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Abstract

The Maximum Entropy criterion can be utilised for tomographic reconstruction of two-
dimensional distributions from a set of one-dimensional projection profiles. In terms of
entropy the reconstructed distributions represent the most probable solution which repro-
duces the experimental input data. Therefore the Maximum Entropy (MENT) algorithm is
especially suited in case of incompleteness of information. Reconstruction artefacts due to
the lack of information are minimised.

The MENT algorithm has been adapted for the reconstruction of the transverse and lon-
gitudinal phase space distributions at particle accelerators allowing a determination of cru-
cial beam parameters. Only one-dimensinonal intensity profiles for different beam transfer
matrices have to be measured. These profiles can be obtained from diverse standard moni-
toring devices, e.g. wirescanners or optical transition radiation stations. Besides the appli-
cation for transverse phase space tomography only dealing with linear transformations, the
algorithm has also been adopted for tomographic reconstruction of the longitudinal phase
space where non-linear transformations have to be taken into account.

Technically, the MENT algorithm has been implemented and verified in the physics
analysis framework of ROOT [1]. The applied user interface provides a generalised, very
simple access to the full functionality of the algorithm and its results.

scheins@mail.desy.de j.scheins@fz-juelich.de



1 Introduction

In general computer tomography comprises algorithms to solve special kinds of inversion prob-
lems where measured distributions contain pieces of information of an underlying higher-
dimensional initial distribution. Typically each measured distribution evolves from a projection
of the initial distribution to a lower number of dimensions after applying a certain transforma-
tion. Here tomography algorithms combine all available pieces of information, i.e. measured
projection profiles, to reconstruct the underlying, initial distribution.

Figure 1 illustrates a simple situation where a two-dimensional initial distribution (top) is
rotated by the angle

�
in the frame of reference (middle) and then projected onto the ��� axis of

the new coordinate system (bottom) by calculating the line integral over the orthogonal ��� coor-
dinate. The mathematical relation between coordinates in the initial and the rotated coordinate
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Figure 1: Example of a two-dimensional initial distribution (top), resulting rotated distributions (middle)
for rotation angles ���
	������������������� and applied parallel projection of the rotated distributions onto the
��� axis (bottom).
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Figure 2: Transformation of coordi-
nates due to rotation of the coordinate
system around the origin with rotation
angle � ; lines parallel to the � � axis are
defined by eq. (3).

system can be seen in figure 2. For rotations around the origin each point
�����

��� ��� transforms
linearly as �

� �
� ��� ��� � � �

� � (1)

with the rotation matrix
� �� � ��� � � � � � �!��� � ��
� �" ��
#� � ���$� � � fullfilling

�&%'���)(+*-,
(2)

The rotation
� � conserves the area of the initial distribution due to .0/21 �3� � � �54 . Lines parallel

to the � � axis of the rotated coordinate system are defined by

�6�!��� �7� �8��
� �9���� � (3)

for any value of
�
� � . The continuous function : � � � � �2�: � � � � �2� �<;�=?>A@CB �ED�F BGIH �EJ = ��KML N3L � ��� ���PO � �� ;RQ( Q KML N3L � � � ����� � " � � ��
#� � � � � ��
� ��� � � �!��� � �7O � � (4)

depending on the � � coordinate and the projection angle
�

with
��� S "�T � TVU is known as Radon

transform [2] of the initial function K L NWL � ��� �0� . The Radon transform represents a parallel projec-
tion which is formulated as line integral. Using the Dirac X -function the integral can be extented
over the full � - � plane: � � � � �2� �<; Q( Q ; Q( Q KML NWL � ��� �0�0X � �����$� �7� �8��
#� � " � �!�0O �6O � , (5)
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Now, the following theorem by Radon guarantees the existence of a solution for the inversion
of the Radon transform:

The value of a two-dimensional function at an arbitrary point is uniquely determined by the
integrals along the lines of all directions passing the point.

Obviously the initial function K?L NWL � ��� �0� and the the Radon transform : � � � � � � contain the
same degree of information, i.e. mathematically a ’complete’ set of one-dimensional projections
is sufficient to reconstruct the two-dimensional underlying distribution.

To derive K � ��� �0� from the Radon transform : � � � � � � first the Fourier transform has to be
calculated using eq. (4)

�: � � � � � � Q;( Q : � � � � � ���
� (��	��
� = ��� O � �

� Q;( Q
Q;( Q K � � � �!��� � " � � � 
#� � � � � ��
#� ��� � � ���$� � ��� � (��	��
�� = � � O � � O � � , (6)

With eq. (1) the Fourier transform can be rewritten as

�: � � � � � � Q;( Q
Q;( Q K � ��� ����� � (��	��
� �

= >A@CB
�ED�F BGIH � ��� O � O �

� Q;( Q
Q;( Q K � ��� ����� � (��	��
 �

=
� � D�F � � ��� O � O ��� � ��� ��� � (7)

with the substitutions
�'� � ���$� � and � � � ��
� � . The obtained relation

�: � � � � � � � � � ���$� � � � � 
#� � � (8)

is the well known Fourier Slice theorem [3]. The one-dimensional Fourier transform of the
Radon transform : � � � � � � at the angle

�
is equal to the slice of the two-dimensional Fourier

transform along the line through the origin in the
�

- � system at the same angle. The two-
dimensional inverse Fourier transform yields the full reconstruction of K � ��� �0� .

K � ��� �0� � Q;( Q
Q;( Q � ��� ������� � D �	� 
 �

=
� � D�F � � ��� O � O!�

� �;
"

Q;( Q � � � ����� � � � ��
#� � ��� � D �	��
 �
=
�
>A@CB

�ED�F � B#GIH � ��� #####

$ �$ � $ �$ �$ �$ �
$ �$ �

##### O � O �� �;
"

Q;( Q �: � � � � ��� � D �	� 
 � = � >A@CB �ED�F � B#GIH � ��� � O � O �
(9)

However, in practice, we have to cope with incomplete sets of projections. Usually only
a restricted number of projections is available and these projections are mostly measured as
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non-continuous, i.e. binned, distributions. Then the above inversion of the Fourier transform to
reconstruct the two-dimensional distributions may produce artefacts and falsify the results. In
addition imperfect measuring devices produce shifts, tilts, smearing and noise in the measured
projections and degrade the accuracy of reconstruction even more.

Therefore a variety of tomographic reconstruction algorithms like Filtered Backprojection [4]
or Algebraic Reconstruction Technique [5] have been invented. Each algorithm has specific ad-
vantages, but also produces specific artefacts due to the lack of information. The Maximum
Entropy Technique represents an interesting alternative. It provides reconstructed distributions
with a minimised amount of artefacts. In the following chapters we concentrate on the Maxi-
mum Entropy algorithm and describe its functioning, implementation and implications.

2 Maximum Entropy Algorithm

The Maximum Entropy algorithm [6] mathematically bases on the definition of entropy in sta-
tistical thermodynamics [7]. It provides a solution of the reconstruction space which becomes
most likely in terms of entropy1 while simultaneously reproducing all entering projection data
exactly. The generated solution has to be interpreted as the ’simplest‘ i.e. most probable possi-
bility to describe the observed data. Consequently the MENT algorithm is well suited in case
of incomplete information. In practice the immanent lack of information leads to artefacts in
the reconstruction as for example observed for the filtered backprojection [8]. The ansatz of the
MENT algorithm avoids artificial structures due to the correlated looser probabilities. It proves
to be superior especially in situations where the projection space is not completely covered,
i.e. only a few different projections are available. Under these circumstances other tomography
algorithms often appear to be insufficient for a reasonable reconstruction.

2.1 Foundation

The following considerations refer to linear tranformations (simple rotations) which have al-
ready been introduced in section 1. But in principle the presented algorithm is not limited
to rotations. Generalised linear transformations including also shearing of the reconstruction
space are feasible. The only requirement is that the area has to be conserved under the applied
transformations2.

2.1.1 Representation of Experimental Data

In contrast to the Radon transform : � � � � � � we usually have a relatively small number of aces-
sible projection profiles. Suppose we have measured � profiles characterised by the index

1Maximising the entropy directly leads to the most likely solution because the entropy � is proportional to the
logarithm of the probability � , i.e. �������
	����� [10].

