3) xor input(5) xor input(7) xor input(9)

 xor input(11);

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 124

Listing B.6 (cont.)
syndr_out(1) <= input(2) xor input(3) xor input(6) xor input(7) xor input(10)

xor input(11);
 syndr_out(2) <= input(4) xor input(5) xor input(6) xor input(7) xor input(12);
 syndr_out(3) <= input(8) xor input(9) xor input(10) xor input(11) xor input(12);
 dbe_parity <= input(0) xor input(1) xor input(2) xor input(3) xor input(4)

xor input(5) xor input(6) xor input(7) xor input(8) xor input(9)
xor input(10) xor input(11) xor input(12);

end Syndrome_computation_arch;

architecture H_DECODER_FUNC of HAMMING_DEC_8D_5P is
component Syndrome_computation
 port (
 input : in std_logic_vector(12 downto 0);
 syndr_out : out std_logic_vector(3 downto 0);
 dbe_parity : out std_logic
);
end component;
component DEMUX
 port (
 slct : in std_logic_vector(3 downto 0);
 output : out std_logic_vector(11 downto 0)
);
end component;
signal syndrome_sig : std_logic_vector(3 downto 0);
signal dbe_parity_sig : std_logic;
signal xorin_signal : std_logic_vector(11 downto 0);
begin

syndrome_computation_c : Syndrome_computation
port map (input => input, syndr_out => syndrome_sig, dbe_parity => dbe_parity_sig);

demux_to_xors : DEMUX
port map (slct => syndrome_sig, output => xorin_signal);
 output(0) <= input(3) xor xorin_signal(2);
 output(1) <= input(5) xor xorin_signal(4);
 output(2) <= input(6) xor xorin_signal(5);
 output(3) <= input(7) xor xorin_signal(6);
 output(4) <= input(9) xor xorin_signal(8);
 output(5) <= input(10) xor xorin_signal(9);
 output(6) <= input(11) xor xorin_signal(10);
 output(7) <= input(12) xor xorin_signal(11);
 single_error <= '1' when ((syndrome_sig = "0000" and dbe_parity_sig = '1')
 or (syndrome_sig /= "0000" and dbe_parity_sig = '1')) else '0';
 double_error <= '1' when (syndrome_sig /= "0000" and dbe_parity_sig = '0') else '0';

end H_DECODER_FUNC;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 125

Listing B.7. Program Memory Scrubber
-- rom_scrubber.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity ROM_SCRUBBER is
port(
 RST : in std_logic;
 CLK : in std_logic;
 START : in std_logic;
 CE : in std_logic;
 DIN : in std_logic_vector(11 downto 0);
 DOUT : out std_logic_vector(17 downto 0);
 ADDR : out std_logic_vector(19 downto 0);
 SR_NOE : out std_logic;
 SR_NWE : out std_logic;
 SR_NCE : out std_logic;
 BUSY : out std_logic;
 INC_ROM_SEU_REG : out std_logic;
 SRAM_SE : in std_logic;

 SE : out std_logic
);
end entity ROM_SCRUBBER;

architecture ARCH of ROM_SCRUBBER is

component HAMMING_DEC_12D_6P is
port (
 input : in std_logic_vector(17 downto 0);
 output : out std_logic_vector(11 downto 0);
 single_error : out std_logic;
 double_error : out std_logic
);
end component HAMMING_DEC_12D_6P;

component HAMMING_ENC_12D_6P is
 port (
 input : in std_logic_vector(11 downto 0);
 output : out std_logic_vector(17 downto 0)
);
end component HAMMING_ENC_12D_6P;

constant MAX_ROM_ADDR : integer := 2047;

signal s_data : std_logic_vector(17 downto 0);
signal s_address : integer range 0 to (MAX_ROM_ADDR + 1); -- the address counter value
signal prev_SRAM_SE, s_nce , s_noe, s_nwe : std_logic; -- single and double error flag
respectively,
 -- for the decoded instruction

type state_type is (IDLE, NEXT_CHECK, READ, CHECK_ERROR, INC_SEU_REG, WRITE, INC_ADDR);
signal state, next_state : state_type; -- current and next state of the FSM

begin

 SR_NOE <= s_noe when CE = '1' else '1';
 SR_NWE <= s_nwe when CE = '1' else '1';
 SR_NCE <= s_nce when CE = '1' else '1';

 DOUT <= s_data;

 state_updt : process (RST, CLK) is -- standard state updating process
 begin
 if RST = '0' then
 state <= IDLE;
 prev_SRAM_SE <= '0';
 elsif rising_edge(CLK) then
 state <= next_state;
 if state = READ then
 prev_SRAM_SE <= SRAM_SE;
 end if;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 126

Listing B.7 (cont.)
 end if;
 end process state_updt;

 addr_counter : process (RST, CLK) is -- responsible for incrementing address counter
 begin
 if RST = '0' then
 s_address <= 0;
 elsif falling_edge(CLK) then
 if state = INC_ADDR then
 if s_address > MAX_ROM_ADDR then
 s_address <= 0;
 else
 s_address <= s_address + 1;
 end if;
 elsif START = '1' then
 s_address <= 0;
 end if;
 end if;
 end process addr_counter;

 output_logic : process (state) is
 begin
 BUSY <= '0';
 INC_ROM_SEU_REG <= '0';
 S_NOE <= '1';
 S_NWE <= '1';
 S_NCE <= '0';
 case state is
 when IDLE =>
 null;
 when NEXT_CHECK =>
 BUSY <= '1';
 when READ =>
 BUSY <= '1';
 S_NOE <= '0';
 when CHECK_ERROR =>
 BUSY <= '1';
 S_NOE <= '0';
 when INC_SEU_REG =>
 BUSY <= '1';
 INC_ROM_SEU_REG <= '1';
 when WRITE =>
 BUSY <= '1';
 S_NWE <= '0';
 when INC_ADDR =>
 BUSY <= '1';
 when others =>
 null;
 end case;
 end process output_logic;

 next_state_prcs : process (state, prev_SRAM_SE, s_address, START) is
 begin
 next_state <= state;
 case state is
 when IDLE =>
 if START = '1' then
 next_state <= NEXT_CHECK;
 end if;
 when NEXT_CHECK =>
 if s_address > MAX_ROM_ADDR then
 next_state <= IDLE;
 else
 next_state <= READ;
 end if;
 when READ =>
 next_state <= CHECK_ERROR;
 when CHECK_ERROR =>
 if prev_SRAM_SE = '1' then
 next_state <= INC_SEU_REG;
 else
 next_state <= INC_ADDR;
 end if;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 127

Listing B.7 (cont.)
 when INC_SEU_REG =>

 next_state <= WRITE;
 when WRITE =>
 next_state <= INC_ADDR;
 when INC_ADDR =>
 next_state <= NEXT_CHECK;
 end case;
 end process next_state_prcs;

 h_enc : HAMMING_ENC_12D_6P
 port map
 (
 input => DIN,
 output => s_data
);

 ADDR <= conv_std_logic_vector(s_address, 20);

end architecture ARCH;

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 128

Appendix C Summary of detected SEUs
Table C.1 shows full listing of Single Event Upsets (SEUs) detected in the

Memory Under Test (MUT) during the experiments conducted at DESY from 30th

of August till 2nd of September, 2005. All SEUs, which matched the pattern of SEU

generated for diagnosis (Data Low = 0xFF, Data High = 0xFE) were removed. Hence, 515

SEUs are listed instead of 543 detected, caused by neutrons. The address in a memory chip

is obtained by following the operation:

CHIP_ADDR = ADDRESS & 0x07FFFF

where ‘&’ stands for bit-wise “and” operation of the two hexadecimal numbers.

