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1 Wstęp 

 
Głównym celem pracy magisterskiej było stworzenie programu, wykorzystującego 
graficzny interfejs użytkownika (ang. GUI), do monitorowania pracy maszyny stanowej 
(ang. FSM) i ukazującego jej wewnętrzną strukturę. 

Praca została stworzona w ramach projektu CARE (Coordinated Accelerator Research in 
Europe). Program ma współpracować z maszynami stanowymi kontrolującymi pracę 
akceleratora liniowego w Deutsches Electronen Synchrotron (DESY) w Hamburgu [5]. 

W czasie projektowania i obsługi maszyny stanowej potrzebne jest jej zdalne 
monitorowanie dla celów testowych i diagnostycznych w formie systemu wizualizacji. 
System taki powinien w szczególności posiadać intuicyjny interfejs, powinien być 
niezależny od plików konfiguracyjnych maszyny, powinna istnieć możliwość 
uruchomienia go z przeglądarki internetowej. 

Rozwiązanie powinno być wygodne dla użytkownika, wieloplatformowe i osiągalne z 
dowolnego komputera sieci lokalnej, dlatego jako język programowania wybrana została 
Java i technologia apletów. Dodatkowo Java SE ma wbudowane biblioteki graficzne 
umożliwiające tworzenie GUI. 

W rozwiązaniu wykorzystano architekturę klient – serwer. Stworzony program jest 
klientem a maszyna stanowa – serwerem. Klient żąda dwóch typów danych dostępnych 
na serwerze. Pierwszym jest struktura FSM w formie XML – są to dane statyczne, 
drugim – dynamicznie uaktualniana informacja o obecnym stanie maszyny. 

Struktura FSM jest zapisana w postaci pliku XML i przechowywana na serwerze 
maszyny stanowej jako jej parametr. Maszyny stanowe tworzone są w środowisku 
MATLAB 7.0 rozszerzonym o Stateflow Toolbox, dlatego zaistniała konieczność 
dodania nowej funkcjonalności tzn. możliwości  tworzenia plików XML bezpośrednio ze 
Stateflow. 

Graficzna reprezentacja FSM została zaimplementowana  w postaci grafu. Początkowo 
powstała biblioteka umożliwiająca tworzenie bloków i strzałek grafu, ale wymagania co 
do funkcjonalności wymusiły użycie profesjonalnej biblioteki typu Open Source. 
Biblioteka ta posiada możliwość wizualizacji grafu.  

Wszystkie założenia zostały zrealizowane tak aby uzyskać jak najlepszą funkcjonalność 
projektu przy dostępnych narzędziach programistycznych. 
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2 Abstract 

 
The main goal of this master thesis was to develop a computer program utilizing  

Graphical User Interface to monitor work of Finite State Machine and showing its 

internal structure. 

This work is strongly connected with Coordinated Accelerator Research in Europe 

(CARE) project. This program will cooperate with FSMs controlling work of accelerator 

at Deutsches Electronen Synchrotron (DESY) in Hamburg. [5]. 

The task was undertaken because there was a need for online monitoring of a FSM for 

test and diagnostic purposes in a form of visualization system, that in particular should 

have an intuitive interface, shouldn’t rely on FSM’s configuration files and it should be 

possible to execute it from the Internet browser. 

The solution had to be comfortable for an end user, multiplatform and reachable from any 

computer in a local network, therefore Java Standard Edition was chosen as a 

programming language together with the applet technology. In addition Java SE comes 

with graphical libraries specified for GUI development.  

This solution utilizes client – server architecture in which this  program is a client and 

FSM is a server. Client requests two types of data which are available on a server: first is 

a structure of a machine in form of XML – these are static data, second is a dynamically 

updated information about the current state of a machine. 

Structure of FSM is described in form of XML file and stored on the machine server as 

its property. FSMs are created in MATLAB 7.0 environment with the Stateflow toolbox 

therefore additional functionality was added, which is, a creation of a XML file from 

Stateflow. 

Implementation of visual representation of FSM in the program is in a form of a graph. 

At the beginning new library was written for creation of blocks and arrows of a graph but 

the requirements of functionality force utilization of a professional open source library. 
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This library comes with an extension which helps create planar layout of a given graph. 

All the main requirements are fulfilled in a way that balances the functionality of an 

applet with the availability of programming tools.  
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4 Introduction 

Project of visualization of systems applied to FSM control is connected with the 

Coordinated Accelerator Research in Europe (CARE) project. This program includes the 

most advanced scientific and technological developments relevant to accelerator research 

for particle physics. Its aim is to foster and strengthen the European knowledge to 

evaluate and develop efficient and cost effective methods to produce intense and high-

energy electron, proton, muon and neutrino beams as recommended by the European 

Committee for Future Accelerator (ECFA) [1]. 

 

The participants will integrate their infrastructures, establishing a European technological 

platform for accelerator research. 

The research activities include the developments of: 

• Superconducting cavity and RF technology 

• Photo-injector technology, in particular for two-beam acceleration technique 

• Normal and superconducting structures for the acceleration of very high-intensity 

proton beams as well as challenging beam chopping magnets 

• The technology for constructing very high magnetic field and high density 

currents magnets. 

 

Twenty two contracting participants and a large number of associated institutes 

participate in this integrating effort. The CARE project represents an innovative and 

unique opportunity in Europe as it will involve almost all of the European expertise and 

know-how in accelerator physics and related technologies and would allow one to 

address most of the issues relevant to particle accelerators. Thus, it will provide an 

integrated service to the entire European particle physics community and could provide 

on the long-term an integrated service for other communities as well. 
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One of the participants is the Deutsches Electronen Synchrotron (DESY) research 

center in  Hamburg, Germany [2]. 

It contributes mainly in the field of: 

• Large Scale Facilities (accelerator complex – PETRA, HERA, ILC) 

• Large-scale accelerator test facilities (TESLA Test Facility, X-FEL, Horizontal 

 Cryogenic test stand) 

ILC (International Linear Colider) comprises a 33-kilometer-long superconducting 

linear accelerator, which will bring electrons into collision with their antiparticles, the 

positrons. This high-energy particle collisions will allow physicists to take a closer, more 

detailed look than ever before at the structure and origin of matter and the universe.  

With a linear collider like ILC, particle physicists can study what happened just after the 

big bang. New superconducting acceleration structures, so-called cavities (resonators), 

bring electrons and positrons to record energies of 250 to around 500 billion electronvolts 

each. The particles collide head-on in the middle of the 33-kilometer-long TESLA 

collider. These energies are on a par with those present during the first 10-12 of a second 

of the universe's existence. Particles and antiparticles annihilate each other to create a 

tiny "fireball" of concentrated energy. As was the case in the big bang, an extremely 

broad variety of elementary particles are created from this energy, including, the 

physicists are hoping, the much sought after "Higgs" and "SUSY" particles. 

It is the use of superconducting technology that distinguishes TESLA from linear collider 

designs using normally conducting resonators. TESLA's acceleration sections make it 

possible to create a particle beam of optimum quality with high collision rate of the 

accelerated particles, which is the ideal prerequisite for new discoveries in particle 

physics. 

The TESLA Test Facility in Hamburg consisted of an electron source, a 

superconducting acceleration section and an arrangement of magnets in which the tests 

on the accelerated electrons were conducted to produce flashes of X-ray laser light (free-

electron laser).  
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The research successes achieved at the test facility:  

• superconducting accelerator modules have been developed in cooperation with 

 industrial companies;  

• a world first - short-wavelength ultraviolet laser beams have already been  

 produced using the new method foreseen for the X-ray laser;  

• experiments carried out using the free-electron laser (FEL) - the interaction of  

matter with X-ray radiation from an FEL on extremely short time scales for the 

first time. 

