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Abstract 

 

 

 

We present the calculation results for a lossless TTF cavity-coupler unit, for 
combination cavity-coupler units and for an 8-cavity accelerating module, at the 
frequency band corresponding to third dipole band of the 9-cell TTF cavity. Experimental 
investigations of the copper TESLA Test Facility cavity, equipped with two higher order 
mode couplers, are also presented, for the original and the modified (“mirrored”) 
downstream higher order mode couplers. 

Here we developed the procedure for the determination of resonant frequencies 
and Q-factors using the dependence of the complex transmission coefficient Sm,n(f) or the 
complex reflection coefficient Sm,m(f) on frequency in the frequency band under 
investigation. These dependencies were obtained from the numerical calculation of S-
parameters of lossless TESLA Test Facility (TTF) modules in the third dipole mode 
frequency band and from the experimental investigation of the copper TESLA Test 
Facility cavity equipped with two higher order mode couplers in the first, second and 
third dipole mode frequency bands, second quadrupole and second monopole mode 
frequency band. The procedure permits us to determine resonant frequencies and Q-
factors (Qo, QLoad and Qext) using a large enough frequency step (∆f) with only few 
frequency points located on the resonance curve corresponding to the high Q-factor 
resonance. 
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1. Introduction 
The TTF 8-cavity accelerating module is a complex multi-resonance 

electromagnetic system. It consists of eight cavity-coupler units connected to each other 
by cylindrical 78-mm diameter bellows [1,2,3]. At the same time each cavity-coupler unit 
consists of a 9-cell TESLA cavity, upstream higher order mode coupler (HOMC) and 
downstream higher order mode coupler and fundamental mode coupler (HOMC+FMC). 
Fig.1 shows a schematic representation of the cavity-coupler unit in the frequency rang, 
corresponding to the 3rd dipole band of the TESLA cavity.  

 There are different types of HOMCs and FMCs [1,2,3]. Here we consider cavity-
coupler units containing DESY-type HOMCs and DESY-II type FMCs shown in Fig.2 
and Fig.3. 
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Fig.1. Schematic representation of the cavity-coupler unit.  
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b) Down stream HOMC+FMC 

a)Upstream HOMC 

Fig.2. Upstream (a) HOMC and downstream (b) HOMC+FMC. 
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The cavity-coupler unit shown in Fig.1 is represented as a 6-port device. Port 1 
and Port 4 correspond to coaxial output ports of the upstream and downstream HOMCs. 
Other ports (2,3,5,6) shown in the figure correspond to the double polarization of the 
dipole mode (HOM) in the beam-pipes. We call this double polarization horizontal and 
vertical polarization. Horizontal polarization corresponds to the x-axis (axis of the coaxial 
line of the FMC shown in Fig.2) and vertical polarization corresponds to the y-axis, the z-
axis goes along the cavity axis. Ports 2 and 3 belong physically to the same left 
cylindrical beam-pipe while ports 5 and 6 belong to the right cylindrical beam-pipe. Such 
representation of the cavity-coupler unit is used to calculate S-parameters of the different 
sub-units (upstream HOMC as 5-port sub-unit, cavity as 4-port sub-unit, downstream 
HOM+FMC as 6-port sub-unit, coaxial bellows and cold window, shown in Fig.3 and 
Fig.1, as 2-port sub-units). As the reflection coefficient of the cold DESY-II window is 
very large in the 3rd dipole mode frequency band, the load is assumed to be matched. 

Fig.4 shows schematic representation of the 8-cavity accelerating module. Here 
the cavity-coupler units are connected to each other by cylindrical 78-mm diameter 
bellows-beam-pipes. Four loads may be matched loads and/or may have any known input 
impedance (reflection coefficient). In this figure the 8-cavity accelerating module is 
represented as a 16-port device and is described by a 16×16 scattering matrix. Each port 
corresponds to coaxial output of upstream or downstream HOMC. 

The detailed description of the S-parameter calculation for different sub-units can 
be found in [4], where the calculation for very complex units containing eight cavity-
coupler units with varying parameters (for example cavity detuning or some changing in 
design of the different sub-units), is described. 

 

 

Fig.3. DESY-II type FMC 
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Here we describe the procedure for the determination of resonant frequencies and 
Q-factors using the dependence of the complex transmission coefficient Sm,n(f) or the 
complex reflection coefficient Sm,m(f) on frequency in the frequency band under 
investigation. Some examples of such calculations are also presented. This procedure can 
be used in experimental investigation of the 8-cavity accelerating module under low 
temperature conditions. 
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2. Theoretical Basis 
In our investigation we use the S-parameter concept described in [4]. As a result of 

either numerical calculation or measurement of the transmission coefficient Sm,n (m ≠ n) 
of a complex N-port device we obtain two arrays: 

 fi ⇒ f1, f2,…, fi, …, fI (frequency array, i = 1, 2, 3, …, I), 

 Sm,n(fi) ⇒ Sm,n(f1), Sm,n(f2), …, Sm,n(fi), …, Sm,n(fI) (array of complex transmission 
coefficients at frequencies fi, corresponding to ports m and n, other ports are terminated 
with matched loads). 

This transmission coefficient dependence on frequency covers a frequency band 
from f1 to fI with a frequency step of ∆f. The problem is to find all resonant frequencies 
fo,k, k = 1, 2, 3, …, K, and loaded Q-factors QLoad,k (k = 1, 2, 3, …, K) corresponding to 
these resonant frequencies in the frequency band under investigation. 