2For the application to longitudinal phase space tomography (sec. 5) this requirement is not appropriate. Nec-
essary modifications of the usage of the MENT algorithm are explained in the related section.
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� � 4 ��� � , , , � � . Then each profile
�

results from a certain projection angle
���

with the asso-
ciated transformation matrix from eq. (2). In fact, this means a transition

��� ���
from the

continuous variable
�

to a limited number of discrete, specific values
���

. Furthermore, the mea-
sured projection profiles usually exists only as non-continuous, binned distributions where each
profile

�
can have a different grid with different numbers of bins 	 � and different, possibly non-

equidistant, internal binning. Ignoring all kinds of measurement errors the binned projection
data 
 ��� can be formulated due to eq. (4) as3


 �� � �= �����������;�= ��� O � � : � � � � �
� �= �����������;�= ��� O � � Q;( Q O � � KML NWL � � � ���$� ��� " �

� ��
#� ��� � � � ��
� ��� � �
� ���$� ��� � (10)

with K L NWL � ��� �0� as the underlying initial distribution function. The additional index � refers to
the ����� bin of the

� ��� projection profile with � �54 ��� � , ,, ��	 � and the values�
�
� *! �� � �" , ,,  �� �$# �  �� � � # � D * � (11)

represent the bin boundaries of the projection profile
�
. The arguments in the function K3L NWL � ��� �0�of eq. (10) simply follow from the rotational matrix
�%� � ��� ��� � :�

�
� � �<�)(+*� �

�
�
�
� � , (12)

By introducing the characteristic functions4

& ��6� � � ���
' 4 �

�
��)(

�
�  �� � � � D * �*

otherwise
(13)

for each interval
SC�
�
��� � �� � � � D * � S eq. (10) can be rewritten as


 �� � Q;( Q
Q;( Q O �6O � K

GIH G �
��� ��� & ��6� ������� ��� � � � 
#� ��� � (14)

with an integration over the full parameter space of the initial coordinates. The charateristic
function extracts a parallel strip from the full parameter space as illustrated in figure 3.

For any given point
�

=
�
��� �0� in the initial parameter space with �

� � �����$� ����� � � 
#� ��� sat-
isfying

�
�
� * ( �

�+( �
�
� � # � D * � exactly one bin from projection

�
can be assigned unambigiuously,

3The discretised form of function , �.-0/2143 � is inidicated by modified subscripts as follows: ,65 �.105 �
4The intended simple definition does only hold in the corresponding rotated frame of reference, which means

the argument 105 of the function has to be understood as 17598:19; �=<0-5?>A@B<2C�DE-F5 (see figure 3).

5



PSfrag replacements

� � – �
� � – * � � � � + *

�

�

�

�
�

�
�

�1 5������	��
��� 1 ; ��< -F5 >A@?<2C DE-5

�1 5���� � 19; �=<0- 5 >A@B<2C�DE- 5

-F5 Figure 3: The charateristic func-
tion � �� ��� � ��� from eq. (13) extracts
the � � ��� bin of projection � .

because only one characteristic function
& ��

appears non-zero (see fig. 3). The assigned bin
index � �

is defined by the unique condition& �� � � � � � � 4 and
& ��6� � � � � *

with ���� � �
(15)

and depends only on
�

. From the properties of the characteristic functions another useful rela-
tion can be formulated# ��� J *�� ����� & ��6� � � � � '

�
��� �

�
�� � ( �

�  �� � � � � D * �* �
� �� SC�� � * � �� � � # � D * � U (16)

for any set of values �
��

. The sum reduces to one specific single value �
��

for any chosen
point

�
. Here, the defining condition

�
�
�� � (

�
�  �� � � � � D * � provides the index � �

of the bin
containing the point

�
.

Supplementary to eq. (13) it will be convenient to define a global characteristic function to
select the full valid range of projection

�
 � �

�
� ���

# ��� J * & ��6� � � � � ' 4 �
�
� * ( �

� ( �
�
� � # � D * �*

otherwise
, (17)

For each projection
�

it selects the specific area, i.e. parallel strip, in the full two-dimensional
parameter space which can possibly contribute to the projection.

2.1.2 Entropy and Probability

Suppose we have a large number 	 " of distinguishable objects distributed over a limited area !
with same probability at each position within ! . Intuitively a constant object density distribu-
tion should most likely be realised. However, also fluctuations can be observed with certain
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Figure 4: Quantification of substructure in terms of
entropy; the two-dimensional arbitrary test function��� � � �C� � � �
	�����
� � � � � � ����� � � � � � provides increasing
structures as function of the parameter � . Examples
of increasing substructure (top) and the corresponding
entropy eq. (21) depending on the function � � (bot-
tom) are shown. No boundary conditions have been
assumed.

probabilities. But larger fluctuations are expected to be less frequent compared to smaller fluc-
tuations. Let K � ��� ��� be a two-dimensional density function defined on ! which represents a
specific pattern5. Now we can ask for the probability to observe K � ��� �0� in a sample [10].

Basically the density function is a global, macroscopic description of the underlying object
distribution and does not distinguish microscopic details of the arrangement of objects. Due
to the assumption of equal probability for each microscopic arrangement the probability ��� to
observe K � ��� �0� has to be proportional to the number of possible arrangements ��� which lead
to the same pattern. In general ��� can be quantified from combinatorics.

First discretisation simplifies the problem. The area ! is subdivided into � tiny pixels of
equal size � � accompanied by the transition K � ��� �0� � K ! . Then the number of objects in each
pixel is given by

	 ! � K ! � � with

"�
! J * 	 ! � 	 " , (18)

According to the combinatorical theorem, the number of microscopic arrangements �#� to ob-
serve a certain pattern K is now

�$� � 	 "&%"'
! J * 	 ! % , (19)

5To simplify all considerations we assume ( 8*) in the following; therefore relevant area sizes can be ignored
in the derived formulae.
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Using Stirling‘s approximation6 leads to� � � ��� " � ! 	 ! � � 	 ! , (20)

Then going back to the limit of a continuous distribution ( � � � *
, 	 " � �

) provides the
entropy equation [10] which quantifies the entropy � of each probability distribution7 K :� � K � � " ;�; � O � O � K � ��� �0� � � S K � ��� ��� U , (21)

The entropy � � K � is a convenient measure [9] of the value of � � via� � K ��� � � � � ����� � � � ���!� , (22)

The function K " which maximises the entropy has the largest probability to be observed.

In addition entropy can be interpreted in terms of substructure as illustrated in figure 4.
The arbitrary test function K � � ��� ��� � 4 ��� ����� � � � � ��� 
#� � � � ��� has been considered where the
parameter

�
quantifies deviations from a structureless, flat distribution. The figure shows the

test function for
� � * , * � * ,4 � * , � which generates increasing structures. The entropy calculated

from eq. (21) decreases towards larger values of
�
. Thus increasing structure is correlated to

decreasing entropy. The distribution with vanishing structures has the largest entropy, i.e. largest
probability to be observed. This is realised for the above test function by

�
=
*
.

2.1.3 Maximised Entropy with Boundary Conditions

In order to apply the entropy criterion to tomography also boundary conditions have to be taken
into account. We now have to find a function K which maximises the entropy defined in eq. (21)
while simultaneously reproducing the experimental data 
 ��� from eq. (14). The constrained
optimisation problem can be solved by the Lagrange multiplier technique. For each constraint
eq. (14) one Lagrange multiplier 	 ��� is introduced. The correspondence between the number of
constraints and the degrees of freedom also guarantees the uniqueness of the obtained solution.

The extented entropy functional can be written as follows [16]

�� � K �
	 � � " ;�; � O �6O � K � ��� ��� � � S K � ��� �0� U" �� � J *
# ��� J * 	 ��� 
 �� " ;�; � O �6O � K � ��� ��� & ��� � �6�!��� ��� � � ��
� ��� ��� (23)

The functional derivative of
�� � K � with respect to K � ��� ��� gives the equation� �� � K �
	 �� K � " � � S K � ��� ��� U+" 48� �� � J *

# ��� J * 	 ��� & ��� � �6�!��� ��� � � ��
� ��� � � *
(24)

6 � D ����� ��� ���"> 
� � � D������"> 
� ��D ��� � �!�"� ��D��
7Here, the entropy formalism refers to a naturally continuous function # ; however its reconstruction results in

a discretised formulation as consequence of the binned representation of the measured data.
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as necessary condition for an extremum of the entropy functional with respect to the functionK � ��� ��� . The solution follows directly as

K � ��� �0� � /���� �� " 48� �� � J *
# ��� J * 	 �� & ��6� �����$� ��� � �8��
#� ��� ����

� 4
�

�	� J * # �	� J * ��
 �2����2� � = > @CB � � D�F BGIH � � � , (25)

The products over � can be simplified according to eq. (15)� �7� # �	� J * � 
 �2�����2� � = >A@CB � � D�F BGIH � � � � � 
 ��� � for
� � �

��� �0� � ! , (26)

Due to eq. (16) this expression can be rearranged as a sum� �7� # ��� J * � 
 ��� & ��� � �6�!��� ��� � � ��
� ��� � (27)

and with the definition � ��� � � ( �� � 
 �2� (28)

we finally get � �P� �
�� # ��� J * � �� & ���6� ������� ��� � �8� 
#� ��� � , (29)

Therefore eq. (25) can be rewritten

K � ��� ��� � � (+* �	� J * � �� � (+* �	� J * � � �� # ��� J * � �� & ��� � �6�!��� ��� � � ��
� ��� � �
� �	� J * # ��� J * � �� & ��6� �6�!��� ��� � �8��
� ��� � ,

(30)

The original constrained variation problem eq. (23) is now converted into the task of finding
the values of

� ��
which reproduce all measured data elements 
 �� eq. (14). Substitution of

eq. (30) in eq. (14) yields an iteration relation for the determination of the coefficients
� ���

.