Table C.1. Listing of SEUs detected in the MUT

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-30 13:19:49 FF FD F56C48 DD6C48

2005-08-30 13:20:26 FB FF F02A2D D82A2D

2005-08-30 13:21:25 FF FB F485D2 DC85D2

2005-08-30 13:22:02 EF FF F72E4C DF2E4C

2005-08-30 13:22:43 FF 7F F23681 DA3681

2005-08-30 13:22:52 FF F7 F2ED9D DAED9D

2005-08-30 13:23:30 EF FF F5B333 DDB333

2005-08-30 13:23:39 DF FF F66187 DE6187

2005-08-30 14:15:41 FD FF F56780 DD6780

2005-08-30 14:27:00 FF FD F4ED80 DCED80

2005-08-30 14:33:11 EF FF F028F9 D828F9

2005-08-30 14:36:12 7F FF F57430 DD7430

2005-08-30 14:40:07 BF FF F6B6CC DEB6CC

2005-08-30 14:45:37 FF FD F70693 DF0693

2005-08-30 15:26:46 FF BF F4E66E DCE66E

2005-08-30 15:29:06 DF FF F72F4C DF2F4C

2005-08-30 15:40:03 FF EF F65DEA DE5DEA

2005-08-30 15:55:17 FF FB F189E8 D989E8

2005-08-30 15:55:45 DF FF F392B1 DB92B1

2005-08-30 16:05:35 FE FF F6F3C8 DEF3C8

2005-08-30 16:10:34 7F FF F4F766 DCF766

2005-08-30 16:20:53 FD FF F27BC1 DA7BC1

2005-08-30 16:22:36 DF FF F202D3 DA02D3

2005-08-30 16:30:31 FF FB F4F5C0 DCF5C0

2005-08-30 16:38:38 FE FF F0BA01 D8BA01

2005-08-30 16:56:31 DF FF F79354 DF9354

2005-08-30 16:59:51 F7 FF F64DF2 DE4DF2

2005-08-30 17:04:40 EF FF F39492 DB9492

2005-08-30 17:14:15 FF EF F5DCC9 DDDCC9

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-30 17:20:09 FF 7F F7EFF2 DFEFF2

2005-08-30 17:24:16 FD FF F20FA1 DA0FA1

2005-08-30 17:33:34 EF FF F30AF2 DB0AF2

2005-08-30 17:41:28 FD FF F5D242 DDD242

2005-08-30 17:41:41 FF F7 F6E210 DEE210

2005-08-30 17:48:37 F7 FF F563FA DD63FA

2005-08-30 17:51:31 FF BF F203C0 DA03C0

2005-08-30 18:05:14 FF FD F6AD62 DEAD62

2005-08-30 18:06:00 FF EF F22712 DA2712

2005-08-30 18:06:55 FE FF F61F92 DE1F92

2005-08-30 18:18:37 FB FF F7922D DF922D

2005-08-30 18:44:57 FF DF F3A7E6 DBA7E6

2005-08-30 18:45:19 FD FF F54960 DD4960

2005-08-30 18:48:04 7F FF F179B0 D979B0

2005-08-30 18:48:28 BF FF F33C30 DB3C30

2005-08-30 19:09:34 FF F7 F0416F D8416F

2005-08-30 19:13:51 FF 7F F32475 DB2475

2005-08-30 19:14:13 FF FD F4CB0F DCCB0F

2005-08-30 19:24:04 FF DF F039E6 D839E6

2005-08-30 19:24:59 EF FF F44B26 DC4B26

2005-08-30 19:27:32 DF FF F78DC2 DF8DC2

2005-08-30 19:29:32 FF EF F0606C D8606C

2005-08-30 19:33:09 FF BF F05118 D85118

2005-08-30 19:40:35 FE FF F115BB D915BB

2005-08-30 19:42:53 DF FF F34C1D DB4C1D

2005-08-30 20:17:02 FF DF F61748 DE1748

2005-08-30 20:17:41 7F FF F0F5E1 D8F5E1

2005-08-30 20:21:49 FD FF F338CE DB38CE

2005-08-30 20:24:34 7F FF F74D17 DF4D17

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 129

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-30 20:27:27 FF FB F407FA DC07FA

