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Abstract

The TESLA linear collider will require bunch lengths in the range of
0.3 to 0.7 mm at the interaction point (IP) for the different parameter
sets presently under discussion.

In order to achieve this the bunches leaving the TESLA damping
ring will pass a single stage bunch length compressor.

To keep the demands of the latter moderate, the TESLA damping
ring needs to fulfil limitations in respect to the longitudinal phase space
(in the range of 4 mm to a maximum of 1cm for the bunch length and
0.1 percent for the energy spread).

The possibility of bunch lengthening effects and other instabilities
due to wake fields need to be and have been studied.

The assumed wake fields of various components are presented and
incorporated in a tracking method using a quasi-Green’s function ap-
proach to simulate their effect on the longitudinal dynamics of the
beam.

The results are compared to analytical estimations (ref. [1]).

1 Introduction

The TESLA linear collider design [2] foresees damping rings in order to reduce
the beam phase space volumes down to the design emittance for collider
operation. In case of the electron beam, using a laser rf-gun may pose an
alternative.

The normalized emittance of the positron beam injected into the ring which
is assumed to ve; = 0.01 m leads to a necessary vertical emittance reduction
factor of 2 - 107°. This in combination with a storage time equal to the
cycle time 7. of 200 ms determines the vertical damping time and hereby the
necessary energy loss per turn.
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Figure 1: General layout of the “dog-bone™shaped DR (ref. [2]).
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In order to avoid the need for a costly additional ring tunnel, the TESLA
damping ring is designed so that most of the lattice can be installed in the
linac tunnel. Additional tunnels are only required for the two “loops” at the
ends of the straight sections (see Figure 1).

The main complication which arises for the TESLA damping ring is due to
the pulse structure of the linac. The train of the 1130 bunches per pulse has
a length of 0.8 ms, or 240 km respectively. The bunch train will be therefore
stored in a compressed mode, with a bunch spacing much smaller than in
the linac.

1.1 Parameters

The parameters (for a one cm bunch) have been previously studied in detail in
[1] and are to be found in Table 1. The ring and beam parameters are not in
all cases exactly the same as those in the CDR report, i.e., the circumference
is here 20 km compared to 17km in the report (as it was taken from [1] and
the studies began prior to the setting of design parameters).

The choice of the frequency, fif = 433 MHz, is motivated by having an integer
fraction of the main linac frequency and by the availability of high power
klystrons ([2]).

The relative rms energy spread induced by synchrotron radiation is determ-
ined by the ring structure (see [3]):
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where the damping partition number .J. & 2, p is the particle curvature radius
in the magnetic field along the orbit.

As the radiation comes mainly from the wigglers with the piece-wise constant
magnetic field By = 1.5T, the energy spread in the TESLA Damping Ring
(DR) is circumference independent:
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Table 1: TESLA dog-bone damping ring parameters relevant for this study.

Parameter units
Circumference C 20 km
Rev. frequency fo ca. 15 kHz
DC/bunch I 0.09 mA
Energy E 3.3 GeV
Loss per turn Uy 12 MeV
Energy spread OR 1.04-1073
RF-Voltage v 24 MV

Overvoltage factor q—eV /Uy 2.0

for bunch rms length o, = 1 cm:
Synchr. tune Vs 0.087
Mom. compaction « 2.7-1074

In [1] it was assumed that the rms bunch length o, was fixed at approx. 1 cm.
The choice of a certain overvoltage factor g, the ratio of the peak rf-voltage
V and the energy loss per revolution Up:

1 eV

1= ndy = Uo 3)

then determines the necessary values of the momentum compaction factor «
and the synchrotron tune v to obtain the wished bunch length. This can be
easily seen by studying the relationships
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and
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The above h is the harmonic number, relating the revolution frequency to
the rf-frequency, fif = h - fo.

The advantages and disadvantages of smaller and larger overvoltage factors ¢
are discussed in [1]. For sake of definiteness g was chosen to be two whereby
« and v were determined.

Here g has been left at two, but the momentum compaction has been looked
upon as variable to obtain different rms bunch lengths o, and to study the

wake field effects.



The above relationships (4) and (5) correspond to the following two:
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2 Simulation Technique

The simulation is based upon the usage of macroparticles and the incorpor-
ation of wake field effects into the equations of motion with the help of
quasi-Green’s functions (see [4]).

A bunch is represented by a variable number N, of macroparticles (7, ¢)

where
7, particle position in time with origin at zero of the main RF,

¢r particle energy deviation from nominal energy E.
The tracking equations in the program are such that it is possible to define
different sections within the machine and track during one turn from one
sector to another. The equations of motion are described by practically the
same equations as given here for a full revolution for simplicity where the
phase space coordinates on turn n 4 1 are related to those on turn n by
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with
o momentum compaction
To  beam revolution period
E nominal energy

Uy  average synchrotron radiation loss per turn

eV, peak energy gain from the RF :

wy; angular frequency of the RF ¢

¢;  phase off-set from main RF (with index ¢ =1, ¢; = 0)
T. radiation damping time for energy oscillations

0g. natural energy spread of the beam

R Gaussian distributed random number with mean = 0 and rms = 1

W wake field



Memory effects due to resonant modes in cavities are not included. The
second to last term on the right hand side of the second equation describes
the energy variation due to quantum excitation by photon emission.

The third term on the right hand side of the first equation reflects the con-
tinuous radiation loss, here between two successive turns. Due to this term
a synchronous particle has a non-zero amplitude.

It is interesting to note that linearization of the rf-potential and neglection of
the damping and quantum excitation terms lead however then to a symplectic
mapping, in this special case via the leap-frog integration method.

When tracking with e.g. p identical sections Ty is replaced for example by
Ty = To/p.

Note, that in the TESLA DR there is only one rf-frequency although the
above equations show the possibility of having different frequencies.