 �� � Q;( Q O �
Q;( Q O � & ��� � �6�!��� ��� � � ��
� ��� � � ' �	

! J *
#��
� � J * � ! � & ! � � ������� � ! � � ��
� � ! ���

� � �� �Q;( Q O �
Q;( Q O � & ��� � �6�!��� ��� � � ��
� ��� � � ' �	

!��J � # �
� � J * � ! � & ! � � �����$� � ! � � � 
#� � ! ��� (31)
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We now have found constraints on the
� ��

-multipliers:� �� � 
 ������ O � O � & ��� � �6�!��� ��� � � ��
� ��� ��� ' ! �J ��� � � ! � & ! � � �����$� � ! � � � 
#� � ! ��� , (32)

Each multiplier
� ��

has an interdependence to various multipliers
� ! � which are explicitly not

related to the same projection
�
, i.e. � �� �

in the above expression. Furthermore,
� ��

is pro-
portional to 
 �� . Consequently, the

� ��
-multiplier dominantly determines the corresponding

value 
 �� whereas the impact on the other elements 
 !
�

with � �� �
is suppressed due to the

small contribution within the sum over many products. So adjusting
� ��

to 
 �� leads only to
minor numerical modifications within the other projections!

The non-linear Gauss-Seidel method is used to find the solution of all elements
� ���

itera-
tively. For the first iteration all contributing elements

� � * ���
of the solution space are initialised

with
� � * ��� � 4 . In case of vanishing input elements 
 ��� � *

the corresponding solution el-

ement is set equal to zero
� � * ��� � *

according to eq. (32). The elements
� � 
 D * ���

of the next
iteration ( 	 � 4 ) results from the recent iteration ( 	 ) by applying the following iteration rule� � 
 D * ��� � 
 ���
 � 
 ���� � � 
 ��� (33)

with


 � 
 ���� � Q;( Q O �
Q;( Q O � & ��6� �����$� ��� � �8��
#� ��� � �
 �	

! J *
# �
� � J * � � 
 D ������ �!

� & ! � � ������� � ! � �8��
� � ! ��� , (34)

However, the order of update of the coefficients
� � 
 ��� within one complete iteration cycle is of

importance and influences the result, because 
 � 
 ��� depends on the recent values of
� ! � with� �� �

. One complete iteration cycle has to span over all projections. Furthermore each iteration
has strictly to be executed in closed sub-iterations on each projection

�
which means calculating

all 
 � 
 D * ����
for all values of � �54 � , ,, ��	 � with value

�
fixed. The function X � � � in eq. (34) defines

the correct order of coefficient update as follows:

X � � � � ' 4 �
already updated*

otherwise
, (34a)

Note, the iteration cycles are indicated by the superscript
� 	C� and in eq. (34) the expression� 	 � X ��� �3� refers to the recent iteration cycle

� 	W� for X � *
resp. already to the values of the next

iteration cycle
� 	 � 4 � for X ��4 . Mixing values

� � 
 D * �!
�

of the next iteration level already in the
recent iteration cycle represented by values

� � 
 �!
�

seems to be an atypical procedure, however
this is the only working solution to get consistent results and guarantees the conservation of the
volume integral of the reconstructed function.
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2.2 Implementation

The abstract mathematical formulation of the Maximum Entropy algorithm, which has been
derived in the previous section, is not very descriptive. However, the expressions eq. (34) as
bases of the iterative calculations can be interpreted geometrically. In the following section the
geometrical relations are explained. These have been exploited for the technical design which
is described in the subsequent section.

2.2.1 Geometrical Description

In section 2.1.1 we have introduced characteristic functions. Each of these functions explicitly
extracts a unique parallel strip from the full � - � -parameter space (fig. 3). Then the product of
characteristic functions from different projections represents an overlay of strips and selects the
common area of all affected strips. In figure 5 this is demonstrated for the product of the global
characteristic functions eq. (17)# �	� J *  �$� �6�!��� ��� � �8��
� ��� � � ' 4 �R� �

��� ��� � !*
otherwise

, (35)

The selected area ! defines the allowed � - � -parameter space of the reconstruction functionK � ��� ��� ; for any point
� �� ! it vanishes. The picked-out area corresponds to a polygon whose

edges are defined by the intersection points of the outer most boundaries of the different projec-
tions.

Now, supposed we have already found a solution to our problem, then all multipliers
� ��

are known and the reconstructed function is unambigiuously given according to eq. (30). For
any point

� � ! exactly one characteristic function
& ��� � for each projection

�
is non-zero

due to eq. (15) . Thus the sum in eq. (30) only contains one non-vanishing element for each
projection and gives

K � ��� �0� � �	� J * � �� � (36)

where the indices � �
depend only on the chosen point

�
. Analoguously to eq. (35), overlay-

ing all non-vanishing characteristic functions
& ��� � � � ����� ���7� � ��
#� ��� � geometrically defines

one specific polygon ��� � ��� ��� ��������� � �	� . The edges of each polygon are given by the related bin
intersections. This is demonstrated in figure 6. All points

� � �
� � ��� �
� ��������� � �	� refer to the same
set of non-zero characteristic functions

& �� � . Consequently they are associated to the identical
function value of eq. (36). This means, the reconstructed function K is piecewise constant over
unique polygons, i.e. all points belonging to one specific polygon are joined to the same func-
tion value. Integrals over the � - � -parameter space resp. ! can be substituted by simple sums
over all contributing polygons.

Each possible intersection combination M
�� � ��� � �� �* � , ,, � � ��� ���� is assigned exactly to one

polygon � M
��� � . The associated function value reads now as

K � �
�	

M
��� �
� �� ��� �� � � * � ��� �� � � � � ��� �� � � � � � � ��� �� ,

(37)
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Figure 5: The overlay of the global characteristic functions � � � � � � of different projections � selects a
unique polygon in the � - � space which defines the valid area of the reconstruction function � ; the edges
of the polygon are defined by the intersections of the corresponding bin boundaries.

The joined set of all intersection configurations resp. polygons is given by
� � � M

� * �� M
� � �� M

� � � , , , � , (38)

For convenience we also define sub-sets of intersection combinations

M
��� ��� � �B� �� �* � ,, , � � ��� �� (+* � � � � ��� �� D * � , , , � � �� �� �

� �� � � M
� * ���  M

� � ���  M
� � ��� , , , � (39)

which reference all polygons of the � ��� bin of the
� ��� projection. Finally, let � � be the size of

the polygon � M
��� � then all integrals can be substituted by sums over polygons as follows:Q;( Q O �

Q;( Q O � ��� �
� � � (40)Q;( Q O �

Q;( Q O � & ���6� ������� ��� � � � 
#� ��� � ��� �
� �2� � � (40a)

For the present we ignore the iteration cycle index in eq. (34) which allows us to rewrite it
simply as 
 ��� � �

� ��� � � K � (41)
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Figure 6: Overlay of characteristic functions � ��� � � ��
��� � 	 � ��� � � � � ; as example characteristic func-
tions of three different projections (

� �
	 ) subdivide the area � into unique polygons as smallest entities.
The edges of each polygon are given by the corresponding bin intersections. Each possible intersection
combination M

��� � �	� � ��� �* � � �� �� � � ��� ���
 is assigned exactly to one polygon � M
� � � .

using eq. (30) for the term in brackets. The geometrical interpretation becomes obvious now.
Each element 
 ��� refers to a unique set of polygons � M

��� ���� and all products of polygon size

� � times the associated function value K � have to be summed up. Adapted polygons represent
the smallest reasonable information units for the Maximum Entropy algorithm. The values K �are given as products of corresponding

�
-multipliers. Note, each polygon resp.

�
-multiplier

provides multiple contributions, one to a specific bin of each projection. Finally, eq. (41) to-
gether with the iteration rule eq. (34) forms the base of the computational implementation of
the Maximum Entropy algorithm.

2.2.2 Computational Design

Over the last years the focus of programming techniques has changed more and more to Object-
Oriented concepts which incorporate essential aspects of modern software development like in-
heritance and data encapsulation. This becomes important even for complex software projects
where portability appears as an important issue. In this context programming with C++ has
developed to a powerful tool with growing acceptance and attraction, especially in the physics
community. Furthermore, often the effort of programming can be reduced significantly by con-
ceptual re-usage of existing C++ tool boxes which provide adequate support to special kinds of
problems. Therefore, it was decided to implement the Maximum Entropy algorithm in the con-
text of C++. The implementation has been embbeded in the developing ”Object-Oriented Data

13
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Figure 7: Working principle of method Polygon::split( � ): the initial polygon in the represention
of the �

�
- � � coordinate system (left) will be splitted at the bin boundary

� � ��� � (middle) along the � � axis;
therefore the intersection points have to be calculated first. Finally the polygon will be splitted at the
intersection points into two independent polygons (right). For each new polygon an additional subscript
� � resp. � � ���

�
�

from the recent projection � has to be assigned to uniquely identify its originating bin
combination at a later stage.

