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Abstract

It is planned to operate the TESLA linear collider with very short bunches leading
to spectral components of the wakefield in the THz region. A special HOM (higher
order modes) absorber similar to a two-dimensional array of rectangular waveguides
has been proposed in order to couple out the wakefield from the accelerating struc-
ture. In this contribution, a mode matching analysis of such a waveguide array is
presented. In this approach, the diffracted field in the region above the absorber is
represented by the so-called Rayleigh expansion whereas inside the waveguides the
complete set of waveguide modes is assumed. The absorption characteristics of a
typical structure is studied in detail up to a frequency of 2 THz. The validity of the
presented analysis is confirmed by computations carried out by the electromagnetic
field simulator MAFIA.

I. Introduction

For the FEL operation mode of TESLA [1], very short bunches (¢ = 25 um) are to be used.
These bunches excite wakefields at the cavities and at other discontinuities in the vacuum
chamber of the accelerator with spectral components up to the THz region (fmax o co/27c,
where ¢y denotes the velocity of light in vacuum). Frequencies above 700 GHz are especially
undesirable because these spectral components can crack the Cooper pairs and lead to a sig-
nificant reduction of the quality factor of the superconducting cavities and consequently to an
excessive energy deposition in the 2K cooling circuit.

In a typical refrigerator 800 W of wall plug power per Watt dissipated at 2K are required
[2]. The average power deposition due to wakefields is about 25 W per module [1]. Assuming
that this power is completely absorbed at the 2K level, which leads to a power consumption
of the cooling system of about 20kW per module, it is obvious that the wakefields must be
extracted somewhere else at a higher temperature where the efficiency of the refrigerator is
much better.

In [3], the design of a HOM absorber, which is schematically shown in Fig.1, has been
proposed. It consists of an array of rectangular waveguides surrounding the beam pipe between
two succeeding cryogenic modules. With the help of this waveguide array, the high frequency
components of the wakefields are efficiently extracted from the accelerating structure; whereas
the low frequency part of the spectrum cannot significantly penetrate into the absorber wave-
guides. The propagating rectangular waveguide modes are then strongly attenuated by wall
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Figure 2: Waveguide dimensions.

Figure 1: Schematic drawing of a HOM absorber.

losses being considerably high at frequencies above the cutoff frequency of the fundamental
waveguide mode.

The absorber works at the same temperature level as the shield cooling which is 70K. In
this case the absorbed power has to be multiplied only by a factor of 25 yielding 625 W wall
plug power per module for the cooling which is tolerable [2].

The waveguide dimensions which are defined in Fig. 2 are determined by the cutoff frequency
of the absorber and the required attenuation of the waveguide modes. If the cutoff frequency
1s assumed to be 100 GHz, the width @ of the rectangular waveguides has to be 1.5 mm.

The diameter of the absorber has to be less than 300 mm due to the limited space for
its installation; and the diameter of the beampipe is 70 mm. Consequently, the length of the
rectangular waveguides is less than 115mm which means that a relatively high attenuation of
the waveguide modes is necessary in order to guarantee that not too much power is reflected back
into the beampipe. Fig. 3 shows the attenuation characteristics of the fundamental rectangular
waveguide mode for various aspect ratios ¢ : b assuming that the waveguide is made of stainless
steel with a conductivity of 0.5 - 10" S/m. The results presented in this diagram indicate that
the attenuation can be adjusted by the choice of the ratio a : b. If we choose an aspect ratio of
5 : 1, which corresponds to a waveguide height of 0.3 mm, the attenuation of the fundamental
waveguide mode is always larger than 70dB/m. Thus, even if we assume the worst case, i.e.,
the incoming wave is totally reflected at the outer radius of the absorber, the VSWR is still
less than 1.4 which is acceptable.

It is obvious that for a good coupling between the accelerating structure and the absorber
the thickness of the waveguide walls should be as small as possible. Therefore t = 0.1 mm is
assumed which seems to be the lower limit of this dimension from the mechanical point of view.

