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Abstract

At TTF phase II there should be a bypass beam line around the undulators

to the beam dump in order to avoid dumping the beam through the sensitive

undulators. For this purpose a dipole in front of the collimator section bends

the beam. For space reasons this bend will not be oriented exactly vertic-

ally upwards but slightly to the right. A second tilted dipole subsequently

bends the beam back to make it parallel to the undulator beam line. The

horizontal and vertical dispersion of the tilted dipoles which lead the beam

into the bypass line should be compensated and therefore there have to be

quadrupoles between the dipoles. One can either install quadrupoles which

are not tilted and use them to compensate the horizontal and the vertical

dispersion separately, or one can use quadrupoles which are tilted together

with the dipoles and compensate the dispersion directly in the tilted dispers-

ive plane of the dipoles. In this context the question of coupling comes up:

How can a tilted beam line be constructed to produce a decoupled beam at

its exit. Additionally the beta functions should not be too large.

Here general decoupling conditions are derived, the ellipse of the beam

cross section for a coupled phase space is computed and it is shown that it is

very similar to the uncoupled beam ellipse in shape but along the tilted beam

line it is rotated signi�cantly out of the horizontal plane. Di�erent options

for decoupling the horizontal and vertical motion will be investigated. The

option with quadrupoles which are tilted together with the dipoles will proof

superior and will be analyzed in more detail.

1 Decoupling Requirements for Tilted Beam Lines

The transfer matrix M
'
of a beam transport which is tilted by an angle ' is given

by the rotation matrix R
'
and the transfer matrix M 0 of the untilted beam line.

The untilted beam line is assumed not to introduce coupling,

R
'
=

�
cos'1 sin'1

� sin'1 cos'1

�
; M 0 =

�
M

x
0

0 M
y

�
; (1.1)
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where 1 and 0 are the 2� 2 unit and zero matrices respectively and

M
'

= R
'
MR�' (1.2)
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x
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y
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x
)

�
:

To avoid coupling in phase space at the exit of the tilted beam line, the beam

spot after the tilted line is allowed to be rotated out of the horizontal by an angle

�, but the slopes in phase space have to be tilted by the same angle to decouple

the phase space motion in a plane which is rotated by � out of the horizontal. This

avoids a blow up of the emittance when the following beam line magnets are tilted

by � and requires that the total matrix of the tilted beam line can be written as the

product of a decoupled matrix and a subsequent rotation by �:

M
'
= R

�
A ; A =

�
A
x

0

0 A
y

�
: (1.3)

In order to decouple, there must therefore exist a matrix A with

A = R��R'
MR�' (1.4)
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This matrix can only have block diagonal form if sin �(M
y
+M

x
) = 0 and sin(2'�

�)(M
y
�M

x
) = 0. There are therefore the two following possibilities:

1. � = 0 and M
y
=M

x
.

2. � = 2' and M
y
= �M

x
.

2 The Beam Spot for a Coupled Optics

A decoupled Gaussian beam distribution is given by

�0(~z) =
1

(2��x�y)
2

� exp(�
1

2�x
[�x0x

02 + 2�x0xx
0 + x0x

2]) (2.5)

� exp(�
1

2�y
[�y0y

02 + 2�y0yy
0 + y0y

2]) :

This can be simpli�ed to

�0(~z) =
1

(2�)2�x�y
exp(�~zT�

0
~z) ; �

0
=

 
1
2�x

�
x0

0

0 1
2�y
�
y0

!
(2.6)

�
j0

=

�
j0 �j0

�j0 �j0

�
; j 2 fx; yg : (2.7)
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After a coupled beam transport described by the matrix M , the density is given

by �(~z) = 1
(2�)2�x�y

exp(�~zT�~z) with � = M�T�
0
M�1. The projection of this density

onto the x{y plane describes the beam spot. It is given by

�b(x; y) =

Z 1

�1

Z 1

�1
�(~z)dx0dy0 =

1

N
exp(�(x; y)�

�
x

y

�
) : (2.8)

