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Abstract

By applying the general dynamic aperture formulae for the multi-
poles in a storage ring developed in ref. [1] (J. Gao, Nucl. Instr. and
Methods A451 (2000), p. 545), in this paper, we give the analytical
formulae for the dynamic apertures limited by the wigglers in storage
rings. '

1 Introduction

Wigller as an insertion device finds many applications in damping rings [2],
synchrotron radiation facilities [3] [4], and storage ring colliders [5]. Intrin-
sically, as a nonlinear device, together with the perturbations to the linear
optics it brings additional limitations to the general performance of the ma-
chines, such as reducing dynamic apertures. In this paper, we will estimate
in an analytical way the dynamic apertures limited by wigglers. Firstly, in
section 2, we make a brief review of the beam dynamics inside a wiggler, and
secondly, in sections 3 a wiggler is inserted into a storage ring as a perturba-
tion. By applying the general dynamic aperture formulae of multipoles in a
storage ring developed in ref. [1], in section 4 we derived analytical formulae
of the wiggler limited dynamic aperture. Finally, in section 5 some numerical
examples will be given.
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2 Particle’s motion inside a wiggler

Considering a wiggler of sinusoidal magnetic field variation, one can express
the wiggler’s magnetic fields, which satisfies Maxwell equations, as follows:

B, = %Bo sinh(k;x) sinh(k,y)cos(ks) (1)

v
B, = By cosh(k,x) cosh(k,y)cos(ks) (2)
B. = —kﬁBo cosh(ky) sinh(kyy) sin(ks) (3)

v

with o2
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B2+ k2 = k2 = <E> (4)

where B is the peak sinusoidal wiggler magnetic field, A, is the period length
of the wiggler, and z, y, s represent horizontal, vertical, and beam moving
directions, respectively.

The Hamiltonian describing particle’s motion can be written as [3]:

1

Hy = 5 (02 + (0 — Assin(ks))® + (b, — Ay sin(ks))?) (5)
where 1
A, = ok cosh(k,x) cosh(ky,y) (6)
A = _ kg sinh(k, ) sinh(kyy) @)
ky Puwk

and p,, is the radius of curvature of the wiggler peak magnetic field By, and
pw = Ey/ecBy with Ey being the electron energy. After making a canonical
transformation to betatron variables, averaging the Hamiltonian over one
period of wiggler, and expanding the hyperbolic functions to the fourth order
in x and y, one gets:

1
Ho = =03 +1) + (k2a® + k2y®) + (Kiz* + kiy* + 3k%k222%y?)

2 4k?p? 12k2p2, v
sin(ks) 2,2 1.2 2 2
T (pm(kmx + ky,y7) — 2k$pyxy) (8)



After averaging the motion over one wiggler period, one obtains the differ-
ential equations for particle’s transverse motions [6]:

d*x k:% 2.9 3 2 9
d?y k2 2 k%k2
T2 = —21{;2‘22 (y + gkzy:” + 12 332y> (10)
w y

Considering the wigglers are built with plane poles, one has k, = 0.

3 Wiggler as an insertion device in a storage
ring
Now we insert a “wiggler” of only one period (or one cell) into a storage ring

located at s,,. The total Hamiltonian of the ring in the vertical plane can be
expressed as follows:

1 k2 o0
H=Hy+—1? Y_ythy, §(s — il 11
0+4p2y +12p2?J i;oo (s —1iL) (11)

where Hj is the Hamiltonian without the inserted wiggler, L is the circum-
ference of the ring, and &, = k. It is obvious that the perturbation is a delta
function octupole.

Now, let’s recall some useful results obtained in ref. [1] where we have
studied analytically the one dimensional dynamic aperture of a storage ring
described by the following Hamiltonian:

_p_2 K(s) , 1 0°B

“2*L > 8(s— kL)

=t e e T 2
1 B, , &
TS (s — kL) 4+ - 12
FiBp o " b 2 STk (12)

where

B, = By(1 + xby + by + 23bs + by + - - -4+ 2™ b1 +--)  (13)



The dynamic aperture corresponding to each multipole is given as:

1 m 1/(m—2)
Adyna,Qm,a:(S) =\ 261:(3) (W) <|b ?1|L> (14)

where sy, is the location of the 2mth multipole, §,(s) is the beta function
in z plane, and x here stands for either horizontal or vertical plane.
Comparing eq. 11 with eq. 12, by analogy, one finds easily that:

by k2,

and the dynamic aperture limited by this one period “wiggler”:

B Qy(s) (3[)3, >1/2
 By(sw) \K2A,

where ,(s) is the unperturbed beta function. In fact, a wiggler is an inser-
tion device which is composed of a large number of cells, say, N,, and the
wiggler length L, = Ny\,. Now, the first question which follows is what
the combined effect of these N, cells will be. According to ref. [1], one has:

Ary(s) (16)

Loy ! NZ( by )ﬂ?( Lo (17
o= =2\ ma | Bie)
A?Vw,y(s) i=1 Azz,y i=1 3P12uﬂy(3) Y Ny,

where the index 7 indicates different cell. When N, is a large number, Eq.
17 can be simplified as:

1 ke /sw0+Lw/2
= B2(s)ds 18
By~ BB eyt B (18)

where s,,, correspond to the center of the wiggler. If the variation of the
unperturbed beta function inside the wiggler is approximated as linear, one
gets

S - w
Away(S) —3 ﬂy( )3(53/,2 3ﬂy:1) P
y.2 Myl kyv/ L
where 3, and 3, correspond to the beta function values at the two extrem-
ities of the wiggler. As is well known, the inserted wiggler perturbs linear

(19)
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optics also, such as tune shifts and beta functions. In our specific case [7],
we have Av, =0, A, =0, and

Lwﬂau,
AVy ~ Tp%}y (20)
AB, N Ly Bavy cos2vy(m — | — dul)) (21)
B, 4p2 sin(27mv,)
or
(Aﬁ—fy> ~ |2 Ay, / sin(271,) | (22)

where [, is the averaged beta function within the wiggler. The fact that
the tune shift and the beta function insite the wiggler vary in a complex way
makes us assume that the octupole like cells of the wiggler are independent
from one to another, and permits us to arrive at the expression in eq. 17.

The second question which follows is how about the total dynamic aper-
ture of the storage ring including many wigglers and other nonlinear compo-
nents. Assuming that the dynamic aperture of the ring without the wigglers’
effects is A, and that there are M wigglers to be inserted inside the ring at
different places, one has the total dynamic aperture expressed as:

1
1 M 1
Voo t S s oor

where A;,, , denotes the dynamic aperture limited by the jth wiggler.

Atotal,y (3) —

(23)

4 Numerical examples

Now we take TESLA damping ring for example with permanent magnet
wigglers [2], where one has Ey = 5GeV, By = 1.68T, A\, = 0.4m, N, =
12, By1 = 9m, By» = 15m, and total wiggler number M = 45. Without
considering the dynamic aperture limited by other nonlinear components, by
applying eqs. 19 and 23, one finds that A;ay(Sw,) = 21mm. Recalling the
gap of the wiggler [2], ¢ = 25mm, one concludes that the parameter choice
for the wigglers in TESLA damping is roughly reasonable.



5 Conclusion

In this paper we have developed the analytical dynamic aperture formulae
limited by wigglers in storage rings, which are very efficient and powerful in
designing and operating damping rings and synchrotron radiation facilities.
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