
TESLA Report 2003-08 

Cavity control system 
essential modeling for TESLA linear accelerator 

 

Tomasz Czarski, Krzysztof Pozniak, Ryszard Romaniuk 
Institute of Electronic Systems, Warsaw University of Technology, Poland 

Stefan Simrock 
DESY, TESLA, Hamburg, Germany 

 

ABSTRACT 

The pioneering TESLA linear accelerator and free electron laser project is initially introduced. Elementary analysis of  
cavity resonator  with signal and power considerations is presented. Two alternative simulation models of cavity control 
system are proposed. 
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1. INTRODUCTION 

TESLA stands for TeV–Energy Superconducting  Linear Accelerator – a 33 kilometer-long electron-positron collider. 
This new impressive project is being developed and planned at DESY research center in Hamburg. In order to 
demonstrate the feasibility of such an immense accelerator, the TESLA Test Facility as a prototype was constructed and 
is still under intensive improvement during its operation. 

Accelerator section uses superconducting niobium structures of so-called cavity 
resonators. The very low energy spread during acceleration process is necessary 
to obtain an extremely small particles’ interaction point and  high beam 
luminosity. The complex control system for the relativistic beam has been 
developed to cope with signal disturbances, non-linearity and with time-varying 
parameters, in order to stabilize accelerating fields of resonators. 

A single accelerating module consists of 32 cavities powered by one klystron. 
The control feedback system regulates the vector sum of pulsed accelerating 
fields in multiple cavities. The superconducting cavities, due to their narrow 
bandwidth, are very sensitive to mechanical perturbation caused by 
microphonics and Lorentz force detuning. In addition to the feedback control 
loop, which suppresses stochastic errors, the adaptive feed forward is applied to 
compensate repetitive perturbations induced by the beam loading and by the 
dynamic Lorentz force detuning. 

The TESLA control is a driven feedback system stabilizing the detected real and imaginary parts of the incident wave 
and thus affecting the amplitude and the phase of a constant frequency signal. In order to analyze and optimally design 
the system a sophisticated modeling is necessary. 

 

2. PHYSICAL DESCRIPTION OF THE SYSTEM 

 The TESLA cavity is a 9-cell standing wave structure which is about 1m long and whose fundamental TM mode has a 
frequency of 1300 MHz and the bandwidth of about 430 Hz (FWHM). A multi-cell structure is applied to maximize the 
active acceleration space and it is limited by the field’s homogeneity requirements and parasitic pass-band modes. The 
resonator is operated in the π-mode with 180° phase difference between adjacent cells. The RF (radio frequency) 
oscillating field is synchronized with the motion of a particle moving with the velocity of light across the cavity. 
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The equivalent representations of the chain of nine cells are resonant LCR circuits which are magnetically coupled. The 
following considerations are limited to the π-mode of one cavity represented as a single LCR circuit. 

The effective accelerating voltage Vacc is defined by the energy gain of the unity charge. The cavity voltage Vc is the 
maximum accelerating voltage acting on the particle. The accelerating voltage of a bunch passing the cavity with a time 
delay tb is  

Vacc(tb) =  Vc⋅cos(ωtb) = Vc⋅cos ϕ 

where ω=2πf is the wave pulsation, ωtb = ϕ is the angle phase of the cavity voltage related to the beam current. 

According to the energy definition of the voltage, the beam loading can be modeled as a current sink feed by additional 
power through the cavity electromagnetic field. Bunched beam current has typically  ~2 ps pulsed structure, 1 MHz rate 
and an average value of 8 mA. 

One 10 MW klystron, through coupled wave-guide with circulator, supplies RF power to 32 cavities which are operated 
in ~1 ms pulsed mode, 10 Hz rate, with an average accelerating gradients of 25 MV/m (Fig. 1). 

 

 

 

 

 

 

Figure 1.  Compact block diagram of the cavity environment. 