The X-ray free-electron laser (XFEL) that is being planned at the DESY research 

center in cooperation with European partners will produce high-intensity ultra-short X-

ray flashes with the properties of laser light. Thus scientists soon will able to film events 

in the microcosm and find out how materials and biomolecules behave at the atomic 

level, how a chemical reaction progresses, how biomolecules move, and how solids are 

formed. This will benefit a wide range of natural sciences - from physics and chemistry to 

materials science, geological research and the life sciences. It could also offer very 

promising opportunities for industrial users. 

The new free-electron laser VUV-FEL - the pilot facility for the XFEL, which generates 

vacuum ultraviolet (VUV) and soft X-ray radiation in a range down to wavelengths of six 

nanometers, was commissioned in 2004, making possible groundbreaking experiments. 

TESLA test facility was modified to a total length of 260 meters and extended to the 

VUV-FEL. The new free-electron laser consists of a series of sequentially connected 

superconducting resonators that accelerate the electron beam to an energy of 1 billion 

electron volts, which generates soft X-ray radiation. The intense light flashes are then 

distributed among a total of five measuring stations. It is also the pilot facility for the 

XFEL, because its operation will provide major insights that will benefit the X-ray laser 

XFEL, which will generate light having even shorter wavelengths, down to one-tenth of a 

nanometer. 
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Such a complex facility as VUV-FEL, the current step on the way to develope linear 

accelerator, needs reliable and efficient control system. To test cavities, to diagnose and 

to perform numerous measurements the system has to be flexible. As a machine for user 

experiments a very reliable and stable operation is required. Since this accelerator is a 

short prototype for a future XFEL and a linear collider also, the design of the control 

system has to be scalable and take these requirements into account as well. That is a task 

of Distributed Object Oriented Control System (DOOCS). The design of DOOCS is 

based on device objects that represents the real world hardware devices. This leads to a 

concept of device servers which handle all properties of a particular device and a single 

software unit that controls a complete device instance. Devices are then created with the 

powerful methods of object oriented languages. The same object oriented design concepts 

are also used in the network communication and in client programs [3]. 

 

 

Figure 1.1 DOOCS architecture 
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The DOOCS architecture is based on three main layers: (Fig. 1.1) [4] 

• Application programs with a user interface are in the top layer. All these programs 

 connect to the other two layers via a common API.  

• The middle layer contains higher level services. 

• On the bottom layer all services with device connections are located. 

Considering the DOOCS architecture one come to the main subject of this thesis which is 

the Finite State Machine and its visualization. 

Finite State Machine server is a part of system, which among other services (Name 

Server, Data Acquisition Server, Web services), is implememnted in the middle layer of 

DOOCS.  

TESLA Test Facility involves people from all over the world operating the accelerator. 

As not all of them can be experts in TTF operation, a high degree of automation is 

necessary to relieve the operators from complex but well understood tasks. Besides, TTF 

will become a user facility for VUV-FEL experiments and therefore will have to provide 

stable modes of operation. This requires a highly automated machine because of the 

complexity involved. 

A common approach to automation is the use of Finite State Machines. It is a well 

understood approach that is used in various industrial control systems. This resulted in 

the idea of implementing a high level FSM with the goal of the “One-Button Operation”. 
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4.1 Rationale and the problem definition 
 

Development phase of any FSM requires many iterations of tests and upgrading 

procedures. A very advanced and flexible software environment of MATLAB with 

Stateflow Toolbox is used in the stage of designing an FSM. Intuitive Graphical User 

Interface of this software speeds up designer work and makes it comfortable even in a 

case of highly andvanced machine with hundreds of internal states. That is provided 

through such features as: coping, pasting of structures and automatic deletion of cyclic 

dependencies. Tests of such a machine are also performend on-the-fly with syntax being 

checked automatically. 

Tests in real or test environment are another step in a development process. After 

generation of C++ code Finite State Machine has to perform its work connected to the 

real devices, manage real signals being sent or received. Unfortunately FSM control on a 

given system can only be seen as the resulting changes in the system properties. Finally 

the measurements from the dedicated sensors and its comparison to the correct values, 

gives designer the ability to draw the conclusions about the correctness of an FSM. As 

one may notice it is not reliable procedure, some readouts may change rapidly, some may 

not be even noticed. The amount of readouts and its translation to the FSM behaviour 

requires a lot of work from tester and in-depth knowledge of a controlled system. 

Therefore there is a need for a tool that would: 

• show the internal structure of an FSM;  

• be able to provide an information about its current state, the state that it was 

 changed from and parameters that triggered this transition; 

• be independent from any configuration files or source code of an FSM.  

• record history of changes 
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Such a monitoring ability would be very helpful for testing purposes. In contrary with the 

present form of testing this would decrease time spent on testing. 

To improve efficiency of this tool, it should have the Graphical User Interface which 

gives the advantage of: 

• symbols being recognized faster than text, 

• faster usage and problem solving,  

• increased feeling of control.  

Very important part of such a tool would be the graphical representation of a Finite State 

Machine because interaction with it is the most intuitive and most comfortable for the 

end-user. 

The issue of efficiency and interface being intuitive is also important for the operator of 

the control system. The one who will be responsible for the operation of the system, 

could faster react in case of problems and minimize the break-time because visualization 

gives better understanding of the current status of FSM. 

As far as the infrastructure of the system is considered such a solution should be: 

• available from any computer in the network  

• multiplatform  

• available from the most common interface of a Web Browser. 
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5 Finite State Machine 

 

Visualization of systems is the main subject that is covered by this thesis. A Finite State 

Machine, also called Finite Automaton, is the object of this visualization. Therefore there 

is a need to describe this concept. A formal definition is usually the most coherent, so it 

will be presented first. Some implementations of them in real-live systems are then 

described, especialy in Distributed Object Oriented Control System in DESY. 

 

5.1 Theoretical introduction 
Studying the literature on state automata one for sure meets general description of FSM 

as a model of computation composed of states, start state, transition function and input 

alphabet.  

• A state stores information about the past. 

• A transition function indicates a state change. 

• An input alphabet consists of all possible inputs to the machine. 

• A start state is the condition of the machine in which computation begins. 

There exist a classification of FSMs on acceptor FSMs and transducer FSMs together 

with its mathematical models. Following [6] and [7] a Finite State Machine is defined as: 

1. In an Acceptor form as a quintuple <S, I, δ, s0, F>, where: 

• S   is a finite non empty set of states. 

• I   is the input alphabet (a finite non empty set of symbols). 

• δ: S x I → S is the state transition function. 

• s0   is an initial state, an element of S. 

• F   is the set of final states. 
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2. In a Transducer form as a sextuple <S, I, B, s0, δ, ω>, where: 

• S   is a finite non empty set of states. 

• I   is a finite non empty set of inputs. 

• B   is a finite non empty set of outputs. 

• s0   is the initial state, an element of S.  

• δ: S x I → S is the state transition function.  

• ω   is the output function. 

If ω is a function of a state and inputs (ω: S x I → B ) that 

definition corresponds to the Mealy model.  

If the output function depends only on a state (ω: S → B ) 

that definition corresponds to the Moore model. 

 

To understand those formal definitions a more intuitive description is needed. State 

reflects the input changes from the system start to the present moment. Computation 

begins with a start state. State change indicated by transition function is described by a 

condition that would need to be fulfilled to enable the transition. An action (output) 

defines an activity that is to be performed at a given moment.  

There are several action types: 

• entry action - executed when entering the state 

• exit action - executed when exiting the state 

• input action – executed dependent on present state and input conditions 

• transition action - executed when performing a certain transition 
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Let’s look at the classification previously stated.  

A binary output from the acceptor machine is either yes or no and defines whether the 

input is accepted by the machine or not. All states of the FSM are said to be either 

accepting or not accepting. If all input is processed and the current state is an accepting 

state, the input is accepted otherwise not. The machine is often used as defining a 

language. It accepts or rejects input words. 

Transducer machine generate output based on a given input and/or a state. It is used for 

control applications. Here two types are distinguished: [8] 

• Moore machine 

In this kind of FSM output depends only on the state. The advantage of the 

Moore model is a simplification of the behavior. 

