FEB 19, 2001

TESLA-2001-17

CONCEPTUAL DESIGN

FOR THE FINAL FOCUS QUADRUPOLE MAGNETS
FOR TESLA

A. Devred, C. Gourdin, F. Kircher, J.P. Lottin and JM. Rifflet

(arnaud.devred@cea.fr)

Commissariat al'Energie Atomique de Saclay (CEA/Saclay)
DSM/DAPNIA/STCM
F-91191 GIF-SUR-YVETTE CEDEX

FRANCE

ABSTRACT

We present a preliminary design of the superconducting final focusing quadrupole

magnets for TESLA and all their associated cryogenics.
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1 INTRODUCTION

The Tera Electron volts Superconducting Linear Accelerator (TESLA) is an
electron/positron linear collider, with an energy of 250 GeV per beam, under consideration at
the Deutsches Elektronen Synchrotron (DESY) [1]. Two superconducting magnet systems
are required in the TESLA interaction region where the beams cross with a zero angle: (1) a
set of four fina focusing quadrupole magnets (two on each side of the collision point) and (2)
a large solenoid embedded in the detector array (surrounding the collision point). To benefit
from the experience and the development work carried out for the Large Hadron Collider
(LHC), presently under construction at the European Laboratory for Particle Physics
(commonly referred to as CERN) [2], the design of the two magnet systems is based on
existing LHC designs:. the final focusing quadrupole magnets are modeled after the LHC arc
guadrupole magnets [3], and the solenoid is modeled after the Compact Muon enoid (CMYS)

that will be implement in one of LHC experiments [4].

There is at least one mgor difference between TESLA and LHC: for beam optics
reasons, the TESLA final focusing quadrupole magnets must be localized very close to the
interaction point. Asillustrated in Figure 1, they end up inside the solenoid and must operate
in its background field. Given the field requirements (4 T for the solenoid and 250 T/m
within an aperture of 56 mm for the quadrupole magnets), we are at the limit of NbTi cable

performances and it is more appropriate to consider NbzSn cables.

The present note describes a preliminary conceptual design of the final focusing
guadrupole magnets for TESLA, which is based on the LHC arc quadrupole magnet design,
but relies on NbsSn cables. The main goals are: to set a cable critical current specification,

and to dimension the coil support structure and cryostat.
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Figure 1 Layout of TESLA interaction region showing the final focusing quadrupole magnets (Q3 and Q4)
inside the detector solenoid (M0, M1 and M2).

2 ELECTROMAGNETIC DESIGN

As mentioned above , the electromagnetic design of the TESLA final focusing
quadrupole magnets rely on the same four coils and the same conductor geometries as for the
LHC arc quadrupole magnets, but it has no iron yoke (for it would be of no use in the
solenoidal field). The conductor layout is presented in Figure 2. The two layers are wound
from the same cable, which is based on LHC quadrupole magnet cable specifications[5]. The
inner layer counts 10 turns divided in two blocks by an angular wedge, and the outer layer

counts 14 turns, aso divided in two blocks by an angular wedge.
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Figure 2 Conductor layout of LHC arc quadrupole magnets.

One possible difference between the TESLA and LHC quadrupole magnet designs
could be the conductor insulation thickness. In the case of LHC NbTi cables, the insulation is
made up of polyimide tapes and is estimated to be 110 nm per conductor face under 70 MPa.
In the case of TESLA NbsSn cables, the insulation will rely on more fragile mineral fiber
tapes and may have to be thicker (DAPNIA/STCM s currently developing a quartz fiber tape
that could yield a minimum of 120 mm per conductor face [6]). This over-thickness can be
compensated by removing the wedge insulation and/or by reducing the conductor mid-
thickness. For the present, preliminary computations, we consider the conductor layout of the

LHC arc quadrupole magnets as it is how.