2005-08-30 20:28:19 DF FF F7E2F8 DFE2F8

2005-08-30 20:35:32 BF FF F7B83F DFB83F

2005-08-30 21:02:56 FE FF F09210 D89210

2005-08-30 21:06:06 F7 FF F68A87 DE8A87

2005-08-30 21:06:52 EF FF F1F41E D9F41E

2005-08-30 21:07:41 FE FF F589A7 DD89A7

2005-08-30 21:08:00 7F FF F6EA47 DEEA47

2005-08-30 21:08:08 FF DF F78152 DF8152

2005-08-30 21:08:10 FF EF F78526 DF8526

2005-08-30 21:08:21 FF DF F06D37 D86D37

2005-08-30 21:10:19 EF FF F11C0E D91C0E

2005-08-30 21:10:36 F7 FF F257C0 DA57C0

2005-08-30 21:10:51 FF EF F3731E DB731E

2005-08-30 21:11:35 7F FF F6B584 DEB584

2005-08-30 21:11:41 FE FF F72F4C DF2F4C

2005-08-30 21:13:44 FF DF F0366F D8366F

2005-08-30 21:13:59 FF 7F F147E7 D947E7

2005-08-30 21:14:04 F7 FF F1AFE2 D9AFE2

2005-08-30 21:16:01 FF FB F25451 DA5451

2005-08-30 21:17:09 FF BF F74C97 DF4C97

2005-08-30 21:17:57 EF FF F2C73E DAC73E

2005-08-30 21:18:34 FD FF F58B6E DD8B6E

2005-08-30 21:20:18 FF FD F52517 DD2517

2005-08-30 21:20:20 FF FD F52617 DD2617

2005-08-30 21:20:52 FF BF F7A4A4 DFA4A4

2005-08-30 21:28:38 FF BF F1EE49 D9EE49

2005-08-30 21:47:41 BF FF F6CB8F DECB8F

2005-08-30 21:53:46 FF FB F199CD D999CD

2005-08-30 22:06:50 FF FB F45D22 DC5D22

2005-08-30 22:22:11 FB FF F017FB D817FB

2005-08-30 22:28:11 FD FF F29E92 DA9E92

2005-08-30 22:29:59 FF F7 F28E20 DA8E20

2005-08-30 22:37:00 FF BF F17D2B D97D2B

2005-08-30 22:37:17 FF FB F2B4B7 DAB4B7

2005-08-30 22:56:00 BF FF F5401A DD401A

2005-08-30 23:06:09 FF 7F F1F706 D9F706

2005-08-30 23:11:40 FE FF F2601D DA601D

2005-08-30 23:16:29 FF DF F79F98 DF9F98

2005-08-30 23:24:21 FF DF F25808 DA5808

2005-08-30 23:47:11 FF FB F705D3 DF05D3

2005-08-30 23:50:35 FD FF F5DD92 DDDD92

2005-08-30 23:53:12 FF FD F187D0 D987D0

2005-08-31 00:11:07 FF FD F09B62 D89B62

2005-08-31 00:11:09 FE FF F0AC1E D8AC1E

2005-08-31 00:20:25 EF FF F18D64 D98D64

2005-08-31 00:26:10 BF FF F2F810 DAF810

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-31 00:30:40 EF FF F6CE1E DECE1E

2005-08-31 00:40:11 FE FF F0CC37 D8CC37

2005-08-31 00:43:20 FE FF F6B525 DEB525

2005-08-31 01:02:20 FF FD F0942E D8942E

2005-08-31 01:03:02 7F FF F3BBCB DBBBCB

2005-08-31 01:05:33 FF EF F6DA6E DEDA6E

2005-08-31 01:13:23 FF F7 F15FCA D95FCA

2005-08-31 01:34:48 FE FF F7E4EA DFE4EA

2005-08-31 01:55:30 FF EF F31D25 DB1D25

2005-08-31 02:13:23 FF 7F F20B69 DA0B69

2005-08-31 02:24:26 FF FD F2C920 DAC920

2005-08-31 02:26:03 FD FF F1DE50 D9DE50

2005-08-31 02:33:23 FF 7F F24792 DA4792

2005-08-31 02:44:26 FF FB F2FE4B DAFE4B

2005-08-31 02:48:16 FF BF F3C9A1 DBC9A1

2005-08-31 02:50:17 FF 7F F4BFFC DCBFFC

2005-08-31 02:53:28 FF FB F2D37D DAD37D

2005-08-31 03:14:13 FF DF F658EB DE58EB

2005-08-31 03:34:01 BF FF F5B97F DDB97F

2005-08-31 03:34:32 EF FF F7E911 DFE911

2005-08-31 03:35:15 FF EF F3194A DB194A

2005-08-31 03:38:19 DF FF F09941 D89941

2005-08-31 03:41:42 FF 7F F79EE0 DF9EE0

2005-08-31 03:42:30 FF BF F314B4 DB14B4

2005-08-31 03:50:17 FF DF F57075 DD7075

2005-08-31 03:51:52 BF FF F469C9 DC69C9

2005-08-31 03:54:12 FF 7F F6AF20 DEAF20

2005-08-31 03:59:04 FB FF F424DC DC24DC

2005-08-31 04:11:31 DF FF F317AA DB17AA

2005-08-31 04:23:33 F7 FF F02930 D82930

2005-08-31 04:28:19 7F FF F500B2 DD00B2

2005-08-31 04:30:02 FD FF F4B593 DCB593

2005-08-31 04:30:09 BF FF F54385 DD4385

2005-08-31 04:30:17 FF FB F5DD04 DDDD04

2005-08-31 04:31:55 FF FB F50791 DD0791

2005-08-31 04:37:03 FF FD F3B946 DBB946

2005-08-31 04:37:36 FF F7 F630C7 DE30C7

2005-08-31 04:38:18 F7 FF F11818 D91818

2005-08-31 04:39:09 FE FF F4F66B DCF66B

2005-08-31 04:40:14 FF EF F1C1CB D9C1CB

2005-08-31 04:41:11 FF F7 F5F606 DDF606

2005-08-31 04:42:22 FF EF F32B64 DB2B64

2005-08-31 04:44:27 FF EF F45A11 DC5A11

2005-08-31 05:06:05 EF FF F3C393 DBC393

2005-08-31 05:14:25 FB FF F08C11 D88C11

2005-08-31 05:15:52 FB FF F6F0D1 DEF0D1

2005-08-31 05:28:34 FF EF F6E1F2 DEE1F2

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 130

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-31 05:35:22 FF F7 F4EBB8 DCEBB8

