
TESLA Report 2003-30

Parameterized control layer of FPGA based cavity
controller and simulator for TESLA Test Facility

Krzysztof T. Pozniak, Ryszard S. Romaniuk

Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
K. Kierzkowski

Institute of Experimental Physics, Hoza 69, 02-093 Warsaw, Poland

ABSTRACT

The paper describes a functional idea of the parameterized control layer for the FPGA based
advanced electronic and photonic systems. The systems under considerations are used (or
planned to be used) for the construction of distributed, control, simulation, measurement and
data acquisition in the Low Level Radio Frequency (LLRF) part of the TESLA and X-Ray
FEL projects in DESY. Practical realization of the control layer was presented. The
implementation was done in FPGA Xilinx VirtexII V3000 chip embedded in XtremeDSP
Development Kit board by Nallatech. The designed and implemented communications
protocol was described. The protocol is based on the standard parallel EPP transmission from
the PC.

Keywords: Super conducting cavity control, communication, FPGA, LPT, VHDL, Xilinx.

1 INTRODUCTION
The realization of the FPGA based controller and simulator for the resonant, supeconducting
TESLA cavity requires the introduction of a large number of parameters, realization of fast
monitoring data acquisition and current, effective system control from the software level. It
means, that a reliable and fast communications is required for the FPGA based LLRF system
to be able to use fully its potential. A general block diagram of the multilayer structure of the
FPGA based system was presented in fig.1.

Fig. 1. Multilayer structure of the FPGA based LLFF system.

The Functional Layer embraces fast realization of the DSP algorithms for the TESLA SC
cavity controller and simulator implemented in the FPGA chips [1,2,3]. A number of external
components is combined with this layer like: AC and CA converters, I/O circuits for clock
signals, additional memory blocks, etc.
The Control Layer is build of appropriate software using such programming tools and
environments like C++, MATLAB, DOOCS, etc.
The subject of this paper concerns the characteristics and implementation of the
Communication Layer. Its task is to provide the fast, effective and reliable flow of
information inside the FPGA based system. This communication layer should be realized in a
form of a standardized interface between the functional and control layers. The interface
should be flexible to cooperate with particular communication media like: VME, Ethernet,
LPT, USB etc.). It should be adaptable to the frequent changes of the requirements by the
control layer, implemented in the FPGA chips. The above problems are considered in two
domains:
• logical, for which a compatibility should be provided between the space of the

communication interface (implemented in FPGA chips and in the control software). A
unique procedure to modify the communication space is here a primary requirement. This
is realized by the communication layer, called the Internal Interface (II), and specified in
logical domain in ch.2.

• hardware, which provides physical distribution of the data and control signals. Hardware
specification of the Internal Interface embracing the FPGA chips was described in ch.2.
The description of realization and the properties of transmission protocol via the parallel
EPP port was described in ch.3.

The work presents practical implementation of the system using the vendor ready PCB set
XtremeDSP Development Kit by Nallatech (fig.2). The mainboard BenONE is equipped with a
daughterboard BenADDA. The DB is armored in two 14-bit A/C and C/A converters and the

Fig. 2. Laboratory PCB set-up XtremeDSP Development Kit by Nallatech. The MotherBoard

BenONE a DaughterBoard is placed. The BenADDA DB has Virtex-II 3000 [5]

FPGA chip by Xilinx VirtexII (V2000 or V3000) [4]. During the board tests all I/O ports were
measured. The USB ver.1.1. chip applied on the board turned out to be unacceptably slow.
The PCI connector turned out not to be fully operable. Thus, the both mentioned ports were
omitted in the further design. Alternatively, the available EPP port was used practically, and
turned out to be quite fast and effective. The EPP I/O port was accepted due to its
compatibility with the PC technology, large data transfer, and the simplicity in its
implementation in the FPGA chip.

Fig. 3. The set-up of XtremeDSP Development Kit by Nallatech embedded on the standard

VME MotherBoard EURO-6HE. The design and construction realized by the authors.