Instead of using Green’s functions (delta-wakes) to calculate the wake fields
quasi-Green’s functions are used, the wakes of Gaussian bunches with a smal-
ler rms value than the bunch studied.

The basic idea behind this technique is the following relationship between
the wakes of two Gaussian bunches due to the one and same delta wake.

W,.(s) = /_O;dz)\m(s—z)wfg(z), i=1,2
= W,,(s) = /_O;dz/\\/ﬁ(s—z)wal(z).

Note
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W, (5) ~ /_O; dz M,y (s — 2) W, (2). (10)

so that

Figure 2: Macroparticle binning.

The numerical approximation has an acasual part to it as W,,(z) #Z 0for z <
0. In the following the abbreviation QGF will stand for quasi-Green’s func-
tion and mean any wake which is being used instead of the Green’s function,
as in the above case W,, (z).



To determine the wake field seen by a macroparticle a binning technique is
used. The bunch represented by the N, macroparticles is divided into bins
with a pre-defined constant width.

Then 7.(i), the centre of mass for every bin ¢, and ny(z), the number of
particles in bin 2, are determined.

The wake field effect on each bin is calculated as:

&5 ) - QGE(r() ~ (1) (1)

par ;=1

Wi(i) =

which corresponds to
Wi(s) = / dz \(z) Wi(s — 2)

with A a normalized line charge density, i.e. [ dzA(z) = 1 and with the
delta-wake or Green’s function Wjy(z).

The wake field seen by a macroparticle (73, ) is then calculated by linear
interpolation

Wi(rg) = Wy(i) - (1 — A7)+ Wi(e + 1) - AT, (12)
where

T — T(2) . .
AT = d (i) < . 1).
T Y p— and  7.(1) <7 < 7Te(i 4 1)

Therefore there is no artificial jump of the wake fields seen by the macro-
particles due to the binning, i.e. the transition between two bins is continuous.
In a few cases the wake calculation has been changed by doing the following:
the number of particles per bin ny(¢) is replaced by the average over the bins
i—mtoi+m,ie np(i) = (np(e—m)+...+np(i)+...np(e4+m))/(2m+1), the
centre of the mass is replaced by the middle of the bin. This was done to test
the influence of statistical fluctuations concerning the number of particles per
bin. The above will be referred to as a “smoothed” calculation using 2m + 1
bins.

Figure 3 compares the inductive wake, Z(w) = iwl, of a 1cm Gaussian
bunch in the dog-bone with that obtainable by convolution using the wake
of a 3mm Gaussian bunch as a QGF. The convolution has been calculated
by numerical approximation of

W71 (s) = /_ O:o dz Mo, (s — 2) W, (2) (13)

which corresponds to letting Npi, — oo and Np,, — oo when using the
binning technique.
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Figure 3: The assumed inductive wake of a 1cm Gaussian bunch in the
damping ring (L. = 0.18 uH). The term “calculation” refers here to the true
inductive wake and the term “convolution” to the wake obtained by using
Eq. (13). “Difference” is just the difference between the two wakes.

In the case of an inductive wake, Ws(s) = Go - 0'(s) where Go = —c*L,
Eq. (13) can be solved analytically:

Gy 1 2 o
W7esn(s) = = n—=exp(—55) (14 #%) ™ exp (H) "

with k = o /oqar.
The relative error of the maximum absolute wake (s = o) is

) = 1= R e () 9)

A number of examples are given in Table 2.

K 1 2 5/3 25 33 5 10
e(k) [%] | 54.6 209 28.0 142 84 3.9 1.0

Table 2: The relative error of the maximum absolute wake for an inductive
wake as a function of the relative width & of the studied bunch and the QGF.



The following will apply in future to all figures similar to Figure 3 in the pa-
per unless otherwise stated. The abbreviations “Conv” and “Calc” will stand
for convolution, respectively calculation (in this case it was the real value
as the inductive wake can be calculated analytically). “Diff” will abbrevi-
ate difference and be simply the difference between the convolution and the
calculation.
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Figure 4: A bunch with the form of an isosceles triangle with the base 20
and its wake as calculated using a Gaussian QGF, k = 10 solid line, kK = 4

dashed line (k = o/oqar).

A further purely theoretical example is that of an inductive wake of a bunch
with the form of an isosceles triangle with the base 20 and

Equation (10) leads to

oqar,  _ —Go s 1 s—0o 1 s+o
v o= 2 (o (i) 3 (o) 57 (o))
Due to the discontinuity of the step function the particles in the middle of the
bunch see naturally a large mistake, nevertheless that total error in respect
to the whole bunch drops drastically with increasing & (see Figure 4).
One advantage of the binning is that the evaluation of Eq. (11) is ~ N2,
operations where as the corresponding equation to Eq. (11) would otherwise
lead to a term ~ NZ,.. Naturally one must still take into account the filling
of the bins (the particles are pre-sorted which is ~ Ny log Npar) and the

later interpolation (Eq. (12)) but this amounts to obviously less for larger
particle numbers.




3 Analytical estimation of collective effects

3.1 The Haissinski Equation

The Haissinski equation (see [5]) is a non-linear integral equation describing,
in a suitable phase space, the evolution of the longitudinal particle density
distribution of a bunch. The parabolic potential-well formed by the accel-
erating rf-voltage is distorted by the longitudinal wake field, and as a result
the longitudinal beam distribution is deformed.