2005-08-31 05:39:04 BF FF F51D07 DD1D07

2005-08-31 05:56:08 FB FF F08360 D88360

2005-08-31 06:05:01 FF DF F7B93E DFB93E

2005-08-31 06:09:57 FD FF F574D6 DD74D6

2005-08-31 06:33:11 FF EF F3EAD7 DBEAD7

2005-08-31 06:34:17 EF FF F0DB0F D8DB0F

2005-08-31 06:34:51 FF F7 F34A81 DB4A81

2005-08-31 06:35:05 F7 FF F44739 DC4739

2005-08-31 06:35:45 BF FF F749C2 DF49C2

2005-08-31 06:35:54 F7 FF F7F1C4 DFF1C4

2005-08-31 06:37:28 FF FD F6C8EA DEC8EA

2005-08-31 06:40:56 FF BF F61990 DE1990

2005-08-31 07:16:43 FF DF F3F3CD DBF3CD

2005-08-31 07:23:59 FF 7F F40423 DC0423

2005-08-31 07:31:15 EF FF F4175C DC175C

2005-08-31 07:37:52 FF 7F F1408A D9408A

2005-08-31 07:42:16 FF 7F F4B931 DCB931

2005-08-31 07:47:31 FF FD F3D45E DBD45E

2005-08-31 07:49:56 FD FF F68830 DE8830

2005-08-31 07:58:32 EF FF F465AB DC65AB

2005-08-31 08:00:45 FF FB F63910 DE3910

2005-08-31 08:06:14 BF FF F667D6 DE67D6

2005-08-31 08:17:27 FD FF F7DF31 DFDF31

2005-08-31 08:18:08 FF FD F2D30C DAD30C

2005-08-31 08:25:29 EF FF F34217 DB4217

2005-08-31 08:37:58 EF FF F257C5 DA57C5

2005-08-31 08:43:09 FD FF F12C5E D92C5E

2005-08-31 08:50:34 FF FD F1F99F D9F99F

2005-08-31 09:01:20 BF FF F15ECF D95ECF

2005-08-31 09:22:04 DF FF F4E4F6 DCE4F6

2005-08-31 09:26:38 FF F7 F0FB6C D8FB6C

2005-08-31 09:34:00 FF F7 F17A1A D97A1A

2005-08-31 09:52:58 BF FF F5229D DD229D

2005-08-31 10:06:28 FF FB F0C5C9 D8C5C9

2005-08-31 10:11:31 7F FF F70539 DF0539

2005-08-31 10:20:10 FF F7 F52A1E DD2A1E

2005-08-31 10:20:55 EF FF F07EB1 D87EB1

2005-08-31 10:29:51 7F FF F7DADF DFDADF

2005-08-31 10:35:01 FF EF F69F45 DE9F45

2005-08-31 10:43:50 FF FB F57070 DD7070

2005-08-31 11:07:57 F7 FF F7DF10 DFDF10

2005-08-31 11:20:33 FF FB F77853 DF7853

2005-08-31 11:21:19 FF 7F F2E484 DAE484

2005-08-31 11:32:10 DF FF F2C12A DAC12A

2005-08-31 11:37:01 FF BF F0296F D8296F

2005-08-31 11:44:53 F7 FF F2E18F DAE18F

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-31 11:45:00 FB FF F359BE DB59BE

2005-08-31 11:58:21 FF 7F F63032 DE3032

2005-08-31 11:59:49 7F FF F4B41D DCB41D

2005-08-31 12:01:05 FF EF F24C47 DA4C47

2005-08-31 12:02:09 FD FF F6E7A1 DEE7A1

2005-08-31 12:02:12 FB FF F737DF DF37DF

2005-08-31 12:02:17 BF FF F7870D DF870D

2005-08-31 12:03:21 FE FF F4445C DC445C

2005-08-31 12:03:53 7F FF F6A514 DEA514

2005-08-31 12:05:33 DF FF F60526 DE0526

2005-08-31 12:05:46 FF 7F F6EEDF DEEEDF

2005-08-31 12:05:59 FB FF F7E455 DFE455

2005-08-31 12:06:01 FF 7F F7E93B DFE93B

2005-08-31 12:06:08 7F FF F083E7 D883E7

2005-08-31 12:06:50 F7 FF F3A2DE DBA2DE

2005-08-31 12:07:04 FF DF F4A64C DCA64C

2005-08-31 12:08:22 F7 FF F26CBF DA6CBF

2005-08-31 12:09:07 FF FB F59E90 DD9E90

2005-08-31 12:09:52 7F FF F1052E D9052E

2005-08-31 12:10:46 FF FD F4F98B DCF98B

2005-08-31 12:11:31 FF 7F F04AEB D84AEB

2005-08-31 12:11:32 FD FF F05150 D85150

2005-08-31 12:11:34 FF 7F F085EF D885EF

2005-08-31 12:12:12 FF EF F35154 DB5154

2005-08-31 12:13:03 FF F7 F71069 DF1069

2005-08-31 12:13:05 7F FF F72223 DF2223

2005-08-31 12:14:33 FB FF F5B2C6 DDB2C6

2005-08-31 12:15:12 FF 7F F08A8E D88A8E

2005-08-31 12:15:19 FE FF F10729 D90729

2005-08-31 12:15:51 FE FF F36370 DB6370

2005-08-31 12:15:53 FB FF F389D6 DB89D6

2005-08-31 12:19:16 FD FF F2804E DA804E

2005-08-31 12:20:00 F7 FF F5B1BB DDB1BB

2005-08-31 12:20:37 FD FF F06C0F D86C0F

2005-08-31 12:21:48 DF FF F5AD63 DDAD63

2005-08-31 12:21:50 FE FF F5C32C DDC32C

2005-08-31 12:22:01 F7 FF F6A654 DEA654

2005-08-31 12:23:32 F7 FF F5430F DD430F

2005-08-31 12:24:32 FE FF F1B287 D9B287

2005-08-31 12:26:25 FE FF F1FCC9 D9FCC9

2005-08-31 12:27:21 FF EF F610F1 DE10F1

2005-08-31 12:29:41 FF FB F065DC D865DC

2005-08-31 12:30:38 FF DF F4A0BC DCA0BC

2005-08-31 12:30:46 BF FF F53A9E DD3A9E

2005-08-31 12:30:48 FF BF F5548F DD548F

2005-08-31 12:31:05 FF FB F693D3 DE93D3

2005-08-31 12:31:32 DF FF F090C4 D890C4

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 131

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-31 12:31:54 FF BF F22C52 DA2C52