• Mealy machine 

In this kind of FSM output depends on input and state. The use of a Mealy 

FSM leads often to a reduction of the number of states as compared to 

Moore machine. 

A further distinction is between deterministic (DFA) and non-deterministic (NDFA, 

GNFA) automata [9]. Deterministic automata for each state has exactly one transition for 

each possible input. Non-deterministic one has none or more than one transition from a 

given state for a given possible input. 
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5.2 The Stateflow Toolbox 
 

To better understand Finite State Machine’s functionality and behavior it is often 

presented as a state diagram. This is a graphical representation which utilizes basic 

symbols to show the FSM configuration at a glance. 

One of the graphical design and development tools, which incorporates and even extends 

the concept of a state diagram, is the Stateflow Toolbox from the MATLAB 

environment. It is used to simulate complex reactive systems based on FSM theory [10]. 

Stateflow gives the possibility to design and develop deterministic, supervisory control 

systems in a graphical environment. It visually models and simulates complex reactive 

control to provide clear, concise descriptions of complex system behavior using finite 

state machine theory, flow diagram notations, and state-transition diagrams all in the 

same diagram. Stateflow brings system specification and design closer together. It is easy 

to create designs, consider various scenarios, and iterate until the Stateflow diagram 

models the desired behavior. Thus, it is very helpful to understand Stateflow syntax and 

semantics. 

 

5.2.1 Stateflow syntax 

 

The behavior of an event-driven system is modeled  by describing it in terms of 

transitions among states. Stateflow extends this notation by a variant of the finite state 

machine, namely Statechart, established by Harel. This work is described in [11].  

Statecharts in Stateflow are called diagrams and are a graphical representation of a finite 

state machine, with states and transitions as the basic building blocks of the system.  
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STATES 

Finite state machines model objects that have a limited number of states (Fig. 5.1). A 

state can be active or inactive.  

Figure 5.1 States in Stateflow 

TRANSITIONS 

A relation that defines an order of change of active states is called transition. Transitions 

are directional what means that they start at a source state and end in a destination state. 

If the source state is active, after the transition, the source state becomes inactive and the 

destination state becomes active. A default transition, shown in Fig. 5.2, indicates the 

initial state. 

Figure 5.2 Types of transitions in Stateflow 
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FLOWS 

Stateflow provides two types of states: with exclusive (OR) and with parallel (AND) 

decomposition. Exclusive (OR) states are used to describe modes that are mutually 

exclusive (only one state can be active at a time). In contrary parallel (AND) states called 

flows can be active at the same time. (Fig. 5.3) 

 

 
 

M A  
K  
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Figure 5.3 Flows (parallel states) in Stateflow 

 

CONDITIONS 

A condition is a Boolean expression which specifies that a transition occurs if the 

specified expression is true. Denoted in square brackets in Fig. 5.4. 

 

 

 

 

 

 
Figure 5.4 Use of conditions in Stateflow 

 

St_On St_Off 

[speed > treshold] 

B L 

Parallel states 
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EVENTS & ACTIONS 
 
Events and actions are not graphical objects but they are the things that make that the 

statechart works. Events (input symbols) trigger the transitions between states. Actions 

are the outputs of system which take place while Stateflow diagram is executed. They 

happen as a part of transition execution or state change. 

Transition label is the place where action is defined: 

 
Figure 5.5 Transition label format 

 

In state label one can define different types of actions: 

Figure 5.6 Actions in state label 

 
Additionally, Stateflow enables the representation of hierarchy, history and parallelism 

described above. Hierarchy gives possibility to organize complex systems by defining a 

parent - children object structure. History provides the means to specify the destination 

state of a transition based on historical information. 
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5.2.2  Stateflow semantics 

 

Operational semantics describe how the objects described in the previous paragraph are 

interpreted and implemented and in what sequence actions take place during Stateflow 

diagram execution.  

The following statements are primary axioms of proper Stateflow behavior: 

• Whenever a state is active, its parent should also be active. 

• A state (or chart) with exclusive (OR) decomposition  

 must never havemore than one active child. 

• If a parallel state is active, siblings with higher priority (higher graphical 

 position in the Stateflow diagram) must also be active. 

 

EVENTS EXECUTION 

A Stateflow chart executes only in response to an event. This occurs on two levels. First, 

Simulink updates the chart, which awakens it for execution. Second, once the chart is 

awakened, it continues to respond to events until there are no more events. The chart then 

goes to sleep. When another event occurs, the chart is awakened (from sleep) to respond 

to the event. All activity caused by the event in the chart is completed before returning to 

whatever activity was taking place prior to reception of the event. 

TRANSITION EXECUTION 

If a chart has exclusive (OR) states, its execution begins with the default transitions that 

point to the first active states in a chart. Any actions associated with the sources or 

destinations are related to the transition that joins them. 

STATES EXECUTION 

A state performs its entry action (if specified) when it becomes active. The state is 

marked active before its entry action is executed and completed. 
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Active states that receive an event that does not result in an exit from that state execute a 

during action to completion if a during action is specified for that state. An on 

event_name action executes to completion when the event specified, event_name, occurs 

and that state is active. 

A state performs its exit action (if specified) before it becomes inactive. The state is 

marked inactive after the exit action has executed and completed. 



Piotr Cieciura 
Visualization of Systems Applied to FSM Control 

         23 

5.3 FSM application 
 
5.3.1  General 

Finite state machines have its implementation in a hardware or software form. They 

generally model systems which can proceed in clearly separate and discrete steps from 

one to another of a finite number of configurations or states [12]. 

Some concepts created for industry purposes can be easily implemented in a digital 

circuit form using programmable logic device, a programmable logic controller, logic 

gates and flip flops. More precisely, a hardware implementation requires a register to 

store state variables, a block of combinational logic which determines the state transition, 

and a second block of combinational logic that determines the output of a FSM. 

In addition to their use in modeling reactive systems, finite state automata are important 

in many other areas, including linguistics, computer science, logic, biology and 

mathematics. 

They marked its strong position mainly in fields related to computer science e.g.: 

 

•  Bioinformatics  

• Compilers  

• Computer-aided verification  

• Data and image compression  

• Design and architecture of 

 software  

• DNA/molecular computing  

• Document engineering  

• Natural language processing  

• Networking  

• Object-oriented modeling  

• Pattern-matching  

• Speech and speaker recognition 

• Spell checking 

• Symbolic manipulation 

• Text processing 

• VLSI 

• World-wide web
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5.3.2  In DESY center 

 

Finite State Machine has already its place in the whole Distributed Object Oriented 

Control System as a service between the low-level (hardware) layer and high-level 

(operator) layer of the system. The designed and developed FSMs are the source of 

automation of the system. The tendency to realize the goal of “One-Button-Operation” 

would relieve the operators from complex but well understood tasks providing increased 

level of safety as human actions are often considered as error prone [13]. 

Nowadays, FSM designers work on a development of state automata for two main parts 

of VUV-FEL accelerator, namely: RF-power station and Low Level RF control system. 

Final realisation of FSMs will give the following advantages: [14] 

• Protection of klystron’s hardware against damage – overloading avoidance 

• Provide maximum lifetime of klystron and modulator 

• Maximize availability of klystron and modulator for accelerator operation 

• Components standardization 

• Remote diagnostic 

 

FSM is planned to automate the following functions and procedures: 

• Turn on, turn off and reset klystron and all subsystems 

• Check whether all subsystems are ready 

• Set proper parameters of those subsystems 

• Manage interlocks 

The design and test phase on a software level is performed in the previously described 

Stateflow Toolbox. Another advantage of this environment is a creation of the FSM as a 

computer program in a C language, what makes the implementation phase much easier.  
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6 Visualization of Systems 

 

This chapter considers main topic of the thesis which is visualization of systems. 

Visualization of a particular system is a presentation of a meaningful information 

contained in this system by means of graphical objects. 

Its goal is to easily understand:  

• function of the system 

• relations between parts of the system 

• interaction of the system with its environment 

Applying some interaction to the graphical objects, extends this presentation to a form of 

User Interface.  