Analysis Framework” of ROOT [1] which provides high level access to objects like histograms,
graphs and 3D graphics. Especially the possibilities of data storage in histograms and graphical
visualisation have been intensively used for programming and debugging the MENT algorithm.
In addtion to running stand-alone programs, also interactive sessions using the command line
interpreter allow for comfortable operation.

As pointed out in the previous section the main task refers to the calculation of the expres-
sions eq. (41) which are fed in the iteration procedure eq. (34). One essential step now lies
in the determination of all polygons � M

��� ���� which are associated to 
 �� . The polygons have

to be calculated by evaluating and mapping the intersection points of the given bin boundaries
(fig. 6). To efficiently handle these geometrical objects the class Polygon has been developed
which provides related methods for all relevant manipulations of polygons, e.g. transformations
to different coordinate systems, splitting along a certain line, calculation of areas, etc. (see also
section A.5).

The essential calculations are coordinated within the class MaxEntropy (see also sec-
tion A.1) which exhaustively uses the applied geometrical operations on polygons. The compu-
tational tasks are ordered according to the following scheme:

➫ Initialisation
First of all, the input data 
 ��� with the appropriate bin boundaries have to be given as
ROOT objects of one-dimensional histograms; also the related �! +� transformation matri-
ces (eq. (1)) as instances of class Matrix have to be given. Both information fragments
are fed in MaxEntropy via method MaxEntropy::set projection( "�"�" ) for each
requested projection. The data will automatically be stored for the iteration procedure. To
delete all input data MaxEntropy::delete all projections() has to be used.

➫ Geometrical Calculations
The time-consuming geometrical calculations of polygons from bin intersections will be
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Figure 8: The reconstructed distribution
is given in rectangular bins which typ-
ically do not match the underling poly-
gon pattern; therefore �����

>
which has a

constant value over each polygon is inte-
grated over all polygon fragments within
each reconstruction bin (shaded areas).
Finally the integral is normalised to the
bin size of the rectangular bin.

initiated by calling the method MaxEntropy::Iterate from storage(0). Then
all contributing polygons are calculated recursively. Starting from a polygon simply de-
fined as the largest rectangle which includes ! (see fig. 5), this polygon is transformed
into the coordinate system � * - � * and subsequently cut into strips along the bin boundaries�
� * � � for � * ��4 � , ,, ��	 * . The splitting procedure is illustrated in figure 7. The method
Polygon::split(

�� * � � ) calculates intersection points and provides two separated, in-
dependent polygons which represent the left and right side of the original polygon8 with
respect to the splitting line

�
� * � � � �6�!��� ��� � �	��
#� ��� . Finally, we obtain several polygons

� � � ��� �� � which are characterised by the evoking strip with index � ��� �* . Each polygon is
forwarded to the subsequent recursion level where the identical procedure is executed,
however with coordinates in the representation of the subsequent coordinate system �

�
- �
�

and with corresponding bin boundaries
�
�
��� � . This recursive procedure has to be repeated

for the subsequent projections until the terminating condition
� � � is fullfilled. We end

up with all polygons � � � ��� �� ��������� � ��� �� � covering the complete area ! . For the iterations only
the area sizes and the assigned indices are needed. The latter is used to be able to map
values K � to the related polygon � M

��� � according to eq. (37). In order to avoid the repeated
execution of identical geometrical calculations for each iteration, thus saving much CPU
time, the informations are stored in memory. Evaluated polygons are skipped after saving
their size and intersection configuration M

��� � .
➫ Iterations

Having all geometrical calculations finished single iterations can be initiated by calling
the method MaxEntropy::Iterate from storage(

�
) with ( 	�� *

). The relevant
intersection combinations

� ��
needed to calculate the elements 
 � 
 ���� (eq. 34) will be

recursively restored from memory. Then the
� � 
 D * ����

elements will be updated according
to the iteration rules.

➫ Reconstruction
Whenever an iteration has been finished the recent values of the

� ��
-multipliers can be

8In case of no valid intersection the complete initial polygon is attached either to the left or right side.
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used to determine the actual solution of the reconstruction function according to eq. (36).
Therefore the method MaxEntropy::reconstruct histo2D from Hspace(...)

has to be executed. Figure 8 illustrates the arising problem of mismatch between the inter-
section polygons and the rectangular bins of the two-dimensional histogram which should
be filled. To avoid this intrinsic mismatch the reconstructed function is exactly integrated
over the pieces of polygons within each rectangular bin. The integral value is normalised
to the bin size and filled into the histogram. Thus artefacts due to binning effects do not
appear. For large reconstruction bins with respect to typical polygon sizes mean values
are obtained giving smoothed distributions whereas for smaller bins the polygon structure
becomes more and more visible.

2.3 Numerical Examples and Performance

In the following sections two examples are investigated to document the performance of the
Maximum Entropy algorithm. The first example gives an intuitive impression of the capability
of reconstruction with the MENT algorithm. However, typical physical problems are often
related to gaussian distributions. Therefore the second example deals with an arbitrary linear
combination of gaussian distributions. Finally the topic of calculation time will be discussed
briefly.

Before testing the algorithm with simulated projections we need to have a measure of the
deviations between initial and reconstructed distributions. In the following sections the recon-
struction error will simply be quantified as the mean-square norm of the deviation of the recon-
struction solution K ����� � ��� ��� from the expected value K?L NWL � ��� �0� . For the binned distributions the
expression

� � ���� �
	 ���� � K ����� � ����� ��� � " KML NWL � ���0� ��� ��� �� � � 	  KML NWL � � � � ��� ��� � (42)

will be evaluated. The sums go over all two-dimensional rectangular bins which are referenced
by the variables ��� and ��� . By construction all bins of the initial and reconstructed distributions
are always of equal size. Therefore the bin sizes have been left out from expression eq. (42).

2.3.1 Example I: Flat Top Distributions

The capability of the implemented Maximum Entropy algorithm is impressively visualised in
figure 9. The chosen initial test distribution has been composed of two separated flat top re-
gions, one cylindrical and one sickle-shaped, which additionally have different levels. Then
from the composed distribution the projection profiles have been calculated and fed in the re-
construction. All simulated projections are subdivided into 50 equidistant bins. The figure
shows reconstructed distributions in contour view (left) and also in isometric view (right) for
� �	� ����� � * applied projections.

As expected the quality of reconstruction increases with the number of available projections.
For � � � * projections the shape and amplitude of the reconstructed distribution are described
with high accuracy. Using only � � � projections already allow an estimation of the underlying
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Figure 9: Illustration of the capability of the Maximum Entropy algorithm; the initial test distribution
consisting of two separated, flat areas (top) has been used to calculate projections which are used in the
reconstruction. The obtained reconstructed distributions are shown as contour plots (left) and isometric
plots (right) for three different numbers of projections, i.e.
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Figure 10: Deviation of the reconstructed distribu-
tion with respect to to the initial distribution accord-
ing to eq. (42) as function of the number of iteration
cycles; three curves for different numbers of applied
projections

� � ��� ����� ��	�� are shown. The observed
deviations decrease with increasing amount of input
information, i.e. increasing number of projections.

distribution in case of an optimised choice of rotation angles9. The main characteristics, i.e.
position and shape, can clearly be identified. Some small artefacts arise in the “projection
shadow“ of the distribution. These artefacts further increase for � � � and the reconstruction is
degraded to a rough estimate of the true distribution.

The convergence behaviour of the Maximum Entropy algorithm can be seen in figure 10.
The figure shows the deviation of the reconstructed distribution from the initial distribution
according to eq. (42) as function of the number of iteration cycles. The three curves for
� � 4 * ��� * � � * projections decrease rapidly within the first � �E4 * � iteration cycles. Afterwards
the numerical changes between subsequent iteration cycles become small. In practice � ��� * �
iterations seem to be suffient to get numerically stable results. The observed deviations reduce
with increasing number of projections. However, the improvement on precision is more empha-
sised for the transition � � 4 * � � * than for � � � * � � *

. Generally, inserting an additional
projection evokes a higher gain on the accuracy of the reconstruction for smaller total numbers
of projections10.

2.3.2 Example II: Gaussian Distributions

The example in the previous section intuitively documents the capability of the Maximum
Entropy technique. However, gaussian distributions have much more importance as realistic
physics scenarios and should be used for meaningful benchmarks of the reconstruction accu-
racy. In this section the overlay of three gaussian distributions with different center of mass,
width and amplitude pose as initial test distrubition. Figure 11 describes the applied initial dis-
tribution (top) as well as four examples of the resulting reconstruction by the Maximum Entropy
algorithm. The four reconstructed distributions refer to different numbers of applied projections

9To maximise the amount of input information all angles should be chosen as different as possible with respect
to each other.