2005-08-31 12:31:57 F7 FF F26CA6 DA6CA6

2005-08-31 12:35:06 FF BF F04A46 D84A46

2005-08-31 12:35:44 FF FD F3165D DB165D

2005-08-31 12:35:58 DF FF F424C8 DC24C8

2005-08-31 12:36:06 FF FB F4ADF4 DCADF4

2005-08-31 12:36:42 7F FF F756B6 DF56B6

2005-08-31 12:37:21 FE FF F244C6 DA44C6

2005-08-31 12:38:52 FE FF F0EFB7 D8EFB7

2005-08-31 12:38:58 FF DF F1600E D9600E

2005-08-31 12:39:35 FE FF F411B9 DC11B9

2005-08-31 12:41:53 FF DF F648BA DE48BA

2005-08-31 12:42:47 FF FB F23981 DA3981

2005-08-31 12:43:14 FB FF F4274F DC274F

2005-08-31 12:44:38 EF FF F26771 DA6771

2005-08-31 12:46:30 7F FF F28B87 DA8B87

2005-08-31 12:46:47 FB FF F3D6C1 DBD6C1

2005-08-31 12:47:23 EF FF F67F03 DE7F03

2005-08-31 12:47:31 F7 FF F7183F DF183F

2005-08-31 12:48:33 FF FD F39342 DB9342

2005-08-31 12:48:47 FF 7F F4A88A DCA88A

2005-08-31 12:48:50 FF F7 F4F385 DCF385

2005-08-31 12:49:39 FE FF F075A7 D875A7

2005-08-31 12:49:53 F7 FF F184BD D984BD

2005-08-31 12:50:24 FB FF F3C67E DBC67E

2005-08-31 12:50:59 FF DF F660D7 DE60D7

2005-08-31 12:52:39 BF FF F5ADC2 DDADC2

2005-08-31 12:52:44 FD FF F610D2 DE10D2

2005-08-31 12:52:56 DF FF F703AE DF03AE

2005-08-31 12:52:58 DF FF F71341 DF1341

2005-08-31 12:53:54 FB FF F3443F DB443F

2005-08-31 14:33:00 DF FF F06071 D86071

2005-08-31 14:46:59 FF F7 F5F802 DDF802

2005-08-31 14:54:40 FF FB F7DE26 DFDE26

2005-08-31 15:19:55 FE FF F7468D DF468D

2005-08-31 15:22:40 BF FF F3695F DB695F

2005-08-31 15:44:15 F7 FF F2A5D9 DAA5D9

2005-08-31 15:46:56 FF F7 F67755 DE7755

2005-08-31 16:10:36 FE FF F6DEB1 DEDEB1

2005-08-31 16:30:55 BF FF F081FD D881FD

2005-08-31 16:35:28 F7 FF F47C40 DC7C40

2005-08-31 16:52:13 FE FF F658F6 DE58F6

2005-08-31 16:57:53 EF FF F764E8 DF64E8

2005-08-31 17:14:07 FB FF F705E6 DF05E6

2005-08-31 17:18:24 FB FF F1DEDC D9DEDC

2005-08-31 17:18:50 FF FD F3DD8B DBDD8B

2005-08-31 17:20:55 FB FF F50C2C DD0C2C

Time Data
Low

Data
High

Address
Low

Address
High

2005-08-31 17:34:45 DF FF F1F69E D9F69E

2005-08-31 17:35:16 FF BF F45625 DC5625

2005-08-31 17:42:14 FF BF F30583 DB0583

2005-08-31 17:51:06 FD FF F21883 DA1883

2005-08-31 18:02:07 FF F7 F2BBE0 DABBE0

2005-08-31 18:07:45 FF F7 F38DB7 DB8DB7

2005-08-31 18:10:32 FF FD F7DB77 DFDB77

2005-08-31 18:15:02 FF F7 F3BA94 DBBA94

2005-08-31 18:26:56 7F FF F0359E D8359E

2005-08-31 18:33:51 FF EF F6B2BD DEB2BD

2005-08-31 18:44:37 FF FD F62A2A DE2A2A

2005-08-31 19:08:43 FF 7F F072D7 D872D7

2005-08-31 19:09:46 FD FF F5202C DD202C

2005-08-31 19:21:33 FF FB F12868 D92868

2005-08-31 20:23:32 FD FF F27BBD DA7BBD

2005-08-31 20:25:17 FE FF F237BC DA37BC

2005-08-31 20:25:24 FF EF F2BE4B DABE4B

2005-08-31 20:26:01 FD FF F57304 DD7304

2005-08-31 20:26:10 EF FF F614D4 DE14D4

2005-08-31 20:26:31 FF FB F7A81B DFA81B

2005-08-31 20:26:49 FB FF F102DF D902DF

2005-08-31 20:27:22 FF F7 F365DE DB65DE

2005-08-31 20:28:28 FF DF F036E2 D836E2

2005-08-31 20:28:29 FF FB F05D2E D85D2E

2005-08-31 20:29:12 FF FD F36CE8 DB6CE8

2005-08-31 20:47:27 FF F7 F4E821 DCE821

2005-08-31 21:09:38 FF F7 F0F287 D8F287

2005-08-31 21:20:15 FE FF F03F49 D83F49

2005-08-31 21:21:10 7F FF F43F55 DC3F55

2005-08-31 21:34:10 FB FF F58C5E DD8C5E

2005-08-31 21:36:45 FF FB F107A3 D907A3

2005-08-31 21:57:34 FB FF F4A276 DCA276

2005-08-31 21:57:46 FE FF F598F6 DD98F6

2005-08-31 22:00:01 7F FF F77B29 DF7B29

2005-08-31 22:09:02 F7 FF F740D7 DF40D7

2005-08-31 22:17:26 F7 FF F44888 DC4888

2005-08-31 22:29:37 F7 FF F1E44E D9E44E

2005-08-31 22:37:27 EF FF F48A3D DC8A3D

2005-08-31 22:37:49 FF FD F6180D DE180D

2005-08-31 22:48:27 FF BF F4F001 DCF001

2005-08-31 22:49:41 EF FF F2669E DA669E

2005-08-31 22:54:04 FF DF F5BDE9 DDBDE9

2005-08-31 22:57:08 EF FF F32930 DB2930

2005-08-31 22:59:28 FE FF F56CD4 DD6CD4

2005-08-31 23:02:14 FF 7F F18862 D98862

2005-08-31 23:03:38 FF FB F7D252 DFD252

2005-09-01 03:03:49 EF FF F26889 DA6889

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 132

Time Data
Low

Data
High

Address
Low

Address
High

2005-09-01 03:05:16 FF FD F0BB4F D8BB4F

2005-09-01 03:06:02 FF DF F41E19 DC1E19

2005-09-01 03:07:03 DF FF F08CFA D88CFA

2005-09-01 03:07:31 7F FF F296F1 DA96F1

2005-09-01 03:08:09 FE FF F56F89 DD6F89

2005-09-01 03:08:51 BF FF F08EC0 D88EC0

2005-09-01 03:09:10 FF F7 F1E0CF D9E0CF

2005-09-01 03:10:02 FF BF F5C1E0 DDC1E0

2005-09-01 03:11:12 FF BF F2D1F2 DAD1F2

2005-09-01 03:12:32 7F FF F0C810 D8C810

2005-09-01 03:13:27 FD FF F4CFCA DCCFCA

2005-09-01 03:15:25 BF FF F57205 DD7205

2005-09-01 03:15:44 FF F7 F6F138 DEF138

2005-09-01 05:14:59 FF BF F46703 DC6703

2005-09-01 05:19:52 FB FF F1EFDC D9EFDC