An evaluation of the integral leads to

N =
1

4��x�y
p
�22�44 � �2

24

(2.9)

d = �2
24 � �22�44 ; �21 = �21 ;

�11 =
1

d
[�14(�14�22 � �12�24) + �12(�12�44 � �14�24) + �11(�

2
24 � �22�44)] ;

�22 =
1

d
[�34(�22�34 � �24�23) + �23(�23�44 � �24�34) + �33(�

2
24 � �22�44)] ;

�12 =
1

d
[�23(�12�44 � �24�14) + �34(�14�22 � �12�24) + �13(�

2
24 � �22�44)] :

The lines with equivalent density are tilted ellipses described by the eigenvalues �1
and �2 of the matrix �. Pseudo beta functions are introduced which characterize

the size of the tilted ellipses by

�?

x
=

1

2�x�1
=

1

�x
�

1

�11 + �22 + sig(�11 � �22)
p
(�11 � �22)2 + 4�2

12

; (2.10)

�?

x
=

1

�y�2
=

1

�y
�

1

�11 + �22 � sig(�11 � �22)
p
(�11 � �22)2 + 4�2

12

: (2.11)

The sign function has been used to let �?

x
become �x for a decoupled optics where

�12 is zero.

The orientation of the axis of the ellipse which corresponds to �?

x
has the angle

� to the x axis which is given by the eigenvector to the eigenvalue �1,

� = atan(
�12

�1 � �22
) : (2.12)

For decoupled motion � is always zero.

3 A Tilted Bypass Without Tilted Quadrupoles

Initially the di�erent decoupling concepts were tested by assuming a small angle of

7Æ between the plane of the bypass and the vertical. The bends leading into the

bypass were assumed to have 19Æ bend angle and a length of 1.2 m. Their centers

where chosen to be 4 m apart. For these studies, the Twiss functions before the �rst

dipole were set to the preliminary design values of

�x0 = 12:41m ; �x0 = 0:37 ; �y0 = 20:35m ; �y0 = �2:90 (3.13)
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and should not lead to exceedingly large beam sizes. After the bend section they

were matched to a FODO structure in the bypass line. The inuence of coupled

phase space motion on the beam spot depends on the emittance ratio, and equal

emittances �x = �y will be assumed.

If the tilted dipole magnets would not introduce coupling, then one could use

only horizontal quadrupoles in between the dipoles to guarantee that the optic of

the complete bend section is decoupled. In this scheme at least four quadrupoles are

required between the two dipoles in order to compensate the independent quantities

Dx, Dx0 , Dy , Dy0 . It turns out that an additional quadrupole is required in order to

keep the vertical betatron amplitude under control.

However, the tilted dipoles introduce coupling. If one for example chooses a

parallel face magnet, which focuses in the vertical plane but not in the horizontal,

then the focusing in the tilted plane introduces coupling which signi�cantly disturbs

the beta functions after the tilted bend section of the bypass. Nevertheless, the

beta functions in the FODO section corresponding to the maximum horizontal and

vertical amplitude of the beam spot computed by

�x;max =
�22

�11�22 � �2
12

; �y;max =
�11

�11�22 � �2
12

(3.14)

are quite similar to the periodic FODO beta functions as shown in �gure 3.1. The

optimizations of the coupled optics were performed with the code COSY INFINITY

[1].
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Figure 3.1: Beta functions corresponding to the maximum x and y coordinate of

the beam spot for tilted parallel faced dipole magnets and horizontal quadrupoles

compared to the matched beta functions of the FODO section.

But the pseudo beta functions and the tilt angle of the beam spot are signi�cantly

disturbed as shown in �gure 3.2 for the bend section, for the subsequent matching

section, and for the �rst two adjacent FODOs. The non{vanishing angle � of the

beam spot orientation shows that the optic in the FODO section is not decoupled.

This is reected by the fact that the pseudo beta functions do not agree with the

matched beta functions of the FODO structure.
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Figure 3.2: Pseudo beta functions of the coupling introduced by a tilted parallel

faced dipole magnet and horizontal quadrupoles. 1: Dispersion correction, 2 and 3:

pseudo beta functions, 4: Angle � of the beam spot orientation.