For the sake of simplicity of the field theoretical analysis of the absorber, we consider instead
of the original configuration a two-dimensional infinite planar grating which is schematically
shown in Fig. 4. The absorption characteristics of this model are expected to be very close to
those of the original absorber for the following reasons: For frequencies higher than the lower
frequency limit of the absorber the free-space wavelength of the electromagnetic field is much
shorter than the radius of the beampipe. Consequently, the curvature can be neglected and we
may use a planar model instead of the circular structure.

Taking the above discussed dimensions into account, it becomes clear that Fig. 1 is somewhat
misleading because not only a few but more than 130 waveguides surround the beampipe.
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Figure 3: Attenuation of the fundamental mode corresponding to a rectangular waveguide
made of stainless steel for various aspect ratios. Parameter: ¢ = 1 5mm, ¢ =

0.5-107S/m.

VA

Figure 4: Schematic drawing of 3 x 3 cells of the grating.
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Moreover, approximately 100 mm of space is availabe for the absorber in the axial direction.
This means that about 250 layers of waveguides can be accomodated. Thus the absorber consists
of a really large number of waveguides in both the axial and the azimuthal direction so that it
may be approximated by an infinite grating with good accuracy.

Such a grating, which is none but a two-dimensional periodic structure, can be analyzed by
the application of the mode matching technique. Above the grating the electromagnetic field
1s expanded in terms of an infinite series of spatial harmonics, which is known as the Rayleigh
expansion. Inside the waveguides the electromagnetic field is represented by the complete spec-
trum of TE and TM waveguide modes. Matching the tangential electromagnetic field at either
side of the waveguide aperture yields an infinite algebraic system of equations the unknown of
which are the field expansion coefficients [4]-[6]. For the numerical solution one has to truncate
the infinite system of equations. Therefore a detailed study of convergence is required in order
to estimate the accuracy of the results.

The ratio describing how much of the power of the incoming wave is coupled into the
waveguides is denoted as the grating efficiency. This ratio quantifies the power absorption
properties of the structure. It is calculated for a grating with typical absorber dimensions in a
broad frequency range and for various angles of incidence.

It will be shown that for the case of normal incidence of the incoming wave the field anal-
ysis of the waveguide array is equivalent to that of a step discontinuity in a waveguide. The
validity of the presented method is then verified by comparing its results with those obtained
by the electromagnetic field simulator MAFIA [7], [8] applied to a corresponding waveguide
discontinuity.

II. Analysis

This section is devoted to the field theoretical analysis of the grating. It is organized as fol-
lows: The representations of the incident, the diffracted and the waveguide field are treated
in Subsections IIa)-IIc). The matching of the aperture tangential field is then considered in
Subsection IId}. Finally, the required relations describing the condition of power conservation
will be obtained in Subsection Ile).

ITa) The incident field

The parameters of the incident plane wave are defined in Fig. 5. The wavevector of this field is
denoted by k so that with k as unit vector along k and ko as free-space wave number we may
write

k= kok . (1)
k can be decomposed into its cartesian components ey, ¢, and 5:
k=¢éa,+€,0,— €, , (2)

where é., €, and é, are unit vectors in z-, y-, and z-direction, respectively. Usually the wavevec-
tor is not given by its cartesian components but in terms of ko and the two angles © and ¢
which define the direction of incidence:

oy = sin(0)cos(F)ky (3)
o, = sin(O)sin(d)ky , (4)
B = cos(O)ko . (5)
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Figure 5: Definition of the angles and wavenumbers characterizing the incident wave.