2005-09-01 05:39:33 FD FF F0A580 D8A580

2005-09-01 05:52:04 FF F7 F7C47E DFC47E

2005-09-01 08:43:44 BF FF F46BAF DC6BAF

2005-09-01 08:55:07 FF FD F67EDE DE7EDE

2005-09-01 08:56:20 FF DF F3F906 DBF906

2005-09-01 09:00:29 7F FF F64398 DE4398

2005-09-01 09:51:58 F7 FF F121C5 D921C5

2005-09-01 09:52:32 EF FF F3889E DB889E

2005-09-01 10:10:25 FF FB F265EC DA65EC

2005-09-01 10:10:42 FF DF F3AC24 DBAC24

2005-09-01 10:11:13 BF FF F5E17D DDE17D

2005-09-01 10:11:19 FF 7F F64F26 DE4F26

2005-09-01 10:11:24 FF EF F6A861 DEA861

2005-09-01 10:12:23 FF BF F324B2 DB24B2

2005-09-01 10:12:27 FD FF F36789 DB6789

2005-09-01 10:13:16 F7 FF F6FC12 DEFC12

2005-09-01 10:14:50 BF FF F5EC15 DDEC15

2005-09-01 10:17:18 FB FF F0B0E8 D8B0E8

2005-09-01 10:17:41 DF FF F264A2 DA64A2

2005-09-01 10:35:41 FF EF F1CAA9 D9CAA9

2005-09-01 10:38:35 FF EF F68299 DE8299

2005-09-01 10:54:33 FF FD F4E183 DCE183

2005-09-01 11:09:28 FF F7 F6A547 DEA547

2005-09-01 11:14:42 BF FF F5BF88 DDBF88

2005-09-01 11:17:30 FB FF F217C7 DA17C7

2005-09-01 11:28:08 FB FF F0FCF1 D8FCF1

2005-09-01 12:01:58 EF FF F60484 DE0484

2005-09-01 12:41:23 FF EF F3B097 DBB097

2005-09-01 12:43:21 FB FF F45D26 DC5D26

2005-09-01 13:02:10 F7 FF F74A18 DF4A18

2005-09-01 13:02:52 FF BF F27098 DA7098

2005-09-01 13:03:32 FF EF F5655B DD655B

Time Data
Low

Data
High

Address
Low

Address
High

2005-09-01 13:11:22 FF FD F7CCB3 DFCCB3

2005-09-01 13:14:13 DF FF F4791D DC791D

2005-09-01 13:45:58 FF 7F F06604 D86604

2005-09-01 14:21:14 BF FF F3DEC7 DBDEC7

2005-09-01 14:37:41 7F FF F454B7 DC54B7

2005-09-01 15:06:27 FF F7 F31CBF DB1CBF

2005-09-01 15:12:16 FF FB F4A9E9 DCA9E9

2005-09-01 15:13:51 DF FF F3A066 DBA066

2005-09-01 15:15:08 FB FF F142D5 D942D5

2005-09-01 15:23:28 FE FF F5FDAA DDFDAA

2005-09-01 15:24:59 FF DF F4D092 DCD092

2005-09-01 15:42:15 FB FF F0E7E4 D8E7E4

2005-09-01 15:57:29 DF FF F3F1F1 DBF1F1

2005-09-01 16:17:22 FE FF F388D8 DB88D8

2005-09-01 16:21:53 FF FD F7743E DF743E

2005-09-01 16:26:11 FF F7 F260F0 DA60F0

2005-09-01 16:26:51 BF FF F561C6 DD61C6

2005-09-01 16:26:52 FF FB F56667 DD6667

2005-09-01 16:33:16 FF DF F1A4C8 D9A4C8

2005-09-01 16:41:54 BF FF F7B0C0 DFB0C0

2005-09-01 16:47:50 DF FF F1D3AB D9D3AB

2005-09-01 16:57:11 7F FF F31226 DB1226

2005-09-01 17:20:18 FF 7F F0F2B2 D8F2B2

2005-09-01 17:20:29 7F FF F1ADBF D9ADBF

2005-09-01 17:21:18 FE FF F54CCA DD4CCA

2005-09-01 17:21:48 FF EF F78615 DF8615

2005-09-01 17:22:19 FE FF F1DBA8 D9DBA8

2005-09-01 17:22:30 FF FB F28B85 DA8B85

2005-09-01 17:22:31 EF FF F2ADB5 DAADB5

2005-09-01 17:22:43 FB FF F39358 DB9358

2005-09-01 17:25:10 FF F7 F64C41 DE4C41

2005-09-01 18:09:15 FF BF F0B656 D8B656

2005-09-01 18:22:24 FF EF F297D5 DA97D5

2005-09-01 18:33:08 FF EF F1E722 D9E722

2005-09-01 18:36:25 FF DF F05D51 D85D51

2005-09-01 18:39:41 FD FF F6D7E8 DED7E8

2005-09-01 18:43:45 FD FF F0BD68 D8BD68

2005-09-01 18:47:16 FF FD F04588 D84588

2005-09-01 18:51:10 FE FF F1718A D9718A

2005-09-01 18:51:34 FB FF F325E6 DB25E6

2005-09-01 18:58:52 DF FF F341EF DB41EF

2005-09-01 19:14:28 FF EF F7F461 DFF461

2005-09-01 19:14:34 FF 7F F08C46 D88C46

2005-09-01 19:43:15 FD FF F70606 DF0606

2005-09-01 19:46:17 FF FB F443C5 DC43C5

2005-09-01 19:58:22 FF F7 F17C73 D97C73

2005-09-01 19:59:02 DF FF F47AD6 DC7AD6

Jakub Mielczarek
Design of Radiation Tolerant Transmission Channel Circuit

 133

Time Data
Low

Data
High

Address
Low

Address
High

2005-09-01 20:38:10 FF F7 F0E87F D8E87F

2005-09-01 20:39:53 F7 FF F08751 D88751

2005-09-01 21:02:09 FF FD F29AC4 DA9AC4

2005-09-01 21:13:27 EF FF F4727C DC727C

2005-09-01 21:26:43 7F FF F6FB77 DEFB77

2005-09-01 21:32:54 FB FF F23E4E DA3E4E

2005-09-01 21:33:24 7F FF F46836 DC6836

2005-09-01 21:33:35 FF EF F52B48 DD2B48

2005-09-01 21:50:37 FB FF F04D39 D84D39

2005-09-01 22:04:45 FF FB F6A5E1 DEA5E1

2005-09-01 22:04:58 DF FF F790A7 DF90A7

2005-09-01 22:05:00 FF BF F79B12 DF9B12

2005-09-01 22:11:45 EF FF F57D84 DD7D84

2005-09-01 22:15:26 DF FF F5B0F5 DDB0F5

2005-09-01 22:16:53 FF F7 F418AB DC18AB

2005-09-01 22:21:38 FE FF F0F372 D8F372

2005-09-01 22:26:23 FD FF F5DF87 DDDF87

2005-09-01 22:27:36 FF 7F F32134 DB2134

2005-09-01 22:35:55 F7 FF F7E124 DFE124

2005-09-01 22:41:39 FF EF F1396B D9396B

2005-09-01 23:20:21 FF 7F F3A834 DBA834

2005-09-01 23:30:04 EF FF F68B2E DE8B2E

2005-09-01 23:39:27 F7 FF F7E441 DFE441

2005-09-01 23:53:46 FD FF F6F693 DEF693

2005-09-01 23:58:15 FE FF F2CAD6 DACAD6

2005-09-02 00:16:42 FE FF F40F2D DC0F2D

2005-09-02 00:23:38 7F FF F28C61 DA8C61

2005-09-02 00:25:02 FD FF F0C857 D8C857

2005-09-02 00:25:07 FF EF F11AE1 D91AE1