In the here described scheme in which the quadrupoles are all horizontal and only

the dipoles are tilted, it is therefore important to minimize the coupling introduced

by the tilted dipole. For a 1.5m long dipole with � = 19Æ,
P4

ij=1
(Mxij �Myij)

2

is minimal for an entrance and exit edge of � = 4:76Æ. The corresponding beta

functions are shown in �gure 3.3. The matching condition have been: Dx = 0,
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Figure 3.3: Pseudo beta functions of the coupling introduced by a tilted dipole

magnet with 4:76Æ edge focusing and by �0:4Æ tilted quadrupoles. 1: Dispersion

correction, 2 and 3: pseudo beta functions, 4: Angle � of the beam spot orientation.

Dx0 = 0, Dy = 0, Dy0 = 0 after the second dipole and a match to a l=2 = 17m and

45Æ FODO at the entrance of the 9th quadrupole. The nearly vanishing angle � of

the beam spot orientation shows that the optic in the FODO section is decoupled

very well. The angle is only large in non{critical regions where the beam spot

is nearly circular,i.e. at �?

x
= �?

y
for �x = �y. This is reected by the fact that the

pseudo beta functions agree very well with the matched beta functions of the FODO

structure.
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A horizontal quadrupole here does not refer to a quadrupole for which the top

and bottom edges are horizontal but to one which is by �' rotated with respect

to the exit face of the �rst dipole. The top and bottom edges of these quadrupoles

therefore have an angle of atan2(sin' cos �; cos')� ' = �0:4Æ to the horizontal.
If one does chooses quadrupoles with horizontal edges, the optic is not as nicely

decoupled. This is shown by the pseudo beta functions and the beam spot angle

shown in �gure 3.4. These horizontal quadrupoles are tilted by atan2(sin' cos�; cos') =

82:6Æ with respect to the tilted quadrupoles of section 4 and the front and back faces

are tilted by asin(sin' sin�) = 18:85Æ away from the vertical. The non{vanishing
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Figure 3.4: Pseudo beta functions of the coupling introduced by a tilted dipole mag-

net with 4:76Æ edge focusing and horizontal quadrupoles. 1: Dispersion correction,

2 and 3: pseudo beta functions, 4: Angle � of the beam spot orientation.

angle � of the beam spot orientation shows again that the optic in the FODO sec-

tion is not decoupled. This is reected by the fact that the pseudo beta functions

do not agree with the matched beta functions of the FODO structure. But also

here the beta function corresponding to the maximum horizontal and vertical amp-

litude of the tilted beam spot are quite similar to the decoupled beta functions as

shown in �gure 3.5. Therefore also this not completely decoupled arrangement with

horizontal quadrupoles will most likely be suÆcient for most purposes.

4 Decoupling with Tilted Quadrupoles

Quadrupoles have to be placed in between the two dipoles in order to produce

vanishing D and D0. If the dipoles where not tilted by ', this would require two

horizontal quadrupoles. When the dipoles are tilted, the two quadrupoles also have

to be tilted. Two tilted quadrupoles are then suÆcient to compensate all four

quantities Dx, Dx0 , Dy , Dy0 since Dy cos' = Dx sin'. However, since both of these

quadrupoles have to be focusing in the dispersive plane, it turns out that a third

quadrupole is required to reduce the betatron amplitudes in the transverse plane.

Additional tilted quadrupoles after the bend section would be needed in order to
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Figure 3.5: Beta functions corresponding to the maximum x and y coordinate of

the beam spot for a tilted dipole magnet with 4:76Æ edge focusing and horizontal

quadrupoles compared to the matched beta functions of the FODO section.

decouple the optics, i.e. to lead to a transfer matrix of the tilted section with either

M
x
= M

y
or M

x
= �M

y
.

Both cases have been analyzed. The case with M
x
= �M

y
can be achieved

with two tilted quadrupoles after the second dipole, but the four quadrupoles of the

subsequent matching section and all following FODO quadrupoles would have to be

tilted by 2' = 14Æ. To avoid this inconvenience, the condition M
x
= M

y
has been

adopted.