The adaptation of the XtremeDSP Development Kit to the EURO 6HE standard was realized
with the use of additional carrier MotherBoard (fig.3). The front page of the VME
MotherBoard has the EPP interface socket and LEMO connectors for the convenient and safe
connections of the analog and digital signals, which are necessary for the LLRF project. The
power supply to the XtremeDSP Development Kit is provided directly form the VMEbus.

2 PARAMETERIZED COMMUNICATION LAYER FOR FPGA
CHIPS

The functional structure of the parameterized communication layer was presented in fig.4.
This structure was proposed for the FPGA based TESLA LLRF system electronics. The
architecture of the parameterized communication layer is based on the imaging of the
hardware functional blocks (called components) to the virtual objects in the software (called
objects). A proprietary solution of this hardware to software imaging process was proposed.
The Internal Interface standard was implemented. Thus, through using the II, the access
method to the register and memory elements in the FPGA chip gets independent on the
practically applied communication bus in the system. The II standard provides for design
automation of the address space from the hardware side (VHDL) and from the software side
(C++).

Fig. 4. Functional structure of the internal communications layer.

Addres D7 D6 D6 D4 D3 D2 D1 D0 remarks

0 A0-7 A0-6 A0-5 A0-4 A0-3 A0-2 A0-1 A0-0

1 A1-7 A1-6 A1-5 A1-4 A1-3 A1-2 A1-1 A1-0

2 A2-7 A2-6 A2-5 A2-4 A2-3 A2-2 A2-1 A2-0

3

Address space of

subarea A

4 B0-3 B0-2 B0-1 B0-0

5 B1-3 B1-2 B1-1 B1-0

6 B2-3 B2-2 B2-1 B2-0

7

Address space of

subarea B

Fig. 5. Physical imaging, in the FPGA chip, of an exemplary area of the virtual
communication space. The area consists of 3 memory cells of 12-bits in the width.
The width of the II bus is 8-bit. Partition of physical address space embraces two sub-
areas, marked as A and B. The A sub-area means the lower 8-bit part of the 12 bit data
word. The B sub-area means the 4 higher bits of the same data word. The gray color
means meaningless bits of the address space. It was assumed, for the simplicity, that
the addressing is initialized from the position of 0. Thus, the relative addresses of 3
and 7 are not used.

The basic foundations to build the virtual communication space are based on: the creation of
the parameterized description, assumption of strictly defined syntax (localized in the header
file). The header file is processed in parallel to the source codes in VHDL and C/C++. Fig.5
presents an implementation example of the acting algorithm for the memory space exceeding
the dimensions of the physical communication II bus.
The access processing to the II standard, from the VHDL, is realized by the standardized
actions. Each line of the definition file is created according to the common rules. The rules are
valid for the VHDL and C/C++. The rules concern the bases of grouping, optimization of the
address space, concatenating of the group of bits to vectors, etc.
The effect of the process of building the interface is creation of the physical interface
implementation, i.e. functional ordering of the addresses with taking into account the
requirements of the grouping and data partitioning in case they are oversized relative to the
width of the data interface bus.

Table 1. List of parameters of the II.
Component Content Description and Interpretation

VII_PAGE Record of a common addressing area.
VII_VECT Record of common bit vector.
VII_BITS Record of description bit (status bit).
VII_WORD Record of word description (data register).

ItemType

VII_AREA Record of area description (memory).

O

ItemID natural number Unique record identifier. O

ItemWidth natural number Data record width (in bits). F

ItemNumber natural number Number of record repeatings (indexing),
(for VII_AREA the number of memory cells).

F

ItemParentID natural number
Binding Identifier ItemID, for
VII_BITS is bound with VII_VECT,
The rest are bound with VII_PAGE.

P

VII_WNOACCESS The component has no write right from II. ItemWrType
VII_WACCESS The component has right to write from II.

F

VII_RNOACCESS Component has no read right to II.
VII_REXTERNAL Component allows for external read to II. ItemRdType
VII_RINTERNAL Component allows for internal read to II.