For a complete description of the incident electromagnetic field, we need also further infor-
mation about its amplitude and polarization. Let us assume that the incoming plane wave is
linearly polarized. Then the electric field can uniquely be given by its amplitude Ej and the
angle (2

E' = E§ (cos() 5 + sin() £) e~lo=stas—b) (6)

where the unit vectors § and £ define a plane normal to the wavevector. According to Fig. 5 the
cartesian components of 8§ and ¢ read

w>

= €zcos(d) cos(O) + é,5in(O) + é,sin(d) cos(©) (7
= —é&,sin(d) + é,cos(¥) . (8)

L N

For a plane wave the magnetic field H* is related to the electric field by

H"=Zi0(i}xE") , (9)

where Z, denotes the impedance of free space.

IIb) The diffracted field

The diffracted field can be decomposed into two partial fields. One of these fields is derived from
an electric vector potential F' and the other one from a magnetic vector potential A [9]. Each
of the partial fields fulfils the source-free wave equation. Nevertheless the boundary condition
at the grating interface (y = 0) can only be satisfied if both fields are taken into account.

The electric vector potential is defined as

E=-VxF . (10)
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Due to the geometry of the structure it is convenient to use vector potentials directed along
the y-coordinate which is perpendicular to the grating interface:

F=8,0 (11)

Substituting Eqgs. (10) and (11) into Maxwell’s equations, it is found that the scalar potential
U is a solution of the homogeneous wave equation:

VI 4+ k2 =0 (12)

Finally the cartesian components of the partial field which is derived from the electric vector
potential are

, 0 , 0
E = ezalll—ezgglll y (13)
1 [, & ., O L
A R (’%*a—yz)“’“za—yﬁz‘l’) ' (14

The magnetic vector potential A is usually defined without the minus sign of Eq. (10):
H=VxA (15)
The y-component of A is denoted by ¢:
A=ép (16)
Corresponding to Eq. (12), this scalar potential also fulfils the source-free wave equation
Vie+kip=0 . (17)

The electromagnetic field which is then derived from ¢ reads

— Z[) - 82 A 2 82 - 82
E = ﬁc; (exgéa—yso +ey (ko + 53—/"5 @+ 3:@'(9—2?9 ? (18)
L, 0 .0
H = -—exgcp-i-ezb-;go . (19)

The Rayleigh expansion of the diffracted field is based on the fact that this field is pseudo-
periodic {which means that it is periodic except for a phase factor) in the z- and the z-direction:

el + Lsyy,2) = 99(17:3/:2) e~iasks )
(e, y,2+ L,
V(z + Ly, y, 2

V(z,y,z+ L.

) . (20)
) = wlzy,z)er b (21)
) = ¥(z,y,2) e""“’L’ (22)
) = U(z,y,2)e7 ks (23)
where L, and L, are the dimensions of one cell of the grating in the 2- and the z-direction,
respectively, which is illustrated in Fig. 6. Egs. (20)-(23) mean that if we proceed a cell length
Lz(L.) in the z(z)-direction the electromagnetic field is the same except for a phase factor of

g i@zls(g=d@:lzy which is determined by the angle of incidence of the incoming wave. Thus,
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z waveguide

Figure 6: Definition of the grating dimensions.

we can expand these quantities into ordinary two-dimensional Fourier series if we multiply the
potentials ¢ and ¥ by e~F(esz+as2).

p(@,y,2) = 3 BppemiCmstamstbony (24)
Ba,gs) = 3 BEerieemetemstiny (29

4. and BE  The phase
advance in the 2- and the z-direction of the (m,n)th spatial harmonic is given by

The expansion coefficients of the spatial harmonics are denoted by BA

2

Ay = (l‘x—mL—m- y (26)
2m

O,y = az—nL—z (27)

respectively. Consequently the phase advance in the y-direction of the (m, n)th expansion term
reads

VR =l +at) , K zal,+a,
—if(ei, +a) -k , K <al,+al,
The Rayleigh expansion means that for y > 0 the field can be represented by a series of outgoing
plane waves having the same pseudo-periodicity as the incident field. It is worth noting that

similar to waveguide modes only a finite number of plane waves are propagating upward whereas
an infinite number of spatial harmonics constitute evanescent waves in the y-direction.

