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Abstract

The formalism for determining the rectangular beam collimation required by the clearance

of the synchrotron radiation emitted in �nal focus quadrupoles is developed and applied to

the case of the TESLA �nal focus system.

1 Collimation depths for uncoupled collimation and optics

We assume that collimation is provided by a pair of horizontal collimators with full gap (g(i)
x , i =

1, 2) and a pair of vertical collimators (g(i)
y , i = 1, 2) in such a way that both transverse planes and

both phases are covered. The collimator gaps can be normalized with respect to the RMS beam
sizes at the collimators

g(i)
x,y = 2(N (i)

x,y · σ(i)
x,y)

The aim of the paper to determine the required values of the collimation depths N
(i)
x,y such that

the synchrotron radiation emitted by the collimated beam in the �nal doublet (or low-beta
quadrupoles) is cleared by a given exit aperture in front of the doublet. This aperture can be
the bore of the doublet itself, or the one of the opposite doublet, inboard or outboard of the IP,
or some mask aperture.

Having considered an x − y uncoupled geometry of the collimators, in contrast with circular
collimators for instance, and assuming an uncoupled beam line optics in the beam delivery system
(BDS), the tranverse phase-space distribution of the collimated beam at a given position s along
the beam line, is x− y decoupled :

ρ⊥(X, Y ; s) = ρH(X; s) · ρV (Y ; s)

with X = (x, x′) and Y = (y, y′). Also important is the collimated transverse phase-space domain
which, for an uncoupled distribution, can be written as the cartesian product of the horizontal
and vertical domains :

V⊥(s) = VH(s) × VV (s)

To evaluate the impact of synchrotron radiation in the �nal doublet quadrupoles, we �rst need
to characterize the electron phase-space domain V⊥(s) for all positions s along the quadrupoles
where photons are emitted. We will then propagate it, as if �lled up by the photons, along a
drift space through the relevant aperture. We will do this by transporting the electron collimated
phase-space domain to the interaction point (IP), used as a reference point, and then backward
to the doublet.
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2 Phase-space domain of the collimated beam for linear op-

tics

The derivation of the phase-space domain V⊥(s) is a decoupled problem and we therefore work
it out in one plane, say the horizontal one. The horizontal domain VH(s) at any position s can
simply be mapped from the acceptance of the two horizontal collimators :

VH(s) =
{
X | x2(s(1)) < (g(1)

x /2)2 and x2(s(2)) < (g(2)
x /2)2

}
with

x(s(i)) =
(
M (i)(s)

)−1

11
(X)

where M (i)(s) is the 2 × 2 map from the collimator i to the position s. At the linear order, the
mapM (i)(s) is given by the transfer matrixR(i)(s) from the horizontal collimator i to the position
s, and one can write :

x(s(i)) =
(
R(i)(s)

)−1

11
(X) = R

(i)
22 (s)x− R

(i)
12 (s)x′

As a consequence, the phase-space domain VH(s) is the intersection of the stripes contained be-
tween the two parallel and symmetrical lines de�ned by

R
(i)
22 (s)x − R

(i)
12 (s)x′ = ±g(i)

x /2

for each collimator i. In the case of two collimators, VH(s) is in general a parallelogram. With n
collimators, it is a 2n-polygon with parallel opposite sides. These polygones are completely de�ned
by the position of their corners which can be transported along the beam lines. In the doublet,
the non-linear aberrations are expected to be small and we will use the linear optics to determine
the domain VH(s). Higher order or tracking studies must be done to validate this approximation.

As an intermediate step, we �rst derive the linear collimated phase-space domain V∗
H at the IP.

Denoting by R∗(i) the transfer matrix from the collimator i to the IP, the collimated phase-space
domain at the IP is given by :

V∗
H(s) =

{
X |

(
R

∗(i)
22 x−R

∗(i)
12 x′

)2

< (g(i)
x /2)2, i = 1, 2

}
It is the interior region of the parallelogram de�ned by the two pairs of parallel and symmetrical
lines:

R
∗(1)
22 x−R

∗(1)
12 x′ = ±g(1)

x /2

R
∗(2)
22 x−R

∗(2)
12 x′ = ±g(2)

x /2

Although it is independent of the choice of the matched beam conditions in the BDS, this system
can be conveniently expressed in terms of the nominal Twiss parameters such that α∗

x = 0 at the

IP. Denoting by β
(i)
x the beta-function at the collimator i and by ∆ψ(i)

x the phase advance from
the collimator i to the IP, the system can be written as

x

√
β

(1)
x

β∗
x

cos ∆ψ(1)
x − x′

√
β

(1)
x β∗

x sin ∆ψ(1)
x = ±N (1)

x

√
β

(1)
x εx

x

√
β

(2)
x

β∗
x

cos ∆ψ(2)
x − x′

√
β

(2)
x β∗

x sin ∆ψ(2)
x = ±N (2)

x

√
β

(2)
x εx

which can easily simpli�ed into

x cos∆ψ(1)
x − x′β∗

x sin ∆ψ(1)
x = ±N (1)

x

√
β∗
xεx

x cos∆ψ(2)
x − x′β∗

x sin ∆ψ(2)
x = ±N (2)

x

√
β∗
xεx
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In general this system of equations de�nes a �nite domain. Only if the phase advances from
collimators 1 and 2 to the IP are exactly identical (single phase collimation) is the determinant of
the above system zero