The beam current distribution below the turbulent threshold, calculated with
the Haissinski equation, is given by (see [6])

1 t
I(t) = K exp (27/ dt' [eVrr(t') — Uy + Gde(t')]) , (16)
oie|Vrr| /o

where o and VR r are the natural bunch length and the slope of the rf-voltage
at the position of the bunch. Furthermore, V},,4, the transient induced voltage
with ¢ = 0 the synchronous position for the low current beam, is given by

mﬂﬂ:—émﬁ%ﬁwﬂp4ﬁ (17)

with Ws(t) a Green’s function of the longitudinal wake field. The value of
the normalized constant K in Eq. (16) is defined as the complete integral of
I(t) is equal to @, the total charge of the bunch.

When the rf-potential is linearized Eq. (16) takes the form

[@:Km%—ﬁ+ ! memﬂ. (18)

207 VRFUfo
By taking the derivative of both sides of Eq. (18) one obtains
I
- = - —|— g d2 . (19)
I oo Vrroj
Either Eq. (18) or (19) can be used to estimate the bunch distribution and

length due to the distortion of the rf-potential by the wake fields.
When the impedance of the ring is assumed to be purely inductive, i.e. when

the induced voltage is given by

dl
ind = —L— 2
Vind 7 (20)

with a constant inductance L, Eq. (19) can be written as

dy  wy

dr 1+y

(21)
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Figure 5: (a) The bunch length variation as a function of normalized bunch
charge I and (b) the bunch shape for several values of T

with the variables of z = /0w, y = LI/Varo?, (see [6] or also [7]). Here, it
is possible to define the normalized charge I', the integral of y, as follows

F:/mdxy: La (22)

—.
Vrroiy

I is therefore inverse proportional to /2 (see Eq. (6)).
The numerical solution of Eq. (21) is shown in Figure 5 for several values of I'.
The charge distribution for a perfect inductor is symmetric about = = 0 and
it is almost the same as the Gaussian distribution at low intensity regions.
On the other hand, it is apparent that the solution of Eq. (21) is rather
a parabolic than Gaussian distribution whenever y > 1. The o, values of
Gaussian function for various I' are shown in Figure 5. Figure 5 shows that
o, varies like as linear for small current regions.
One should note that the approximation formula used in [1]

Ao, LQ r

~ - = 23
Os 221 Vrrop 242w (23)

does not confer to the above results. Although Eq. (23) is also based on the
Haissinski equation (18) the approximations made in the derivation of the

formula (see [8]) lead to an over-estimation of the bunch lengthening effect
(for small I' by approximately a factor two).

The case of a purely capacitive impedance leads to an integro-differential
equation. Its numerical solution shows that the bunches remain essentially
Gaussian, but with a reduced length (see [9]).

The Haissinski equation for a purely resistive impedance Z(w) = R can be
solved analytically (see [9], [10]), the solution looks like a Gaussian with a
widened centre part.

10



3.2 Microwave instability threshold

A further cause for bunch lengthening can be mode coupling (see [10]).

At higher bunch currents the bunch lengthening deviates significantly from
the scaling of potential-well distortion. Associated with this lengthening is
also an increase in the energy spread.

The Boussard criterion ([11]) is generally used as an analytical estimation
of the threshold of the microwave longitudinal instability (as was done in
[1]). Tt relates the effective broadband impedance and the beam and ring
parameters:

<g)thr _ Qwa(E/e)a?;JS’ (24)
n/ off LR
where n = (w/wg) = wR/c = wC/(2me) is the mode number.

Using Eq. (6):

<Z)thr _ QWQS/Q(E/€)3/2J% ‘ (25)
/e Iy/h(Uo/e)(q? — 1)1/4

For the parameters of the TESLA DR one obtains

7 thr

(—) = 1.94-10* - &/ 0], (26)
n J eff

i.e. 86 mQ for the dog-bone (as in Table 1: a = 2.7-107%).

One should note however that the above formula only holds for long bunches
(see [12]) and therefore is not necessarily correct in the studied cases.

4 Impedance Model

4.1 Sources of Inductive Impedance

The impedance of a ring may be estimated as the sum of the impedances of
its components, such as bellows, BPMs, kickers, vacuum ports, tapers, etc.
Most of these elements present discontinuities having an impedance covering
frequencies much higher than the frequencies within the bunch spectrum,
and, therefore, they give rise to a mostly inductive impedance (see [1], [10,
p. 72-5]).

The total inductive impedance Z/n of the dog-bone DR was estimated by
Shiltsev to be 17 mfQ, corresponding to an inductance L of 1.8 - 10~7 H, where
the major contribution came from the bellows with 7.5 m{). This was based
on the assumption that the bellows would be spaced on average every eight
metres and where the inductance of the shielded bellows at the B-Factory
(see [13]) was taken and scaled to the radius 5 cm.

11
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Figure 6: (a) Cavity and (b) Fast Kicker Wake of a 2mm Gaussian Bunch.

One should note that whether an object is inductive or capacitive depends
critically on the length of the driving charge. Vacuum chamber objects ap-
pear more inductive to longer bunches, more capacitive to shorter bunches
([14]). Therefore the above estimation might be not quite correct anymore
for the two smaller bunch lengths studied.

For the simulation advantage is taken of the fact that an inductive impedance

7 = —iwl corresponds to a wake field which is inversely proportional to the
derivative of the charge distribution:
W(s)=—L-c*N(s) (27)

In case of a Gaussian bunch (centred at zero) this leads to

Lcts 52

Wi(s) = exp | —— 28

(s) V2rod P ( 203) (28)

which can be easily computed and used as a quasi-Green’s function. The

absolute wake maximum is reached at s = +o, and is inverse proportional
to o,

In the presented simulation studies the wakes of bunches with o, equal to

0.5mm, 1 mm, and 2mm were used.