 

6.1 User Interface 
 

This consideration treats user interface design as a subset of a field of study called 

human-computer interaction (HCI) which studies how people and computers work 

together that user needs are satisfied.  

User interface is a collection of techniques and mechanisms used to interact with a 

computer system. It may be: text, voice, handwriting, pointing, pictures, video, etc. [15]. 

 

6.2 Graphical User Interface 
 
In a graphical user interface the main interaction mechanism is pointing. It comes from 

movements and gestures which are on the lowest and most common level of 

communication.  
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This kind of interface utilizes graphical symbols which correspond to the real objects or 

behaviors. Graphical objects are always visible and have a set of common actions 

assigned. They are used to perform some tasks by direct manipulation of them. 

 

The idea of connection of graphics and manipulation constitutes present graphical 

interfaces. What makes graphics so popular? A graphical screen switches from plain text-

based interfaces to the three-dimensional look. All symbols are assumed to imitate 3D 

objects. The user screen gain depth by such functionality as: floating windows, etched 

borders, controls that rise above the screen, objects that overlap each other, pull-down 

menus. That creates a feeling of dealing with an ordinary desktop that all users are used 

to. One can find documents, notes, files, folders and recycle bin on it. The GUI becomes 

a familiar environment for end-users in which they are able to perform its work quickly 

and dynamically.  

Using graphical presentation method user capabilities are utilized more effectively. It 

requires less information recording, memory is not overloaded because of a compact 

representation of information. Simple, but time-consuming procedures are represented by 

visual symbols – icons. Presentation of large amounts of data in a graphical form invokes 

faster comparisons of amounts, trends, or relationships. 

Another important thing and very useful for an end-user is a customization of its 

environment what increase user connection with its place of work or leisure. 

 

Direct manipulation method is also worth describing. Important thing is that users work 

in an environment that imitates the real one. They are able to perform almost all actions 

that usually do in a intuitive way, the implementation of this actions is hidden. That gives 

a possibility to focus on a data not the tool that has to be used. 

All objects are constantly visible what makes users conscious what they are doing. This 

concept is called: WYSIWYG - what you see is what you get.  
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Actions are rapid with visible display of results and progress what provides feedback for 

an user. Actions which are incorrect can be easily undone. 

Synergy of the described techniques of graphical visualization and direct manipulation is 

easily seen in everyday live. Its main advantage is that ordinary users hardly ever notice 

the amount of work that is done behind the scenes to provide them with such a powerful 

tool. But to utilize, extend or implement all functions that a GUI give, one has to be 

conscious of  its advantages and disadvantages. 

Starting with advantages: 

•  Graphical symbols are recognized faster then text – Special design of icons make 

 them easier to classify. 

•  Easier remembering and faster learning 

•  Provide context and concrete thinking 

•  Increased feeling of control- because of immediate feedback 

•  System responses are predictable 

•  One can use it with less anxiety, actions are reversible 

•  Is more attractive and appealing, requires less typing 

•  Consumes less space – because of icons used 

 

But there are also such a features which are considered as disadvantages: 

•  Creation of good GUI requires complex design and test process 

•  Some abstract phenomena are hard to visualize – it’s easier to express them in a 

  text form 
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6.3 Visualization methods for FSM 
 

There are different forms of representing Finite State Machines. Except the mathematical 

definition presented previously, there exists a matrix description of a particular automata 

called transition matrix (Fig. 6.1). 

     destination states 

 StA StB StC StD source states 
StA 0 0 1 1 

 
StB 0 0 1 0 

 StC 0 1 0 1 

StD 1 0 0 0  

 

Figure 6.1 FMS in  a matrix form. 

 

Matrix defines transitions that are present between states. State names describe rows and 

column of matrix. One have to assume row or column as a source or destination state. 

Transitions are coded with the boolean logic: value 1 – there exists a transition ,0 – there 

not exists. 

This form of representation of FSM is an easy way to code it for computer calculations 

and algorithms which require strict knowledge and definitions. 

 

The way which gives most perceptual and cognitive possibilities for human beings is a 

graphical representation. The most popular form is state diagram or in its extended form 

a statechart (used in Stateflow Toolbox, described in previous chapter).  

State diagram is a form of a directed graph in which particular symbols and objects have 

its special meaning. As any graph, it consists of nodes and edges. Nodes are considered 

as states while edges represent transitions. The symbol for edge is actualy an arrow 
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defining its directivity ( source and destination states). Following figure is an example of 

state diagram which is based on the same FSM defined in the matrix form. 

 

Figure 6.2 State diagram example 

 

The following reasoning gives the answer why diagrams are best for visualization of 

finite state automata.  

Representation in a form of a diagram utilizes so called conventional and perceptual 

symbols [15].  

Conventional symbols are things that have some particular meaning because people 

agreed on this meaning. It is a matter of convention, something that rise from sociality, 

culture. Such symbols are usually used by specialists that construct some convention 

useful in describing some problems. Examples of that symbols are text labels. Text is 

read and understood because people agree on meaning of letters, further more acronyms 

are understand because people have some knowledge from a particular area. Others need 

additional explanation, for ex.: StA, StB ,… - states of the finite state machine. 

Conventional symbolics is also used to narrow the amount of possible interpretations of a 

presentation ( arrow represent transition not the direction of movement, etc.). 

Meaning of the label is strongly amplified by the use of perceptual symbolics. Perceptual 

symbols are commonly understood without learning its special meaning. They mostly 

comes from human psychology and cognitive abilities. 
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Finite state machines in a form presented in a Figure 6.2 utilizes this human abilities 

providing best understanding of the concept of FSM. 

Diagrams are generally structures that express entity – relationship model with the 

following rules: 

1. A closed contour in a node–link diagram generally represents an entity of  

 some kind. In this case a state. 

2. The shape of the closed contour is frequently used to represent an entity type  

 – possible different types of states. 

3. The color of an enclosed region represents an entity type – another form of  

 differentiating states.  

4. The size of an enclosed region can be used to represent the magnitude of an  

 entity - the same size provides similarity. 

5. A line linking entities represents some kind of relationship between them –  

 transition between states. Arrows give this relation stronger meaning. 

6. A contour can be shaped with tabs and sockets to indicate which components  

 have particular relationship – additional extentions of the diagram are  

 possible. 

 

As one can notice, all principles that governs FSM work are satisfied using state diagram 

form of visualiztion. That comes from the very basic rules that human brain follows. 

They are called ‘Gestalt Laws’ (in German: pattern) and here is their short description: 

[16] 

• Spatial proximity – things that are close together are considered as grouped. 

• Similarity  - similar pattern of elements determine their grouping. 

• Connectedness – the most powerful principle that determines groups of objects 
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  and relation between them. 

• Continuity – smooth and continuous elements are better for visualization of 

entities, abrupt change in directions cause problems in recognizing of the 

meaning. 

• Symmetry – provides powerful organizing principle. 

• Closure – closed contour tend to be seen as objects, human brain tends to close  

 contours and differentiate the inside and outside of space. 

• Relative size – smaller components are seen as objects, instead of large spaces, 

 also provides the similarity feature. 

• Figure and ground – effect that helps identify objects from the background. 



Piotr Cieciura 
Visualization of Systems Applied to FSM Control 

         32 

7 Problem Solution – Structure 

 

7.1 Requirements 
 

The main objective that had to be complete by the project is the visualization of the 

structure of an FSM and its current state. 

The requirements that are specified for the project are as follows: 

a) solution available from any computer in a network 

b) multiplatform 

c) utilizes Graphical User Interface 

d) visualization in an intuitive an non-problematic form 

 

Ad. a) 

To realize the first requirement, the computer environment in DESY had to be explored, 

especially computer platforms types together with a network availability have to be 

known.  

