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Abstract. Fast calculation of 3D non-linear space-charge fields is essential for the simulation
of high-brightness charged particle beams. We report on our development of a new 3D space-
charge routine in the General Particle Tracer (GPT) code. The model is based on a non-
equidistant multigrid Poisson solver that is used to solve the electrostatic fields in the rest
frame of the bunch. Since the multigrid Poisson solver depends only linearly on the number of
mesh points for the discretized electrostatic problem the space-charge routine scales linearly
with the number of particles in terms of CPU time. This performance allows over a million
particles to be tracked on a normal PC. The choice of the routine parameters for an optimal
performance will be discussed with the model of a spherical bunch.
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1. Introduction

Numerical prediction of charged particle dynamics in accelerators is essential for the design
and understanding of these machines. Applications such as colliders and SASE–FEL’s
demand very high quality electron bunches, where any anomaly severely degrades the final
performance.

A powerful tool widely used for the study of the behaviour of charged beams is the
tracking code GPT (General Particle Tracer) [2]. It calculates the trajectories of a large
number of sample–particles through the combined external and self–induced fields generated
by the charged particles (the so–called space–charge forces). Depending on charge density
and energy, a direct point–to–point model can not be used to calculate space–charge forces
because of granularity problems and the inherent 
 �� ��� scaling between the number of
sample particles and CPU time [11].

In this paper we introduce a 3D model for the fast calculation of space–charge following
the ideas in [10]. The space–charge fields are computed in the rest frame by a non–equidistant
multigrid scheme. Hence, the numerical effort scales linearly with the number of particles in
�

supported by a research grant from DESY, Hamburg�
correspondence to (gisela.poeplau@etechnik.uni-rostock.de)



A multigrid based 3D space-charge routine in GPT 2

terms of CPU time. The new model is well suited for a variety of applications, including the
calculation of space–charge fields in a high–brightness photo–injector which are presented
in [12].

In this paper we discuss the influence of various parameters on the efficiency of the 3D
space–charge routine using the model of a spherical bunch with uniform or Gaussian particle
distribution. Related numerical results are given in section 3. For further simulation tests
regarding the calculation of important beam parameters such as emittance we refer to [8, 12].

2. The 3D space charge model

The particle tracking is performed by solving the relativistic equations of motion for a set of
macro particles (sample particles) representing the distribution of the particles of a bunch. In
the GPT code a 5th order embedded Runge–Kutta scheme with adaptive step size control is
implemented for the numerical integration of these equations [11]. In each time step of the
numerical integration the space–charge fields have to be taken into account. The space–charge
calculation with the 3D model is performed as follows:

(i) Laboratory frame � rest frame: Transformation of the bunch from the laboratory frame
to a rest frame with an average velocity by Lorentz transformation.

(ii) Rest frame: Determination of a non–equidistant 3D Cartesian grid in correspondence to
the charge density of the bunch (see subsection 2.1).

(iii) Rest frame: Approximation of the charge density at the grid points.

(iv) Rest frame: Calculation of the electrostatic potential at the grid points via Poisson’s
equation applying a multigrid algorithm. The finite difference scheme (7–point stencil)
is used for the discretization of Poisson’s equation (see subsection 2.2).

(v) Rest frame: Derivation of the electric field and trilinear interpolation of the field values
to the particle positions.

(vi) Rest frame � laboratory frame: Transformation of the field to the laboratory frame by
Lorentz transformation.

The efficiency and accuracy of the space–charge calculation mainly depends on the
determination of the 3D mesh and the applied multigrid scheme to solve Poisson’s equation.
Both we describe in the next two subsections.

2.1. The generation of the mesh

The electromagnetic potential is calculated on a 3D Cartesian mesh with an approximation
of the charge density at the grid points in the rest frame. The 3D mesh is generated in a box
around the bunch. To reduce the number of mesh lines needed, and thus to reduce CPU time,
the density of the mesh lines is increased only if the charge–density increases. The actual
positioning of the mesh lines is an iterative process. The mesh lines are distributed such that
they are spaced according to the distribution of the beam charge density.



A multigrid based 3D space-charge routine in GPT 3

Strictly following this rule the resulting mesh spacing can lead to conflicts with the
Poisson solver (see subsection 2.2). That is in such cases the multigrid Poisson solver
converges only slowly or does not converge at all. Thus the parameter

���
is introduced to

maintain a maximum difference in spacing between neighboring mesh lines, to avoid the
creation of a non–optimal mesh line distribution for the Poisson solver. If, e. g.