In this design, the quadrupole field gradient, g, can be estimated as a function of

supplied current, 1, using
g = 17.7747 103 | (1)

From Eq. (1), it follows that the current, lop, corresponding to an operating field

gradient of 250 T/mis
lop » 14,065 A 2

In order to operate the quadrupole magnets with a margin of 20% along the load line,

cable

the cable critical current, 15, must satisfy

I0
| gble 3 o_; » 17,581 A 3)

Furthermore, the peak magnetic flux density on the magnet coil when the quadrupole

magnet stands alone, By, can be estimated from
By » 0.5436 107 | (4)

and it follows that the peak magnetic flux density, By c, corresponding to the lower limit of

cable : _
IS issimply

Boc » 956 T (5)

When the quadrupole magnet is positioned inside the detector magnet, it seems
reasonable to assume that (at least in the quadrupole magnet straight section) the two

magnetic flux densities add up quadratically, as the two fields are roughtly orthogonal.
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Hence, the superconducting cable must be specified to carry the current Igmle under a

magnetic flux density, Bspec, derived from

Bgpec » V9.56% +4% » 10,36 T 6)
3 MECHANICAL DESIGN

31 OVERVIEW

The magnet coils will be produced according to the “wind, react & impregnate’
technique. Prior to winding, the un-reacted NbsSn cable will be wrapped with a mineral fiber
tape. Upon winding completion, the whole coil will be subjected to the heat treatment
required for NbsSn compound formation (typically: 660 °C for 240 hours). After heat
trestment, the coil will be vacuum-impregnated with epoxy resin. It is worth mentioning that
an aternative insulation scheme is being investigated by DAPNIA/STCM, that may eliminate
the need for a vacuum-impregnation, but the design and the computations reported here

correspond to the standard (minera fiber tape + epoxy resin) scheme.

Asin LHC arc quadrupole magnets, the coils will be restrained by laminated, 2-mm-
thick, austenitic stedl collars locked around them by tapered keys. However, unlike in LHC
arc quadrupole magnets, there will be no iron yoke and the collared-coil assembly will be
centered directly within a precisely-machined, steel inertia tube delimiting the region of liquid
helium circulation. A sketch of the quadrupole magnet cold mass is shown in Figure 3 (note

that the radial dimensions are not final).
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Figure 3 Sketch of quadrupole magnet cold mass (note that the radial dimensions are not final).
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We shal now report on a number of mechanical computations, which have been
carried out to dimension the coil support structure. The objectives of the mechanical design
are[8]: (1) al parts of coils should remain in compression at nominal current, (2) peak stress
in coils should be less than 150 MPa at all time, and (3) collar deflections and stress under

various loading conditions should not exceed those of the LHC arc quadrupole magnets.

3.2 NUMERICAL MODEL

For this study, we have used a modular approach which is dedicated to the analysis
of such complex situations involving 3D assemblies. It is referred to as "COFAST3D"
(Contact and Friction in Assemblies of 3D Structures) approach. The COFAST3D approach
is based on both a formulation and a strategy which have been developed by Laboratoire de
Mécanique et Technologie (LMT) de |’ Ecole Normale Supérieure (ENS) de Cachan [7].
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The model under study is restricted to /4™ of the quadrupole magnet cross section.
It includes two levels of collars, two keys, four stripping keys, the insulation, the angular and
polar wedges and the NbsSn conductor blocks (see Figure 4). Friction is considered on al

contact zones (see Figure 5). A 3D mesh of the structure has been developed (see Figure 6).

The mechanical loading can be divided into three different parts corresponding to the
history of the superconducting magnet assembly and operation: (1) pre-loading applied during
assembly process, (2) cool down from 293 K to 4.2 K, and (3) Lorentz force application

during energization.

Figure 4 Sub-structure of quadrupole magnet model.



Figure 5
Interfaces of quadrupole magnet model.

Figure 6
Mesh of quadrupole magnet model.



The magnet assembly corresponds to a two-step collaring process. The first step is
modeled by applying surface forces onto the bottom of the collar keyways along the pole
axes, while the second step is modeled by imposing a gap between the sides of the keys and

the stripping keys. Its correspond to the insertion of the keys into collar keyways.