Generally, the desktop workstations are configured as: 

•  a PC or a SUN hardware  

•  with Windows XP Professional, Linux Suse or Sun Solaris operating systems 

Workstations are connected using Ethernet 10/100 Mbit/s network. 
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Ad. b) 

The next requirement, that the solution has to be multiplatform, is strongly connected 

with  the first one. It has to be solved to provide the availability of the application. 

 

Development of the software that is going to operate on different platforms needs special 

consideration.  

• It can be written in a language for which compilers for dedicated platforms 

exists. In such a case one source code is created, then it is compiled for each 

destination platform independently. 

• Alternative solution is to take the advantage of the Java Virtual Machine – a  

portable technology for programs written in Java. Such a program is compiled 

only once to the so called bytecode. There is a dedicated Virtual Machine on each 

different platform which forms a kind of software interface between the Java 

bytecode and a native environment. Every time user works with the software the 

bytecode is run on this VM. 

• Another possible solution is the implementation of Internet technologies like:  

HTML, ASP or JSP in a client-server form. Client side is constituted as a Web 

site that runs in a Web browser.  

 

After some considerations Web browser occurred to be a good graphical environment on 

which the solution can be based.  

• It is available to install on any computer with the Linux, Windows or Solaris  

 operating system with graphical environment. 

• Web browser as an end-user application enables distribution of software through  

 the network, user can be notified about new versions. 

• Web browser provides graphical context with well-known interface. 

Solutions that utilize Internet technologies previously stated are: 
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1. Static Web pages, written in a pure HTLM – presentation of an FSM is 

 difficult, only in a form of matrix description or static pictures. 

2. Dynamic Web pages in PHP, ASP or JSP technology – there is still a lack  

 of elegant visualization. 

3. Web pages extended by Java-Script – there exists possibility for animation  

 and interaction but everything has to be translated and is processed as 

HTML. 

4. Java Applet technology – enables almost the same complexity and  

 functionality as ordinary Java applications what means that for example 

the same graphical libraries can be used as for standalone programs. 

 

The advantages of applets decided that it is a best solution for a project. As any Java 

program, applets base on the Virtual Machine concept. The Java Virtual Machine is 

available for the previously specified platforms and is usually provided during standard 

installation process of a browser or easily available to download and install 

independently. Java development kit is an open environment what means no cost of 

purchase. Another advantage is that Java language becomes more and more popular. It is 

a new Object Oriented language which omits problems that harass older ones. 

 

Ad. c) and d) 

Graphical User Interface of an applet can be created using the same Java libraries which 

are used for applications, additionally graphical background is provided by the Web 

browser. The main advantages of using GUI were described in previous chapter. Well 

designed graphical interface provides intuitive interaction basing on perception of 

humans. 
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7.2 Client-server model 
 

The Finite State Machine which was described in chapter 5 runs as a computer program 

on a server and provides some features for other computer programs interested in these 

functionalities.   

To visualize an FSM a precise knowledge is needed about its structure and current state. 

These informations have to be received by the visualization program. Best solution to do 

this is to make it embedded in the FSM and provided on applet request. That defines the 

client – server model. 

  

7.2.1 Server part 

Information about the structure of the machine are hard to gain from the pure source code 

of FSM because all the dependencies introduced in chapter 5, that constitues particular 

state automata, are hiden on the low level of abstraction, namely on the programming 

language level. Thus, additional work to establish this infomation was needed. It was 

done in the development environment of FSM – the Stateflow Toolbox. The information 

format was set to the popular standard of XML. 

XML is an acronym for extensible markup language, is the standard of the World Wide 

Web Consortium. It was designed to describe data i.e. structure, store and send 

information. XML uses elements which are not predefined, only the syntax for an 

element is defined what allows anyone to create its own custom element.  

Important feature of XML, that is very helpfull in this project, is the fact that XML 

elements have relationships to each other. They can be nested what creates parent-child 

relation. In case of parralel elements the sister relationship exists. The same is true for the 

FSM states, therefore XML is an natural choice for the project.  
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XML elements are purely text strings. They are defined by pairs of tags – start tag: 

‘<tag_name>’ and end tag ‘</tag_name>’. Between them is the place for element value. 

The start tag may also contain some attributes.  

The example tag may look as follows: 

<tag_name attribute1=”some_value” attribute2=”1234”>Element Value</tag_name> 

 

Two distinct informations are defined and described using XML standard in this project. 

These are FSM_STRUCTURE and CURRENT_STATE data. 

 

FSM_STRUCTURE: 

• Consists of main elements <STATE> and <TRANSITION> which represents 

  main FSM’s objects which are states and transitions respectively. 

• <STATE> tag includes attributes describing name of the state, unique id, its type,  

and decomposition – variables that define states in the Stateflow Toolbox. State 

tags can be nested if needed to describe the hierarchical dependecies. 

• <TRANSITION> tag includes following attributes: id, label, source state name,  

source state id, destination state name, destination state id. Transition tags are not 

nested – there cannot exists such a dependency between them. 

• An important fact is that there is no such a functionality of a Stateflow Toolbox  

that provides generation of decription of an FMS diagram in a form of XML. The 

general Matlab script language was used to create a text file in an XML form. 

Connection to the Stateflow diagrams was possible through Stateflow API – 

dedicated for non-GUI manipulation of diagrams. Implementation details are 

described in the next chapter. 
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CURRENT_STATE: 

• Contains a list of active states of a machine. 

• Important assumption was stated by the FSM designer: names of states are 

 distinct therefore the list defines active states in a unique way. 

 

Another important designer assumption is that FSM structure cannot change during the 

operation of the automata. That allows the FSM_STRUCTURE information to be static 

data which is checked only once per a connection to state automata.  

CURRENT_STATE data is dynamic, the list is updated acording to the current state of 

FSM and is checked permanently during session. 

 

7.2.2 Client part 

As previously described, technology that best suits the project requirements, is the Java 

applet technology. Therefore client program was designed as applet. 

It is divided into two modules strictly related to each other, namely: graphical framework 

and visualization module. 

 

GRAPHICAL FRAMEWORK: 

Graphical framework provides graphical interface for the following functions: 

• connecting to FSM 

• reading FSM structure 

• refreshing FSM state on demand 

• saving layout  

• moving up in the state hierarchy 
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• FSM visualization by the dedicated module 

VISUALIZATION MODULE: 

This module is in charge of presentation the Finite State Machine in a form of directed 

graph, described in chapter 6. It allows clear differentiation of presented objects using 

color, labels or other distinctions.  

These objects are: 

• objects that group parallel states, so called flows 

• objects that represents superior states – superstates 

• objects representing ordinary states – simple states 

As far as transitions are concerned there no need to differentiate them.  

 

That part of applet description concerned visual presentation. Another important feature 

is interaction with user. It is realized on two levels: edit and work. Proper design and 

implementation of these phases make the final project more effective. 

 

EDIT MODE 

This phase is strictly connected with work phase and is a base for it. In edition mode only 

the graphical presentation of objects can be changed, in particular: size and placement, 

path of transitions. User cannot change number of state objects, their interconnection, 

number of transitions. Edition phase provides adaptation of graphical presentation that 

best suits user needs. Adjustment capabilities are so flexible that enables solution of 

layout problem. It is the basic problem that user happen to encounter working with such 

complicated graphs.  

Due to the change of size of graphical objects, user extends the area from which the 

transitions  start or in which they end. The view is better distributed across the screen and 

is effectively acquired by the user brain. The dependencies are read and understood 
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faster. Program enables switching into working mode and immediate usage of created 

layout. 

WORK MODE 

In this mode visualization system presents change of state of the machine. The interaction 

process is realized using mouse pointer and by clicking on the objects. The main response 

of the system while clicking on the flow object or superstate object is that the view is 

changed to present internal structure of this state. In work mode user perceives visual 

signals representing actual state of a machine. State boxes change colors to present its 

activity or inactivity. 
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8. Problem Solution - Implementation 

8.1 MATLAB Stateflow part 
 

8.1.1 Data structure in XML 

XML data description was used to describe a structure of FSM designed in Matlab 

Stateflow Toolbox. This description was stored in a text file. Such a solution allows 

portability. Precisely defined FSM structure can be implemented in a program or in this 

case stored in the FSM server as its property. 

