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Abstract 
 

Wakefields excited in the small aperture collimators may damage the beam. As pointed out by 
K. Bane and P. Morton the wakefields can be reduced considerably by tapering the steps and 
using the “step+taper” collimator geometry. The optimisation of this kind of geometry for 
TTF 2 collimators with different apertures is carried out in the paper. For the optimal 
geometries the non- linear near-wall wakefields are calculated. The numerical results are 
confirmed by comparison with analytical estimations for the fully tapered collimator in 
inductive regime. 
 
 



 

1 INTRODUCTION 
 
Transverse wakefields excited in the collimators may damage the beam due to the small 
aperture of the scraper. As pointed out in [1] a possible way to relax the wakefields is tapering 
the steps and using “step+taper” collimator geometry. The optimisation of this kind of 
geometry for TTF 2 collimators with different apertures is carried out in the paper.  
 The TTF2 operation requires very short bunches with RMS 50 mσ µ=  that forces us 
to use the dense mesh and the long integration path. That is why up to date only a circular 
collimators can be studied and the indirect method for calculation of wake potential [2] has to 
be applied. 
 The considered collimator is axially symmetric, therefore the problem can be reduced 
to a set of independent two dimensional problems for the azimuthal modes. 

The aperture of the collimator is small and a good estimation of the near-wall 
wakefields can be important. Unlike the near-axis case to estimate the near-wall wakefields 
not only monopole and dipole modes but also higher order modes need to be calculated.  

The conventional codes like MAFIA [3] and TBCI [4] have difficulties in solving the 
described problem and a new code ECHO [5] is used for numerical experiments. 

In the paper we calculate near-wall wakefields for the optimized collimator geometry 
and check the results by comparing the calculated near-wall wakes with the analytical 
estimation of Yokoya [6] for tapered collimator. 

 

2 MODES NUMBER ESTIMATION 
 
  This paper deals with circular collimators whose geometries are outlined in the Fig.1,6. 
 

α
a

b

c

L

α
a

b

c

L

 
 

Fig.1. Geometry of the collimator 
 

The longitudinal and transversal wake functions can be written in the form [7] 
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where ( , )e er ϕ , ( , )o or ϕ  are the coordinates of the excitation and  observation electrons and  the 

functions  ( )mw sP , ( )mw sP   are related by Panofsky-Wenzel theorem 
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Because of the explicit dependency of the wake functions on the angles and the radii, only the 
situation e o br r r= = , 0e oϕ ϕ= =  will be discussed. 

To get the total wakefield effect we need to sum over all multipole contributions. 
Usually bunches remain near to the axis and the longitudinal wakefield effect is dominated by 
the monopole mode (m=0) whereas the transverse one is dominated by the dipole mode 
(m=1). However, if we want to consider near-wall wake fields we have to calculate higher 
order modes too. The number of the required modes depends on the closeness δ  of the bunch 
moving at the radius r  to the boundary ( )f z : 
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To study the question how many modes are required for the desired accuracy we 
consider first the analytical estimation of K. Yokoya for wakes of small-angle collimators and 
latter in this section we check the result by numerical calculations for a specific problem.  

As shown in [6], for small taper angles tan( ) / 1bρ α σ= =  (σ  is a width of Gaussian 
bunch)  the    collimator    is    in   the   inductive     regime    and the impedance estimations 
read 
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where 0 4Z c πΘ = , and 0Z  is the free space impedance. 

0.9δ =

0.8δ =

0.7δ =

0.6δ =

0.5δ =

n

( , )S n δ 0.9δ =

0.8δ =

0.7δ =

0.6δ =

0.5δ =

n

( , )S n δ

 
 Fig2. Dependency of the sum ( , )S n δ on number of modes n  for different offsets δ . 
 
 As follows from expressions (1), (2), the transversal impedance for the charges 
moving at the radius r  can be written in the form 
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−
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The addends of sum (4) for 1δ =  behave like 1( )O m−  and the sum diverges. Consequently we 



consider only the case 1δ <  when the sum converges with a rate depending on δ . Note that 
due to (1) the longitudinal impedance has a modal sum with 2( )O m−  behavior which 
converges fast even on the boundary 1δ = . 
 In Fig.2  the dependency of the sum 
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is shown and in Table 1 the relative error 
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is presented. We see that n=7 addends of sum (5) present the result with an accuracy of  ~5% 
up to offset 0.9δ = . Hence, in the numerical calculations discussed below we are looking 
only for the first 8 modes (the monopole mode 0m =  should not be forgotten). Note that the 
dipole mode 1n m= =  alone gives only 50% of the kick for the near-wall charges with an 
offset 0.9δ = .  
 