2005-09-02 00:25:52 FB FF F46A7F DC6A7F

2005-09-02 00:26:33 FF 7F F76898 DF6898

2005-09-02 00:26:50 FF FB F0B996 D8B996

2005-09-02 00:28:08 EF FF F66EB8 DE6EB8

2005-09-02 00:28:24 BF FF F790A9 DF90A9

2005-09-02 00:28:30 BF FF F014B3 D814B3

2005-09-02 00:30:06 FF DF F70141 DF0141

2005-09-02 00:30:08 FF BF F73BA3 DF3BA3

2005-09-02 00:30:31 FD FF F0F02B D8F02B

2005-09-02 00:44:12 FF BF F551A9 DD51A9

2005-09-02 00:51:33 7F FF F5AAF0 DDAAF0

2005-09-02 00:51:41 FF FD F625A7 DE25A7

Time Data
Low

Data
High

Address
Low

Address
High

2005-09-02 00:52:52 FB FF F362DA DB62DA

2005-09-02 00:53:03 F7 FF F44214 DC4214

2005-09-02 00:53:11 FF FD F4E39A DCE39A

2005-09-02 01:04:35 BF FF F706E3 DF06E3

2005-09-02 01:10:35 7F FF F18255 D98255

2005-09-02 01:16:09 BF FF F1F646 D9F646

2005-09-02 01:39:26 FF F7 F09DEB D89DEB

2005-09-02 01:59:42 FF DF F1FB8A D9FB8A

2005-09-02 02:16:11 BF FF F2B74C DAB74C

2005-09-02 02:18:54 FB FF F6A82D DEA82D

2005-09-02 02:33:18 FF FB F6124A DE124A

2005-09-02 02:39:28 BF FF F14550 D94550

2005-09-02 02:42:50 EF FF F006BD D806BD

2005-09-02 03:59:00 DF FF F7BCF5 DFBCF5

2005-09-02 07:09:06 F7 FF F57501 DD7501

2005-09-02 07:09:56 FD FF F130F4 D930F4

2005-09-02 07:10:04 EF FF F1E1D4 D9E1D4

2005-09-02 07:11:03 FF FD F61F2D DE1F2D

2005-09-02 07:12:03 FF FB F281D4 DA81D4

2005-09-02 07:12:45 FD FF F59C23 DD9C23

2005-09-02 07:12:59 DF FF F6A982 DEA982

2005-09-02 07:13:18 FD FF F0022E D8022E

2005-09-02 07:17:28 FF BF F27873 DA7873

2005-09-02 07:31:13 FE FF F6F239 DEF239

2005-09-02 07:43:24 BF FF F4BFEA DCBFEA

2005-09-02 07:44:55 DF FF F36929 DB6929

2005-09-02 07:56:36 FE FF F6CE46 DECE46

2005-09-02 08:07:52 EF FF F087D4 D887D4

2005-09-02 08:12:45 FF BF F60A2A DE0A2A

2005-09-02 08:13:43 BF FF F266F5 DA66F5

2005-09-02 08:17:59 FF F7 F5278C DD278C

2005-09-02 08:20:01 FF DF F61909 DE1909

2005-09-02 08:21:53 F7 FF F6597C DE597C

2005-09-02 08:27:20 EF FF F65E5D DE5E5D

2005-09-02 08:53:08 EF FF F7FC3B DFFC3B

2005-09-02 08:58:10 FF EF F6268A DE268A

2005-09-02 09:06:00 FF DF F0CE51 D8CE51

2005-09-02 09:07:54 F7 FF F119A1 D919A1

2005-09-02 09:09:23 F7 FF F79D4D DF9D4D

2005-09-02 09:25:27 FF FB F6639A DE639A

	Contents
	Streszczenie
	1 Introduction
	2 Objective of the Thesis
	2.1 Problem Description
	2.2 Proposed Solution
	Figure 2.1 . Service hall of LINAC II accelerator. a) Array of high power klystrons; b) Control electronics; c) High power waveguide with SLED (SLAC Energy Doubler); d) Vacuum pump
	Figure 2.2 . Block diagram of proposed communication channel. 1 – radiation hardened or tolerant communication circuit, 2 – communication, control signal and supply transceiver, 3 – monitoring station, 4 –DUT, (A) accelerator tunnel, (H) accelerator hall. The power supply unit is not included.

	2.3 Possible Implementations
	Figure 2.3 . Block diagram of an exemplary application of the transmission channel circuit

	3 Radiation Effects on Electronic Devices
	3.1 Neutron Radiation
	3.1.1 Firm Errors
	Figure 3.1 . Parasitic thyristor in CMOS inverter structure (p well technology) [3]

	3.1.2 Soft Errors
	Figure 3.2 . The 6 transistor SRAM memory cell. T5 and T6 are n type access transistors, T1 and T2 are p type load transistors, T3 and T4 are n type drive transistors [3].

	3.2 Gamma Radiation
	Figure 3.3 . Floating gate MOSFET transistor [3]

	4 Families of FPGA Devices, Microcontrollers and Their Radiation Tolerance
	4.1 SRAM Based FPGA
	Figure 4.1 . Architecture diagram of a typical FPGA device

	4.2 Flash based FPGA
	4.3 Antifuse FPGA
	4.4 Radiation Hardened, Radiation Tolerant FPGA
	4.5 Microcontrollers
	4.6 Radiation Induced Errors in Finite State Machines and Microcontrollers
	4.7 Selection of the Optimal Device

	5 Radiation Hardening and Mitigation Techniques
	5.1 Technological Hardening and Mitigation
	Figure 5.1 . SRAM cell with resistors in feedback paths
	Figure 5.2 . Elementary configurable logic cell of Actel ProAsic Plus FPGA [20]
	Figure 5.3 . A Master Slave D type Flip Flop
	Figure 5.4 . Flash switch of Actel ProAsic Plus FPGA [20]
	Figure 5.5 . D type Flip Flop hardened with TMR [21]

	5.2 Double Modular Redundancy, Triple Modular Redundancy
	Figure 5.6 . The idea of DMR
	Figure 5.7 . The idea of TMR

	5.3 Hamming Codes
	Figure 5.8 . Structure of (8,4) Hamming Code codeword. ‘D’ – data bit, ‘C’ – check bit
	Table 5.1 . Contribution of codeword’s bits to parity checks
	Figure 5.9 . Purely combinatorial encoder for (8,4) Hamming Code
	Figure 5.10 . Purely combinatorial decoder for (8,4) Hamming Code

	5.4 2 D parity Checking
	Figure 5.11 . 2 D parity and single error correction example