Description of created XML elements is presented below, together with an example 

structure: 

<?xml version='1.0'  encoding='utf-8'?> 

<FSM> 

<STATES  id="0"  decomp="PARALLEL_AND"> 

<STATE id=”12”  name=”ON” type=”simple”      
  decomp=”EXCLUSIVE_OR”></STATE> 

. 

. 

. 

<STATE id=”434”  name=”WORK”  type=”super” 
 decomp=”EXCLUSIVE_OR”> 

<STATE id=”534”  name=”STAGE1”  type=”simple”   
    decomp=”EXCLUSIVE_OR”></STATE> 

. 

. 

. 

<STATE id=”111”  name=”STAGE2”  type=”simple”   
    decomp=”EXCLUSIVE_OR”></STATE> 

 </STATE> 

</STATES> 
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<TRANSITIONS> 

<TRANSITION id=”222”  label=”EVENT1”      
   sid=”434” sname=”WORK” did=”12” dname=”ON”> 

</TRANSITION> 

. 

. 

<TRANSITION id=”54”  label=”EVENT2”      
   sid=”534” sname=”STAGE1” did=”111” dname=”STAGE2”> 

</TRANSITION> 

</TRANSITIONS> 

</FSM> 

</xml?> 

 

Main tag is <xml> which defines version and encoding of the file. 

<STATES> and <TRANSITIONS> are the simple grouping tags. <STATES>  tag 

represents the point of origin of the state hierarchy. It has the ‘id’ and ‘decomp’ attributes 

which will be described later. 

The most important tags are: 

• <STATE> 

• <TRANSITION> 

 

 

<STATE> 

This tag has the following attributes: 

• id - an unique id number of the state, set in the Stateflow environment to 

differentiate states. 

• name - name of the state given by the FMS designer. 
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• type - possible two values: 

o simple - simple state is basic and atomic unit of the FSM 

o super - super state contains a set of simples states 

• decomp - two values of decomposition are possible: 

o EXCLUSIVE_OR – the content of such a state is in a exclusive_or 

relationship, only one state can be active at a time. 

o PARALLEL_AND - defines that content of a state consists of flows, 

independent blocks of states, not related to each other. 

<STATE>, as seen in the example, can be nested in each other to define parent-child 

relationship. 

 

<TRANSITION> 

This tag has the following attributes: 

• id - an unique id number of the transition, set in the Stateflow environment to 

 differentiate them. 

• label - text string given in a Stateflow, containing definition of transition's event, 

 functions, etc. 

• sid – id number of the state that transition begins 

• sname – name of the state that transition begins 

• did - id number of the state that transition ends 

• dname - name of the state that transition ends 
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8.1.2  MATLAB functions 

Creation of such a XML structure is performed by dedicated functions written in a 

Matlab Script language, using Stateflow API [10]. This API allows user to create or 

manage state diagrams. It also allows reading of all properties of all elements used to 

build specified diagram.  

This feature was utilized in the following  Matlab functions: 

states 

Signature: result1=states(chartname,filename) 

Input:  chartname – character string defining name of the chart in a state diagram 

filename – character string defining name of the new created file containing XML 

 data 

Output: result1 – equals 1 if function finishes without error 

Functionality: 

• creates main layout of xml file; puts header <xml> and opening tags <FSM>,  

 <STATES>, <TRANSITIONS> 

• invokes 'findState', 'findTrans' functions that search through a state diagram to  

 find states and transitions respectively 

• puts closing tags to create well-formed XML file 

Listing 1 (states.m): 

function res1=states(chartname,filename) 

%init 

fid=fopen(filename,'wt'); 

rt=sfroot; 

m=rt.find('-isa','Simulink.BlockDiagram'); 

chArr=m.find('-isa','Stateflow.Chart'); 
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stRoot=chart.find('-depth',1,'-and','-isa','Stateflow.State') 

%open 

fprintf(fid,'%s\''%s\''%s\''%s\''%s\n','<?xml version=','1.0',' encoding=','utf-8','?>'); 

fprintf(fid,'%s\n','<FSM>'), 

fprintf(fid,'\t%s','<STATES'); 

fprintf(fid,'%s\"%s\"',' id=','0'); 

fprintf(fid,'%s\"%s\"',' decomp=','PARALLEL_AND'); 

fprintf(fid,'%s\n','>'); 

fprintf(fid,'\t\t%s','<STATE'); 

. 

. 

%STATES 

stArr=stRoot.find('-depth',1,'-and','-isa','Stateflow.State'); 

stArr=setdiff(stArr,stRoot); 

if length(stArr)>0 nothing=findState(stArr,fid,glC); end; 

. 

. 

%TRANSITIONS 

fprintf(fid,'\t%s\n','<TRANSITIONS>'); 

trArr=stRoot.find('-isa','Stateflow.Transition'); 

if length(trArr)>0 noth=findTrans(trArr,fid); end; 

fprintf(fid,'\t%s\n','</TRANSITIONS>'); 

. 

. 

%close 

fprintf(fid,'%s','</FSM>'); 

fclose(fid); 

res1=1; 
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findState 

Signature: glC = findState(stArr,fid,glC) 

Input: stArr – array of states 

 fid – file identifier 

 glC – global counter set in the ‘states’ function 

Output: glC – modified global counter 

Functionality: 

• places <STATE> tags with proper attributes extracted from the state diagram and 

preserve defined relations between states. 

 

Listing 2 (findState.m): 

function glC = findState(stArr,fid,glC) 

 stCounter = length(stArr); 

 for i=1:stCounter, 

  glC=glC+1; 

  nth=tabx(glC,fid); 

  fprintf(fid,'%s','<STATE'), 

  fprintf(fid,'%s\"%d\"',' id=',stArr(i).Id); 

  fprintf(fid,'%s\"%s\"',' name=',stArr(i).Name), 

  fprintf(fid,'%s\"%s\"',' decomp=',stArr(i).Decomposition), 

stArr2=stArr(i).find('-depth',1,'-and','-isa','Stateflow.State'); 

. 

. 

if length(stArr2)>0  

   fprintf(fid,'%s\"%s\"',' type=','super'); 

   fprintf(fid,'%s\n','>'); 

   glC=findState(stArr2,fid,glC); 

  end; 
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  nth=tabx(glC,fid);   

  fprintf(fid,'%s\n','</STATE>'); 

  glC=glC-1; 

 end; 

 

findTrans 
Signature: noth=findTrans(trArr,fid) 

Input: trArr – array of transitions 

 fid – file identifier 

Output: noth – equals 1 if function finishes without an error 

Functionality: 

• places <TRANSITION> tags parallel to each other with proper attributes. 

 

Listing 3 (findTrans.m): 

function noth=findTrans(trArr,fid) 

 trCounter=trArr.length; 

 for k=1:trCounter, 

  fprintf(fid,'\t\t%s','<TRANSITION'), 

  fprintf(fid,'%s\"%d\"',' id=',trArr(k).Id); 

  string=trArr(k).LabelString; 

  string2=rep(string,'&','&amp;'); 

  string3=rep(string2,'<','&lt;'); 

  string4=rep(string3,'>','&gt;'); 

  fprintf(fid,'%s\"%s\"',' label=',string4), 

  … 

  fprintf(fid,'%s\"%s\"',' sName=',trArr(k).Source.Name); 

  … 

fprintf(fid,'%s\"%d\"',' dId=',trArr(k).Destination.Id); 

… 
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fprintf(fid,'%s','>'), 

fprintf(fid,'%s\n','</TRANSITION>'), 

noth=1; 

end; 

 

Additional function: 

tabx 

Signature: nth=tabx(glC,fid) 

Input: glC – global counter 

fid – file identifier 

Output: nth – equals 1 if function finishes without an error 

Functionality: 

• Manage the number of 'tab' white characters that are used to format the code. 