The fast amplitude and phase control of the cavity field is accomplished by modulation of the signal driving the 
klystron. The digital controller closes the feedback loop, actuates  the vector modulator  stabilizing the real (in-phase) 
and imaginary (quadrature) components of the signal according to set-point input (Fig. 2).  
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Figure 2.  Cavity control system schematic block diagram. 
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3.  CAVITY SIGNAL CONSIDERATIONS 

The objective of the control system is to stabilize the cavity voltage which is related to the beam loading current, and to 
minimize the power consumption supplied by the klystron. Physical model for signal calculations is presented in Figure 
3. All the current (J) and voltage (U) quantities are represented in Laplace tranform  space. 
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Figure 3.  Physical model of  cavity environment circuit. 

The RF generator is modeled as a current source Jf  driving the wave-guide coupled to the cavity. The circulator load 
matches itself to the wave-guide impedance Z0 and isolates the generator from the reflected power. Transmission  line 
signals are as follows 

forward current =  J f                          forward voltage =  Uf  = Z0·Jf 
reflected current   =  Jr                       reflected voltage  = Ur = Z0·Jr 

Superposition of the forward and reflected waves actuates the coupler, and therefore 
coupler input current  =    J1 =  Jf - Jr              coupler input voltage =  U1 = Uf + Ur = Z0·(Jf + Jr) 

The coupler converts signals according to the transformation ratio 1:N, and therefore 
coupler output current  = J2 = J1/N = (J f - Jr)/N 

coupler output voltage = U2= N·U1 = NZ0·(Jf + Jr) 

The beam loading is represented as a current sink Jb with its repetitive pulse-function structure. Superposition of the 
output coupler current and the beam loading current actuates the cavity, therefore 

cavity current = Jc =  J2 - Jb = (Jf - Jr)/N - Jb 
cavity voltage = Uc = Z·Jc = Z·((J f - Jr)/N - Jb). 

where Z = (1/R+sC+1/sL)-1 is  the impedance of the resonant LCR cavity circuit representation.  

The output coupler voltage U2 equals cavity voltage Uc , therefore 
U2 = NZ0·(Jf + Jr) = Uc = Z·((J f - Jr)/N - Jb), 

Solving upper equations yields 
Uc= N2Z0·Z /( N2Z0+ Z)·(2Jf /N - Jb) 

Applying an equivalent  parallel resistance connection      RL = N2Z0R     and   the cavity trans-impedance 
ZL = (1/RL + sC+ 1/sL)-1    and substituting   the current generator    Jg =  J f /N,    results in the cavity voltage 

Uc = ZL·(2Jg - Jb) = ZL·J. 

 

 

 

Figure 4.  Cavity representation with transfer function ZL(s). 
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4.  ANALYTICAL SIGNAL MODELING 

According to the RF generator constant pulsation ωg, and  due to a narrow resonator bandwidth, the cavity voltage can 
be modeled in  time domain as a generalized oscillation 

ur = A(t)·cos(ωgt + ϕ(t))      with its  Hilbert   transform       ui = A(t)·sin(ωgt + ϕ(t)). 

Both mutually π/2 shifted oscillations with frequency ωg are applied for further analysis. This ordered pair of 
complementary signals called  analytical signal can be represented as a  

                                                                                
                    vector u =                                            or        phasor    in complex domain   u =  (ur, ui) = ur + iui = A(t)·exp(i(ωgt + ϕ(t))). 
 

Because of disturbances, the amplitude A and the phase ϕ are time -varying components with a relatively narrow 
spectral range. The cavity control system proceeds with a low level of frequency watching the real signal component 
(in-phase) = I = vr = Acosϕ and the imaginary signal component (quadrature) = Q = vi = Asinϕ. 