We approximate the transmission coefficient dependence on frequency with the 
following formula 
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where fo,k is unknown resonant frequency (real value, k = 1, 2, 3, …, K), 

           QLoad,k  is unknown loaded Q-factor (real value, k = 1, 2, 3, …, K), 

           Sk is unknown complex coefficient (complex value, k = 1, 2, 3, …, K), 

           K is a number of resonant frequencies taken into account in the frequency band 
under investigation. 

In the first step of calculation we choose zero order approximation for fo,k and 
QLoad,k. Using the given transmission coefficient dependence on frequency Sm,n(fi) we can 
choose K frequencies fi(k), which are more or less close to resonant frequencies in the 
frequency band under investigation, where i(k) = i(1), i(2), i(3), … , i(K)  , k = 1, 2, 3, …, 
K and suppose fo,k = fi(k). We can suppose QLoad,k equals some value taking into 
consideration the curve Sm,n(fi) plotted in the complex plane. 

Then we introduce ERROR-function as follows  
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The ERROR-function (2) is a function of 4K unknown real parameters (fo,k, 
QLoad,k, Re(Sk) and Im(Sk)). To reduce the number of unknown parameters we can require 
that  
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and obtain the following set of linear equations for complex coefficients Sk 
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So the curve described by the expression (1) and curve Sm,n(fi) plotted on the 
complex plane go through the same points corresponding to i(k) = i(1), i(2), i(3), … , 
i(K). Of course these two curves be very different in the other points due to the very 
rough estimation of the resonant frequencies (fo,k) and loaded Q-factors (QLoad,k). 

Now we can consider the ERROR-function (2) as a function of only fo,k and 
QLoad,k (2K unknown parameters). In the next step we consider fo,k and QLoad,k as variable 
values and minimize the ERROR-function (2). To minimize ERROR-function we can 
use the following procedure. First we change only fo,1 and QLoad,1 (other fo,k and QLoad,k 
are fixed). Then we change only fo,2 and QLoad,2 and so on up to fo,K and QLoad,K. This 
cycle can be repeated many times. After any changing in fo,k and/or QLoad,k we have to 
calculate the complex coefficients Sk using the set of equation (3). So in each step of 
minimization the ERROR-function is a function of only two variables. In the ideal case 
ERROR-function has minimum ERRORmin = 0. 

If we know that investigated system has resonances outside the frequency band 
from f1 to fI we have to add one or two additional terms in the expressions (3) and (2) 
corresponding to i = 1 and/or i = I. These additional terms are required to replace 
resonances located outside the frequency band from f1 to fI (lower than f1 and/or higher 
than fI). 

In the case of a loss-free device, the loaded Q-factor QLoad,k and external Q-factor 
Qext,k are equal to each other (QLoad,k = Qext,k) and Qo-factor Qo,k = ∝. But if the device has 
losses we have to find the external Q-factor Qext,k and Qo,k. To find these values we use 
the dependence on frequency of reflection coefficients Sm,m(fi) and Sn,n(fi) measured with 
Network Analyzer (NWA) and corresponding to ports m and n (other ports are 
terminated with matched loads). 

We approximate the reflection coefficient dependence on frequency by the 
following formula (other ports are matched) 

 

 



 9

              ∑
=







−+







−−

=
K

1k
km,

ko,

ko,
kLoad,

ko,

ko,
kLoad,km,

app mm, )exp(j

f

f

f

f
jQ1

f

f

f
f

jQ

(f)S                                

here   Γm,k is real unknown value ( −1 < Γm,k  < +1 ), 

          ψm,k is real unknown value (-π < ψm,k < +π ),  

           fo,k and QLoad,k are unknown values. 

The last expression can be written in the following form 
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here 0 < Γm,k +1 < +2. 

To determine fo,k and QLoad,k we minimize two error-functions  
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To find Γm,k and exp(jψm,k) we can require Sm,m(fi(k)) = Sm,m app(fi(k)) for some K 
frequencies from the frequency band under investigation. So we can write set of 
nonlinear equations for complex values Xm,k =  (Γm,k +1)exp(jψm,k) in the following form  
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where   exp(jψm,k) = Xm,k/|Xm,k| and we can iterate to find Xm,k (in the first iteration we 
assume exp(jψm,k) = 1 and then exp(jψm,k) = Xm,k/|Xm,k|). 
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Solving these nonlinear equations for Xm,k we obtain Γm,k = |Xm,k| - 1 and can find 
external Q-factor Qext m,n k corresponding to the k-th resonance and ports m and n. 
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One can also find the full external Q-factor Qext,k and Qo,k as follows  
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Here χp,k represents the coupling factor between p-th port and cavity 
corresponding to the k-th resonance, Γm,k represents the reflection factor in the reference 
plane of the m-th port and ψm,k is defined by the real reference plane position in the m-th 
port.  

We can consider ERROR-functions ERRORm and ERRORn as function of only 
fo,k and QLoad,k (2K unknown parameters). To minimize these ERROR-functions we can 
use the following procedure. First we change only fo,1 and QLoad,1 (other fo,k and QLoad,k 
are fixed). Then we change only fo,2 and QLoad,2 and so on up to fo,K and QLoad,K. This 
cycle can be repeated many times. After any change in fo,k and/or QLoad,k we have to 
calculate the complex coefficients Xm,k and Xn,k using the set of equation (6). So in each 
step of minimization the ERROR-functions are functions of only two variables.  

If we know that the system has resonances outside the frequency band from f1 to 
fI we have to add one or two additional terms in the expressions (4), (5) and (6) 
corresponding to i = 1 and/or i = I. These additional terms are required to replace 
resonances located outside the frequency band from f1 to fI (lower than f1 and/or higher 
than fI). 

Of course we should obtain the same values of fo,k and QLoad,k from the ERROR-
functions ERRORm and ERRORn. So we can use fo,k and QLoad,k obtained from one of the 
ERROR-functions as initial data for the other one. Using different ERROR-functions 
produces very small differences in the fo,k and QLoad,k values, due to measurement and 
numerical errors. 