Each level of nesting of states is visualized using different number of 'tabs' in front of 

<STATE> tags, creating easy to read tree-like structure. 

 

Listing 4 (tabx.m): 

function nth=tabx(glC,fid) 

 for j=1:glC, 

  fprintf(fid,'%s\t',''), 

  nth=1; 

 end; 

 

 

The possibility to obtain list of active states of FSM during its work, in XML form, was 

developed by FSM designer implementing proper functions: ml.put(state_name), 

ml.pop(state_name). Calls to this functions has to appear in the proper moment during 
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operation of FSM. It is the ‘enter’ procedure for 'put' function call and ‘exit’ procedure 

for 'pop' function call. 

Additional script 'funext' is in charge of placing these function calls into respective 

procedures. It traverses FSM structure and extends each of the state labels with calls: 

ml.put(state_name) and ml.pop(state_name). This function prints out on the screen some 

status messages about the changed state.  

funext 

Signature: a=funext(chartname) 

Input: chartname - character string defining name of the chart in a state diagram 

Output: a - equals 1 if function finishes without an error 

 

Listing 5 (funext.m): 

function a=funext(chartname) 

    rt=sfroot 

    m=rt.find('-isa','Simulink.BlockDiagram') 

    chArr=m.find('-isa','Stateflow.Chart') 

 … 

stArr=chart.find('-isa','Stateflow.State') 

    for j=1:length(stArr) 

j 

        val='changing following state:'   

  stArr(j).Name 

  stArr(j).Path 

    stArr(j).LabelString 

        stArr(j).LabelString=placer(stArr(j).LabelString,stArr(j).Name) 

end; 

a=1; 
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placer 

Signature: result=placer(string,name) 

Input: string – character string that is extended, the label of state 

 name – character string representing state name 

Output: result – resulting character string. 

Functionality: 

• Performs a checking procedure that is implemented to put calls only once and in 

the proper procedures. 

Listing 6 (placer.m): 

function result=placer(string,name) 

… 

    result=string; 

    en=strcat('ml.push_(''',name,''');'); 

    ex=strcat('ml.pop_(''',name,''');') 

… 

index2=findstr(result,'entry:') 

        if length(index2)==1 index2=index2(1); else index2=0; end; 

        pushplace=findstr(result,en); 

        if length(pushplace)==1 pushplace=pushplace(1); else pushplace=0; end; 

        popplace=findstr(result,ex); 

        if length(popplace)==1 popplace=popplace(1); else popplace=0; end; 

… 

popplace=findstr(result,ex); 

… 

result=[result '/' s2 'entry:' en s2 'exit:' ex]; 

… 

index1=findstr(result,'/'); 

   if result(index1(1)+1)~=s2 result=regexprep(result,'/','/\n'); end; 
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   index3=findstr(result,'during:'); 

   if length(index3)==1 

       if result(index3(1)-1)~=s2 result=regexprep(result,'during:','\nduring:'); end; 

   end; 

   index4=findstr(result,'exit:'); 

   if result(index4(1)-1)~=s2 result=regexprep(result,'exit:','\nexit:'); end; 

 

8.2 Applet part 
The whole implementation of the program will be easier to understand when its 

description is realized as a flowchart. All the implemented methods have the main goal to 

satisfy requirements of the project and fulfill the design rules defined in the Solution 

Structure chapter. 

8.2.1  Applet framework 

The top framework for this visualization program is the applet environment. It consist of 

an Internet Browser with applet-running function enabled. Such a browser is able to show 

HTML files and applets. Simple HTML file containing applet tag was created and stored 

on a dedicated server in the DESY network. 

HTML file listing: 

<html> 

  <head> 

    <title>Applet page</title> 

  </head> 

  <body> 

    <applet  

 code="Applet.class" archive="vizz.jar" width=600 height=400> 

    </applet> 

  </body> 

</html> 



Piotr Cieciura 
Visualization of Systems Applied to FSM Control 

8.2.2  Graphical User Interface 

Another level is constituted of Graphical User Interface, that provides the management 

part and main visualization area. GUI design follows the rules stated in [17]. 

 

Fig. 8.1 Layout of GUI elements 

GUI was implemented using the Java graphical libraries: javax.swing and java.awt. The 

GridBagLayout manager was chosen because it is sophisticated but flexible layout 

manager that aligns components by placing them within a grid of cells what allows 

designer to follow easily the rules stated in the Visualization chapter. 
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Management functions of the program during its main operation are provided by the set 

of buttons which implementation is listed below: 

• Connect to FSM – performs the connection test 

• Read Active States – immediate request of the list of active states 

• Save layout – saves layout of the graph to a file 

• Move Up – moving up in the states hierarchy 

Fig. 8.2 Management buttons 

 

Result of their work is presented in the status bar. That allows the end-user being notified 

of all the program behavior, errors, and suggestions.  

 

Fig. 8.3 Status bar implementation 
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Additional part of management panel consists of elements used while working with the 

history panel. These are: 

Time display – shows time of the last readout 

Events display – shows number of read events 

Button bar – used to step over events 

Events labels – shows number and time of current event 

 

Fig. 8.4 History control buttons 
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The very important panel providing initial, basic configuration of the program is the 

'Configuration Panel' presenting: 

a) FSM server address in the ENS form 

b) Time interval of readouts (in seconds) 

Fig. 8.5 History control buttons 

8.2.3  Visualization Area 

Program's visualization engine works in this area. It presents, in the graphical form, an 

FSM that the program is connected to. The same FSM structure is shown in to different 

tabs: 'FSM' and 'HISTORY'. The external JGraph library was used to allow intuitive 

mouse operations on the graph representation and smooth and quick rendering of a 

graphics. It allows fast customization of a Graph Model using a wide range  of predefined 

attributes. Additional JAddons library was utilized to provide the layering of a graph. 

This graphical part, served by the StateManager class, works in a strictly defined way: 

1. Parsing the XML data using the javax.xml.parsers, org.xml.sax and org.w3c.dom 

libraries. 

2. creation of DOM object which gives: easy access to XML elements 
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ArrayList 

is the 

ontains main algorithm of the program  

. ph and setting the parameters: 

 false 

ed – true 

8. e  was previously saved  

wn,  

in the point no.7) 

9. lemented 

ethod invocation to find out a content of a state (described 

both states and transitions with its parameters. 

3. reading the <STATE> elements to tempList1 of type: ArrayList. 

4. reading the <TRANSITION> elements to transNodeList of type: 

5. Creation of ArrayList that contains objects of the type MyTrans which 

representation of the transition in the program - that ArrayList contains all the 

transitions that were defined in XML. 

6. Calling the 'manage()' method. It c

 (points no. 7,8,9) 

7 Creation of a JGra

• setAntiAliased – true 

• setClonable – false 

• setEditable – false 

• setDisconnectable –

• setSizable – true 

• setSelectionEnabl

• setGridEnabled – false 

• setGridVisile – false 

Ch ck if the graph layout

• if true: graph is added to view panel and redra

• if false: the structure of state is checked (described 

INTERACTIVE PART in which mouse is served by the imp

MouseListener interface. 

10. 'getInnerStructure' m

in pts. no. 11-17). Its main task is to create the array of objects of a type 

DefaultGraphCell for the current state. These are the graphical elements representing 
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sid, sname, did, dname 

11. initialized. It lists all child 

stat f that represents 

e tempTrans list:  

nsitions 

tates 

15. ts from the list of states and transitions 

16. ion of proper graphical element, that 

phCell: 

 

17. e sition elements between states. All the transitions are identical and 

thei t  set as follows: 

• setBendable – true 

• parameters for states are: id, name, decomp, type 

• parameters for transitions are: id, label, 

 ArrayList 'stateList' containing MyState objects is 

es or a state that is currently being browsed. MyState is an object 

states in the program. 

12. ArrayList called 'tempTrans' is initialized. It contains state's transitions for the 

current node. 