The case with M
x
= M

y
requires 3 tilted quadrupoles after the second dipole

but it has the advantage that all subsequent quadrupoles can be horizontal. The

coupled pseudo beta functions and the tilt of the beam spot is shown in �gure 4.6.

In both of these cases the dipole magnets were assumed to be parallel faced magnets.

Since the complete tilted section of the beam line is decoupled, no special decoupled

dipole is required. For 0.3 m long quadrupoles, the maximum quadrupole strength

in between the two dipoles is 9.5/m and for the matching section it is 4.5/m. The

matching condition have been: Dx = 0, Dx0 = 0 after second dipole, M
x
= M

y

after 6th quadrupole, match to a l=2 = 17m and 45Æ FODO at the entrance of the

10th quadrupole. The vanishing angle � of the beam spot orientation shows that

the optic in the FODO section is completely decoupled.

5 Nonlinear Optics

In order to �nd out whether it is the feasible to transport the emittances and energy

spreads of the TTF beam with these optics, particles were tracked through the

bypass option with 5 quadrupoles between the decoupled dipoles of section 3 and

through that with 3 tilted quadrupoles of section 4. The chosen beam parameters are

normalized emittances of �x = �y = 2�mmmrad and an energy spread of Æ = 1�10�3.
The tracking results are shown in �gure 5.7. These �gures show that the emit-

tances would be blown up if no sextupoles were used to correct the energy depend-
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Figure 4.6: Pseudo beta functions of the coupling introduced by a tilted bend section

with M
x
=M

y
. 1: Dispersion correction, 2 and 3: pseudo beta functions, 4: Angle

� of the beam spot orientation.

ence of the optics.

Therefore sextupole windings inside the quadrupoles with dispersion were simu-

lated. For the option with 5 quadrupoles between the two decoupled dipoles, four

sextupole coils were added and due to the symmetry of the tilted bend section they

were powered in pairs, the �rst sextupole having the negative strength of the �fth

and the second sextupole having the negative strength of the second. For the option

with 3 tilted quadrupoles between the two dipoles, the �rst and the last quadrupole

were equipped with sextupoles which were excited asymmetrically.

5.1 Energy Dependent Emittance Increase

In �gure 5.7 (top) is can be seen that transport of the phase space ellipse is strongly

energy dependent whereas the origin of the ellipse does not vary much with en-

ergy. Therefore the emittance increase for the bypass with 5 horizontal quadrupoles

between the decoupled bends is not strongly inuenced by the higher order disper-

sion but it is dominated by the energy dependent Twiss parameters. The sextupoles

were therefore used to minimize this e�ect.

When the n � � initial phase space ellipse is described by

~xi =

�
xi
x0
i

�
; �

x0
=

�
x0 �x0

�x0 �x0

�
; ~xT

i
�
x0
~xi = n2�x ; (5.15)

then after an energy dependent particle transport ~x = (M
x
+ ÆM Æ

x
)~xi the phase

space ellipse is to �rst order in Æ described by the matrix

�
x
+ Æ�Æ

x
=1 (Mx

+ ÆM
xÆ
)�T�

x0
(M

x
+ ÆM

xÆ
)�1 : (5.16)

Transforming the phase space ellipse for Æ = 0 to a circle in the normalized coordin-

ates ~xn,

~x =

� p
�x 0

� �xp
�x

1p
�x

�
~xn (5.17)
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Figure 5.7: Tracking results for the tilted bend section without sextupoles for the

option with 5 nearly horizontal quadrupoles between the two decoupled dipoles (top)

and for the option with 3 tilted quadrupoles between the dipoles (bottom). Left:

for a 1� horizontal ellipse with �2, �1, and 00=00 energy deviation, a 2� horizontal

ellipse with �1, and 00=00 energy deviation, and a 3� horizontal ellipse. Left: for

a 1� vertical ellipse with �2, �1, and 00=00 energy deviation, a 2� vertical ellipse

with �1, and 00=00 energy deviation, and a 3� vertical ellipse.

leads to the ellipse

~xT
n

�
1 + Æ

1

�x

�
��Æ

x
�Æ

x
�x � �Æ

x
�x

�Æ

x
�x � �Æ

x
�x �Æ

x

��
~xn = n2�x ; (5.18)

where it has been used that the determinant of �
x
+ Æ�Æ

x
=1 1 and therefore Æ

x
�x+

�Æ

x
x � 2�x�

Æ

x
= 0.