For a 2-port device (N=2, m,n=1,2) expressions (7) and (8) take the form 
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3. Numerical Investigation of Accelerating Modules. 
In this section we present examples of calculation carried out for the TTF cavity-

coupler unit, for a combination of some cavity-coupler units and for an 8-cavity 
accelerating module at the frequency band corresponding to the 3rd dipole band of the 9-
cell TTF cavity (2470 MHz – 2580 MHz). Each cavity-coupler unit contains only DESY-
type HOMCs and DESY-II type FMC. Here we use S-parameters calculated for different 
sub-units. The detailed description of the S-parameter calculation for different sub-units 
can be found in [4]. 

3.1. One Cavity-Coupler Unit. 
In this subsection we study the cavity-coupler unit shown in Fig.1. We use complex 

transmission coefficient S4,1(f) dependence on frequency (transmission between coaxial 
ports of upstream and downstream HOMCs) to calculate resonance frequencies and Q-
factors (left and right beam-pipes are terminated by the matched loads or are infinitely 
long). 

The first resonance curve in Fig.5 shows the absolute value of the complex 
transmission coefficient S4,1 as a function of frequency and second curve shows the 
complex transmission coefficient S4,1 on the complex plane. Solid curve corresponds to 
initial calculated transmission coefficient S4,1 dependence on frequency and (+)-curve 
was calculated with approximation (1) using ERROR-function minimization.  

There are eight resonant frequencies (K = 8) in the frequency band from 2470 MHz 
to 2582 MHz corresponding to the 3rd dipole mode of the TTF 9-cell cavity. Resonant 
frequencies and Q-factors also are shown in Fig.5. In this sample we used a frequency 
step ∆f = 2×10-2 MHz and obtained ERROR = 3.369×10-5. There are no additional terms 
because there are no resonant frequencies outside the frequency band from 2470 MHz to 
2582 MHz. 

One can see very good agreement between the dependence on frequency of the 
approximating function S4,1 app(f) and the initial (calculated) transmission coefficient S4,1. 
The maximum distance between initial curve (solid) and approximated curve (+) is equal 
to 1.149×10-4. 
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Fig.5. TTF cavity-coupler unit resonance curves. 
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The calculated Q-factors shown in Fig5 are not large due to the very high coupling 
between cavity and matched left and right beam-pipes (beam-pipe cut off frequency      
fcut H11 = 2252.544442 MHz) and there are no trapped modes in the frequency band 
investigated. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Three Cavity-Coupler Units (no cavity detuning). 
In this subsection we study a module consisting of three cavity-coupler units. The 

cavity-coupler units are connected to each other by cylindrical 78-mm diameter bellows. 
Matched loads terminate the left beam-pipe of the first cavity-coupler unit and the right 
beam-pipe of the third cavity-coupler unit. The schematic representation of the 3-cavity 
module is similar to that shown in Fig.4 and is considered as 6-port system (coaxial ports 
of upstream and downstream HOMCs, four loads are matched). There is no frequency 
detuning of the cavities and no other changes in the design of any sub-units. 
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Resonance curves of the system consisting of three cavity-coupler units are shown 
in Fig.6. The investigation was carried out in the frequency range from 2575 MHz to 
2582 MHz with a frequency step of ∆f = 5×10-3 MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We used transmission coefficient S4,5(f) dependence on frequency (coaxial ports 
of the upstream and downstream HOMCs of the second cavity-coupler unit) to calculate 
the resonant frequencies and Q-factors. Here we found six resonances in the investigated 
frequency band and used one additional term with the resonant frequency below the 
frequency band under investigation. This additional term replaces all other resonances 
located bellow the frequency band investigated. One can see good agreement between the 
initial (solid) and approximated (+) resonance curves (ERRORav = 0.96834×10-3, 
ERRORmax = 3.809×10-3).  

There are two resonances with a relatively high Q-factor: fres = 2578.882760MHz, 
Q = 84678 and fres = 2578.187621 MHz, Q = 19816. Other resonances have lower Q-
factor values. 

Fig.6. Three cavity module resonance 
           curves (no cavity detuning). 
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3.3. Three Cavity-Coupler Units (+10 MHz detuning of 2nd 
cavity). 
In this subsection we study a module consisting of three cavity-coupler units. This 

module differs from the preceding one in +10 MHz frequency detuning of the second 
cavity. Resonance curves of this system are shown in Fig.7. The investigation was carried 
out in the frequency band from 2569 MHz up to 2589 MHz with frequency step ∆f = 
4×10-3 MHz. We used transmission coefficient S4,3(f) dependence on frequency (coaxial 
ports of the upstream and downstream HOMCs of the second cavity-coupler unit) to 
calculate the resonant frequencies and Q-factors.  

Here we found ten resonances in the frequency band investigated and used one 
additional term with the resonance frequency below that frequency band. One can see 
good agreement between the initial (solid) and approximated (+) resonance curves 
(ERRORav = 5.977×10-4, ERRORmax = 6.460×10-3) and three resonances with very high 
Q-factor: fres = 2587.740251 MHz, Q = 1005536; fres = 2583.470705 MHz, Q = 320271; 
fres = 2578.712716 MHz, Q = 46101. The highest three modes look like double 
resonances corresponding to a double polarization of each mode. Both HOMCs of the 
second cavity-coupler unit have very weak coupling to the field of one polarization and 
strong coupling to the field of the other. The matched loads terminating the left beam-
pipe of the first cavity-coupler unit and the right beam-pipe of the third cavity-coupler 
unit cannot provide strong suppression of these modes due to the large detuning of the 
second cavity. 