10In principle we have two crucial degrees of freedom to increase the level of precision, numbers of projec-
tions and numbers of bins for each projection. Optimising the level of reconstruction precision depends on both
parameters.
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Figure 11: The overlay of three gaussian distributions with different center of mass, width and ampli-
tudes (top) pose as benchmark of the reconstruction efficiency; the reconstructed distributions are shown
for
� � � ��	 ��� ��	�� projections in use.
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Figure 12: Deviation of the reconstructed distribu-
tion with respect to the composed gaussian distri-
bution (fig. 11; top) according to eq. (42) as func-
tion of the number of iteration cycles; three curves
for different numbers of applied projections

� �
��� ����� ��	�� are shown. The observed deviations de-
crease with increasing amount of input information,
i.e. increasing number of projections.

( � � � � � � � � � * ) where possible error sources, e.g. noise, have been ignored. Each projection
has been subdivided into 50 equidistant bins. Using � � � * simulated projections in the recon-
struction an impressing congruence is achieved. Overlapping regions, widths and amplitudes
are nicely reproduced. A remarkable observation is that only 5 projections are sufficient for a
reasonable reconstruction of the initial distribution. If the number of used projections is only 2
or 3 significant artefacts appear in the reconstruction, but these cases would anyway have to be
regarded as incomplete measurements.

Figure 12 shows the deviation of the reconstructed distribution from to the initial distribu-
tion (according to eq. (42)) as function of the number of iteration cycles. Similar to the previous
example the growing number of available projections is accompanied by a reduction of the ob-
served deviations. Again the three curves for � � 4 * ��� * � � * rapidly decrease within the first
� �E4 * � iteration cycles. In contrast to the previous example slightly more iteration cycles are
needed for � � � * to get numerically stable results. Note, that for equal conditions, i.e. equal
binnings and number of projections, the observed deviation for the composed gaussian distri-
bution is an order of magnitude smaller than for the flat distribution of the previous example.
This demonstrates that the Maximum Entropy algorithm is especially well suited to reconstruct
gaussian shaped profiles.

The achievable accuracy depends on both, the number of available projections and the num-
ber of bins per projection. This is illustrated in figure 13. For the gaussian example the max-
imum gain in accuracy is obtained for when going form 6 to 7 projections (left) whereas the
improvements for additional projections are only moderate. Also the number of bins of each
applied projections massively affects the level of precision (right). Strong degeneration is corre-
lated to small numbers of bins per projection. Therefore the used binning within the projections
should be adjusted close to the resolution limits of the measuring devices to optimise the recon-
struction efficiency.

2.3.3 Calculation Time

An important limitation for usage of tomographic reconstruction methods is often given by
the restricted computer resources. However over the last years the development on computer
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Figure 13: Deviation of the reconstructed distribution from the composed gaussian initial distribution
(eq. (42)) as function of the number of projections with � � ��� bins per projections (left) and as function
of the number of bins per projection with fixed number of projections to

� � ��� (right)

hardware brought overwhelming improvements. All presented results have been calculated on
a standard Linux PC with 1.7 GHz Intel Pentium IV processor and 256 MB memory.

The needed CPU time for a reconstruction based on the Maximum Entropy method depends
mainly on the number of contributing polygons. Figure 14 illustrates the quadratical depen-
dence of the number of polygons on the number of projections. Here 50 equidistant bins per
projection have been used. With increasing number of polygons also the complexity of the
polygons, i.e the number of constituting points, increases. Consequently the calculation time
for all envolved polygons increases quadratically with number of projections or the number of
bins per projection respectively. Figure 15 shows the consumed CPU time for the geometrical
calculations of all polygons which depends on the number of projections � (left) and the num-
ber of bins per projection 	 . For example, using � � 4 � projections with 	 � � *

bins each
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Figure 14: Number of calculated unique poly-
gons as function of the number of different
projections; the numbers have been evaluated
from the gaussian example in sec. 2.3.2 where
50 bins per projection have been used.
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Figure 15: Needed CPU time in seconds for the geometrical calculations of all involved polygons as
function of the number of used projections
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common point of both diagrams.
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Figure 16: Needed CPU time in seconds for a single iteration cycle including all sub-iterations and
using the memory-resident geometrical calculations; the plots illustrate the dependence on the number
of used projections
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� � ��� . The dotted line marks the common point of
both diagrams.
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then � �E4 * � � polygons have to be calculated which needs roughly 3 seconds CPU time.

Thus for the chosen configuration one complete iteration cycle normally would take roughly
�  � � � � � � CPU time due to the necessary execution of sub-iteration cycles. However, as
mentioned in section 2.2.2 the geometrical calculations have to be performed only once, because
the results, i.e. polygon sizes � � and corresponding bin configurations M

�� � � � � ��� �* � ,, , �$� �� �� � ,
are stored residently in memory. Figure 16 shows the effective CPU time needed for a single
iteration cycle including all sub-iteration cycles when the geometrical calculations are stored in
memory. Also here the CPU time dependence on the number of projections resp. number of bins
per projection evolves quadratically in parallel with the set of polygons. However the needed
absolute CPU time is dramatically reduced. For the above scenario using � ��4 � projections
with 	 � � *

bins each the total CPU time takes roughly
4$, �

seconds which means a factor of
30 reduction of reconstruction time. The only limiting factor could be the available memory
space.

3 Phase Space Tranformations for Accelerator Beams

3.1 Basics

The motion of a charged particle in an accelerator can be described by a trajectory in the six-
dimensional phase space. The beam line as combination of magnetic elements and accelerating
structures defines the boundary conditions for the propagating particle. Now, if the initial pa-
rameters �� ��� ��� ��� � � � ������E� X$� (43)

and the beam line elements are known, the full trajectory
�� ��� � in the phase space can be calcu-

lated. The coordinates in eq. (43) refer to a reference trajectory. The variables � and � denote
the horizontal and vertical displacement of the particle, � � and � � the horizontal and vertical
angle of the particle trajectory with respect to the reference trajectory. The variables � and X
refer to the longitudinal phase space and denote the longitudinal displacement and the frac-
tional momentum deviation ( X � �
	��	  ) with respect to the reference particle. Instead of the
longitudinal displacement � the corresponding time difference � can be used.

3.2 Linear Transfer Matrix Formalism

The main magnets in an accelerator are dipoles and quadrupoles where the field depends lin-
early on the displacement � resp. � . Therefore in the ”linear optics” approximation the beam
line elements can be characterised by matrices and the particle trajectory results from matrix
multiplications ���� ��� � �� G

(44)

where
�

is a �  �� square matrix, called beam transfer matrix. The effective transformation for
the entire beam line can easily be obtained by multiplying the transfer matrices

���
of all beam

line elements � � S 4 � , ,,�� U sequentially from the end to the beginning of the beam line
� ��� ����� ����� (+* � � � � � ��� * , (45)
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The physical properties of the different possible beam line elements find their mathematical
correspondence in special transfer matrices:

➫ Drift Space:
The simplest beam line element is a drift space of length � where no forces influence the
particles and only the transverse displacements do change according to � � resp. � � . The
transfer matrix looks as follows:

��� � ��������
4 � * * * ** 4 * * * ** * 4 � * ** * * 4 * ** * * * 4 ** * * * * 4

��������� (46)

➫ Quadrupole Magnet:
A quadrupole magnet focuses the beam in one plane and defocuses in the orthogonal
plane. The length � and the strength � of the quadrupole are the basic parameters of a
quadrupole. The strength again depends on the gradient � of quadrupole magnet and the
momentum 	 of the particle

� � ��� 4� S � U � 4	 � ,
(47)

With
 �� � 
 � the focusing resp. defocusing sub-matrices�� ��� �!��� �� � *� ! ��
� �� �" 
 � � 
#� �� � ����� �  ��� (48)

� � � � ���$��� �� � *� ! ��
��� �� �
 �'��
��� �� � ������� �� � � (49)

give the full �  � transformation matrix via

��� � �� � = � ���7� � �� � F � � � � �� � � �� with � � � * ** * � � � � � 4 ** 4 � , (50)

The matrix describes a quadrupole magnet aligned according to the � - � axis.