4.2 Resistive Wall

An aluminium vacuum chamber with a conductivity oo = 3.5 - 107Q~'m ™1,

as proposed in the CDR, is assumed.
In the straight sections the pipe will have a radius of b = 5 cm, in the wiggler
section (2% of the circumference) a radius of b = 1cm, and in the arcs (~
6 % of circumference) b = 3 cm.
The longitudinal monopol resistive wall impedance of a round pipe in the
long-range approximation reads (see [15]):

3/2

Zo(k) = 2250 JlkI(1 — isign (k) (29)
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with the characteristic length

o = ( 2 )1/3 (30)

Zy0og

and k = w/e. )
The corresponding wake field for a Gaussian charge distribution (A(k) denotes
the Fourier transform) is

¢ ~ 7 \ —1ks
3/2 .. B |
- _Z;;CZZ /_OO dk (1 — sign(k)) |k|e—k 0% /2 ~iks (32)
c [Zy 1 ul?/? . 2
B m\/;zy 5 {]1/4 B [3/4 + 81gn(u)([_1/4 - [3/4)}e_u /4(33)

where u is a normalized distance between the bunch centre and the position

of the test charge
s

= — 34
u= 3

and the arguments of the Bessel functions I, are u?/4.
The amplitude of the wake field relates to the radius b, the bunch length o,

and the conductivity oqg as
W b_la()_lﬂas_?’/?. (35)

For the simulation formula (33) has been used to calculate the quasi-Green’s
function up to the distance u = 50; beyond that a numerical calculation of
the integral (32) in the form

—C\/ZO/O'O 00~ [ 5 ~ L~
W (s) = W/o dk\/;e k ﬂ(cos(ku) — sin(ku)) (36)
has been used.

To estimate the broad band impedance (see [1, 13]) note that (29) is equiva-
lent to

1 Jpolw]

%)) = 55\ S0

(1 — usign(w)). (37)

whereby one obtains

(%) = Zgi(gj) (1 —isign(w)) (38)



where the skin depth 6(w) = 1/2/(pooow).

At bunch frequencies ko, = wog/c ~ 1, i.e. neg ~ R/os, the effective broad-
band contribution can be estimated to be

(%)H - %(1 —i). (40)

The broad band impedance for the dog-bone can therefore be estimated to

be about (Z/n)¥ ~ (1 —1i)-52mQ (a =2.7-107*, 6, = L cm).

4.3 Cayvities

The exact geometry of the RF cavities for the TESLA DR is not known
yet. For this study eight 4-cell superconducting cavities, such as installed at
HERA but scaled in frequency from 500 MHz to 433 MHz have been assumed
(see Figure 7). The longitudinal wake fields of Gaussian bunches with o
equal to 2 and 3mm have been calculated with the MAFIA T2 program
(using the indirect integration method, therefore the addition of the junction
and the beam pipe on both ends of the 4-cell cavity) and have been used
as QGFs (see Figure 6). The wake of the 1 mm Gaussian bunch has been
smoothed; for the calculation wake of the 0.5 mm Gaussian bunch only one
cell has been used.

In [16, p. 127] it is stated that they expect the microwave instability threshold
to be higher than that given by the Boussard criterion when the major con-
tribution to an impedance is capacitive.

r

L.

Figure 7: Schematic view of a 4-cell cavity.

In [1] the cavity broad band impedance was estimated by using the diffraction
model for one-cell cavities.

(%) ~ (1 41)- 71'6?[[;3] (41)

for 0, = 1 cm and with the factor 1.45 for o, = 5mm.
This leads to a total effective cavity impedance (assumption 38 cavities) of

(Z/n)cay = (1 +1) - 3mQ, respectively 2.75 m{.
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4.4 Fast Kicker

For the impedance model the installation of 40 very fast kickers has been
assumed. A description of the very fast counter travelling wave kickers which
are intended to be used for the extraction of the bunches can be found in
[17].

The wakes seen by a 1cm and a 5mm Gaussian bunch passing a fast kicker
(multiplied by the factor 40) can be seen in Figure 12. They were calculated
using the MAFIA T3 module [18].

[Wax] /| 102V/C [4.81 355 285 245 1.43
o / mm | 2 3 4 5 10

Table 3: Maximum absolute wake of various Gaussian bunches.

According to the data in Table 3 the maximum absolute wake created by a
Gaussian bunch passing a fast kicker varies approximately as

WEE | ~ L (42)

max 3/4
G-s/

The fast kickers were not accounted for in [1].

5 Simulation Results

For the simulation different numbers of macroparticles, number of sections (1
and 2), and different quasi-Green’s functions for the various wakes (the rms
bunch lengths varied between s = 0.5 mm, 1 mm, 2mm, and 3mm) were
used. The rms values for the bunch length and the energy spread per run
were calculated as the average values over the last 500 of the 3000 turns for
which the simulation was run (this being approximately equivalent to eleven
damping times and the cycle time). When using two sections (Neee = 2)
the dog-bone has been divided into two practically identical parts with the
difference being that the rf-power is submitted only in the first section. The
impact on the wake field calculation is explained in the appropriate places.
The four wake components have in part also been studied individually.
Table 4 shows the maximum relative weighted error (relative to the maximum
wake) when comparing the results of Eq. (13) for a number of QGFs with
the true or calculated wakes of a 5mm and 1 cm Gaussian bunch.

In case of the actual simulation one must not forget that one has a limited
number of particles and bins. Nevertheless for example a random Gaussian
distribution of a 100000 particles and a bin width of 0.2 mm delivers for the
cavity and fast kicker results which are principally identical with the above

15



QGF IN RW CV | FK |y
o /mm |05 1 2 |05 1 2 |1 2 |2

1.1 0.8 1.7 49 | 1.7

5mm bunch 4.2 3.0 1.7 49 | 34

15.0 10.9 4.0 4.9 | 11.1

1.1 0.8 0.8 13 [1.1

Lem bunch 4.9 3.0 1313 |27

Table 4: Maximum relative weighted error in [%)] (relative to the maximum
wake) using the numerical calculaton of Eq. (13) for the inductive (IN),
resistive wall (RW), cavity (CV), fast kicker (FK), and the combined (total)

wake (3).

when studying the 5mm bunch. In case of the resistive wall and inductive
wake the results deteriorate noticeably. The convolution of the 0.5 mm res-
istive wall wake with a 5 mm Gaussian bunch can lead to a maximum relative
weighted error of ca. 3-4 %, that of the inductive wake for the 0.5 mm and
I mm QGF to an error of 9-15 %, respectively 8 %.