∆ = β∗
x sin

(
∆ψ(1)

x − ∆ψ(2)
x

)
and the domain an in�nite stripe between the two narrowest parallel lines. Otherwise, this do-
main is the interior of a parallelogram. Since the parallelogram shape is invariant under charged
(electrons) or neutral (photons) beam linear transport, its corners de�ne the maximum extent of
the charged beam and of the synchrotron radiation fan. The four corners are of course symmetric

with respect to the origin and, denoting their coordinates by (X∗(+)
c , X

∗(−)
c ,−X∗(+)

c ,−X∗(−)
c ), the

two independent ones are given by

X∗(±)
c =


N(2)

x sin ∆ψ(1)
x ±N(1)

x sin ∆ψ(2)
x

sin
(
∆ψ

(1)
x −∆ψ

(2)
x

) √
β∗
xεx

N(2)
x cos∆ψ(1)

x ±N(1)
x cos∆ψ(2)

x

sin
(
∆ψ

(1)
x −∆ψ

(2)
x

) √
γ∗xεx

 (1)

The volume of this phase-space domain is given by the following skew vector product,

VH =
∣∣∣(X∗(+)

c +X∗(−)
c ) ∧ (X∗(+)

c −X∗(−)
c )

∣∣∣ =
4N (1)

x N
(2)
x εx

sin
(
∆ψ(1)

x − ∆ψ(2)
x

) (2)

It is of course invariant under electron and photon beam transport.
Of particular interest is the case when collimator 1 is at the doublet phase, i.e. π/2 from the

IP, and collimator 2 at the IP phase. In this case, collimator 1 intercepts the most dangerous
particles with a large o�set in the doublet, while collimator 2 limits their angles in the doublet.
The coordinates of the corners simplify to

X∗(±)
c =

(
+N (2)

x

√
β∗
xεx

±N (1)
x

√
γ∗xεx

)

This implies that the parallelogram bounding V∗
H is a rectangle, as expected from the choice of

the phase advances.

3 Phase-space domain of the synchrotron radiation

The corners of the phase-space domain VH(s) at the location s in the doublet are then given by

X±
c (s) = R−1(s∗, s) ·X∗(±)

c

where s∗ is the position of the IP and R(s∗, s) is the transfer matrix from s to the IP. At this
position, synchrotron radiation �lls up the domain with photons which are emitted at the same
position and, neglecting the small 1/γ angular opening of the cone of emission, with the same
angle in such a way that the photon phase-space domain coincides with VH(s).

The last step of the calculation consists in forward propagating the phase-space domain of the
photons emitted at position s to the relevant aperture at the position L from the IP (L > 0 if
downstream of the IP). This can be done by transporting the corners of VH(s) through a simple
drift space of length (s∗ +L− s). The corners of the photon phase-space domain VγH(s, L) in this
aperture are therefore given by

Xγ±
c (s, L) = D(s∗ + L− s) ·R−1(s∗, s) ·X∗(±)

c (3)

where D(l) is the transfer matrix of a drift with length l.
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For a circular physical aperture of radius r, the transverse collimation depths are de�ned by
the condition that, for all position s inside the upstream doublet, the longest diagonal in the x−y
collimated space �ts the aperture circle, namely

sup
(±)

(
xγ±c (s, L)

)2 + sup
(±)

(
yγ±c (s, L)

)2 = r2 (4)

where xγ±c (respectively yγ±c ) is the �rst coordinate of the 2D vector Xγ±
c (respectively Y γ±c ).

Since Xγ±
c and Y γ±c are linearly related to the collimation depths (N (1)

x , N
(2)
x ) and (N (1)

y , N
(2)
y )

via Eqs.(1) and (3), the above equation (4) translates into a quadratic one for (N (1)
x , N

(2)
x ) and

(N (1)
y , N

(2)
y ). Synchrotron radiation clearance is achieved when the collimation depths belong to

the four dimensional domain de�ned as the intersection of the interior of all the 4D ellipsoids
associated to all emission position s by the above equation 4.

The best values of (N (1)
x , N

(2)
x ) and (N (1)

y , N
(2)
y ) are of course given by the 3D surface which

bounds this domain. But one still needs a criterion to de�ne the optimal set of collimation depths.
A natural criterion is to maximize the volume of the collimated phase-space VH · VV , as given

by Eq.(2). This leads to maximazing the product N (1)
x N

(2)
x N

(1)
y N

(2)
y which has the advantage to

exclude the case where one collimator is closed and the associated depth is zero. But one could
also devise alternative criteria motivated by physical constraints. For instance minimizing the
wake�eld e�ect of the collimators would, in a linear collider, lead to increase the vertical depths

(N (1)
y , N

(2)
y ) at the expense of the horizontal ones (N (1)

x , N
(2)
x ).