Transforming to a coordinate system which is rotated by � to lead to an upright

ellipse leads to

~xn =

�
cos � sin �

� sin � cos �

�
~xr ; ~xT

r

�
1 + Æ

1

�x cos(2�)

�
��Æ

x
0

0 �Æ

x

��
~xr = n2�x ;

(5.19)

if � is chosen to satisfy �Æ

x
sin(2�) = (�Æ

x
�x � �Æ

x
�x) cos(2�).
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The area of the circle circumscribing this ellipse is therefore

�x> = �
1

1� Æ
�Æ
x

�x cos(2�)

=1 �x + Æ
�Æ

x

�x cos(2�)
; (5.20)

d

dÆ
�x> =

1

�x

q
�Æ

x

2
+ (�Æ

x
�x � �Æ

x
�x)2 : (5.21)

The vertical dispersion is largest in the �rst quadrupole as shown in �gure 3.3 (a)

and therefore this sextupole mostly inuences the vertical emittance. After choosing

this sextupole to minimize d�y=dÆ, the vertical phase space ellipses change very little

with energy in �gure 5.8 (top right). The higher order aberrations do not distort

the ellipse. This is due to the fact that the vertical beta functions are very small at

the position of the sextupoles, as shown in �gure 3.3 (b).

After using the sextupoles to minimize d�x=dÆ, the phase space curves in �gure

5.8 (top left) still change much with energy and they are shifted due to a second

order dispersion. It was not possible to compensate both e�ects simultaneously. Ad-

ditionally the ellipses are strongly distorted due to nonlinear geometric aberrations.

This is due to the fact that the horizontal beta functions are large at the position

of the sextupoles. In order to compensate these geometrical aberration, additional

sextupoles would have to be added after a minus identity image of the linear optics.

Due to these complications the tilted bend section with decoupled dipoles does not

seem to be favorable.

In the emittance blowup can be computed as

f�x =

Z
1
�0(~z0) ~Mx(~z0)

T�
x

~Mx(~z0)d~z0 ; f�y =

Z
1
�0(~z0) ~My(~z0)

T�
y

~My(~z0)d~z0 :

(5.22)

Here the transport map ~M has been computed in di�erent orders of expansion in

~z by Di�erential Algebra (DA) [2, 3]. During the computation advantage has been

taken of the fact that for Gaussians,
R
1 x2n�0(x)dx = �2n

x

(2n)!

2nn!
, and equation (5.22)

was evaluated with Di�erential Algebra. The following normalized emittances �x
and �y are given in units of mm mrad and the energy spread �Æ is to be given in
0=00. The resulting averaged normalized emittances < �x > and < �y > are then

given in units of mm mrad.

For the tilted bypass 5 quadrupoles between decoupled dipoles and no sextupoles,

< �x > = �x

+ 0:206�x�
2
Æ
+ 0:0909�4

Æ
(5.23)

< �y > = �y

+ 0:136�y�
2
Æ
+ 0:0002104�4

Æ
(5.24)

all coeÆcients up to order 7 are displayed which are larger than 10�5. The second

order dispersion inuences the blowup of the horizontal emittance and the energy

dependent optics blows up the emittance in both planes.
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Figure 5.8: Tracking results for the tilted bend section. Top: with 5 quadrupoles

between decoupled dipoles and with 4 antisymmetric sextupoles. Middle: with 3

tilted quadrupoles and an antisymmetric pair of sextupoles. Bottom: With one

additional sextupole after the bend section. Left: for a 1� horizontal ellipse with

�2, �1, and 00=00 energy deviation, a 2� horizontal ellipse with �1, and 00=00
energy deviation, and a 3� horizontal ellipse. Right: for a 1� vertical ellipse with

�2, �1, and 00=00 energy deviation, a 2� vertical ellipse with �1, and 00=00 energy

deviation, and a 3� vertical ellipse.