Note that the values of the resistive wall and the inductive wake vary far

more strongly than those of the fast kicker and cavity wakes.

W/V/pC

Figure 8: Convolution error using the 1 mm cavity (CV), resistive wall (RW),
and inductive (IN) wake, and the 2mm fast kicker (FK) wake to calculate

5mm Gaussian Bunch, Convolution Error (Imm CV, RW, IN & 2mm FK QGF)

8 .

-0.02

-0.01

0.01

the wake of a 5 mm Gaussian bunch.
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The zero current rms bunch lengths for three studied momentum compaction
factors are to be found in Table 5.

a os [ cm | 0. / MeV
5-107° 0.44 3.44
7-107° 0.52 3.44

27-107° 1.01 3.44

Table 5: Zero current rms bunch length and energy spread for the studied
cases.

5.1 Inductive Wake

At the design current the inductive wake leads for the momentum compaction
factor @ = 5 - 107" to a bunch lengthening of ca. 30%. It can be fully
understood by the Haissinski equation.

The rise in the rms energy spread at higher currents when using one section
(Nsee = 1) seems to be due to a numerical instability as can be seen from
the results when using two sections, i.e. an intermediate calculation step.
As the inductive impedance is spread more or less evenly over the ring the
macroparticles are appointed in both sections half of the total inductance
value. This seems to be a more realistic approach than when using one
section and interestingly the energy rise vanishes.

Neee = 1 Neee = 1 Nege = 2 Haissinski

smooth: 7

I O o, O o, O o, O
mA |cm MeV | cm MeV |cm  MeV | cm
0.09 | 0.56 3.47 | 0.56 3.46 | 0.56 3.45 | 0.56
0.18 1 0.64 3.49 | 0.64 3.46 | 0.64 3.46 | 0.64
0.27 1 0.72 3.66 | 0.70 3.50 | 0.70 3.46 | 0.70
0.36 | 0.80 4.14 [ 0.78 3.91 | 0.75 3.47 | 0.75

Table 6: Inductive Wake for a = 5-107°, simulation results for QGF=1mm,
Npar = 100000, and bin width 0.15mm compared with the result obtained
by the Haissinski equation. The design current is 0.09mA (see first row).
The meaning of “smooth” is explained on page 6, m is 3.

The results for o = 7 - 107" were analogous to the above. For the design
current a rms bunch length of 0.62cm was obtained. The momentum com-
paction factor o = 2.7-107* lead to a bunch lengthening in the range of three
percent.
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5.2 Resistive Wall

An extensive study of the effect of the resistive wall wake fields has been
done.

First of all the results of the Haissinski equation when using the wake of a
1 mm Gaussian bunch as a QGF for the three studied cases of the momentum
compaction factor a are presented (Table 7).

o I /mA|0.0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.90 1.44
5-107° 0.44 0.47 0.51 0.54 0.57 0.60 0.63 0.65 0.72 0.83
7-107°|os/ ecm|0.51 0.54 0.57 0.60 0.63 0.65 0.68 0.70 0.76 0.86

27-107° 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.10 1.13 1.19

Table 7: Resistive Wall: Haissinski equation results, o = 5-107°, a = 7-1075,
and a = 2.7-107%,

Figure 9 shows two results. The larger distortion of the bunch with the
smaller compaction factor value at a comparatively lower beam intensity can
easily be seen. A common feature is that the distributions “lean forward” so
that the parasitic energy loss, a consequence of the real (resistive) part of
the impedance, is compensated by the rf-voltage.

Haissinski, RW-Wake (QGF:1mm), apha=5e-5 Haissinski, RW-Wake (QGF:2mm), apha=2.7e-4
30 . 20 , . !
potential-well —— potential-well ——
bunch, 1=0.0mA - bunch, 1=0.0mA -
s B dist. pot-well - | = dist. pot.-well -
E -~ bunch, 1=1.53mA = 15 bunch, 1=4.0mA
T 2 , 5
3 3
e 15 e 10
Q. Q.
3 10 I3
5 L
0 L ‘ R 0 i ) ) ] Sy, )
-0.1 -0.05 0 0.05 0.1 -02 -015 -01 -005 0 005 01 015 02
rel. position/ ns rel. position/ ns

Figure 9: Resistive Wall Wake. Shape of the potential well and the bunch
according to the solution of the Haissinski equation. On the left for o =
5-107° and the for the zero current and I = 1.53mA, on the right for
a =2.7-107* and for the zero current and I = 4.0 mA.

The simulation results represented in Table 8, all for a = 7 - 107°, confer
extremely well to those obtained by the Haissinski equation. It is interesting
to note that although the number of particles varied to a great extent as well
as the width of the bins and the usage of the QGF this had in the presented
cases hardly any influence on the obtained bunch lengths (which were as
mentioned previously calculated as the average value over the last 500 turns,
the total time spent in the damping ring corresponding to 3000 turns).
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QGF Ny, bin I
mm  10° mm ||mA
2 20 0.75 0.55 0.58 0.61 0.64 0.66 0.69 0.71 0.77 0.89
2 80 0.15 0.55 0.58 0.60 0.63 0.65 0.68 0.70 0.76 0.87
1 80 0.07] o, [0.55 0.58 0.61 0.63 0.66 0.68 0.71 0.77 0.88
1 200 0.06| ¢m |0.55 0.58 0.61 0.63 0.66 0.68 0.70 0.76 0.87
0.5 100 0.20 0.55 0.58 0.61 0.63 0.66 0.68 0.71 0.77 0.88
0.5 200 0.10 0.55 0.58 0.61 0.63 0.66 0.68 0.71 0.77 0.87

0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.90 1.44

Table 8: Resistive Wall: Tracking results, Nyee = 1, @ = 7 - 107°, bunch
length for 0.0 mA in all cases: 0.52cm.