n  
δ  1 2 3 7 
0.5 12 2 0.4 0.001 
0.6 18 4.5 1.2 0.01 
0.7 25 8.8 3.5 0.1 
0.8 35 16 8.4 0.8 
0.9 49 30 20 5.3 

 
Table 1. Relative error ( , )S n δ∆  in %  for different number of modes n  and offsets δ  

 
As a next step we compare analytical estimation (3) with numerical results obtained by 

the code ECHO [5]. The fully tapered test collimator has the parameters: 17a mm= , 
2b mm= , 100c mm= , 200L mm= . We calculate the kick factor ( e oϕ ϕ= , e or r r= = ) 
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for a Gaussian bunch ( )q s  with RMS length 500 mσ µ= . In this case tan( ) / 0.3bρ α σ= =  
and the collimator is in the inductive regime that allows to apply estimation (2) for transversal 
impedance. 
 Fig.3 shows the dependency of the sum 
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on the number of modes, where mL⊥  is a modal kick factor. The dashed lines show the 
analytical estimation and the solid lines show the numerical results. The calculations were 
done with a mesh resolution of 10 mesh steps on σ  ( / 10hσ = , h  is a mesh step), resulting 
in an accuracy better than 1% (checked by thickening of the mesh). 
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Fig 3. Dependency of the kick factor sum ( , )L n δ⊥ on the number  

of modes n  for different offsets δ  for a fully tapered test collimator  
and a Gaussian bunch with RMS length 500 mσ µ=  
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Fig 4. The transverse modal wake potentials of the test geometry for modes 1m =  (left) 
and 5m =  (right). The Gaussian bunch has the RMS length 500 mσ µ= . 
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Fig 5. Dependence of the transversal kick L⊥ on an offset δ . 

 
Fig. 4 shows the transverse modal wake potential for modes 1m =  (left) and 5m =  

(right). The solid lines correspond to the numerical results with / 10hσ =  and the dashes 
display the analytical estimations (2).  



 Fig. 5 shows the dependency of the transverse kick on the offset δ  from the axis. We 
compare numerical (solid lines) and analytical (dashed line) results for the case when 8 modes 
( 0,1,2,...,7m = ) are taken into account. The numerical results are shown up to 0.9δ = . The 
analytical curve is calculated with 15 modes up to the closeness 0.95δ = . 

In the discussed test problem a very good coincidence of the numerical and analytical 
results is obtained. On the other hand the results in Fig.3 looks very like the ones shown in 
Fig.1 and the estimations presented in Table 1 hold for both cases. 

Before estimating of the near-wall wake fields for a real set of parameters we will first 
concentrate on the optimization of the “taper+step” geometry with regard to the near-axis 
wakes (monopole and dipole modes). 

 

3 GEOMETRY OPTIMIZATION 
 
As pointed out in [1] a possible way to relax the wakefields is tapering that actually reduces 
considerably the wakes of the collimator.  However, in order to obtain a significant effect the 
collimator has to be too long. As an alternative solution we consider the “step+taper” 
geometry of a collimator with a fixed length of 50cm  as shown in Fig.5. The effectiveness of 
such kind of geometry was proven in [1]. The set of parameters shown in Fig. 5 corresponds 
to the TESLA TTF2 collimator at DESY [8]. The calculations are carried out for very short 
Gaussian bunch with 0.05mmσ = .  
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Fig 6. Geometry of the “step+taper” collimator 
 
Three different apertures b  of  the collimator are considered: 2b mm= , 3mm  and 6mm . The 
parameter d  changes from b (step collimator) to 17a mm=  (fully tapered collimator).  We 
consider only near-axis wakes and consequently only  monopole and dipole modes are 
calculated. As optimization parameters we have chosen the loss factor 
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 For the case 2b mm=  Fig. 7 shows dependence of the loss factor, energy spread, kick 
factor, kick spread on the parameter d . The depicted functions have minimums and the value 

4.5d mm=  can be taken as the optimum.  
 Fig. 8-9 presents likewise the results for the aperture 3b mm=  and 6mm . 
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Fig 7. The integral parameters for aperture 2b mm= . 
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Fig 8. The integral parameters for aperture 3b mm= . 
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Fig 9. The integral parameters for aperture 6b mm= . 



  
We do not introduce a goal function for the optimization process as the four optimized 

integral parameters have their minimums approximately at the same point for each of the 
considered cases. Table 2 summarizes the optimal sets of parameters. 
 

b, mm 2 3 6 
d, mm 4.5 5.5 10 

 
Table 2. Optimal sets of parameters for the  “step+taper” collimator. 