Cooling is modeled by applying a thermal body force over the entire structure. Note

that the temperature distribution is assumed to be uniform throughout cool-down.

Afterwards, the Lorentz forces are modeled by a pre-computed body force field on
the coil. Two types of Lorentz forces are induced in the TESLA final focusing quadrupole
magnets. The first type is due to the combination of the quadrupole magnetic field and the
supplied current, while the second type is due to the combination of the solenoid magnetic

field and the supplied current in the end parts of the quadrupole magnet coils.

The Lorentz forces induced during energization when the quadrupole magnet stands
alone (without solenoidal background field) can be derived in the usual manner. The
components of theses Lorentz forces integrated over a coil octant are: F, = 556 kN/m and F, =

- 989 kN/m at 14000 A (see Figure 7).

The additional Lorentz forces induced by the solenoidal field are localized in the end
parts of the coils. They can be estimated using some assumptions. Integrated over a coil

octant, we get: F = +1192 kN/m at 14 000 A and 4 T (see Figure 7).
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Figure 7
Components of the Lorentz forces on quadrupole magnet coils.

3.3 RESULTS

In this discussion, we only present the fina results of the computation, when the

magnet is fully energized.

At 14000 A and without solenoidal magnetic field, all parts of coils remain under
compression. The externa collar radius must be increased to 93.5 mm to minimize collar
deflections. With this radius value, the deflections are similar to those obtained on LHC arc
quadrupole magnets (dragia = - 0.013 mm, compared to d. = - 0.010 mm). In addition, the
peak stress in the collars remain under the ultimate stress of austenitic steel (s v = 1000 MPa
for sy = 1600 MPa). Figure 8 and Figure 9 show plots of the azimuthal stress distribution in
the magnet coils and of the Von Mises stresses in the collars at 14000 A, while Figure 10 and

Figure 11 present plots of the radial deflections.
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Radial displacementsinduced by Lorentz forcesin coil end parts with and without a4 T solenoidal field.
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At 14000 A and with a4 T solenoidal magnetic field, al parts of coils still remain
under compression, but the radia deflections become very large (@ragia = £0.2 mm). Hence,
an additional mechanical support will be needed to prevent any damage or to restrain coil end
deflections. The peak stress in the collars remain under the ultimate stress(s vm = 1250 MPa

for syt = 1600 MPa).

34 CONCLUSIONS

All parts of coils remain in compression at nomina current and with background

magnetic field.

The finite element computations validate the main features of the mechanical design,
providing that the collar radius is greater than 95 mm and that reinforcements are
implemented on the inner and outer radius of the coil ends. With this new value of collar
outer radius, it follows that the external radius of the inertia tube must be greater than 110 mm

(use of CODAP formula).

It should be stressed again that this study is very prelimenary and that more

computations will be needed to finalize the design.

4 CABLE SPECIFICATION

The cable specifications are inspired from those of the LHC quadrupole magnet
cable[5]. The cable has 36 strands, a 15.12-mm width, a 1.48-mm mid-thickness, and a 0.9°
keystone angle. The transposition pitch length is 100 mm, and the strand diameter is 0.825
mm. As explained above, the critical current is required to be greater than 17,581 A at

10.36 T.



Taking into account a 10% cabling degradation, the virgin strand critical current,

strand

e ™, must satisfy

| strand 3 17,581

s » 543A a 1036 T 7)
0.9x 36

If we assume further a copper-to-non-copper ratio of 1.4 to 1, the above current
intensity specification translates into a critical current density specification in the non-copper,

JC,non—Cu, gl ven by

Jcnon-cu ® 2436AMM? at10.36 T 8)

Using the usua parametrization of the NbsSn critical surface [9], we derive

Jcnon-cu ® 1800ANMMZ at 12T 9)