A simultaneous correction of the second order dispersion in x direction and the

energy dependent phase space ellipse in x and y is not possible. The emittance
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blowup corresponding to �gure 5.8 (top) is

< �x > = �x
+0:161�2

x
�0:143�x�y +0:286�2

y

�0:423�x�2
Æ

+1:23�y�
2
Æ

+11:6�4
Æ

+0:00000696�3
x

�0:000185�2
x
�y +0:000626�x�

2
y
�0:0000756�3

y

�0:0000986�2
y
�2
Æ

;(5.25)

< �y > = �y
+0:381�x�y +0:000137�2

y

+0:0149�x�
2
Æ

+0:000534�y�
2
Æ

+0:00209�4
Æ

+0:000268�2
x
�y �0:000308�x�2y +0:0000226�3

y

+0:0000644�2
y
�2
Æ

: (5.26)

Since this emittance blowup is not tolerable, bypass with tilted quadrupoles

was analyzed. Without sextupoles, corresponding to �gure 5.7 (top), the emittance

blowup is

< �x > = �x
+0:00413�x�

2
Æ

+0:000853�y�
2
Æ

+0:00690�4
Æ

; (5.27)

< �y > = �y
+0:00000173�x�y +0:000108�2

y

+0:000884�x�
2
Æ

+0:262�y�
2
Æ

+1:176�4
Æ

: (5.28)

The second order dispersion and the energy dependent optics are important in

the vertical plane.

With two symmetrically arranged sextupoles for the correction of the second

order dispersion one obtains

< �x > = �x
+0:0000342�2

x
+0:000620�x�y +0:000968�2

y

+0:0186�x�
2
Æ

+0:00120�y�
2
Æ

; (5.29)

< �y > = �y
+0:00556�2

x
�0:00251�x�y +0:0584�2

y

+0:00120�x�
2
Æ

+0:00549�y�
2
Æ

: (5.30)

The corresponding tracking result is shown in �gure 5.8 (middle).

The nonlinear geometric aberrations in the vertical plane lead to a emittance

blowup of about 12% which is illustrated by the strong deformation of the vertical

phase space ellipse in �gure 5.8 (middle right). The vertical motion is not disturbed

much by the chromatic sextupoles since the horizontal pseudo beta function in �gure

4.6 (b) is much smaller than the vertical at the position of these sextupoles. In order

to compensate the relevant geometric aberrations, a sextupole was inserted in the

dispersion free section after the second dipole. The resulting emittance blowup is
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given by

< �x > = �x
+0:0000356�2

x
+0:000827�x�y +0:0001564�2

y

+0:0186�x�
2
Æ

+0:00120�y�
2
Æ

; (5.31)

< �y > = �y
+0:000602�2

x
�0:0000137�x�y +0:000248�2

y

+0:00120�x�
2
Æ

+0:00549�y�
2
Æ

: (5.32)

Also the corresponding �gure 5.8 (bottom) shows that the emittance blowup is now

very well corrected. The sextupole strength were �tted to minimize the relevant

components of the emittance blowup by the code COSY INFINITY.

5.2 Coherent Synchrotron Radiation (CSR)

The bends which have so far been simulated with a length of 1.2 m and with an

angle of 19Æ would produce a large emittance blowup due to coherent synchrotron

radiation, as shown in �gure 5.9. The e�ect of coherent synchrotron radiation was

computed with the code TraFiC4 [4].
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Figure 5.9: Coherent synchrotron radiation leads to an increase of the emittance by

a factor about 30 when the distance between the dipole centers is 4m, the dipole

length is 1.2m, and their bend angle is 19Æ.
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Therefore the angle of the dipoles was reduced to 7Æ which leads to a distance of

about 12 m between the dipoles. In order to lead the bypass line into the dump line

after the undulators, the tilt angle between the plane of the bypass and the vertical