I, O components can be detected by complex demodulation, 
as a phasor               v =  (vr, vi) = (Acosϕ, Asin ϕ) = Aeiϕ = u·exp(-iωgt) = (ur, ui)·exp(-iωgt) 

where  exp(-iωgt) stands for complex demodulation operator, or else 
(vr, vi) = (ur+iui)·(cos(ωgt) - isin(ωgt)) = ur·cos(ωgt) + u i·sin(ωgt) + i(-ur·sin(ωgt) + u i·cos(ωgt)), 

therefore demodulation representation for a vector is as follows 

vr = cos(ωgt)      sin(ωgt) . ur = Dem . ur 

vi  - sin(ωgt)    cos(ωgt)  ui    ui 

 
where  Dem  is a demodulation matrix  or a vector rotational transformation. 
 
 

 

 

Figure 5.  Graphical representation of vector and  phasor demodulation. 

The complex modulation is the reciprocal operation as follows 

for a phasor                                       u =  (ur, ui) = (vr, vi)·exp(iωgt) = v·exp(iωgt) 

for a vector  

 

where   modulation matrix = Mod = Dem-1. 
 

 

 

Figure 6.  Graphical representation of vector and phasor modulation. 
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According to the cavity transfer function modeling, the relation between  current and voltage analytical signal (both 
mutually π/2 shifted oscillations) as a phasor or vector representation is given in Laplace space: 

U(s) = ZL(s)·(2Jg(s) - Jb(s)) = ZL(s)·J(s) 

where the cavity trans-impedance     ZL(s) = RL/(1+ RL·sC+ RL/sL) =  RL/(1+ QL·(s/ω0 + ω0/s) 
with parameters:  loaded quality factor = QL ,   resonance frequency = ω0,    generator frequency = ωg . 

The doubled cavity transfer function representation and the signal conversion modules can be assembled into the 
complex cavity model according to figure 7. 

 
  
  
 
 
                  
 
 
 
                                                      

Figure 7.  Functional diagram of complex cavity representation. 

The complex cavity representation can be effectively simplified for signals with a narrow spectral range relative to the 
generator frequency ωg. Modulator input phasor and demodulator output phasor are time  dependent functions with 
adequate Fourier transform : 

i(t) ↔  I(ω)     and      v(t) ↔  V(ω) 

The  complex modulation shifts forward the signal spectrum according to Fourier transform  relation 

i(t)·exp(iωgt) = j(t) ↔  J(ω) = I(ω–ωg) 

 Cavity output voltage is related to input current according to cavity Fourier transfer function 

U(ω) = ZL(ω)·J(ω) = ZL(ω)·I(ω–ωg) 

The  complex demodulation shifts back the signal spectrum according to Fourier transform relation  

u(t)·exp(–iωgt) = v(t) ↔  V(ω) = U(ω+ωg) = ZL(ω+ωg)·I(ω) 

The cavity Fourier transfer function ZL can be presented for frequency (ω+ωg) 

ZL(ω+ωg) = RL/(1+iQL·((ω+ωg)/ ω0 – ω0/(ω+ωg))) = RL/(1+i(ω–∆ω)/ω1/2 · (ω+ω0+ωg)/2(ω+ωg)) 

where:      detuning = ∆ω = ω0–ωg ,   cavity half-bandwidth (HWHM) = ω1/2 = ω0/2QL. 

Resultant cavity Fourier transfer function can be approximated for frequencies ω << ωg ≈ ω0  

ZL(ω+ωg) ≈ RL/(1+(iω–i∆ω)/ω1/2) =  ZL(iω). 

Then signals relation in Fourier space is as follows 
                                     V(iω) =  ZL(iω)·I(iω). 

Moving to Laplace  space with the operator  s = iω  yields 
                                V(s) =  ZL(s)·I(s). 
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where                                                                          ZL(s) = RL/(1+(s – i∆ω)/ω1/2). 