The range onwards from I = 1.53mA was characterized by a simulation
dependent rms energy spread of the bunch as can be seen in Table 9. The
first three results, (A) — (C), seem to stipulate that a QGF with a smaller
rms bunch length leads to a smaller threshold where the energy begins to
rise. For example in the first case (A) the rms energy spread began only to
get noticeably larger from [ = 3.69 mA onwards.

I / mA|1.53 1.71 1.89 2.07 2.25 2.43 2.61 2.79 2.97
Hos/ e¢m|0.87 0.90 0.93 0.96 0.98 1.00 1.02 1.04 1.06
Sos/ cm|[0.88 0.91 0.94 0.97 0.99 1.02 1.04 1.07 1.09
So. /MeV |[3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.48
Sos/ c¢m|[0.89 0.92 0.95 0.98 1.01 1.04 1.06 1.09 1.12
So. /MeV|[3.48 3.49 3.49 3.51 3.54 3.59 3.65 3.75 3.88
Sos/ ce¢m|[0.91 094 0.98 1.02 1.05 1.09 1.12 1.15 1.18
So. /MeV|[3.61 3.70 3.84 3.96 4.09 4.21 4.33 4.48 4.58
Sos/ cem|[0.90 0.93 0.97 1.00 1.04 1.07 1.10 1.13 1.16
So. /MeV|[3.60 3.70 3.79 3.94 4.04 4.18 4.33 4.42 4.57
Sos/ cm|[0.88 0.91 0.94 0.97 0.99 1.02 1.05 1.07 1.10
So. /MeV|[3.51 3.52 3.53 3.55 3.56 3.59 3.62 3.64 3.68
: QGF=2.0mm, Ny, = 200000, Ngec = 1, bins: 0.1 mm

: QGF=1.0mm, Ny, = 200000, Ngec = 1, bins: 0.075 mm

: QGF=0.5mm, Ny, = 200000, Ngec = 1, bins: 0.075mm

: QGF=0.5mm, Ny, = 100000, Ngec = 1, bins: 0.2mm

: QGF=0.5mm, Ny, = 100000, Ngec = 2, bins: 0.2mm, smooth:5

i

HOOQW= =

Table 9: Resistive Wall: Haissinski (H) & Simulation (S) results for a =
7-107°.

The differences that occur in respect to the rms bunch lengths are small by
comparison. The result obtained by an intermediate calculation step per turn
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(using two sections, Nge. = 2, but where the rf-power was only submitted in
the first section and meaning that the resistive wall wake is split up over the
two sections) showed no rise in the rms energy spread. The discrepancy in the
energy spread could therefore be caused by numerical calculation instabilities.
The simulation results for « = 5 - 107° are similar to those for o = 7-107°.
The design bunch current resulted in a bunch lengthening of approx. 3 to
4mm, i.e. 10% (see Table 10).

Again at higher current values there was a noticeable difference when using
one section (Ng. = 1) and different QGFs, ie. 0.5 mm, I mm or 2mm. In the
second case the rms energy spread begins to grow at ca. 1.71 mA and for the
third at 2.61 mA.

At the design current and when a = 2.7-107* the resistive wall wake is next
to negligible. The results in respect to the various QGFs and higher currents
were analogous.

I /mA 0.0 0.09 0.18 0.27
os/ cm | 0.44 0.48 0.51 0.55

Table 10: Resistive Wall: a = 5- 107 average simulation results.

5.3 Cayvities

The wake due to the cavities is the smallest for all studied cases (see for
example Figure 12).

The solutions of the Haissinski equation are shown in Table 11; a bunch
shortening is evident.

I /mA |00 0.09 027 045 0.63 0.81 0.99 1.53
os/ cm | 0.44 0.43 042 0.40 0.39 0.38 0.37 0.34
os/ cm [ 0.52 0.51 0.50 0.49 0.47 0.46 0.45 0.42
os/ cm | 1.01 1.01 1.00 0.99 0.98 0.97 0.96 0.94

Table 11: Cavities: Haissinski results, = 5-107%, o = 7 - 107", and
a=2.7-10"* using 2mm QGF.

5.4 Fast Kicker

The effect of the fast kicker wake is such that it leads at lower currents to a
a bunch shortening as would be expected of a capacitive wake. A minimum
bunch length is obtained in all three cases at a current of approximately
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FK-Wake, Bunch shape, 1=0.61mA, alpha=5e-5 FK-Wake, Bunch length, 1=0.62mA, alpha=5e-5
0.35

Bin width=0.15mm ' ‘staning ptfs. E— 1

GF:2 A turn 3000 -
o3 QoF2aMM 7 1 09 QGF:2mm

025 | 0.8 ‘
or Ii
0.6 |
s |

0.2

0.15 |

01

Normalized charge density / (1/deg)
rms bunch length / cm

0.05 04
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160 0 500 1000 1500 2000 2500 3000

position / deg turn
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Figure 10: Results using the wake of the fast kickers. On the left the bunch
shape (I = 0.61mA) and on the right the development of the rms bunch
length (/ = 0.62mA) over 3000 turns starting with zero current distribution.
In both cases: a = 5-107%; 200000 macroparticles were used.