Bmn = (28)

IIc) The waveguide field

Inside the rectangular waveguides the electromagnetic field is expanded in terms of the complete
set of TE and TM modes with respect to the y-direction.



TESLA Report 1998-24

The cartesian components of the TE modes are

E-T’PG'
EZPQ

E

yrg
HEPQ

H

zpg

Hqu

It

_A:; Npgkzqcos(kypz) sin(k,qz) e’Cre¥
A:{I NPQ kxPSin(ka:pm) CQS(kzqz) ejquy
0 7

ks, ] _
—A:{;Nm k:é’:’ sin(kzpx) cos(kpz) e7re¥

kzq&;
H z
_quNP‘I k:ZT
k2, + k2

jTZquCOS(kxpm) cos(k,_qz) elépay

cos(kepz) sin(k,, z) e’

qu Ny,

(29)
(30)
(31)
(32)
(33)

(34)

where Zp denotes the intrinsic impedance of free-space [10]. The normalizing quantity N,, is

given by

1
N,, = :
™ \/(1 + tr5110) (1 + 590)

(35)

where 0,0 is the Kronecker-delta. N,, is introduced so that all TE modes including those with
either kg, = 0 or k;; = 0 have the same length in functional space. The propagation factor &,

reads
\/kg - (kg‘p + kzq) ) kg 2 k:?:p + ksq
Epg = with
il k) - R, R <k, 4R,
pr
keypy = —
7 LO:c
gm
k, = :
! LDz

and A}l denotes the amplitude of the (p,¢)th TE mode.
For the cartesian components of the TM modes we can write

Ewpq

E zpq

E!J.‘Pq
HI‘PQ
HZP?

HB‘PQ

AE kmpqu ZO

S cos(kzpr) sin(k.qz) efre?

20€peZo . ;
AL %i-—osm(kzpm) cos{kyqaz) Cra¥
ko
r (K2, + k2,) Zo
Pq ko

_Af:;kzq Sin(kxpm) Cos(kqu) ejqu!,'

sin(kqpz ) sin(kyz) effre?

AL kzpcos(kop) sin(k,qz) efrev

0

(36)

(37)

(38)
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The amplitude of the (p, ¢)th TM mode is denoted by qu. The propagation factor &,, which
is defined in Eq. (36) is valid for both TE and TM modes. On the other hand, a normalizing
factor similar to Ny, is not required for TM modes because these modes do not exist for k,, = 0
or k,, = 0.

IId) Matching of the tangential fields in the aperture

In the preceding three Subsections Ila)-Ilc) the incident, the diffracted and the waveguide field
- are considered which from now on are marked with a superscript ¢, r and w, respectively. In
this subsection the corresponding fields are matched at the grating interface in order to obtain
a linear system of equations for the still unknown field expansion coefficients B2 | BF | A;{;
and Af;.

Matching the tangential electric field in the common aperture over one unit cell yields one
equation for the z-component and another one for the z-component;:

: EY| _ 0<z< Ly and 0 <z < Ly,
1 r — z ly=0 4
B y=0 + Ezlymo { 0 , otherwise ’ (45)
; EY| _ O<z< Ly and 0<z< L
i r — z ly=0 x %
E; y=0 + Bl { 0 , otherwise (46)

After inserting the corresponding expansions for the incident, the diffracted and the waveguide
field into Eqgs. (45) and (46), multiplying both sides of the resulting equations by et#(erz+azs2)
and integrating over one cell of the grating leads to two infinite sets of equations:

Eibraba + (—az,B,f'; 1 e (B:tzo)) -

ko

LELz - TC Fzs ooé'k TC 28

— N Yk N IS I AR 4 S LR poepze (4F 7,)
LL, p=0 pg=1 ko
q:
for r,s=—-00,...,0,...,00 |, (47)
Bibabo+ (an B + 222 (542)) =