The frequency dependence of the complex transmission coefficient plotted on the 
complex plane shows that only few points are located on the resonance curve, 
corresponding to high Q-factor resonances (Q = 1005536 and Q = 320271). These two 
resonance curves are shown in Fig.7 as straight lines. This is because we used a large 
frequency step ∆f = 4×10-3 MHz in our calculation. The resonance of the 3 dB band is 
equal to 2.587×10-3 MHz for Q = 10+6. So we used a frequency step greater than the 
resonance of the 3 dB band. 

Other resonances have lower values of Q-factor and curves, which correspond to 
resonances with lower Q-factor, look like circular arcs in Fig.7. 

3.4. Eight Cavity-Coupler Units (no cavity detuning). 
In this subsection we study a module consisting of eight cavity-coupler units. The 

cavity-coupler units are connected to each other by cylindrical 78-mm diameter bellows. 
Matched loads terminate the left beam-pipe of the first cavity-coupler unit and the right 
beam-pipe of the eighth cavity-coupler unit. A schematic representation of the 8-cavity 
module is shown in Fig.4 and the 8-cavity module is considered as a 16-port system 
(coaxial ports of upstream and downstream HOMCs, four loads are matched). There is no 
frequency detuning of the cavities and no other changes in the design of any sub-unit. 

Resonance curves of the system consisting of eight cavity-coupler units are shown 
in Fig.8. The investigation was carried out in the frequency band from 2578 MHz to 2580 
MHz (only 2 MHz frequency band) with frequency step ∆f = 2×10-3 MHz. 
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Fig.7. Three-cavity module resonance curves 
  (+10 MHz second cavity detuning) 
 

              D_DD2 (0 MHz), D_DD2 (+10 MHz), D_DD2 (0 MHz) 
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We used the dependence of the transmission coefficient S10,9(f) on frequency 
(coaxial ports of the upstream and downstream HOMCs of the fifth cavity-coupler unit) 
to calculate the resonant frequencies and Q-factors. One can see good agreement between 
initial (solid) and approximated (+) resonance curves  (ERRORav = 1.977×10-4, 
ERRORmax = 7.773×10-4). 
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Fig.8. Eight-cavity module resonance curves. 
                      (no cavity detuning) 
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There are a lot of resonances in the narrow frequency band (2 MHz) and three 
resonances with relatively high Q-factor: fres = 2579.084344 MHz, Q = 540112; fres = 
2578.985193 MHz, Q = 282316; fres = 2578.819222 MHz, Q = 158994. Other resonances 
have a lower Q-factor. 

 

3.5. Eight Cavity-Coupler Units (+10 MHz detuning of 4th cavity). 
In this subsection we study a module consisting of eight cavity-coupler units. This 

module differs from the preceding one in +10 MHz frequency detuning of the fourth 
cavity. Resonance curves of this system are shown in Fig.9. The investigation was carried 
out in the frequency range from 2582 MHz to 2589 MHz with frequency step ∆f = 4×10-3 
MHz. We used the dependence of the transmission coefficient S8,7(f) on frequency 
(coaxial ports of the upstream and downstream HOMCs of the fourth cavity-coupler unit) 
to calculate resonant frequencies and Q-factors.  

One can see good agreement between the initial (solid) and approximated (+) 
resonance curves (ERRORav = 5.665×10-5, ERRORmax = 4.294×10-4). One can see two 
resonances with a very high Q-factor: fres = 2587.740254 MHz, Q = 1006630; fres = 
2583.470976 MHz, Q = 329389 (compare Fig.7, subsection 3.3). Here two modes look 
like double resonances corresponding to double polarization of each mode. Both HOMCs 
of the fourth cavity-coupler unit have very weak coupling with field of one polarization 
and strong coupling with field of other polarization. The matched loads terminating the 
left beam-pipe of the first cavity-coupler unit and the right beam-pipe of the eighth 
cavity-coupler unit cannot provide strong suppression of these modes due to the large 
detuning of the fourth cavity. 

Frequency dependence of the complex transmission coefficient plotted on the 
complex plane shows that only few points are located on the resonance curve 
corresponding to high Q-factor resonance (Q = 1006630 and Q = 329389). These two 
resonance curves are shown in Fig.9 as straight lines. This has the same reason as in 
Section 3.3. Other resonances have lower values of Q-factor and curves, which 
correspond to resonances with lower Q-factor, looks like circular arcs in Fig.9. 

3.6. Eight Cavity-Coupler Units Module with Short Circuited 
Beam Pipes.  
In this subsection we study a module consisting of eight cavity-coupler units. 

There is no frequency detuning of the cavities and no other changes in design of any sub-
units. The cavity-coupler units are connected to each other by cylindrical 78-mm 
diameter bellows. Left beam-pipe of the first cavity-coupler unit and right beam-pipe of 
the eighth cavity-coupler unit are terminated by short circuiting loads at the 0.01m 
distance from the corresponding reference planes. A schematic representation of the 8-
cavity module is shown in Fig.4 and 8-cavity module is considered as a 16-port system 
(coaxial ports of upstream and downstream HOMCs). 
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  Resonance curves of this system are shown in Fig.10. The investigation was 
carried out in the frequency band from 2572 MHz to 2576 MHz (there are some 
resonances below 2572 MHz and higher than 2576 MHz) with a frequency step ∆f = 
2×10-3 MHz. We used the dependence of the transmission coefficient S10,9(f) on 
frequency (coaxial ports of the upstream and downstream HOMCs of the fifth cavity-
coupler unit) to calculate the resonance frequencies and Q-factors.  
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                        D_DD2(0 MHz), D_DD2(0 MHz) 
 

Fig.9. Eight-cavity module resonance curves  
               (+10 MHz fourth cavity detuning) 
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Figures 10-13 show resonance curves for S10,9 , S16,1 , S2,1 and S8,7 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCELERATING MODULE of 8 cavity-coupler units: 
               (0) D_DD2 (0 MHz), shorted (0.01 m) 
               (1) D_DD2 (0 MHz), (2) D_DD2 (0 MHz), 
               (3) D_DD2 (0 MHz), (4) D_DD2 (0 MHz), 
               (5) D_DD2 (0 MHz), (6) D_DD2 (0 MHz), 
               (7) D_DD2 (0 MHz), shorted (0.01 m). 