  
Finally, in Fig. 10 the longitudinal and transverse wake potentials are shown for the 

aperture 2b mm=  and three different cases: 2d mm=  (step collimator), 17d mm=  (fully 
tapered collimator)  and 4.5d mm=  (optimal “step+taper” geometry, solid lines).  
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Fig 10. The integral parameters for aperture 2b mm= .  
The Gaussian bunch has the RMS length 50 mσ µ= . 

 
 As can be seen the “step+taper” geometry of the collimator allows indeed reduce the 
wakefields effects considerably. 
 The near-wall wakefields are considered in the next section only for the geometry with 
the smallest collimator aperture. 
 

4 NEAR-WALL WAKES 
 
 Because the aperture of the collimator is small the near-wall wake fields can play 
considerable role in single bunch dynamics. In this section the near-wall wake fields for the 
optimized “step+taper”  geometry  with  the  smallest  aperture  2b mm=  are considered.  
The  parameter d   is equal to 4.5 mm . The mode integral parameters are calculated for the 
first 8 modes, m=0,.1,…,7. The bunch has the RMS length 50 mσ µ= , threfore analytical 
estimations (1), (2) are not valid.  
 Fig.11 shows the transverse wake potentials for the modes 1m =  (left) and 7m =  
(right). The potentials are calculated with different mesh resolutions : / 5hσ =  (dashed lines), 

/ 10hσ =  (solid lines) , where h  is a mesh step. On the left figure the curves coincide and on 
the right picture the difference increases with the mode number. Hence the higher order 
modes demand a better mesh resolution and all modes were estimated with a resolution 

/ 10hσ = . 
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Fig 11. The transverse modal wake potential of TTF2 colimator for modes 1m =  (left) and 

5m =  (right). The Gaussian bunch has the RMS length 50 mσ µ= . 
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Fig 12. Dependency of the kick factor sum ( , )L n δ⊥ on the number  

of modes n  for different offsets δ   and  the optimal “step+taper”  collimator.  
The Gaussian bunch has RMS length 50 mσ µ=  
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Fig 13. Dependency of the transversal kick L⊥ on the offset δ  for the optimal 
 “step+taper”  collimator and a Gaussian bunch with RMS length 50 mσ µ= . 



 
Fig.12  shows  the dependency of the kick factor sum (7) on the number of modes as 

obtained from the numerical calculations.  The results are qualitatively similar to the ones 
presented in Fig.3, therefore we are quite sure that the error estimations given in the Table 1 
hold and 8 modes are quite enough to obtain the kick factor for an offset 0.9δ =  with an 
accuracy of  ~ 5%. 

Fig. 13 shows the dependency of the transverse kick on the offset δ  from the axis. 
Seven  modes  ( 1,2,...,7m = ) are taken into account. The numerical results are shown up to 

0.9δ =  and looks very like the ones presented in Fig.5. As noted in section 2,  the sum 
addends behave like 1( )O m−  and it diverges on the boundary 1δ = . The effect of non-linear 
higher order addends of the sum has to be taken into account for bunch offsets 1 / 4δ > . The 
dipole mode alone presents 59% of the kick factor for 0.9δ = . 
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Fig 14. Dependency of the loss factor sum | |( , )L n δ on the number 

 of modes n  for different offsets δ . 
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Fig 15. Dependency of the loss factor ||L on the offset δ . 
 

 Fig.14 shows the dependency of the loss factor sum 
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on the number of modes, where | |
mL  is a modal loss factor. As noted in section 2,  the sum 

addends behave like 2( )O m−  and it converges fast even on the boundary 1δ = . The effect of 
the non- linear higher order addends of the sum is small and already monopole and dipole 
modes give the estimation with an accuracy of  ~2%. The monopole mode alone presents 82% 
of the loss factor for 1δ = . 

Fig. 15 shows the dependency of the loss factor on the offset δ  from the axis. Eight  
modes  ( 0,2,...,7m = ) are taken into account. The numerical results are shown up to the 
boundary 1δ = . 
 

CONCLUSION 
 

The short-range geometric wakefields in rotationally symmetric collimators are 
studied. The geometry of the collimator is optimized for a fixed length. For this optimal 
geometry the near-wall wakefields are calculated. The accuracy of the numerical estimations 
is confirmed by considering  the test problem of a fully tapered collimator where the 
analytical estimations are known. 

As the numerical and analytical estimations show, the impact of higher order modes 
on the loss factor is small (less then 20%) relatively to the monopole mode result up to the 
aperture wall of the collimator. 

In contrary the dipole mode alone gives only about 50% of the kick factor when the 
bunch offset is equal to 0.9 of the collimator aperture radius. The impact of the higher order 
modes is considerable and has to be taken into account.   

According to the applied wakefield model the analytical and numerical estimations 
show a fast unbounded growth of the kick factor in the near-wall region. 
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