0

Pg=1

LoxLDZ - s rzc AH — 6 kz s Fzc E
Lsz (; k”PNPquP Iqupq + Z p;co qup Isq (APQZD)
for r,s=—00,...,0,...,00 , (48)

where E}, and E}, denote the z- and the z-component of the electric field amplitude of the
mcident wave, respectively. The quantities I75, I7%, IZ* and IZ¢ are one-dimensional coupling
integrals which measure the similarity between the pth{gth) waveguide eigenfunction and the

rth(sth) spatial harmonic in the z(z)-direction:

T 1 Los iQyrT
I = Io /x i cos(kepz) €% %dz (49)
25 1 Loz . =775
I = Lo, fz:u sin(kzq2) &'%**dz (50)
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rs 1 L Qrrd

e jm_o sin(kzpz) 9= ode (51)
1 Loy .

e o= / c08(ksq7) €877 dz (52)
Loz z=0

These integrals can be evaluated analytically giving

v = (pw)zjc—!mch’:jfxoz)z (et =) (39)
= —q(l,Lozf (—eforelor (~1)7 +1) (54)
= Gy *JD(;,LOT,)? (zerrr -1y +1) (55)
I = Jozslo: (ef“"Lw(—l)?—l) : (56)

(qﬂ')z - (azsLOZ)z

The mode matching analysis of the grating results in a typical boundary reduction problem.
This means that the z- and the z-components of the electric field above the grating must fulfil
a boundary condition at the grating interface for all points in the zz-plane. On the other hand,
the magnetic field has to satisfy the continuity conditions

Ha'

-1

--I-H"|y_0 = H:’Iyzo y O<e<lp, and 0<z< Ly, |, (57)

y=0

Hi
x y=0

+ HLI@;:O = H:I'y:(} , O<ax< Ly, and 0<z< Ly, (58)

only at the waveguide apertures. After inserting the appropriate field representations for

', H! and HY into Eq. (57), both sides of the resulting equation are then multiplied by
Nuvsm('ﬂ”) cos("”) foru=1,2,...00 and v =0,1,...c0 and integrated over the waveguide
aperture yielding:

i TI\* Zoy* . — a mﬂmn
HO.rNu‘U (Iﬂu) (IOv) +.7 Z (-_E?O_

mp==—00

1 —é‘i"k-ﬂAfv—kw(AE,,Zo) for u=1,2...0 , v=01,...00 (59
i\ &

By + aon (B:inzo)) Nuw (I22)" (I25)" =

The asterisk means complex conjugate; and Hp, is the z-component of the amplitude of the
magnetic field corresponding to the incoming wave.

Correspondmgly, Eq. (58) is multiplied by Nuvcos(}i") sm(""") for u = 0,1,...00 and
v=1,2,... 00 and then integrated leading to

; T L e CanPOmn Te \*  pzay*
BN (5 (2 +7 5 (2202, = aun (Bu20) ) M (1520 (50)° =

m,n=—co

1 (_6“”kz”Afv + ke (Avao)) for u=0,1,...00 , v=1,2,...00 . (60)
4 ko

The modal expansion coefficients B2 = BE AH and AE are now uniquely determined by

mn? mn?

solving the linear infinite system of equations which consists of Eqgs. (47), (48), (59) and (60).
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Ile) Power conservation

The grating is assumed to be lossless. Consequently, the sum of the power of the diffracted and
the waveguide field is equal to the power of the incident wave:

Pi=P 4P (61)

This condition may be used in order to examine the correctness of our numerical results.
Nevertheless, one has to bear in mind that Eq. (61) is satisfied for any number of field expansion
terms. Therefore the condition of power conservation does not yield any information about the
accuracy of the results.

The time-averaged power transmitted across the area of one grating cell by the incident
wave is given by one-half of the real part of the integral of the (—y)-component of the complex

Poynting vector E* x (Hi)*

= —Re{ fm (B x (H)) - (-&,) da dz} (62)
Inserting Eqs. (2), (5) and (9) into (62) yields

EBI

D

L L, | ——cos(f) . | (63)
As expected, the power of the incident wave is proportional to the square of | E}| and to cos(8).
The latter term is unity for a normal incident wave and vanishes for grazing incidence.