Fig.10. Eight-cavity module resonance S10,9 (f) curves.  
             Left and right beam-pipes are short circuited. 
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Here one can find eleven resonances in the frequency band of 4 MHz bandwidth 
and two additional terms to replace other resonances (lower and upper investigated 
frequency band). There are four resonances with high Q-factor: fres = 2572.616903 MHz, 
Q = 208873; fres = 2573.492770 MHz, Q = 234862; fres = 2574.308683 MHz, Q = 
249279; fres = 2575.735502 MHz, Q = 260563. One can see good agreement between the 
initial (solid) and approximated (+) resonance curves (ERRORav = 4.991×10-4, 
ERRORmax = 2.364×10-3).  

The next figure (Fig.11) shows resonance curves for the same 8-cavity module 
calculated with S16,1(f) dependence on frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

                  ACCELERATING MODULE of 8 cavity-coupler units:  
                (0) D_DD2 (0 MHz), shorted (0.01 m); (1) D_DD2 (0 MHz),  
                (2) D_DD2 (0 MHz), (3) D_DD2 (0 MHz), (4) D_DD2 (0 MHz), 
                (5) D_DD2 (0 MHz), (6) D_DD2 (0 MHz), 
                (7) D_DD2 (0 MHz), shorted (0.01 m) 
 

Fig.11. Eight-cavity module resonance  
                          S16,1(f)  curves  
        Left and right beam-pipes are shorted 
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Here there are ten resonances in the frequency band. There are five resonances 
with high Q-factors and five resonances with low Q-factors. ERRORav = 1.155×10-4, 
ERRORmax = 1.163×10-3. 

 Fig. 12 shows resonance curves for the same 8-cavity module calculated with 
S2,1(f) dependence on frequency. ERRORav = 8.988×10-4, ERRORmax = 3.904×10-3. Here 
one can find ten resonances in the frequency band of 4 MHz bandwidth and two 
additional terms to replace other resonances (lower and upper investigated frequency 
band). There are five resonances with high Q-factors and five resonances with low Q-
factors shown in Fig.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               ACCELERATING MODULE of 8 cavity-coupler units:  
             (0) D_DD2 (0 MHz), shorted (0.01 m); (1) D_DD2 (0 MHz),  
             (2) D_DD2 (0 MHz), (3) D_DD2 (0 MHz), (4) D_DD2 (0 MHz), 
             (5) D_DD2 (0 MHz), (6) D_DD2 (0 MHz), 
             (7) D_DD2 (0 MHz), shorted (0.01 m). 
 

Fig.12. Eight-cavity module resonance  
                          S2,1(f)  curves  
        Left and right beam-pipes are shorted 
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Fig. 13 shows resonance curves for the same 8-cavity module calculated with 
S8,7(f) dependence on frequency. ERRORav = 4.068×10-4, ERRORmax = 1.332×10-3. Here 
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Fig.13. Eight-cavity module resonance S8,7(f) 
                                    curves  
           Left and right beam-pipes are shorted 
 

ACCELERATING MODULE of 8 cavity-coupler units:  
             (0) D_DD2 (0 MHz), shorted (0.01 m); (1) D_DD2 (0 MHz),  
             (2) D_DD2 (0 MHz), (3) D_DD2 (0 MHz), (4) D_DD2 (0 MHz), 
             (5) D_DD2 (0 MHz), (6) D_DD2 (0 MHz), 
             (7) D_DD2 (0 MHz), shorted (0.01 m). 
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there are ten resonances in the frequency band. Figure 13 shows  five resonances with 
high Q-factors and five resonances with low Q-factors.  

Let us compare the results represented in Fig.10, 11, 12 and 13. These data were 
obtained with different transmission coefficients and the resonance curves look very 
different. However the resonant frequencies and Q-factors calculated with these 
transmission coefficient dependencies on frequency are very close to each other. The 
following table illustrates this. 
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3.7. Two Cavity-Coupler Units Module with Short Circuited 
Beam Pipes.  

  

In this subsection we study a module consisting of two cavity-coupler units. There 
is no frequency detuning of the cavities and no other changes in design of any sub-units. 
The cavity-coupler units are connected to each other by cylindrical 78-mm diameter 
bellows. The left beam-pipe of the first cavity-coupler unit and the right beam-pipe of the 
second cavity-coupler unit are terminated by short circuiting loads at 0.1m distance from 
the corresponding reference planes. The schematic representation of the 2-cavity module 
is similar to the module shown in Fig.4 and the 2-cavity module is considered as a 4-port 
system (coaxial ports of upstream and downstream HOMCs). 
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Fig.14. Two-cavity module resonance S4,1(f)  
                                    curves  
           Left and right beam-pipes are shorted 
 

             ACCELERATING MODULE of two cavity-coupler units:  
(0) D_DD2 (0 MHz), shorted (0.1 m); (1) D_DD2 (0 MHz), shorted (0.1 m). 
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Resonance curves of this system are shown in Fig.14. The investigation was 
carried out in the frequency band from 2560 MHz to 2582 MHz (22 MHz frequency 
band, there are some resonances below 2560 MHz) with frequency step ∆f = 10-2 MHz. 
We used transmission coefficient S4,1(f) dependence on frequency (coaxial ports of the 
first upstream and last downstream HOMCs) to calculate the resonant frequencies and Q-
factors. There are twelve resonances in the frequency band from 2560 MHz to 2582 MHz 
and one additional term lower 2560 MHz to replace other resonances. ERRORav = 
4.833×10-4 and ERRORmax = 1.962×10-3. 