	5.5 Scrubbing

	6 Project Description
	6.1 Overview
	Figure 6.1 . Detailed block diagram of the communication channel set up

	6.2 Radiation Tolerant MCU Based on PIC16C57
	Figure 6.2 . Functional block diagram of Radiation Tolerant MCU based on PIC16C57
	Table 6.1 . Summary of components of the modified MCU based on PIC16C57
	Table 6.2 . Summary of components necessary for improved radiation tolerance and diagnosis of the MCU
	Table 6.3 . Modified Status Register bits
	Table 6.4 . MCU’s register file map
	Table 6.5 . Organisation of data in the external Flash memory
	Listing 6.1 . Method for calculating CRC32 – code in C++
	Table 6.6 . Detailed description of UART Status Register
	Table 6.7 . Baud rates supported by UART
	Table 6.8 . Summary of commands supported by Flash Programmer
	Table 6.9 . Possible values for status of Program command
	Table 6.10 . Flash Programmer registers
	6.2.2 Techniques Employed for SEU Mitigation
	6.2.2.1 SRAM Components
	Table 6.11 . Hamming Codes employed for protecting SRAM components

	6.2.2.2 Sequential Components
	Figure 6.3 . a) Glitch free majority voting circuit for TMR scheme applied to single flip flops; b) The truth table for voter function
	Figure 6.4 . D type flip flop mitigated with TMR scheme; Q output driven by majority voting circuit; single error detection circuit added – output E.
	Figure 6.5 . 4 bit register rising edge active with asynchronous reset and synchronous write enable

	6.2.3 Modified FPGA Design Flow for Improved Radiation Tolerance with TMR
	Listing 6.2 . Exemplary 3 bit up counter described in VHDL
	Figure 6.6 . RTL schematic of the 3 bit counter
	Listing 6.3 . VHDL netlist of the 3-bit counter
	Listing 6.4 . Substitution of DFF* component declarations with their TMR counterparts
	Listing 6.5 . Changing instantiation of DFF* into instantiation of TMR_DFF*
	Listing 6.6 . The netlist of a 3 bit counter mitigated with TMR
	Listing 6.7 . The 3 bit counter with OE and Hi-Z
	Listing 6.8 . The wrapper for the 3-bit counter

	6.3 Hardware Platform
	6.3.1 FPGA Development Board
	Figure 6.7 . The designed FPGA development board
	. Symbolic view of the FPGA development board with main components explained
	Table 6.12 . Possible serial line configurations
	Figure 6.9 . Photograph of the designed expansion board
	Figure 6.10 . Symbolic view of the designed expansion board

	6.3.2 Transceiver
	Figure 6.11 . The transceiver PCB
	Figure 6.12 . Symbolic view of transceiver PCB
	Table 6.13 . Description of the 20 pin header
	Figure 6.13 . The FPGA and transceiver boards interconnected with full duplex fibre optic link and 20 wire ribbon cable

	6.4 Exemplary Application – SRAM SEU Detector
	Figure 6.14 . Schematic representation of SRAM SEU detector
	6.4.2 Software for the MCU
	Listing 6.9 . The main loop of SEU detector software
	Listing 6.10 . Switch clause error in CCSC compiler and assembly of a fixed code
	Listing 6.11 . Software implementation of receiver FSM for SEU detector
	Figure 6.15 . Flow diagram of SEU detector software. ‘Y’ stands for condition satisfied; ‘N’ stands for condition not satisfied.

	6.4.3 Software for PC
	Figure 6.16 . Frame of the RadMon protocol
	Table 6.14 . Frame types originating from PC
	Table 6.15 . Frames originating from the detector

	7 Experimental Results from Deutsches Elektronen Synchrotron
	Figure 7.1 . Energy spectrum of neutrons in LINAC II tunnel (b)
	Figure 7.2 . Interfacing 5 V signals to the detector
	Figure 7.3 . The experimental set up inside the LINAC II accelerator
	Figure 7.4 . The monitoring station (a PC running Linux OS) with transceiver connected, in the accelerator hall
	Table 7.1 . The summary of main events during Experiment I
	Table 7.2 . Summary of main events during Experiment II
	Table 7.3 . Summary of Experiment I and Experiment II
	Figure 7.5 . The flow of experiment conducted in LINAC II. ‘N’ stands for condition not satisfied; ‘Y’ stands for condition satisfied.
	Table 7.4 . SEU in MCU’s UART transmitter
	Table 7.5 . SEU in the same pair of MUT cells
	Figure 7.6 . Accumulated Single Event Upsets in Memory Under Test against accumulated activity of LINAC II qualified in terms of accumulated PIA current. The value of PIA current in [mA] has been divided by 125 to scale it down for better observability of PIA – SEU correlation.
	Figure 7.7 . Single Event Upsets detected in the Memory Under Test against activity of LINAC II, qualified in terms of PIA current on the 30th of August. The time instants, at which the detector reported SEUs in MUT are marked as red crosses.
	Figure 7.8 . Single Event Upsets detected in the Memory Under Test against activity of LINAC II, qualified in terms of PIA current on the 31st of August. The time instants, at which the detector reported SEUs in MUT are marked as red crosses. Two SEUs in the detector’s MCU were detected – marked as orange squares.
	Figure 7.9 . Single Event Upsets detected in the Memory Under Test against activity of LINAC II, qualified in terms of PIA current on the 1st of September. The time instants, at which the detector reported SEUs in MUT, are marked as red stars. Two SEUs in the detector’s MCU were detected – marked as orange squares.
	Figure 7.10 . Single Event Upsets detected in the Memory Under Test against activity of LINAC II, qualified in terms of PIA current on the 1st of September. The time instants, at which the detector reported SEUs in MUT, are marked as red stars. One SEU in the detector’s MCU was detected – marked as orange square.

	8 Conclusions
	Appendix A Schematics and PCB Layouts
	Figure A.1 . FPGA board – serial interfaces
	Figure A.2 . FPGA board – power supply
	Figure A.3 . FPGA board – the FPGA
	Figure A.4 . FPGA board – headers and sockets
	Figure A.5 . FPGA board – clock generators
	Figure A.6 . FPGA board – LEDs and push buttons
	Figure A.7 . FPGA board – SRAM and Flash
	Figure A.8 . Transceiver board – communication interfaces
	Figure A.9 . Transceiver board – power supply
	Figure A.10 . Expansion board for FPGA
	Figure A.11 . FPGA PCB
	Figure A.12 . Transceiver PCB
	Figure A.13 . FPGA expansion PCB

	Appendix B Examples of VHDL code
	Listing B.1 . UART receiver
	Listing B.2 . UART transmitter
	Listing B.3 . UART transmitter FIFO controller
	Listing B.4 . System Arbiter
	Listing B.5 . (13, 8) Hamming Code encoder
	Listing B.6 . (13, 8) Hamming Code decoder
	Listing B.7 . Program Memory Scrubber

	Appendix C Summary of detected SEUs
	Table C.1 . Listing of SEUs detected in the MUT