��� � �����
	
,

then the difference in spacing between neighboring mesh lines can not vary by more than�
	
�
. The effect of

���
is shown in Fig. 1. When

��� � �
, the spacing between all neighboring

mesh lines is allowed to vary by
���

, creating an equidistant mesh. Such a mesh is most stable
for the multigrid Poisson solver, but it will create many empty mesh boxes. On the other side,
setting

��� � �����
results in a dense sampling of the electron bunch and sparse sampling of the

surrounding area.

Figure 1. Mesh line positions (( ���� )–plane) for a Gaussian charge density with ��� � � (top)
and ��� � ����� (bottom). The vertical axis shows the total charge in each mesh box, where the
height of the top has been normalized in both plots.

2.2. The multigrid Poisson solver

The space–charge forces will be calculated in the rest frame of the bunch by means of
Poisson’s equation given by

��� � � � "! in # $ %'& �

Here, � denotes the potential, � the charge density and  (! the dielectric constant. The domain
# is a box around the particle bunch. On the boundary we consider three cases: a beam pipe, a
cathode and free space. The beam pipe has ideal conducting walls transversely, what results in
Dirichlet boundary conditions, and open boundary conditions longitudinally. The cathode has
the same assumptions as the beam pipe accept the cathode surface, here Dirichlet boundary
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conditions are assumed. The calculation in free space leads to open boundary conditions
and can be used when the bounding box is located far enough from the boundaries of the
structure. While a bounding cube is necessary with Dirichlet boundary conditions (see [8])
the open boundary conditions allow to put a bounding box relatively close around the bunch.
Thus, a lot of computing time can be saved especially for very short or very long bunches.

Poisson’s equation is discretized by finite differences on the non–equidistant mesh
described in the previous subsection. An approximation of the charge density ���� is computed
on the mesh points from the charge of the macro particles.

The solution of the resulting system of equations requires a fast and robust solver. State-
of-the-art is the application of a multigrid method as Poisson solver. In model cases the
numerical effort scales with the number of mesh points. Here, we give only the general idea
of a geometrical multigrid algorithm. Details can be found in [3, 1]. The multigrid algorithm
operates on a certain number of grids starting with the mesh given by the discretization
of Poisson’s equation. This mesh is referred to as the fine grid or the fine level. Then a
sequence of coarser grids is generated by removing mesh lines. On an equidistant mesh
every second mesh line is removed. Now iteratively, a raw approximation of the solution
of the systems of equations is obtained by the application of a few steps of a relaxation
scheme (e. g. Gauss–Seidel iteration) which is called pre–smoothing. This approximation
is then improved by a correction vector obtained on the coarser grids (the so–called coarse
grid correction) where restriction and interpolation work as grid transfer operators. After
applying interpolation another few steps of relaxation are necessary (post–smoothing). For
the space charge calculations a multigrid V–cycle is realized. This scheme goes strictly down
from the fine to the coarsest grid and then up again to the fine level.

As shown in [6, 7] the coarsening strategy is crucial for the convergence of the multigrid
algorithm on non–equidistant grids. The generation of coarse grids with every second grid line
removed as suggested in [1] is not reasonable with the dicretizations for bunches. It would
lead to coarser grids with increasing aspect ratio of the mesh spacing. Hence the convergence
of a multigrid scheme on such grids would considerably slow down. Here, the removal of
mesh lines follows the rule: Two neighboring steps

���
and

�
� remain also in the next coarser

grid as long as either
��� � 	
������

or
�
�
� 	
������

, where
������

denotes the overall minimal
step size of the corresponding fine level. The factor

	
is chosen as

	 � �
���
or

	 � �
���
with the

objective to obtain a decreasing aspect ratio of the mesh spacing.
Furthermore, the choice of the multigrid parameters such as the number of pre- and

post–smoothing steps, the application of full or half restriction considerably influence the
performance of the multigrid scheme. If the convergence of the multigrid algorithm turns out
to be not sufficient (e. g. if the coarsening does not come out with decreasing aspect ratio on
all levels), multigrid can be applied as a preconditioner for the conjugate gradient algorithm.
This method leads to a better convergence at least in cases where a plain multigrid scheme
converge too slow [5, 4].
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3. Numerical test cases

The new 3D space–charge routine has been tested with a sphere filled with electrons with
both uniform and Gaussian distribution. The space–charge forces has been computed for only
one time step. For numerical tests with other bunch shapes and tracking examples we refer
to [8, 12]. For an optimal performance of the space–charge routine several questions have to
be considered:

(i) What is an optimal distribution of mesh lines both for the approximation of the particle
distribution of the bunch and for the multigrid performance? (Choice of parameter

���
)

(ii) Which number of mesh lines is optimal? (As few as necessary.)