The power of the diffracted and the waveguide field can correspondingly be evaluated from

o= %Re{ f j _ET(H) +E;(H;)*)d:cdz} , (64)
pv = %Re{_L_O [~ (B2 (Hyy - B2 (H ))d:cdz} , (65)

respectively. If we replace the field components in Eqgs. (64) and (65) by the corresponding series
representations according to Egs. (13), (14), (18), (19), (24) and (25) for the diffracted field and
(29), (30), (32), (33), (39), (40), (42) and (43) for the waveguide field we finally arrive at

I

po = %R{fm; (i (K2 + K2,) o |45 + Z (K2p + K2,) oo IAEZDI)}-(G”
P+g>0

BF

mn

Zo

L.L,

P = %Re{

S5 (a2 + o) e (|Bgﬁ

kﬁ ™m,=—00

Note that although the series of Egs.(66) and (67) extend over all spatial harmonics and
waveguide modes only those terms with a real 3, and a real £, contribute to P” and Pv,

respectively.
The condition of power conservation is routinely monitored; and it is fulfilled for all numer-

ical results which are presented in the next section.

11
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Figure 7: Real part of Ex/EE', along a line with z = 0.02. L. Parameters: L, = 0.2 L,,
Lor =05-Ly, Lp;=01-L;,8=05-7/2,9=01-7/2,Q=0, kg = 35/L,.

ITI. Numerical results

Let us start the discussion of the numerical results with a check of the validity of the presented
method. According to Subsection I1d) the aperture tangential components of the sum of the in-
cident and the diffracted field must be equal to the corresponding waveguide field. Furthermore
the z- and the z-component of the electric field at y = 0 have to vanish outside the waveguide
aperture.

Figs. 7 and 8 show the real part of the z-component of the electric and the magnetic field
strength, respectively, along a line with z = constant. These figures confirm that the field
distributions at both sides of the waveguide aperture are indeed identical except for some small
oscillations due to the well-known Gibb’s phenomenon [11]. Moreover, E, is very close to zero
for Lo, < z < L. as it should be.

As already mentioned, we have to truncate the infinite system of equations for the practical
implementation of the mode matching analysis. This limits the accuracy of the results which
can, of course, be improved by taking more field expansion terms into account. On the other
hand a higher number of expansion terms means that a larger system of equations has to be
solved. Therefore one has to find a trade-off between the accuracy of the results and the required
amount of computer resources.

In order to estimate the accuracy of the results, it is useful to study the convergence of
the method with respect to the number of field expansion functions. Fig.9 shows the grating
efficiency as a function of the maximum order of the spatial harmonics in the z-direction N,
for a grating with typical dimensions of the proposed absorber: ¢ = 1.5mm, b = 0.3 mm and
t = 0.1 mm. The normalized wavenumbers koL, = 70, 35, 17 and 7 correspond to frequencies
of approximately 2000, 1000, 500 and 200 GHz, respectively.

For a frequency of 200 GHz accurate results are already obtained for N, = 5. It is obvious
that N, has to be increased for higher frequencies. From Fig.9 it can be concluded that for a

12
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- el wall

Figure 10: Reduction of the grating analysis to a waveguide discontinuity problem.

frequency of 2000 GHz N, = 20 is sufficient. Thus this value is used for all further calculations.
N.; = 20 means that approximately a {1500 x 1500) linear system of equations has to be solved.
Assuming this parameter, a typical frequency scan with 1000 points requires about 2d of cpu-
time on a modern workstation, which is tolerable.