F

ItemName text Formal name of component. S

VII_FUN_UNDEF Non defined functional type of component..
VII_FUN_HIST Functional type of component - histogramming. ItemFun
VII_FUN_RATE Functional type of component – frequency.

S

ItemDescr text Description of component. S

Used functions:
1. O – obligatory parameter, always compiled, always interpreted,
2. F – parameter for physical components (VII_BIT, SVII_WORD, VII_AREA),
3. P – linking parameter (VII_VECT, VII_BITS, VII_WORD, VII_AREA),
4. S – information parameter for software C++ (ignored in VHDL analysis).
The table 1 contains ordered list of parameters describing particular components of the
interface.
The II standard is build by the list of its components. The component parameters can be
divided to:

• identifying, enable unique differentiation of the component (for example, type, name),
• scaling, defining the physical dimensions of the components,
• binding, allow to realize the grouping operations,
• access, defining the access rights to the component,
• descriptive, contain information used by the C/C++.
The interface structure is described by two groups of components:
• physical, defining the real objects of the interface:

a. VII_AREA – unified address space, for example an internal memory,
b. VII_WORD – autonomous bit vector,
c. VII_BITS – collection of bits requiring grouping operation (for example status flags),

• grouping, enabling creation of common space areas (address, data) particular groups of
physical components:
a. VII_VECT – binds to a common vector the components of the type VII_BITS; the

constructed vector will be treated as a single component VII_WORD.
b. VII_PAGE – combines the components of the type VII_AREA, VII_WORD, VII_BITS

(ordered previously in VII_VECT) into a common address space, possessing a unified
prefix.

The physical space of the interface is defined by two parameters:

• ADDR_SIZE, defines the address space, expressed in the number of address lines; an
assumption is that the address lines are indexed from 0 to ADDR_SIZE – 1, what means
that the whole address space has the following number 2ADDR_SIZE of address positions;

• DATA_SIZE, defines the data vector expressed in bits; an assumption is that the data lines
are indexed from 0 to DATA_SIZE – 1, what means that the data values are include in the
area from 0 to 2DATA_SIZE-1.

Declaration of the component is done with the aid of three identical initializes, identically
interpreted in the VHDL and C/C++. It is required only that the list of declared components
begins with a single use of IIDEC_ITEM_BEG, and continue with arbitrary number of
IIDEC_ITEM_CON and end with a single use of IIDEC_ITEM_END. The declaration line has
the following structure:
IIDEC_ITEM_XXX(_ITEM_TYPE_, _ITEM_ID_, _DATA_WIDTH_,
 _POS_NUMBER_, _PARENT_ID, _WRITE_MODE_,
 _READ_MODE_, _NAME_, _FUNCTION_, _DESCRIPTION_)

gdzie: _ITEM_TYPE_ : type of component – parameter ItemType
_ITEM_TYPE_ : identifier – parameter ItemID
_DATA_WIDTH_: width of data bus – parameter ItemWidth
_POS_NUMBER_: number of positions – parameter ItemNumber
_PARENT_ID_: group identifier – parameter ItemParentID
_WRITE_MODE_: write rights – parameter ItemWrType
_READ_MODE_: read rights – parameter ItemParentID
NAME: component name – parameter ItemName
FUNCTION: component functions – parameter ItemFun
DESCRIPTION: component description – parameter ItemDescr

The global parameters of the component allow to use the same values of parameters in both
codes the VHDL and in C/C++. To assure parameterized description, it was assumed that the
identifiers will be symbolic constants. To create such constants, giving simultaneously
respective value, one has to use the initializer:
IIDEC_IDEN_VAL (_NAME_IDENTIFIER_, _TYPE_, _VALUE_,
 COMMENT)

where: _NAME_IDENTIFIER_ : is a symbolic name of parameter,
TYPE : defines type of variable,
VALUE : defines value of parameter,
COMMENT : may be a word, stream of words in „” or be empty

 – possesses information character.