➫ Acceleration:
The acceleration of relativistic electron bunches in a radio frequency (RF) cavity affects
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the longitudinal phase space. The longitudinal displacement � and the fractional energy
deviation X transform in linear approximation according to the following transfer matrix:

� >�� � �
��������
4 * * * * ** 4 * * * ** * 4 * * ** * * 4 * ** * * * 4 ** * * * � � � � � �

� ������� (51)

Here the transverse and longitudinal phase space are decoupled so that the relevant trans-
formations simplify to � � �X � � � � 4 *� � � � � � � � �X � , (52)

Let
� " be the RF phase and

� ��� �GIH G � G�� � the initial energy corresponding to the reference par-
ticle. The phase difference � �

is explicitly related to the longitudinal displacement �
via

� � � � " � " � � T� � , (53)

Now, with the voltage �
�W>A>

of the cavity the matrix elements can be written as follows [8]

� � � � � � � �GIH G � G�� �� ��� �GIH�G � G�� � � ���
�W>A> �!��� � " and

� � � � " ���
�W>A> ��
� � "� ��� �GIH�G � G�� � � ���

�W>A> �!��� � "
� T� , (54)

Besides the linear beam matrix formalism, higher order effects [8], i.e. the non-linearity of
the energy gain within the longitudinal dimension, can be taken into account by extending
the linear equations (52) to X � �<� � � X ��� � � � � � H @CH ( � GIH � � (55)

with � H�@CH ( � GIH � " *� ��� �W>A> ���$� � "� � � �GIH G � G�� � � ���
�W> > ����� � "

� � T� � � , (56)

The linear beam transfer formalism is easy to handle for the needs of tomography. However,
higher order effects such as higher multipoles in the magnets or internal Coulomb forces in the
bunches are neglected here. In addition experimental errors, e.g. imperfections of the magnetic
structures or misalignment cause systematic uncertainties on the knowledge of the true transfer
matrices. Therefore the quantitative results of tomographic phase space reconstruction could be
distorted according to these uncertainties. More details of the transfer matrix formalism can be
found elsewhere [12].
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3.3 Beam Moments and Beam Matrix

Instead of tracing individual particles along the beam line normally it is more convenient to
consider the dynamics of whole particle bunches to study the propagation of the beam. Due to
the large number of particles within one bunch, up to

4 * * "
electrons in case of the TESLA

Test Facility, the bunches are characterised by the density distribution � � ��� � � � � � � � � �C� X � �
� � � * � � � � � � � � � � � � � � � � in the six-dimensional phase space where � � � * � , ,, � � � �0O�� gives the
number of particles in the volume element O�� at the phase space coordinates � =

�
� * � � � � � � �

�
� � � � � � � � .

The density distribution � is used to compute the first and second moments

� 
 � ; � 
 � � � * � � � � � � � � � � � � � � � �7O�� �  � 
 � (57)

� 
 �7� � � 
 � ; � � 
 " � 
 � � � � " � � ��� � � * � � � � � � � � � � � � � � � � O�� , (58)

The � 
 define weighted average of the corresponding coordinate and the second moments � 
 �
form the covariance matrix � of the density distribution

� �
��������
� *C* � *�� � * � � * � � * � � * �� ��* � �� � � � � � � � � � � � �� � * � � � � � � � � � � � � � � �� � * � � � � � � � � � � � � � � �� � * � � � � � � � � � � � � � � �� � * � � � � � � � � � � � � � � �

��������� (59)

which is called the beam matrix. The diagonal elements describe the transverse spatial beam
width in the horizontal plane � *C* and vertical plane � � � , the transverse angular divergence in the
horizontal plane � �� and the vertical plane � � � , the bunch length � � � and the fractional momen-
tum deviation � � � . The off-diagonal elements define the covariances between the different phase
space coordinates. In total 21 beam parameters are independent. For a six-dimensional gaussian
density distribution ��� the first and second moments are sufficient to define �� unambigiously.
Then the density function is given by

�	� � � * � , ,, � � � � � 
 �� 
� � T � � /���� � " 4� ��

 J * �� � J * � � 
 �$� � 
 " � 
 � � � � " � � � � (60)

with
�� 
 � as the matrix elements of

�� = � (+* and 
 �� 
 � det
� ��6� . Often measurements of beam

parameters base on the assumption of gaussian distributed profiles, e.g. quadrupole scans to
determine the emittance. Here the capability of tomography becomes clear. Besides the de-
termination of RMS beam parameters the tomography allows to quantify the deviations from
gaussian profiles.

For any linear coordinate transformation
�

according to eq. (44) it can be shown [13] that
the covariance matrix ��� for a given density distribution �� *

undergoes a transformation as
follows

� � ��� �
G ��% ,

(61)
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This transformation law of the variances and covariances is not restricted to gaussian distri-
butions, but holds for arbitrary density distributions. Consequently, the evolution of the beam
matrix along the beam line is determined by the single transfer matrix

�
according to eq. (45).

The beam parameters can be calculated at any position if they are measured at one place. How-
ever, it must be noted that the magnetic elements lead to dispersive distortions due to the energy
dependence of the transfer matrix. These effects will be ignored for our considerations concern-
ing the transverse phase space reconstruction, i.e. the longitudinal and transverse phase space
are reconstructed independently ignoring correlations among each other (see also next section).
Therefore chromaticity represents one relevant source of systematic errors for tomographic re-
construction of the phase space distribution.

3.4 Simplifying Approximations (Decoupling)

Probing the full the six-dimensional phase space of a particle beam is a highly complex prob-
lem. Different measuring techniques have to supplement each other. To reduce the complexity
resonable approximations have to be made which allow us to determine important beam param-
eters without knowledge of the full six-dimensional phase space distribution.

From a fundamental point of view the determination of phase space distributions by tomo-
graphic reconstruction techniques (but also for various other methods) has an intrinsic difficulty.
The precise propagation of the beam along the beam line depends on the exact phase space dis-
tribution in the full six-dimensional phase space. However the determination of the phase space
distribution bases on the knowledge of the predicted beam propagation thus having a kind of vi-
cious circle. For example, the beam propagation within the transverse phase space also depends
on the energy spectrum due to the effects of chromaticity, i.e. transverse and longitudinal phase
space are not entirely decoupled. In many cases the correlations among the different dimensions
of the phase space can be neglected in good approximation which allows a factorisation of the
phase space distribution as follows

� � � * � � � � � � � � � � � � � � � � � ��� ��� N � � � � � * � � � � � ��� ��� N � � � � � � � � � � � ��� 	 N 
 � � � � � � � , (62)

Under this assumption the beam matrix formalism provides a simple description of the beam
propagation which can be exploited for two-dimensional phase space tomography11. All non-
diagonal elements of the beam matrix eq. (59) are assumed to vanish, except the elements� *�� = � ��* , � � � = � � � and � � � = � � � . The different sub-phase spaces are then decoupled and can be
evaluated separately by tomographic reconstruction.

The assumption of decoupled phase space distributions according to eq. (62) is only justified
if also the transfer matrices leave the � * - � � phase space and �

�
- �
�

phase space decoupled. In
particular, skew quadrupole components must be absent. Then the transfer matrix simplifies to

� � �
�WH�B � � � �

�
� �

� � with (63)

11Strictly speaking the two-dimensional tomographic reconstruction of ������������ � � 1 
�/�1 � � resp. ������������ � �.1! /21#" �
also operates for a true transverse phase space distribution  ��������� �.1�
�/21 � /�1! /21#" � if the requirement of eq. (63)
holds. Then the distributions  ����������� � � � � represent the two-dimensional projections of the true distribution.
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�
�
� � � *C* � *��� ��* � �� � � � �

� � � � � � � �� � � � � � � and
� � � * ** * � , (64)

Here a priori possible couplings to the longitudinal phase space, i.e. especially energy depen-
dencies are ignored. For the decoupled phase spaces one defines �  %� beam matrices

� �
� � � *C* � *��� ��* � �� � and � �

� � � � � � � �� � � � � � � , (65)

The evolution of the tranverse horizontal beam parameters ��� resp. transverse vertical beam
paramters ��� along the beam line is again described via eq. (61), but now for the case of �  %�
matrices where the transformations in � * - � � phase space with

� � resp. �
�
- �
�

phase space with� � do not depend on each other.