13. From this moment stateList and tempTrans are used. 

14. Cleaning th

• connecting states in a way that omits junctions 

• removing the redundant tra

• removing the doubled transitions 

• adding 'default' state 

• adding representation of external s

 Creation of graph elemen

 Recognition of proper state type and creat

meets the graphical code using the following attributes of DefaultGra

• setBorderColor 

• setBackground 

• setGradientColor

• setOpaque 

• setBorder 

 Cr ation of tran

r a tributes are

• setLineEnd – ARROW_CLASSIC 

• setEndFill – true 
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rue 

 – false 

 

       18. Mouse interaction with the visualization module (described in the User Manual). 

• setLineWidth – 2 

• setExtraLabels – t

• setLabelAlongEdge
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9 User Manual 
 

9.1 Installation Instructions 
  
Installation is done by copying the file vizz.jar to the user account with the access to the 

Distributed Object Oriented Control System – where the ENS address will be recognized. 

The next step is creation of the HTML file containing the applet framework presented in 

section 8.2.1. 

The requirements concerning the installation platform are defined as follows: 

1. The Java Runtime Environment installed (in version 1.4.2 or higher). 

2. Web browser available (with the possibility to run applets). 

 

9.2 User Operations 
9.2.1 Running the program 

 
1. The visualization program may be run as an applet in the web browser by opening 

 the html file created in the installation phase. 

2. Alternatively, it is possible to run the program as a standalone application by  

 issuing the command: java -cp . -jar vizz.jar 

 

9.2.2 User Interaction 

 
In the major number of cases user operates with this program by means of mouse 

interaction. Only the configuration phase is done by means of a keyboard. The following 

steps provide a brief description of the order of actions user has to undertake to 

accomplish a given task. 



Piotr Cieciura 
Visualization of Systems Applied to FSM Control 

 

The main usage scenario is as follows: 

 1.  After running the program the visualization area is empty: 

Fig. 9.1 Empty visualization area 

 

  

 2.  Click the configuration tab and provide the ENS address divided into 3  

  fields:  facility, device, location – that defines the FSM server in the  

  DOOCS system. Specify the update time of readouts of active states. The 

  default values are provided as shown in fig. 9.2. 
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Fig. 9.2 Configuration tab 

 

 3.  Click on the 'Connect' button – the program connects with the address  

  specified and reads the structure of the investigated FSM which can be  

  seen in the 'FSM' and 'HISTORY' tabs. The hierarchy of a structure   

  always starts with the 'ROOT' flow visible. 

Fig. 9.3 Top view of a structure 
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 4. Entering the ROOT by double clicking the rectangular object one explores 

  the whole fsm structure consisting of the following graphical elements: 

  

     Flow element (superstate) – the state with a   

     PARALLEL_AND decomposition 

 

 

      

     Super State element – contains some simple states 

     with EXCLUSIVE_OR decomposition 

 

     Simple State – basic finite state machine element 

     (does not contain any internally nested structure) 

      

  

     Active State  

 

      

     Transition – with corresponding label 

 

 

 

      

     Default state representation – red box pointing to  

     a default state 

 

 

     Loop transition representation 
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 5. Change the size or placement of graphical objects to best utilize the  

  visualization area. This is done by means of handlers which can be  

  dragged with the left mouse button pressed. Right clicking on the   

  transition element (arrow) adds additional handler that enables more  

  sophisticated configurations This is shown on a picture below:  

Fig. 9.5 Manually reconfigured fsm layout 

 

 6. Click the save button that saves the current layout of a state. It is used  

  from now on to define a layout for a particular state.  

  

 7. Click the 'Read Active' button – it starts the periodical updates of the  

  active states with the time interval specified on the configuration tab. Any 

  further use of 'Read Active' button force the immediate check of the active 

  states. Program is now ready and the user can browse the FSM structure  

  and follow the path of active states. 

 

 8. The visible change after invoking the 'read active' procedure is also the  

  change in 'events display'. The number of events increases when the new  

  active states are different from previously read. The 'time display' updates 

  to present the time of the last readout. 
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 9. Additional functionality is provided by the 'HISTORY' tab in which one  

  can view changes of active states. It is supported by means of events  

  control buttons. This action is reflected in the change of 'event labels'  

  showing the time and number of the investigated event. 

 

    Fig. 9.6 Event control buttons 
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10 Conclusions and Summary 

 

The main goal of this master thesis was to develop a computer program to monitor work 

of Finite State Machine and showing its internal structure.  

Requirements for this project were mainly based on the experience and needs of the FSM 

designer and operators. Mainly during tests in real or test environment, there is a need for 

tool that would: 

•  show the internal structure of an FSM  

•  be able to provide an information about its current state, the state that it was 

 changed from and parameters that triggered this transition; 

•  be independent from any configuration files or source code of an FSM.  

•  record history of changes 

This features would greatly improve work of a designer and decrease time spent on 

testing.  

The issue of efficiency and interface being intuitive is also important for the operator of 

the control system. The one who will be responsible for the operation of the system, 

could faster react in case of problems and minimize the break-time because visualization 

gives better understanding of the current status of FSM. These requirements can be 

satisfied by implementation of a Graphical User Interface with the strong stress put on the 

visualization of an FSM. 

Reaching the best solution of a stated problem required studies of different programming 

concepts and technologies. 

The issue that the program has to be available from any computer in the local network 

required knowledge about multiplatform solutions. Here the Java  Virtual Machine was 

chosen which is a portable technology for programs written in Java. Such a program is 
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written and compiled only once then interpreted by the platform specific Virtual Machine 

saving time spent on considering platform dependent issues. 

The further extension to the concept of a multiplatform program was the utilization of 

Internet technologies – namely Java Applets and Web browsers. Browsers enable 

distribution of software through the network, user can be notified about new versions of 

program. They provide graphical context with well-known interface. 

The concept of Graphical User Interface follows the rules that governs human behavior 

and cognition. Understanding of that rules helps in proper design of intuitive interface. 

The theory of Finite State Machines was necessary to define the object of visualization. 

Particular implementation of FSM in a form of statechart was considered. Such a 

implementation is used in the Stateflow Toolbox used by the FSM designer. To export 

the structure of FSM to the server a flexible but simple format was created based on the 

standard XML tags. The usage of Stateflow API and Matlab scripts language enabled fast 

creation of tools that make this export possible. 

The main part of a program – visualization system had the task of creation of intuitive 

representation of an FSM from the XML structures generated in the Stateflow. No 

previous knowledge about the internal structure of a machine could be obtained because 

system does not depend on any configuration files. The FSM topology was defined in the 

XML in a precise way that enabled proper reconstruction of the automata. Another 

problem was the graphical library used to render the graphical elements of an FMS 

representation. First attempt was to write own library, utilizing the concept of a directed 

graph but another problem was the layout of the graph. Simple solution was the circular 

layout with all states placed on the circle circumference but in case of a graph with a lot 

of transitions (almost each to each another) it became unreadable. Therefore the choice 

was made to use some open source library, but already developed and in a stable version 

– namely JGraph. The problem of layout was solved by giving the user the advanced tool 

that allows customization of FSM view and saving it. Because the graphs are rarely 

planar user invention is better than a computer algorithm. 
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The strong advantage of a program is the history panel in which the whole FSM work is 

stored and can be viewed step by step. 

The hard task during the development of the program was to perform tests in the real 

environment because of the reduced interaction quality using the remote X-server 

connection from Lodz to Hamburg. 

The proposal for the next version of the program would be the extension of configuration 

options that would give better sense of control over the visualization system. Also the 

possibility to save the composed graph layout to a file is desired. This option would be 

helpful in case of multiple sessions with the same FSM.
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12 Appendix 
 
CD-ROM content: 
The attached CD contains two folders: 

1. matlab-scripts –contains Matlab scripts used to generate the XML files from the 

Stateflow model and to extend the model with proper functions, it 

contains also the howto.txt file with the manual for users of these 

functions. 

2. visualization – contains main files for visualization program,  

subfolder src contains java source files, 

subfolder docs contains manual files about starting the application 

and signing applets. 
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