If the electric field vector of the incoming wave goes along the z- or the z-direction the
analysis of the array of rectangular waveguides reduces to a simple waveguide discontinuity
problem. This is illustrated in Fig. 10. Due to the periodicity of the structure in the z- and the
z-direction, it is sufficient to consider a single cell of the grating which is bounded by perfect
electric and magnetic walls normal to the electric and the magnetic field vectors, respectively.
Keeping in mind that the electrically and magnetically conducting walls correspond to a short
circuit and an open circuit, respectively, it becomes clear that the analysis of the grating is
nothing else than a discontinuity problem between a parallel-plate and a rectangular waveguide.
Furthermore we have two additional planes of symmetry for each cell dividing it into four
identical pieces. Thus only one quarter of the waveguide discontinuity problem has actually to
be considered as shown in Fig. 11.

Such a discontinuity is analyzed using the MAFIA computer code. The results are then used
as a reference in order to check the validity of the presented mode matching technique.

It is worth noting that for the application of the mode matching technique instead of © =0 a
very small angle © of approximately 1° is assumed because the case of a really normally incoming
wave is not covered by the field representation of the diffracted field for the following reason:
The diffracted field is derived from electric and magnetic vector potentials with respect to the y-
direction. These vector potentials are proportional to the y-components of the electromagnetic
field according to Eqgs. (14) and (18) which are not present for a normal incident field. Thus, if
a TEM field with respect to the y-direction is not taken into account explicitly, which is not
the case, we have to assume a small angle ©. Fig.12 shows the excitation of the TEo, the
TEsq and the TEsq rectangular waveguide modes as result of both methods. It is found that in
the investigated frequency range from 100 GHz to about 700 GHz the results agree very well.

The absorption characteristics for a normally incident, an obliquely incident and a nearly
grazing incident field are presented in Figs. 13, 14 and 15, respectively. For a normally incident
field the absorption characteristics is relatively well-behaved with the exception of some kinks
which are observed at frequencies where either one of the spatial harmonics or one of the

14
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Figure 11: Three-dimensional view of one quarter of the discontinuity between a rectan-
gular (L.H.S.) and a parallel-plate (R.H.S.) waveguide.
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Figure 12: Comparison between the MAFIA computer code and the presented mode
matching technique. Parameters: see Fig.9.
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Figure 13: Absorption characteristics for a normally incident field. Other parameters: see
Fig. 9.
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Figure 14: Absorption characteristics for an obliquely (©@ = 45°) incident field. Other
parameters: see Fig. 9.
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Figure 15: Absorption characteristics for a nearly grazing (& = 85.5°) incident field. Other
parameters: see Fig. 9.

waveguide modes turns from evanescent to propagating with respect to the y-direction. The
grating efficiency is always greater than 0.6 (except for frequencies which are very close to the
cutoff frequency of the fundamental mode of the rectangular waveguide) which means that more
than 60% of the power of the incoming wave is absorbed by the waveguide array. As expected,
the grating efficiency slowly tends to 0.7 at the upper end of the investigated frequency range
which is just the ratio of the waveguide aperture and the area corresponding to one cell of the
grating (a- b/ ((a +t)- (b+1))).

It can be concluded from Figs. 14 and 15 that the average grating efficiency decreases for an
increasing angle ©, Furthermore the corresponding curves are characterized by rapid changes
due to resonant effects. Nevertheless, even for the nearly grazing incident field with © = 85.5°
an average grating efficiency of about 0.4 is observed in the considered frequency interval which
still seems to be acceptable for the proposed absorber.

IV. Conclusions

The mode matching technique has been applied for the analysis of a two-dimensional array
of rectangular waveguides which serves as a model for a HOM absorber. A detailed study of
convergence has been carried out in order to demonstrate the accuracy of the presented method.
Furthermore the validity of the results has been checked by comparing the excitation of the
rectangular waveguide modes with corresponding numbers from MAFIA computations for the
special case of normal incidence. The analysis of a grating with typical absorber dimensions
has shown that the average grating efficiency is quite high. Although this quantity decreases as
we approach the case of grazing incidence the overall absorption properties of such a grating
seem to be acceptable.
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