3.5 Phase Ellipses and Beam Parameters

The simplifying approximations described in section 3.4 allow a simple interpretation of the
(remaining) beam parameters. For example, if we consider the decoupled two-dimensional
density distribution in the � - � � plane, the corresponding density function looks as follows12

� � � � * � � � � � �	 / ��� � " � � *� � *C* � � * � � � *��� � *C* � �� " � ��� � �� � with � * � � � � � � ��� , (66)

The � � distribution can be intuitively interpreted in terms of iso-lines in the � * - � � plane for
� � � � * � � � � � �� which defines ellipses of the form

� �� � � * " � � *�� � * � � � � *C* � �� ���
(67)

and the
4 � phase ellipse is given for

� � 4
. The ellipse is determined in shape and orienta-

tion by three parameters, i.e. the three second order moments ( � *C* � � �� � � *�� ) or alternatively the
so-called Twiss parameters ( � � �
	 � ��� � ) related by � � � � " 	 �� � 4 together with the beam emit-
tance  � [15]. The relations between the phase space ellipse and beam parameters are shown in
figure 17. For the � - � � phase space analogous relations exist. The Twiss parameter notation is
related to the beam moments via

��� � � � � � � *C* � � � � � *�� � � � �� ��* � � � � � �� � � � � � �  � � � � � � � � � � " 	 � � � �" 	 � � � � � � � � � � , (68)

The beam emittance  � � � � is a measure of the beam quality. It is one of the essential param-
eters to characterise the particle density in the beam for example in terms of specifc luminosity
for colliding beams or in terms of radiation power of an SASE free electron laser. The beam
emittance is defined as the phase space volume occupied by a certain fraction of the beam parti-
cles. Suppose we have gaussian distributions the beam emittance  is typically given by the area
of the 1 � level phase ellipse which correspondingly surrounds 38% of the beam particles. If
the energy is conserved (no decelerating/accelerating structures) due to Liouville’s theorem the
occupied volume resp. emittance is a conserved quantity during the beam propagation. Small

12Here possible displacements with respect to the point of origin are ignored assuming � 
 � � and � � � � .
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Figure 17: Relation between the phase space ellipse and the beam parameters in the � * - � � plane of the
tranverse phase space; analogous relations exist for the � � - � � phase space.

occupied phase space volumes are related to small spatial beam sizes and small angular di-
vergence. The statistical definition of the emittance for the transverse horizontal, transverse
vertical and longitudinal phase space are given by the beam parameters as follows

 � �&% � *C* � �� " � �*��  � �'% � � � � � � " � �� �  �
@CH
� �'% � � � � � � " � �� � , (69)

For varying particle energies the above definition of the emittances is not invariant. Instead one
defines the so-called normalised emittance

�( � �  with � � 	� "*) (70)

which is conserved during acceleration.

4 Transverse Phase Space Tomography

Advanced and dedicated beam diagnostic methods represent a major ingredient in the under-
standing and the operation of particle accelerators like the TESLA Test Facility (TTF). The
beam of the TTF linear accelerator is used to drive a SASE free-electron laser (FEL) in the
VUV wavelength regime. Therefore stable and reproduceable beam conditions have to be pro-
vided. This will become particularly important in the near future when TTF enters the next
stage of extension (TTF Phase II) with the final goal to have a user facility of the free-electron
laser. Therefore beam properties, e.g. energy spread, bunch length, transverse and longitudinal
emittances, have to be measured and monitored with high accuracy to be able to optimise the
FEL performance. Several methods have been developed to measure relevant beam parameters.
In this context tomographic image reconstruction of the phase space distributions of the electron
beam represents one essential technique to gain basic information about the beam properties.
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Figure 18: Sketch of a beam line with three quadrupole magnets (triplett) evoking transformations
of the transverse phase space distribution between the initial position �

GIH G
and the position of oberva-

tion �
@�� B

; the applied transformation depends on the geometrical setup of the beam line and the adjusted
strength of each quadrupol magnet. The transfer matrix formalism allows the simple calculation of the
transformation matrices (see section 3.2).

4.1 Experimental Setups

The transverse phase space distribution of the electron beam can be reconstructed by applying
a quadrupole scan which causes rotations of the phase space distribution. A set of quadrupole
magnets is used to rotate the phase space distribution between the point � L NWL before the quadrupole
magnets and the position of observation �

@�� B
behind the set of quadrupoles (figure 18). Alterna-

tively a fixed optics can be used and the measurements of the beam profiles are done at different
locations along the beam line. Both possibilities generate rotations of the transverse phase
space. The intensity profiles can be measured by different types of devices.

➫ Wirescanners:
Wirescanners [18] provide one-dimensional profiles by moving a thin wire along a fixed
axis through the beam. Thus the scattering intensity can be measured as function of
the wire position. However, to get a full profile many particle bunches have to used;
each bunch provides only one measurement at a certain spatial position of the wire. The
resolution is limited by the thickness of the wire and the precision of the wire positioning.

➫ Optical Transition Radiation Devices:
Inserting a metallic screen into the beam line optical transition radiation (OTR) can be
recorded which provides two-dimensional spatial images of the charge distribution. The
OTR is emitted due to the passage of the charged particles from one dielectric medium
into another. The radiation can be imaged by an optical system and digitised with a
CCD camera. Physical details about optical transition radiation can be found for exam-
ple in [8]. Compared to wirescanners OTR stations yield full two-dimensional spatial
profiles already for single bunches13. The two-dimensional OTR profiles are numerically
integrated in either � or � coordinate and the obtained one-dimensional profiles can be
used to reconstruct the � – � � resp. � – � � phase space distribution. Basic limitations are re-
lated for example to imaging errors, depth of field, sensitivity and pixel sizes of the CCD
chip.

13Of course, restrictions are given due to the intensity of the emitted radiation which is often too low for small
bunch charges. Then CCD cameras can integrate the radiation over multiple bunches to get resonable intensity.
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4.2 Transformations within the Transverse Phase Space

The transfer matrix formalism introduced in section 3.2 describes linear effects of the beam
propagation along the beam line and allows the quantitative evaluation of the transfer ma-
trix from a fixed starting point �

GIH�G
to the position of the measuring device �

@�� B
. Using only

transfer beam lines according to eq. (63) which explicitly do not couple � * - � � phase space
with �

�
- �
�

phase space (see section 3.4) admit the independent tomographic reconstruction of
� � ��� N � � � � � * � � � � and � � ��� N � � � � � � � � � � . We are interested in rotations of the phase space covering an
effective range between zero and

4�� *  to obtain an optimised reconstruction accuracy. Exem-
plarily we consider the horizontal phase space, but analogous considerations are valid for the
vertical phase space.
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Figure 19: Assignment of the angle to a given
point � in the � * - � � plane using counterclock-
wise notation accordingly to eq. (72)

Tranformations are given by the �  %� transfer matrix according to eq. (64)

�
�
� � � *C* � *��� ��* � �� � , (71)

Each transformation can be understood as superposition of rotation and shearing. In the � * - � �
plane any given point

�
can be assigned to a certain angle

�
in counterclockwise notation

covering the range of values from zero to � T as follows (figure 19)

� �
� * � � � ���

���������� ���������

�
	 �!1 � � = �= � � * � * � � � � *
� � � * � * � � � � *T � ��	 �!1 � � = �= � � *  * � � � �� *�
� T � * � * � � �  *
� T � �
	 �21 � � = �= � � * � * � � �  *
undefined � * � * � � � � * ,

(72)

Thus an effective, relative rotation angle � �� induced by a given transformation
�

� can be
defined for each point

�
= ( � * , � � ) as the difference of the assigned angles for

�
and the trans-

formed point
� � ���

�
� %

according to eq. (72):

� � � ��� � � *C* � * ��� *�� � � � � ��* � * ��� �� � � � " � � � 4 � �B��� , (73)
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Figure 20: Two phase ellipses in the � * - � � phase space (left); the transition from the circular line to
the elliptical line shape results from the linear transformation according to eq. (74). The straight lines
hint the changes of corresponding pairs of points. The right plot shows the induced effective rotation
according to eq. (73) for each point on the circular line as function of the assigned angle from eq. (72).
The shearing causes a coordinate dependent variation of the effective rotation.

For the simple case of regular rotations as given by eq. (1) and eq. (2) the effective rotation an-
gle � � � corresponds to the inducing angle

�
and is independent of the initial coordinates of the

chosen point. The independence on coordinates does not hold for generalised transformations
where all transformation matrix elements

� 
 � are independent. Then also shearing occurs lead-
ing to variations of the assigned relative rotation angle. This situation is sketched in figure 20.
The left plot shows two phase ellipses in the � * - � � phase space. Each point lying on the circular
line has been transformed using the following matrix

� � �
�
��� � � � � * , � * , 4* ,
	 4�, � � , (74)

The transformation leads to the elliptical deformation of the initial line shape. In the figure
the added straight lines hint the changes of corresponding pairs of points. The variation of the
effective rotation angles is evaluated in the right plot. It shows the induced rotation according
to eq. (73) for each point on the circular line as function of the assigned angle from eq. (72).
The induced deformation, i.e. shearing, is related to coordinate dependent variations of the
effective rotation. These variations increase with the degree of deformation. Consequently the
‘projection angle’ is not uniquely defined for ‘generalised’ �  � matrices.

The described characteristics can be observed within the the transverse phase space. In this
context the implemented MENT algortihm takes generalised, linear transformations correctly
into account! However, the criterion of completness of input data must be reconceived. It
becomes not sufficient to consider only the effective projection angles of one single point in the
phase space14. Systematic uncertainties certainly vary with the set of applied transformations

14As already mentioned for ordinary rotations according to eq. (1) we would adjust the projections to cover the
range between zero and )�� �� for an optimised sample of measurements.
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resp. the degree of ‘deformation’. Thus transformations evoking minor effects of deformation
are preferable to reduce the systematic uncertainties with respect to the issue of completness.