4 Symmetric collimation in a circular aperture

The problem reduces to a 2D analysis in the case of symmetric collimation where both phases are

collimated at the same depths, N
(1)
x,y = N

(2)
x,y ≡ Nx,y. From Eqs.(1) and (3), the coordinates Xγ±

c

and Y γ±c of the corners of the phase-space domain are then simply proportional to Nx and Ny, so
that one can write

xγ±c (s, L) = Nx · x̂γ±c (s, L)
yγ±c (s, L) = Ny · ŷγ±c (s, L)

The 4D ellipsoid equation (4) then simpli�es to the following ellipse equation(
Nx

N
(0)
x (s)

)2

+

(
Ny

N
(0)
y (s)

)2

= 2 (5)

where N
(0)
x (s) and N (0)

y (s) are de�ned by

N (0)
x (s) =

r
√

2
∣∣∣sup(±)

(
x̂γ±c (s, L)

)∣∣∣
N (0)
y (s) =

r
√

2
∣∣∣sup(±)

(
ŷγ±c (s, L)

)∣∣∣
For the particular solution Nx,y = N

(0)
x,y(s) of Eq.(5), the synchrotron radiation fan emitted at

position s �lls the square inscribed in the circular aperture of radius r in the xy-plane. The values

of N
(0)
x,y(s) can easily be calculated and their minimum found numerically by splitting the �nal

doublet into many slices. Selecting such a solution obviously maximimizes the product NxNy, and
hence the collimated phase-space volume, as discussed in the preceding section.
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Figure 1: The layout of the TESLA interaction region and �nal focus system.

5 Application to the TESLA Interaction Region.

The TESLA interaction region is shown in Fig.1. Starting from the IP (s = 0 m), the hatched
areas show the last doublet (from s = 3 m to 6.7 m), the separators (from s = 10 m to 31 m),
the last but one doublet (at s = 140 m and 165 m) and the �rst doublet (at s = 254 m and
256 m). The black areas show detector mask (at s = 2 m), the synchrotron radiation collimator
(at s = 18 m) and the beamstrahlung dump (at s = 240 m). The synchrotron radiation collimator,
with a circular aperture of 10 mm, shields the inner detector region from the photons emitted at
any upstream magnets.

The ellipses in the two dimensional plane (Nx, Ny) are plotted in Fig.2 for the case of the last
doublet with the TESLA 500 GeV parameters[1]. The values of the square collimation depths

(N (0)
x , N

(0)
y ) are also shown as stars. Three di�erent apertures are considered : the beam pipe at

the vertex (s = 0 m, r = 14 mm), the exit of the opposite mask (s = −2.6 m, r = 12 mm) and,
the exit of the opposite doublet (s = −6.7 m, r = 24 mm) . From this plot, the proper choice of
the required square collimation depths is easy to derive by considering the smallest of the allowed
values Nx = 13.5, Ny = 82.3. In the design of the TESLA collimation section, 13σx × 80σy
collimation depths have been assumed and the corresponding synchrotron radiation fan is shown
in Fig.3. In the recent mask design, the inner mask has been brought closer to the IP with an exit
at s = ±2.4 m which provides additional margin.

It is also interesting to investigate the impact of synchroton radiation emitted in the last but
one doublet. Fig.4 shows that the optimal collimation depths derived for the �nal doublet is
included in the allowed domain of the last but one doublet. This con�rmed in Fig.5 by plotting
the synchrotron radiation fan stemming from this doublet. Notice that the collimator at s = 18 m
is also preventing the photons from the last but one doublet (and any upstream magnet) from
hitting the inner detector. It is nevertheless useful because non-linear aberrations are large at this
position, yielding particles with larger amplitudes than the linear collimation depths.
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TESLA 500 GeV (v08)

Figure 2: Allowed domain of collimation depths (Nx, Ny) for synchrotron radiation emitted in the
last doublet. Ellipses are drawn as a function of the position s along the �nal doublet.
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TESLA 500 GeV, BDS Version 08 (3 doublets)

Figure 3: Synchrotron radiation fan from the last doublet through the TESLA IR. The bottom
plot shows the diagonal extension of the corners of the photon phase space.
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TESLA 500 GeV (v08)

Figure 4: Allowed domain of collimation depths (Nx, Ny) for synchrotron radiation emitted in the
last but one doublet. Ellipses are drawn as a function of the position s along the last but one
doublet.
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TESLA 500 GeV, BDS Version 08 (3 doublets)

Figure 5: Synchrotron radiation fan from the last but one doublet through the TESLA IR. The
bottom plot shows the diagonal extension of the corners of the photon phase space (for the sake
of the plot, the last-but-one doublet a s = 140 m,165 m is shown with an aperture smaller than
its real 70 mm bore radius).
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