Therefore signals relation in Laplace space can be written  for phasor representation 

(ω1/2 + s – i∆ω)·(Vr,Vi ) = ω1/2·RL· (Ir , Ii) 
or  for vector representation 

ω1/2+s ∆ω . Vr  Ir 
-∆ω ω1/2+s  Vi  Ii 

 
Moving to time domain yields state space relation 

            dv/dt = A·v + ω1/2·RL·i 
 
 
 

 

5.  CAVITY POWER CONSIDERATION 

According to the analytical signal model, the cavity voltage and the current can be represented, after complex 
demodulation, as a relatively stable phasor or vector  v(t) = V  and   i(t) = I,  each with its  I, Q  components. 

The real power is given: 
 in terms of complex voltage and conjugate current for phasor representation 

P = ½ Re{V·I* } 
or  as a scalar product for vector representation  

P = ½ V • I 

The forward power, which is provided by the wave-guide, reflects itself partly due to the mismatched input coupler and 
dissipates in the circulator load. The residual transmitted power supplies cavity and feeds the beam loading. The 
objective of the accelerator system is to deliver power to the beam with the best efficiency. 

Energy conservation yields                      P f = Pr + Pd + dW/dt + Pb 

where 
- forward power ≡ Pf = ½ Re{Vf  ·If*} = ½ |If |

2 ·Z0 ≈ ½ |Ig|2 ·RL   (QL << Q0) 
- reflected power ≡ Pr = ½ Re{Vr·Ir*} = ½ |Ir|

2 ·Z0 ≈   |Vc – RL·Ig|2 /2RL  (QL << Q0) 
- dissipated power ≡  Pd = ½ Re{Vc·Ic*} =  |Vc|

2 /2R ≈ 0 
- electromagnetic energy stored in cavity ≡ W = |Vc |2/2? ω0 = 73J – for 25 MV cavity voltage 
- electromagnetic power transferred to cavity in transient states ≡ dW/dt  
- beam loading power ≡ Pb = ½ Re{Vc·Ib*} 

The main cavity parameters and the typical value for power considerations are as follows 
- resonance pulsation ≡ ω0 = (LC)-½  = 2π·1300 [rad/s] 
- characteristic resistance ≡ ? = (L/C)½  = 520 Ω  
- resonant impedance  = R = Z(ω0)  =  ~5 TΩ  
- quality factor (unloaded)  Q0 ≡ ? 0W/Pd = R/ρ  =  ~1010 
- fictitious loading as a parallel connection RL ≡ N2Z0 R   = ~1.5 GΩ  
- loaded quality factor ≡ QL = RL /ρ  =  3·106 
- half- bandwidth (HWHM) ≡ ω1/2 = ω0/2QL    = 2π·215 [rad/s] 

In a steady state (dW/dt = 0) without beam loading  (I  b = 0) on resonance condition (ω = ω0) calculations for forward, 
dissipated and reflected power yields 
- Pf ≈ |Vc|

2 /8RL   ≈ 50 kW – for 25 MV cavity voltage (QL << Q0) 

-ω1/2 -∆ω 
∆ω -ω1/2 

=  ω1/2·RL ·

where    state matrix   A  =
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- Pd = 4QL/Q0·(1 – QL/Q0)·Pf  ≈ 0 
- Pr = (1 – 2QL/Q0)2 ·Pf  ≈  50 kW 
Effective quality factor   Q f  ≡ ω0W/Pf  = 4QL·(1 – QL/Q0) ≈ 4QL  (QL << Q0). 

In a steady state with the beam loading and the detuned cavity (ω ≠ ω  0) the main signals and parameters are as follows 
- beam loading average current = Ib0 = 8mA – typical value 
- RF component beam loading current  Ib  = |Ib | = 2Ib0  - determined as a reference phasor 
- cavity required voltage  Vc = |Vc|·e

iϕ  - |Vc| , ϕ – determined, stabilized amplitude and phase 
- generator current  Ig = |Ig|·eiθ   - |Ig|, θ  – amplitude and phase actuated by controller 
- complex trans-impedance  ZL = ZL(iω) = RL/(1- iQL·( ω0/ω – ω/ω0))= RL·cosψ·eiψ    
- tuning angle ≡ ψ ,   tanψ  = QL·( ω0/ω – ω/ω0) ˜  ∆ω/ω1/2  (detuning = ∆ω=ω0-ω) 
- cavity actual voltage  Vc = ZL(iω)·(2Ig – Ib) ≈ 2RL/(1- i∆ω/ω1/2)·(Ig – Ib0). 