has to be 20:445Æ. For these conditions the lattice was optimized and decoupled

for various length of the dipoles. The increase of the projected emittance and of

the emittances for beam slices with a small length is shown in �gure 5.10 (left) for

di�erent dipole length. The e�ect of CSR has been reduced but an increase of the

projected emittance by a factor of about 10 is still to large. The dependence on the

dipole length is not very strong and for a dipole with 1 m length the increase of the

emittance along the tilted bend section is shown in �gure 5.10 (right).
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Figure 5.10: Emittance blowup after the tilted bend section due to coherent syn-

chrotron radiation. Left: versus the length of the �rst two dipoles. Right: Along

the bend section for 1 m long dipoles.

In order to reduce the CSR e�ect further, the beta functions have to be minimized

in the bends. So far it had been minimized already in the second bend section and

therefore the CSR e�ect in the second bend is much smaller than in the �rst. There

is 89 mm of free space in the center of the 17 m module, suÆcient for a quadrupole

duplet. This duplet can then be used to minimize the beta functions, especially �y,

in the �rst bend. The design values of the Twiss parameters before this duplet are

�x0 = 45:63m ; �x0 = 2:10 ; �y0 = 27:13m ; �y0 = 0:22 (5.33)

Figure 5.11 shows the optic of the tilted bend section after this adjustment of the

beta functions.

The corresponding CSR e�ect is shown in �gure 5.12 (left). An increase of

the projected emittance by about a factor of 4.5 for a 1 GeV beam is marginally

acceptable. For smaller energies the CSR increases the projected emittance by

larger factors as shown in �gure 5.12 (right). The beta functions of �x = 45:63 and

�y = 27:13 at the duplet inside the 17 m module could be increased by changing the

optics further upstream. Then the beta functions in the �rst bend could be further

reduced, leading to a further reduction of the emittance blowup due to CSR.

For the optics shown in �gure 5.11,the nonlinear emittance transport is quite

unproblematic. As shown in equation (5.34), the emittance is very little inuenced
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Figure 5.11: a) Pseudo beta functions, b) beta functions taken from the maximal

horizontal and vertical extension of the beam spot, and c) the angle of the beam

spot in the tilted section after adjustment of two quadrupoles before this section.
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Figure 5.12: Left: CSR e�ect for di�erent beam energies. Right: CSR emittance

blowup along the tilted section after adjustment of two quadrupoles before this

section for a 1 GeV beam.

by nonlinear motion. As in equation (5.24) the normalized emittances are to be

taken in units of mm mrad and the energy spread in units of 0=00. For the design

emittance of 2 mmmrad the largest e�ect of 2% is due to the second order dispersion.

After this dispersion is corrected by a tilted pair of antisymmetric sextupoles in the

tilted bend section, the blowup is given by equation (5.35). These sextupoles were

taken to be 0.2 m long with a strength of �8:94=m2. The small nonlinear e�ect

proportional to �x�y amounts only to 0.02% and does not need to be corrected. It
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could be corrected by an additional tilted sextupole 1 m after the tilted bend section

with 2:27=m2, as shown in equation (5.36).

< �x > = �x + 0:0021�x�
2
Æ
+ 0:0001�y�

2
Æ
+ 0:0063�4

Æ
(5.34)

< �y > = �y + 0:0001�x�
2
Æ
+ 0:0023�y�

2
Æ
+ 0:0395�4

Æ

< �x > = �x + 0:0026�x�
2
Æ
+ 0:0003�y�

2
Æ

(5.35)

< �y > = �y + 0:0003�x�
2
Æ
+ 0:0005�y�

2
Æ
+ 0:0001�x�y

< �x > = �x + 0:0026�x�
2
Æ
+ 0:0003�y�

2
Æ

(5.36)

< �y > = �y + 0:0003�x�
2
Æ
+ 0:0005�y�

2
Æ

For the proposed optics the sextupoles are not needed to transport a beam with

design energy spread and design emittance. If one wants to be exible to handle

larger beta functions in the dispersive region and larger energy spreads, then the

three sextupoles could be installed. The small emittance blowup due to nonlinear

motion is illustrated by the tracking pictures of �gure 5.13.