0.40 mA (solution of the Haissinski equation as well as for the simulation). An
extreme rise in bunch length can be seen at ca. 0.60 mA. These results confer
to the predicted solutions of the Haissinski equation (compare Table 12). The
bunch lengthening can be explained by the appearance of a second potential-
well minimum.

Haissinski, Fast Kicker Wake (QGF:2mm), mom. compaction: 5e-5

30 : , |
dist. pot.-well, =0.40mA ———
bunch, 1=0.40mA
25T dist. pot.-well, I=0.72mA _
= bunch, [=0.72mA -
T - . :
$ 20 ; ‘_‘ ’/ \\ 7 ) i
8 S R B S
O
g 15+ |
o
G
8 10 |
o
5 i -
ol S e e e
-0.1 -0.05 0 0.05 0.1

Position with the synchronous particle at zero / ns

Figure 11: Two solutions of the Haissinski equation for the wake of the fast

kicker and o = 5 - 1075,
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For o = 5-107°: At I = 0.54mA the bunch has a length of ca. o, = 0.40 cm,
the energy spread begins to rise and at [ = 0.58mA (o, = 0.50cm) the
average position of the bunch is unstable. At I = 0.63mA the bunch is
“lost”.

For o = 2.7-107*, I = 0.72mA one obtains: o, = 1.14cm and o, = 3.73 MeV.
Further the rms value of the average bunch position was 7.62 deg (I =
0.63mA: 0.34deg and at I = 0.27mA: 2.6 - 1072 deg) therefore indicating

that the bunch was undergoing a larger fluctuation in respect to its position.

o I /mA|0.0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72
5-107° 0.44 0.40 0.37 0.35 0.33 0.32 0.37 0.57 0.84
7-107° o,/ em [0.51 0.49 0.46 0.44 0.42 0.42 0.44 0.53 0.71

27-107° 1.01 1.01 1.00 1.00 1.00 1.00 1.01 1.02 1.04

Table 12: Fast kickers: results of the Haissinski equation, a = 5 - 1075,
a=7-10"° and a = 2.7-107* using 2mm QGF.

o I /mA|0.0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72
5-107° 0.44 0.41 0.38 0.36 0.34 0.35 0.41 inst inst
7-107° o,/ cm [0.52 0.49 0.47 0.45 0.44 0.44 0.47 0.57 inst
27-107° 1.06 1.06 1.05 1.05 1.06 1.06 1.07 1.08 1.14

Table 13: Fast kickers, simulation: average results using 2mm/3 mm QGF,
Neee = 1 (instability is abbreviated by “inst”).

I / mA|[0.45 0.495 0.54 0.585 0.60 0.61 0.62
os /  c¢m|0.35 0.36 0.41 0.50 0.54 0.59 0.74
o. |/ MeV|[3.52 3.53 3.54 3.55 3.59 3.71 4.80

Table 14: Fast kickers, simulation: result for & = 5-107° using 2mm QGF,
Nsee = 1, width of the bins: 0.02cm, Ny, = 200 000.

5.5 The total wake

The main component contributing to the total wake seen by the particles in
the damping ring for the momentum compaction factors @ = 5-107° and
a = 7-107° is the one due to the inductive impedance followed by that of
the fast kickers, whereas for a 1 cm Gaussian bunch (a = 27-107°) it is vice
versa.

22



Cavity and Resistive Wall Wake of 5mm Gaussian Bunch
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Figure 12: The wake components of a 5mm (above) and a 1cm (below)

Gaussian bunch. On the left: the wake of the cavities and the resistive wall,
on the right the fast kickers and the inductive wake.

Cavity and Resistive Wall Wake of 1cm Gaussian Bunch
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Figure 13: The wake field (all components) of a 5mm and a 1 cm Gaussian
bunch.
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Figure 14: Total wake for @ = 5-107°, design current. (a) Shape of the
potential-well and the normalized charge density according to the Haissinski
equation. (b) The average normalized charge density over the last 500 turns
as seen by a tracking run. 100000 macroparticles were used.

The results for the total wake are to be found in Tables 15, 16, and 17.
Analogous to the inductive wake, using an intermediate step per turn in the
calculations (Ngee = 2, with only the resistive wall and inductive wake split
over the two sections) did not lead in the studied cases to an energy rise.
This was not the case for currents of and above I = 0.27mA when using
only one section (Ng. = 1). Note that the same applies when using two
sections and where none of the wakes are split up, i.e. the macroparticles see
all of the wake and the rf in the first section, so that only the damping and
quantum excitation terms play a role in the second part.

The results for two sections which are shown are those where the smoothing
technique (see page 6) was applied. Using the usual (basic) method lead to
no noteworthy differences.

Neee = 1 Neee = 1 Nege = 2 Haissinski

smooth: 5 | smooth: 5

I O o, O o, O o, O
mA |cm MeV | cm MeV |cm  MeV | cm
0.09 | 0.56 3.47 | 0.56 3.47 | 0.56 3.46 | 0.56
0.18 | 0.64 3.48 | 0.64 3.47 | 0.64 3.47 | 0.64
0.27 1 0.74 3.83 [0.73 3.72 | 0.71 3.47 | 0.71
0.36 | 0.85 4.54 | 0.84 4.33 | 0.78 3.48 | 0.77

Table 15: The total wake, a = 5-107°. Average simulation results using
an 1 mm inductive QGF, a 0.5 mm resistive wall QGF, a 2mm fast kicker
QGF, 0.5/1.0mm cavity QGFs, and Ny, = 100000/200000 (width of the
bins: 0.20 mm) compared with the result obtained by the Haissinski equation.
The design current is 0.09 mA.
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The bunch lengthening factors for the design current were equivalent to those
for the purely inductive wake. This was also the case for I = 0.18 mA.