(iii) How does the choice of multigrid parameters influence the performance of the algorithm?

Three possible versions of the multigrid scheme has been investigated. Two of these schemes
have been performed with the following components: the Gauss–Seidel red–black iteration
has been taken as smoothing operator with 2 pre– and 2 post–smoothing steps MG(2,2), full
restriction has been tested versus half restriction. The third algorithm has been the application
of multigrid as preconditioner for the conjugate gradient method (MG-PCG). It requires that
the multigrid scheme is a symmetric and positive operator [4, 5]. Thus the components have
been chosen as follows: two pre–smoothing steps with red–black Gauss–Seidel relaxation,
two post–smoothing steps with black–red Gauss-Seidel relaxation and full restriction. Two
V–cycles have been performed per CG–iteration step (MG–PCG(2,2)(2)).

3.1. Sphere with uniform particle distribution
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Figure 2. Error of the electric field for uniformly distributed particles in a sphere: Comparison
of different meshes depending on parameter ��� performed with 50,000 particles (left),
comparison of different numbers of particles on an equidistant mesh with ��� � ��� � .

For the investigation of the first two questions we tested the model of uniformly
distributed particles in a sphere with the known analytical electrical field of a uniformly
charged sphere. The error for the electrical field has been measured after interpolation at the
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Figure 3. Influence of the choice of multigrid parameters to the performance of the space–
charge routine (MG: multigrid, MG–PCG: multigrid preconditioned conjugate gradient): the
number of multigrid iterations until the residual is less than � ����� in the maximum norm (left),
the related CPU times measured on a 800 MHz Pentium PC (right). The calculations have been
performed on an equidistant grid with ��� � ��� � with a spherical bunch of 50,000 particles,
where the particles have a uniform distribution.

position of the particles. Fig. 2 shows the best convergence for the equidistant grid (
��� � ��� �

)
what is not surprising for a uniform particle distribution. Since the multigrid scheme has the
best convergence and stability on equidistant meshes, these meshes should be preferred in
the case of uniformly distributed particles. Furthermore, it can be concluded from Fig. 2 that
neither a large number of mesh points nor a large number of particles improve the final result.
Consequently, for a high efficiency of the 3D space–charge routine no more mesh lines or
particles than reasonable should be taken for simulations.

Fig. 3 shows the performance of the above introduced 3 multigrid algorithms. As
expected the multigrid preconditioned conjugate gradient method has the most stable
performance. The multigrid scheme with half restriction as grid transfer operator turns out to
be very sensitive to non–optimal meshes. In this case these are meshes with an even number
of mesh lines for each coordinate direction. Here, the coarsening can not generate good results
concerning the mesh spacing (see subsection 2.2).

3.2. Sphere with Gaussian particle distribution

Tests with the model of a Gaussian particle distribution in a sphere show the advantage of the
application of non–equidistant meshes. Fig. 4 shows that meshes with larger aspect ratios in
mesh spacing, i. e. larger

���
result in a better convergence of the error of the electric field. It

can be concluded that meshes with
��� � �����

would not improve the results for the field error.
Similar as for the uniformly distributed particles an increasing number of particles (greater
than 100,000) in the sphere leads to no smaller field errors.

The multigrid schemes have been performed on a non-equidistant mesh with
��� � �����

(see Fig. 5). Again the multigrid preconditioned conjugate gradient method turns out to be
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Figure 4. Error of the electric field for Gaussian distributed particles in a sphere: Comparison
of different meshes depending on parameter ��� performed with 50,000 particles (left),
comparison of different number of particles on a non–equidistant mesh with ��� � ����� .
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Figure 5. Influence of the choice of multigrid parameters to the performance of the space–
charge routine: the number of multigrid iterations until the residual is less than � � ��� in the
maximum norm (left), the related CPU times measured on a 800 MHz Pentium PC (right).
The calculations have been performed with a spherical bunch of 50,000 particles on a non–
equidistant grid with ��� � ����� , where the particles have a Gaussian distribution.

the most stable algorithm. Multigrid performed with half restriction is as in the previous test
case very sensitiv to the distribution of mesh lines.

4. Conclusion

A new 3D space-charge routine implemented in the GPT code has been described in this paper.
The new method allowing 3D simulations with a large number of particles on a common PC
is based on a multigrid Poisson solver for the calculation of the electrostatic potential in the
rest frame.

Various parameters of the routine have been tested for model bunches in order to find out
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a stable and fast performance of the space-charge routine. Various applications like colliders
or SASE-FEL’s require very high quality bunches. Related to such applications we refer
to [12], where the space-charge effects of very short and very long bunches with the new 3D
space-charge routine in GPT are studied.
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