5.3 Further Requirements

Inside the bypass line there should be a beam spot which is smaller than 150 �m�150 �m
to test materials under electron bombardment. The optics starting after the second

bend is shown in �gure 5.14 (top) for a spot with beta functions of 1 m and in

5.14 (bottom) for a spot with beta functions of 4 m. For a 1 GeV beam this corres-

ponds to a tunable spot size of 71 �m to 143 �m assuming an emittance which has

blown up to 10 mm mrad.

It is planed to use the last tilted dipole in the bypass line, which bends the beam

down into the dump, as a spectrometer magnet. Therefore there should be a small

beam diameter in the dispersive plane in order to optimize the energy resolution. For

this reason, the quadrupole just in front of this dipole also has to be tilted. Figure

5.15 shows the beta functions of equation (3.14) corresponding to the maximal

extension of the beam spot of the coupled motion where x refers to the dispersive

plane. The last two quadrupoles are also tilted and can be used for the beam coming

form the bypass beam line as well as for the beam from the main beam line which

is also directed into the dump by a tilted dipole magnet.

The magnets of the complete beam line are speci�ed in table 5.1.
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Element Length Strength Tilt Adjacent Drift

Quad 0.3 m 0.7834179/m 0Æ 0.3 m

Quad 0.3 m -0.9187773/m 0Æ 11.662 m

Dipole 0.4 m 3:5Æ 69:555Æ 0.2 m

Dipole 0.4 m 3:5Æ 69:555Æ 4.5 m

Quad 0.3 m 2.5316110/m 69:555Æ 1.5625 m

Quad 0.3 m -2.4706471/m 69:555Æ 1.5625 m

Quad 0.3 m 2.5316110/m 69:555Æ 4.5 m

Dipole 0.4 m �3:5Æ 69:555Æ 0.2 m

Dipole 0.4 m �3:5Æ 69:555Æ 0.5 m

Quad 0.3 m -3.7223654/m 69:555Æ 0.5 m

Quad 0.3 m 3.7781409/m 69:555Æ 1.5 m

Quad 0.3 m -3.4149135/m 69:555Æ 17.0 m

Quad 0.3 m 2.1940838/m 0Æ 1.0 m

Quad 0.3 m -4.7027817/m 0Æ 2.0 m

Quad 0.3 m -4.0713551/m 0Æ 1.0 m

Quad 0.3 m 2.0081454/m 0Æ 17.0 m

Quad 0.3 m -0.109159/m 0Æ 17.0 m

Quad 0.3 m 0.2047387/m 0Æ 17.0 m

Quad 0.3 m 0.3875800/m 83Æ 3.482 m

Dipole 1.2 m �19Æ 83Æ 7.137 m

Quad 0.3 m -2.0000000/m 83Æ 2.873 m

Quad 0.3 m -0.7000000/m 83Æ 3.7 m

Table 5.1: Magnets in the TTF2 bypass line.
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Figure 5.13: Tracking results for the tilted bend section of the TTF2 bypass as

speci�ed in table 5.1. Top: without sextupoles. Bottom: with two asymmetric sex-

tupoles in between the bends the second order dispersion. Left: for a 1� horizontal

ellipse with �2, �1, and 00=00 energy deviation, a 2� horizontal ellipse with �1, and
00=00 energy deviation, and a 3� horizontal ellipse. Right: for a 1� vertical ellipse

with �2, �1, and 00=00 energy deviation, a 2� vertical ellipse with �1, and 00=00
energy deviation, and a 3� vertical ellipse.
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Figure 5.14: Beta functions for the bypass after the tilted magnets. The focus is in

the center between the two duplets which are separated by 2 m. Top: for a section

with �x = 1 m and �y = 1 m. Bottom: for a section with �x = 4 m and �y = 4 m.
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Figure 5.15: Top: The beta functions corresponding to the maximal extension of the

beam spot for the dispersive plane (x)and for a plane transverse to it (y). Bottom:

The tilt angle of the beam ellipse.