For a = 510" the simulation bunch centre at the design current differed
by ca. one and a half degrees from the synchronous phase (150.0 deg). The
result depended slightly on the number of sections used, being ca. 148.3 deg.
(Nsec = 1) and 148.6 deg for two sections.

Neee = 1 Neee = 1 Nege = 2 Haissinski
smooth: 5 | smooth: 5

1 O o, O o, O o, O

mA |cm MeV | cm MeV |cm  MeV | cm
0.09 | 0.62 3.48 |[0.62 3.48 | 0.61 3.47 | 0.62
0.18 | 0.69 3.49 [ 0.70 3.49 | 0.68 3.47 | 0.69
0.27 1 0.80 3.93 [0.79 3.76 | 0.75 3.48 | 0.75
0.36 | 0.94 4.68 [0.94 4.56 | 0.81 3.48 | 0.82

Table 16: The total wake, @ = 7-107°. Average simulation results for using
an 1 mm inductive QGF, a 0.5 mm resistive wall and cavity QGF, a 2mm
fast kicker QGF, and N, = 100000/200 000 (width of the bins: 0.20 mm)
compared with the result obtained by the Haissinski equation. The design
current is 0.09 mA (see first row).

Neee = 1 Neee = 1 Nege = 2 Haissinski
smooth: 5 | smooth: 5

1 O o, O o, O o, O

mA |cn MeV |cn MeV |can  MeV | cm
0.00 | 1.06 3.59 | 1.06 3.59 | 1.00 3.51 | 1.02
0.09 | 1.09 3.59 |[1.09 3.59 |1.03 3.52 | 1.05
0.18 | 1.13 3.59 | 1.13 3.58 | 1.07 3.52 | 1.09
027|124 3.87 |1.23 3.85 [1.10 3.53 |1.13
0.36 | 1.42 4.44 | 1.42 4.42 | 1.14 3.54 | 1.17

Table 17: The total wake, o = 2.7 - 107*. Average simulation results using
an 1 mm inductive, resistive wall, and cavity QGF, a 3 mm fast kicker QGF,
and Np, = 100000/200 000 (width of the bins: 0.40 mm) compared with the
result obtained by the Haissinski equation. The design current is 0.09 mA.
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6 Comparison and Conclusion

6.1 SLC Damping Ring

Tracking simulations have been applied to the SLC damping rings (the old
chamber but with bellow sleeves) and compared to the results in [19].
Beyond a threshold current of 3.0-10'° the energy spread of the beam in the
old SLC damping ring increased and a “saw-tooth instability” appeared. The
possibility of such an instability occurring was shown by T. Weiland in his
tracking studies in 1981 (see [4]).

N/10'9 | o /o0 | 0 /o0 | — < 5> [0y
1.27 1.00 0.41
1.47 1.01 0.61
1.62 1.04 0.76
1.77 1.11 0.86
1.97 1.30 0.92
2.14 1.46 0.97

Sy O i W N —

Table 18: SLC Damping Ring. Average bunch properties vs N.

In the simulations the real damping time was used, there therefore being
15142 turns per damping time. The program was started with the zero
current distribution for N = 1, 2, and 3-10'® and ran for 45000 turns (ca.
three damping times). The higher currents used the last position on the
previous run with the next smaller current as the starting position. In all
cases the number of macroparticles N, used was 100 000.

SLC DR, rms bunch length, N=5e10 Dog-bone DR, rms bunch length, alpha=5e-5, 1=0.09mA
2.02 T T T T T T T 129
2|
< < 1.285 -
|2} |2}
k3 k3
5 19| s
5 5 I |
2 2 128 I
B B ‘
N 196 j N
kel kel
£ £
8 2 1275t
194 -
192 . . . . . . . 127 . . .
30 32 34 36 38 40 42 44 1 15 2 25 3
turn/ 1000 turn/ 1000

Figure 15: Turn-by-turn normalized rms bunch length o5/0s. On the left
for the SLC DR, N = 5-10', and on the right for the dog-bone DR, design
current (using Neee = 2). In both cases 100000 macroparticles were used.
Note that the bunch length scaling for the SLC is a factor five larger.

The results for the rms bunch length and the shift of the bunch centre confer
extremely well to those of Karl Bane ([19]). At the current, 5.0 - 10'°, a
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reasonably regular overshoot pattern in the moments as function of time
could be seen, too (see Figure 15). Here the bunch length varied about 4 %
over a cycle. The lengthening time was about 11/v and the shortening time
was slightly more than twice as long.

Going on the above stated good correspondence between the results of the
two tracking programs and with the measurements those of the presented
tracking studies for the dog-bone damping ring seem to be trustworthy.

6.2 Dog-bone Damping Ring

One must not forget that the results for the dog-bone DR are based on an
impedance model which was originally assumed for a 1 cm bunch. The effects
of the components such as the bellows and BPMs which contributed here only
to inductive impedance may be different and thereby bring about different
results. Naturally in future further studies will be needed based upon an
improved impedance model.

Returning to the used impedance model one can however state that in all
cases the tracking studies for the total wake give cause to assume that the
bunches would be stable under such conditions. Whereas the bunch shape
was only slightly changed for o = 2.7 - 107*, the bunches corresponding to
the two smaller momentum compaction factors studied undergo a large bunch
lengthening effect at the design current of 0.09 mA (20 % to 30 %) due to the
inductive impedance. The turn-by-turn rms bunch length values are quite
stable as can be seen by the example (a = 5 - 107°) shown in Figure 15
and is quite typical. At the design current but also for the fourfold current,
I = 0.36 mA, the turn-by-turn the bunch length varied by ca. 0.02 %.
Studies applied to the dog-bone DR parameters as in the CDR-report (cir-
cumference 17km) where the total wake was modified accordingly show sim-
ilar results, the bunch lengthening being somewhat smaller.
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