4. Experimental Investigation of One Cavity-Coupler Unit 
In this subsection we present the results of the experimental investigation of one 

cavity-coupler unit consisting of a copper 9-cell TTF cavity and two (upstream and 
downstream) DESY-type HOMCs.  

The purpose of this investigation is to check our proposal to improve the original 
HOMC and provide conditions for damping modes in the frequency range of the 3rd 
dipole band. This proposal consists in “mirror” modification of upstream HOMC as 
shown in Fig.15.  

 

 

Fig.15 Proposed modification of the downstream HOMC. Due to a ‘mirror’ 
transformation the polarisation of maximal coupling is rotated. 

Detailed numerical investigation of accelerating modules with modified upstream 
HOMCs were carried out in work [4]. However to simplify the construction process it is 
necessary to modify the downstream HOMCs. Numerical investigation of accelerating 
modules with modified downstream HOMCs was carried out in [5]. 
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Here we carried out an experimental investigation of a TESLA 9-cell copper 
cavity equipped with two HOMCs (upstream and downstream) and short-circuited beam 
pipes as shown in Fig.16. The positions of the short circuiting planes were chosen in a 
such way to provide strong coupling between the HOMCs and the cavity in the frequency 
range of the 3rd dipole band (the beam pipe cutoff frequency is below the 3rd dipole 
band). There is no fundamental mode coupler in our experimental set-up. We investigated 
a cavity-coupler unit equipped with original upstream and downstream HOMCs and with 
original upstream HOMC and modified (“mirrored”) downstream HOMC in the 
frequency range corresponding to the 1st, 2nd and 3rd dipole band, 2nd monopole band and 
2nd quadrupole band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have here a 2-port device and measure only the reflection coefficients S11(f) 
and S22(f) as a function of frequency. Measurements of S11(f) and S22(f) with a HP 
Network Analyzer (NWA) must be carried out in the same frequency band and with the 
same frequency step (fi ⇒ f1, f2,…, fi, …, fI ; i = 1, 2, 3, …, I; ∆f=fi – fi-1). To calculate 
the resonant frequencies and Q-factors (QLoad,k, Qo,k , Qext,k) we use a procedure described 
in section 2. Namely, we minimize two error functions  

 

 

 

       CAVITY 

       CAVITY 

Port 1 (Upstream HOMC) 
Port 2 (Downstream HOMC) 

Matched load 

Matched load 

S11(f) 

S22(f) 

Fig.16 Schematic representation of the experimental set-up 

 

Downstream HOMC 

Upstream 
HOMC 

 



 27

( )

( )∑ ∑

∑ ∑

= =

= =































−+

+
−=































−+

+
−=

I

1i

K

1k
k2,

i

ko,

ko,

i
kLoad,

k2,k2,
i2,22

I

1i

K

1k
k1,

i

ko,

ko,

i
kLoad,

k1,k1,
i1,11

)exp(j-

f

f

f
f

jQ1

)1)exp(j(
fS

I
1

ERROR

)exp(j-

f

f

f
f

jQ1

)1)exp(j(
fS

I
1

ERROR

,         (5’) 

 

 

and solve a set of nonlinear equations at each step of the minimization 
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where  m = 1, 2; exp(jψm,k) = Xm,k/|Xm,k|; Γm,k = |Xm,k| - 1 

 

 

Then we calculate external the Q-factor Qext,k and Qo,k 
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It is very useful to choose i(1)=1, i(K)=I and to fix fo,1= fi(1)=f1, QLoad,1=0.1 … 10 
and foK= fi(K)=fI , QLoad,K=0.1 … 10. So the error-function ERRORm is a function of 2K-2 
variables, but a set of equations (6’) contains K complex unknown values Xm,k. 

Both error-functions ERROR1 and ERROR2 must give us very close resonant 
frequencies and loaded Q-factors (fo,k and QLoad,k). This fact can be used to estimate 
measurement and calculation errors. 

We carried out measurements in the following frequency ranges:  
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The most important modes with large (R/Q)-ratio are:  

6th and 7th modes of the 1st dipole band;  

3rd, 4th and 5th modes of the 2nd dipole band;  

8th mode of the 3rd dipole band; 

7th, 8th and 9th modes of the 2nd monopole band; 

Measurements were carried out with two cavities and for six cavity rotation 
angles around the cavity axis (0, 30, 60, 90, 120 and 150 degrees; HOMCs position is 
fixed). There are 1601 points in each frequency range provided by the NWA. 

4.1 Practical Examples  
Let us consider some practical examples of determination of resonant frequencies 

and Q-factors.  

Fig.17 shows the S11 and S22 dependence on frequency for a cavity with two 
original HOMCs. To calculate the resonant frequencies and loaded Q-factors we have 
used a very narrow frequency range containing only 50 (of 1601) measured points. There 
are two resonances that correspond to the double polarization of the dipole mode. 
Resonant frequencies, loaded Q-factors, Γ−values and error-function values are shown in 
Fig.17 too (fo=1624.290/1624.288 and 1624.488/1624.488 MHz, QLoad=17510/18510 and 
16090/16090). One can see that port 1 has weak coupling with the cavity at the lower 
resonant frequency and stronger coupling at the higher resonant frequency (Γ = −0.983 
and −0.737 correspondingly). At the same time port 2 has very weak coupling at the 
higher resonance frequency (Γ = −0.9993).  