Equating the required and the actual cavity voltage Vc, yields the stabilization equation. Solving this equation, the 
required forward power P f is obtained, which is dependent on the beam loading and the cavity detuning (Q0 >> QL): 

Pf = ((1+ 2RL·Ib0·cosϕ/|Vc |)2 + ((∆ω/ω1/2)2 + 2RL·Ib0·sinϕ/|Vc |)2) ·|Vc|
2/8RL

 

The beam loading required power  = Pb = ½ Re{Vc·Ib*} = |Vc | ·Ib0·cosϕ. 

 

6.  COMPLEX CAVITY SYSTEM MODELING 

The cavity control system using complex cavity modeling is composed according to figure 8. 
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Figure 8.  Functional diagram of complex cavity control system. 
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CAVITY 

The complex cavity plant is represented as a transfer function by the double cavity trans-impedance 
ZL(s) = RL /(1+ RL·sC+ RL/sL) =  RL/(1+ QL·(s/ω0 + ω0/s) 

The input current vector J(s)  is Laplace transform of superposition 2jg(t) – jb(t) , each one with its mutually π/2 shifted 
components (Re, Im). The cavity transfer function ZL(s)  transforms the input current vector J(s) to the output voltage 
vector U(s) = ZL(s) ·J(s). 

The output voltage vector U(s), retransformed to the original u(t) with its mutually π/2 shifted components, actuates the 
transducer and the phasor Demodulator and it is converted  to voltage phasor v(t). The summing junction compares the 
voltage phasor v(t) with required voltage v0 as a reference phasor and generates the error signal phasor ∆v. The 
controller, as a Complex Gain, amplifies the error ∆ v and closes the feedback system loop. The phasor Modulator and 
the transducer converts signal to the current vector 2jg(t) with its mutually π/2 shifted components oscillating with the 
frequency ωg. The Beam Loading current sink subtracts its two mutually π/2 shifted pulsed structures components and 
the resultant current vector superposition j(t) actuates the cavity. 

The complex cavity simulation with its doubled π/2 shifted signal trace performs the features of the fundamental circuit 
model. Nevertheless due to practical reasons it should be implemented in a reasonably lower level of frequency. 

 

7. CONTROL SYSTEM MODELING FOR STATE SPACE CAVITY REPRESENTATION 

The state space cavity representation allows for modeling on a low level frequency range. The dynamics of the closed 
loop system are dominated by the low frequency poles of the cavity which can be described by the state space relation: 

dv/dt = A·v + ω1/2·RL·(2ig - ib) 
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Figure 9.  Functional diagram of control system with cavity state space model. 
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The set-point input delivers the required voltage value which is compared to the actual cavity voltage. The controller 
amplifies the error signal and closes the feedback system loop. The transducers convert signals to match its value to the 
cavity environment. The beam loading current is extracted outside the complex cavity model showed in fig. 8. It is 
represented as a RF component which equals double value of the average current (ib = 2ib0).  

 

8.  SUMMARY 

The fundamental knowledge about modeling of the cavity resonator for TESLA linear accelerator is presented in this 
paper. Continuous vectored description of the system applies the linear, time-invariant cavity model. It is useful for the 
initial analysis and simulations of the cavity behaviors. The complex cavity representation simulates the circuit 
approximation but has rather academic importance. State space equation constitutes the base for further and advanced 
design of the control feedback. 

The challenging task for the development of the cavity control system is to compensate for the dynamic Lorentz force 
detuning and to suppress the exciting of parasitic pass-band modes. To obtain the fast and precise stabilization of the 
cavity field, the digital controller with the efficient algorithm should be carefully designed and implemented. 
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