Such vaue is far above the specification for high performance ITER strands
(700 A/mm? at 12 T and 4.2 K) [10], but has been achieved recently (and even exceeded) on
R&D wires produced by various manufacturers around the world (IGC and Oxford in the
USA, SMI in the Netherlands, and possibly MECo in Japan) [11]. Furthermore,
DAPNIA/STCM and Alstom/MSA are preparing a 4-year collaboration agreement to develop
a high performance NbsSn wire with a goal of 2000 A/mn? at 12 T and 4.2 K. Hence, it
seems reasonable to assume that within the time frame of the TESLA project, Nb3Sn wires

meeting the critical current requirement of Eq. (7) will be readily available on the market.

One point of debate is the magnet operating temperature. The promising results on
R&D wires mentioned above were obtained at 4.2 K and the Alstom/MSA godl is aso at
4.2 K. However, since 1.8-K cryogenics will be available at TESLA, a conservative approach
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for the present time is to take advantage of it and to build more margin in the magnet design.

Thus, the operating temperatureis set to 1.8 K.

5 CRYOGENICS

5.1 OVERVIEW

The cryogenics of the TESLA quadrupole magnets deals with the cryostat that
supports the cold masses of the magnet doublets on each side of the collision point (see Figure

1) and the refrigeration system connected to it.

52 CRYOSTAT

A cross sectional view of the cryostat is shown in Figure 12. It is made up of: (1) a
stainless steel vacuum vessel with an outer diameter of 355 mm and a overal length of 4200
mm, (2) an aluminum shield cooled with helium gas at 40-50 K, (3) the quadrupole magnet
cold masses Q3 and Q4 in their inertia tube with an electrical bus, (4) a set of supporting tie
rods and (5) the required tubing for cooling the cold masses. The cold masses and the shields
will be super-isolated, respectively, with 10 and 30 layers of double aluminized mylar shests.

Salient dimensions of the various components are summarized in Table 1.

Tablel Salient dimensions of variousitems.
[tem Overall length Outer Diameter
Cryostat 4200 355
Cold mass Q3 1700 250
Cold mass Q4 1000 250
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Figure 12 Cross sectional view of quadrupole magnet cryostat.

5.3 REFRIGERATION

The quadrupole magnet coils are in a pressurized bath of helium 11 at 1.8 K, which is
cooled by an internal saturated Helium 11 loop. The two cold masses are equipped with two
copper tubes @16x1 connected in parale (mass flow rate of 0.42 g/s for a heat load of 10 W).
The thermal resistance of each tube is roughly 55 W/m, taking into account the Kapitza

resistance on tube wall, and thus for a heat load of 3 W/m a DT< 0.03 K.

Asillustrated in Figure 13, a cryogenic satellite is connected to the cryostat through a
cryogenic transfer line with pipes feeding it with fluids: helium gas a 50-70 K, liquid

helium 1, liquid helium |1 and a busbar supplying the electrical current.



The main components of the satellite, except its vacuum vessel and super-isolated

shield are:

(2) two 15 KA current leads that have control flow valves,

(2) a 1.8 K saturated helium |1 storage vessel connected to an outside pump with an
on-line electrical heater (1 kW). A liquid/ivapor heat exchanger followed by a
liquid/liquid heat exchanger cools the liquid helium | before the Joule-Thomson
(JT) vave. The liquid helium Il level is controlled by the JT valve and
temperature of the saturated helium Il bath is controlled by the pumping system
(Psat = 1640 Pafor T=1.8 K). The inlet tube of the saturated helium Il loop is

cooling also the electrical bus.

(3) A 4,2 K saturated liquid vessdl stores helium | and supplies the internal helium 11

cooling loop or is used to fill up the cold mass vessels.

54 HEAT LOADS (PER CRYOSTAT)

Table2 Estimated heat |oads.

Cryostat Transfer line Satdllite
40-50K shield 20W SW SW
42K - 39gis
18K 10w 1w 4'\W
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Cryogenic flow chart.

Figure 13
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