Fig.18 shows the same dependencies and values for the cavity with original and 
modified HOMCs. There are also two resonances that correspond to the double 
polarization of the dipole mode, but both ports have relatively strong coupling with the 
cavity. Resonant frequencies, loaded Q-factors, Γ−values and error-function values are 
also shown in Fig.18 (fo=1624.289/1624.290 and 1624.483/1624.485 MHz, 
QLoad=17460/17860 and 15860/15540). One can see good agreement between measured 
(solid) and approximated (+) resonance curves. 
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Fig.17  S11 and S22 dependence on frequency. First dipole band, first mode. 
            Original−original HOMCs. 
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Fig.18   S11 and S22 dependence on frequency. First dipole band, first mode. 
             Original−modified HOMCs. 
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The following table presents the calculation results obtained for this example. One 
can see that the modified downstream HOMC provides conditions for stronger 
suppression of both resonances (Qext=583180/398680 and 122080/110180). 

 

 

 fo, MHz QLoad Qo Qext 

1624.290 17510 18590 583180 original-original 
HOMCs ; S11 1624.488 16090 18540 122080 

1624.288 18510 18590 583180 original-original 
HOMCs ; S22 1624.488 16090 18590 122080 

1624.289 17460 18480 398680 original-modified 
HOMCs ; S11 1624.483 15860 18310 110180 

1624.290 17870 18480 398680 original-modified 
HOMCs ; S22 1624.485 15540 18310 110180 

 

 

Fig.19 and Fig.20 represent an example of a calculation in the frequency range 
containing three dipole modes (2nd, 3rd and 4th) from the first dipole band. In this 
calculation we used 190 measured points (50 points cover the 2nd dipole mode, 50 points 
cover the 3rd dipole mode and 90 points cover the 4th dipole mode). There are six 
resonances in this frequency range (three double resonances) corresponding to double 
polarization of each mode. Resonant frequencies, loaded Q-factors, Γ−values and error-
function values are shown in Fig.19 and Fig.20 too. One can see good agreement between 
the measured (solid) and approximated (+) resonance curves. 

Fig.21 shows external the Q-factor for the 2nd, 3rd and 4th modes of the first dipole 
band and two combinations of HOMCs: the original-original HOMCs (black points) and 
original-modified HOMCs (white points). The first and second resonances correspond to 
the second dipole mode (double polarization); the third and fourth resonances correspond 
to the third dipole mode (double polarization); the fifth and sixth resonances correspond 
to the fourth dipole mode (double polarization). 

One can see that the modified HOMC provides stronger suppression of 
resonances with higher Qext and only little increase in Qext for the resonances with lower 
Qext.  
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Fig.19  S11 and S22 dependence on frequency. First dipole band, 2nd, 3rd, 4th modes. 
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Fig.20  S11 and S22 dependence on frequency. First dipole band, 2nd, 3rd, 4th modes. 
            Original−modified HOMCs. 
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4.2 Investigation of the First, Second and Third Dipole Bands  
Here we represent results for the first, second and third dipole bands for two 

cavities. We carried out an investigation of the cavity-coupler units equipped with 
original upstream and downstream HOMCs and with original upstream HOMC and 
modified (“mirrored”) downstream HOMC. Measurements were carried out for two 
cavities and for six cavity rotation angles around cavity axis (0, 30, 60, 90, 120 and 150 
degrees; HOMCs position is fixed).  

Fig. 22 shows the resonant frequency as a function of mode number. Here the first 
10 modes (1st … 10th) represent the first dipole band, the next 8 modes (11th …18th) 
represent the second dipole band and the last 6 modes (19th … 24th) represent the third 
dipole band. Two lower modes of the third dipole band and modes of the second 
quadrupole band overlap each other. Therefore these two modes are absent in Fig.22, 23 
and 24 (see subsection 4.4). 

The next six figures (Fig.23 a, b, c, d, e, f) show the external Q-factor dependence 
on mode number for six cavity-1 rotation angles around cavity axis and for two types of 
downstream HOMCs (original and modified). Here black points correspond to original 
upstream and downstream HOMCs and white points correspond to original upstream 
HOMC and modified (“mirrored”) downstream HOMC. Two resonances or double 
polarization of dipole mode correspond to each mode number. 
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1.000000E+3

1.000000E+4
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Qext_12

Fig.21 External Q-factor of 2nd, 3rd, 4th modes of first dipole band. 
           Black points → original − original HOMCs. 
           White points → original − modified HOMCs. 
 



 35

The following six figures (Fig.24 a, b, c, d, e, f) show the dependence of the 
external Q-factor on mode number for six cavity-2 rotation angles around cavity axis and 
for two types of downstream HOMCs (original and modified). 

The most important modes with large (R/Q)-ratio are the 6th, 7th, 13th, 14th, 15th 
and 24th modes. 