3 PHYSICAL COMMUNICATION LAYER BASED ON EPP
STANDARD PROTOCOL

The realization of the physical communication layer between the FPGA chip positioned on
the XtremeDSP Development Kit PC computer was realized practically using the EPP
communication standard (Enhanced Parallel Port) ver.1.7 [6]. The used configuration allows
to obtain maximum transfer of 500kB/s. The hardware interface to the FPGA Xilinx Virtex-II
chip, realized in the standard TTL technology was presented in fig.6.

Fig. 6. Diagram of the EPP interface to the FPGA Xilinx Virtex-II chip on Xtreme DSP

Development Kit.

The U3 (74F641) circuit realizes a bidirectional buffer and voltage converter. The EPP
standard uses the 0-5V signals. The Vitrex-II chip accepts 0-3.3V signals. The open collector
technology was used in this case in the FPGA chip. A similar solution was applied for control
signals using 74F07 gates.

Through the choice of the JP1 jumper, the circuit may work in two modes of WAIT signal
operation confirmation:

• autonomous, where the access confirmation is generated automatically in the delay
circuit realized on the C1,

• programmable, where the confirmation signal is provided by FPGA Xilinx.

The data transmission standard is based on the 8-bit words send as data (active signal DATA
STROBE) or as addresses (active signal ADDRESS STROBE). Sending of the more
complex information packet to the FPGA address space through the II standard is realized as a
sequence of 8 bytes. The two first bytes forward the value of 16-bit address, the four
following bytes forward include the value of the data word (respectively written and read).
The next byte is a control sum. The last byte returns the status word of the realized
transmission (confirmation of done operation by the II). An example of the write sequence
was presented in fig. 7.

Fig. 7. Exemplary sequence of data transmission (write operation) through the EPP interface to

the II standard implemented in the FPGA Xilinx Virtex-II chip.

II
 o

pe
ra

tio
n

EPP access: checking

EPP access: II Data

EPP access: II Address

4 SUMMARY
This work describes concisely the implementation of the communication layer which is used
in the FPGA systems. This efficient communication layer was used in the FPGA based
TESLA cavity Simulator and controller (SIMCON) system. The efficiency was confirmed by
the parameters of the hardware SIMCON. These parameters were described in [7]. The
realized system is based on Virtex-II chip residing in the XtremeDSP Development Kit PCB
by Nallatech. The board is equipped with two 14-bit channel A/C and C/A converters. The
described II standard was implemented in the FPGA chips and in the control applications in
C++. The control application co-operates with the MatLab packet [1] and DOOCS
environment [8]. The physical transmission was realized via the EPP and the throughput of
60000 calls/s to the II bus was recorded.

REFERENCES

1. T.Czarski, K.T.Pozniak, R.Romaniuk, S.Simrock: “TESLA Cavity Modeling and

Digital Implementation with FPGA Technology Solution For Control System Purpose”,
TESLAReport 2003-28

2. T.Czarski, R.S.Romaniuk, K.T.Pozniak S.Simrock “Cavity Control System Essential
Modeling For TESLA Linear Accelerator”, TESLA Technical Note, 2003-08:

3. T.Czarski, R.S.Romaniuk, K.T. Pozniak “Cavity Control System, Models Simulations
For TESLA Linear Accelerator ”, TESLA Technical Note, 2003-09:

4. http://www.xilinx.com/ [Xilinx Homepage]
5. http:// www.nallatech.com/ [Nallatech Homepage]
6. http:// http://www.beyondlogic.org/epp/ [EPP - Enhanced Parallel Port description]
7. K.T/.Poźniak, et al., Functional analyssc of DSP blocks in FPGA chips for application

in TESLA LLRF system, TESLA Report 2003-29
8. P.Rutkowski, et. al., FPGA based TESLA cavity SIMCON; DOOCS server design,

implementation and application, TESLA Report 2003-32

	INTRODUCTION
	PARAMETERIZED COMMUNICATION LAYER FOR FPGA CHIPS
	PHYSICAL COMMUNICATION LAYER BASED ON EPP STANDARD PROTOCOL
	SUMMARY
	
	
	
	
	
	
	
	REFERENCES