One can see that figures a, b, c, d, e, f look slightly different due to the circular 
asymmetry of the cavities and that the external Q-factor depends on the rotation angle of 
the cavity. In some cases (or rotation angle) the modified downstream HOMC provides 
very large suppression of the 24th mode with polarization corresponding to high external 
Q-factor and very little increase in the external Q-factor of the 24th mode with 
polarization corresponding to the low external Q-factor. In other cases the modified 
downstream HOMC changes the external Q-factor very little. So if the original upstream 
and downstream HOMCs have strong coupling with both polarizations of the 24th mode 
then the modified downstream HOMC changes the external Q-factor very little. However 
if the original upstream and downstream HOMCs have strong coupling with one 
polarization of the 24th mode and weak coupling with the other polarization, then the 
modified downstream HOMC provides very large suppression of the 24th mode with 
polarization corresponding to high external Q-factor and very little increase in the 
external Q-factor of the 24th mode with polarization corresponding to low external Q-
factor.  
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Fig.22.Frequency of modes.  
            1st − 10th modes correspond to the first dipole band; 
           11th − 18th modes correspond to the second dipole band; 
           19th − 24th modes correspond to the third dipole band 
                            (six upper modes of eight modes). 
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Fig.23  a 
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Fig.23   b 
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Fig.23   c 
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Fig.23   d 
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Fig.23   e 
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Fig.23   f 
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Other modes of the 3rd dipole band are suppressed more effectively by the 
modified downstream HOMC.  

The 6th and 7th modes (these modes belong to the first dipole band) have low 
external Q-factors. One can see that the modified downstream HOMC provides more 
effective suppression of the 13th, 14th and 15th modes (these modes belong to the 2nd 
dipole band).  
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4.3 Investigation of the Second Monopole Band  
Fig.25 shows the dependence of the external Q-factor on mode number for the 

second monopole band (seven upper modes of nine, there is no double polarization). Here 
black points correspond to original upstream and downstream HOMCs and white points 
correspond to original upstream HOMC and modified (“mirrored”) downstream HOMC. 
One can see that modified (“mirrored”) downstream HOMC changes external Q-factor 
very little. This is because the mirror modification of the downstream HOMC is not 
perfect. There is no change in external Q-factor in the case of a perfect mirror 
modification of the downstream HOMC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most important modes are the 5th, 6th and 7th modes. One can see that external 
Q-factor is not very large for these modes. 

 

Fig.25  External Q-factor dependence on mode number for 
                the second monopole band (7 upper modes of 9). 

CAVITY  N 1 : 2-nd monopole modes
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4.4 Example of the Mutually Overlapping Second Quadrupole 

      and Third Dipole Modes 
 

Fig.26, 27 show the S11 and S22 dependence on frequency for the cavity-coupler 
unit with original upstream and downstream HOMCs. Fig.28, 29 show the similar curves 
for the cavity-coupler unit with original upstream and modified downstream HOMCs. 
The frequency range covers some modes from the second quadrupole band and one mode 
from the third dipole band (there are seven resonances in this frequency range). One can 
see good agreement between the measured (solid) and approximated (+) resonance 
curves. 

In both cases the upstream HOMC sees the first resonance mode and does not see 
the last resonance mode, but the downstream HOMC sees the last resonance mode and 
does not see the first resonance mode.  

Fig.30 shows the external Q-factors of the second quadrupole modes and the first 
mode of the third dipole band. 
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Fig.26  S11 dependence on frequency. Original-original HOMCs. 
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Fig.27  S22 dependence on frequency. Original-original HOMCs. 
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Fig.28  S11 dependence on frequency. Original-modified HOMCs. 
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Fig.29  S22 dependence on frequency. Original-modified HOMCs. 
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Fig.30  External Q-factor of second quadrupole modes and 
             first mode of the third dipole band. 

CAVITY  N 1 : 2-nd quadrupole and 3-rd dipole modes
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5. Conclusion 
Resonant frequencies and Q-factors were calculated for complex multi-resonance 

lossless electrodynamic systems with multiple overlapping resonances. The procedure 
uses the dependence of the complex transmission coefficient, Si,j(f), on frequency in the 
frequency band under investigation and permits us to determine resonant frequencies and 
Q-factors using a frequency step ∆f more than 3 dB band of the resonance system under 
investigation and only few frequency points located on the resonance curve 
corresponding to the high Q-factor resonance.  

Experimental investigation of one cavity-coupler unit, consisting of a 9-cell TTF 
copper cavity and two (upstream and downstream) DESY-type HOMCs, was carried out 
to check a proposal presented in [4,5] to improve on the original HOMC and provide 
conditions for damping modes in the frequency range of the 3rd dipole band. We carried 
out an investigation of a cavity-coupler unit equipped with original upstream and 
downstream HOMCs and with original upstream HOMC and modified (“mirrored”) 
downstream HOMC. The procedure for calculating resonant frequencies and Q-factors 
(fo, QLoad, Qo, Qext) uses complex reflection coefficients S11(f) and S22(f) measured as a 
function of frequency. 

It was shown that in some cases (certain rotation angles of cavity) the modified 
downstream HOMC provides a very good suppression of the 24th mode (the highest mode 
of the 3rd dipole band) with polarization corresponding to high external Q-factor and very 
little increasing in external Q-factor of the 24th mode with polarization corresponding to a 
low external Q-factor. In other cases the modified downstream HOMC changes the 
external Q-factor very little. So, if the original upstream and downstream HOMCs have 
strong coupling with both polarizations of the 24th mode, then the modified downstream 
HOMC changes the external Q-factor very little and if the original upstream and 
downstream HOMCs have strong coupling with one polarization of the 24th mode and 
weak coupling with the other polarization then the modified downstream HOMC 
provides very good suppression of the 24th mode with polarization corresponding to high 
external Q-factor and very little increase in the external Q-factor of the 24th mode with 
polarization corresponding to a low external Q-factor. 

Investigation of the second monopole band shows that the modified (“mirrored”) 
downstream HOMC changes the external Q-factor very little. This is because the mirror 
modification of downstream HOMC is not perfect. There is no change in external Q-
factor in the case of perfect mirror modification of the downstream HOMC. The most 
important modes of this band do not have very large external Q-factor. 

Investigation of mutually overlapping modes of the second quadrupole and third 
dipole bands is also presented here. 
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