4.3 Error Sources

The application of the transverse phase space tomography contains various experimental prob-
lems which have to be considered to get reliable results. The following list figures out some of
the dominant error sources which can falsify the reconstruction potentially:

- On the one hand all considerations and examples have assumed a stable point of reference,
i.e. for each measured profile the point of origin is known. This would allow to attach
all profiles to the same point of reference. On the other hand due to practical reasons the
beam orbit is often not well aligned along the corresponding quadropole axis thus causing
systematic shifts of the orbit during a quadropole scan. Here calculating the center of
mass for each profile defines a ”pseudo” point of origin which can fix the problem but
introduces uncertainties to the tomographic reconstruction.

- Possible deviations from the nominal elliptical distribution give hints to the existence
of correlations15 among the � - � � and � - � � phase space which would influence the beam
propagation. In addition the transverse beam propagation is energy dependent due to the
effects of chromaticity and dispersion.

- The usage of wirescanners introduce bunch-to-bunch variations into the reconstruction
which also increases the systematic deviations.

- The bunch charge fluctuates from bunch-to-bunch. So all measured profiles have to be
normalised to the same value.

- Bunch remnants which lie out of the timing window of interest and dark currents enter
and falsify the profile measurements.

5 Longitudinal Phase Space Tomography

The longitudinal phase space of a particle bunch denotes the two-dimensional parameter space
in the energy domain and the longitudinal spatial coordinate16 domain. The determination of
the longitudinal phase space distribution of a particle beam is a challenging task in accelerator
physics. Present accelerator designs, e.g. the Tesla Test Facility, make time resolutions in the
femto second regime necessary which lies at the frontier of existing technologies. Recently
dedicated, new methods are in the focus, e.g. Electro Optic Sampling [14], to tackle this difficult
task. In this context tomographic reconstruction supplements the choice of possible tools.

The measurement of energy distributions of particle bunches with a magnetic spectrometer
is a standard technique in accelerator physics whereas the time domain is not directly observable

15Indeed such kind of deviations have beem observed at Tesla Test Facility during phase I.
16Of course, in the relativistic case the longitudinal spatial coordinate translates to time domain equivalently.
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with these kind of measurements. However with the tomographic reconstruction technique also
the time domain and the correlations among the energy domain become deducible (with some
intrinsic limitations; see also [11]). Projections of the longitudinal phase space distributions
onto the energy coordinate serve as input for tomography.

5.1 Transformations within the Longitudinal Phase Space

Rotations of the longitudinal phase space evolve for example from the off-crest acceleration
of particle bunches within RF cavities. In principle the longitudinal density profile of the
bunch converts into characteristic energy distortions during the propagation through the cav-
ities. These distortions can be determined experimentally from the measurement of the energy
spectrum. Compared to the transverse phase space the transformations within the longitudi-
nal phase space appear slightly more complicated. Additional physical effects like coherent
synchrotron radiation in the bunch compressor magnets influence the beam profile.

5.1.1 Linear Approximation

The applicable rotations depend on the phase
�

of the RF field at which the bunch traverses
the cavity. The matrix formalism as introduced in sec. 3.2 describes such transformations. In
the linear approximation eq. (52) the transformation represents a shearing of the longitudinal
phase space with the phase

�
as adjustable parameter. However this experimental setup holds

an intrinsic limitation. For any resonable phase shift the time profile cannot fully be mapped
onto the energy domain, hence longitudinal transformations cannot generate full rotations up to
angles of

4�� *  . So the experimental data remain incomplete which in turn has severe implica-
tions for the reconstruction17. Therefore tomographic algorithms are essential which minimise
reconstruction artefacts due to the intrinsic lack of information. Here the Maximum Entropy
Algorithm appears inevitable.

5.1.2 Non-linear transformations

To improve the accuracy of the reconstruction the non-linear term eq. (56) can be taken into
account for all longitudinal transformations. These specific transformations, namelyX � ��� � � X � � � � � ��� H @CH ( � GIH � �

� � � � (75)

resp. for the inverse transformationX �<� � � X�� " � � � � � " � H @CH ( � GIH � ��� � �
� � � � (76)

are taken into account for the longitudinal phase space reconstruction (sec. 5.3).

17In a synchrotron or with a magnetic chicane the full range of rotations becomes accessible [17].
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Figure 21: Demonstration of the capability to reconstruct longitudinal phase space distributions. The
upper plots show the original distribution with a narrow peak in the time domain and an evenly spread
energy spectrum over a larger range as contour plot (left) and isometric plot (right). The lower plots
show the reconstructed distribution respectively which results from seven different simulated projection
profiles for RF phases between

� � �  and � �  .

5.2 Example

Figure 21 gives an example of the capability to reconstruct longitudinal profiles for incomplete
coverage of the rotation angle. The upper plots show the underlying phase space distribution
which was set with a rather narrow Gaussian time profile but with an evenly spread energy
profile over a larger energy range. The reconstructed profile (bottom) was calculated using
seven simulated projection profiles18 with adjusted RF phases between " � *  and � *  .

The the two-peak structure of the reconstructed profile results from the limitation of the
available projection angles. The best resolution in time is achieved at the edges of the distibution
and degenerates towards the center. Futher discussions about these issues can be found for
example in [11].

18The simulated profiles can be simply obtained using the method of class ProjectionElement Long; for
details see section A.3.2.
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Figure 22: Sketch of phase space tranformations within the longitudinal phase space; non-linear effects
cause bin boundaries with specific curvatures. Therefore the simple assumption of overlayed bins with
”straight line” boundaries does not hold any longer. The curvatures of the bins under transformations
can be taken into account by subdividing the energy bins into sub-bins along the time coordinate; then
the small bin elements which are transformed (arrows) follow closely the curvature of the ”true” bin
boundaries.

5.3 Technical Adaptation of the Maximum Entropy Algorithm

The introduced non-linear transformations eq. (75) resp. eq. (76) within the longitudinal phase
space cause bin boundaries with specific curvatures as illustrated in figure 22. The total contents
of each curved bin represents a part of the observable energy profile, i.e. a projection of the
curved bin onto the energy coordinate which can be measured by a spectrometer. However
curved bins do not fit to the standard implementation of the MENT algorithm (sec. 2) which
requests straight lines as bin boundaries.

However the numerical deviations become negligible if small sub-bins are introduced. Then
the non-linear contributions do not accumulate over larger phase space regions. The evalu-
ation of all sub-bins separately and adding up the resulting phase space fragments take the
non-linear effects correctly into account! Exemplarily figure 22 shows two different sub-bins
which have been transformed to the new frame of reference with a specific curvature. The
sub-bins fit very precisely to the curved ”true” bin boundaries. Without the sub-binning the de-
viations would integrate to sizeable effects for sufficiently strong curvatures. The C++ classes
MaxEntropy Long (sec. A.2) and ProjectionElement Long (sec. A.4) have been es-
pecially adopted and make use of the sub-binning technique above to avoid numerical inaccu-
racies.
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A Class Descriptions

The developed user interface provides simple access to the previously described functionality
of the Maximum Entropy Algorithm. The code was written in C++ under a LINUX operating
system on a standard PC. The general system requirements are rather poor. Only an installed
library of the ROOT physics analysis package [1] is needed. The software can either be used in
standalone mode or in a more flexible manner as interactive ROOT session which exploits the
dictionary formalism of ROOT (see also ROOT reference manual). Additional implementation
details can be found in the corresponding header files19 of the provided C++ classes.

A.1 Class MaxEntropy [Iteration]

The basic class MaxEntropy implements the two-dimensional (2D) Maximum Entropy Algo-
rithm which is feasible for all kinds of linear transformations conserving the size of any chosen
area under these transformations. So not only rotational transformations with their SO(2) group
properties but generalised transformations inducing also sheering are applicable. Consequently
the class is suitable to transverse phase space tomography and allows the reconstruction of two-
dimensional density distributions of the � - � � phase space or � - � � phase space respectively. The
measured/simulated data are accessible through instances of the class ProjectionElement
(sec. A.3) to the iterative reconstruction.

A.1.1 Public Methods

➫ void set projection element(ProjectionElement *proj elm)
Check in one projection element, i.e. single measurement, to be used within the MENT
algorithm for the reconstruction (sec. A.3).

➫ void delete all projections(void)
Delete list of all stored projection elements, i.e. data, and re-initialse the MENT algorithm
for new data.

➫ void Iterate from storage(int n iteration)
Start one iteration of the MENT algorithm with all checked in projection elements. The
first iteration call must start with the value n iteration=0. Then all needed initialisa-
tions are executed. All geometrical calculations are stored residently in the tree structure
before the first iteration starts. So repeated, identical calculations of geometrical elements
are avoided and save CPU time for subsequent iterations.

➫ void Iterate(int n iteration)
In principle it does the same as method Iterate from storage(). However, the
calculated polygons are not stored in memory. In fact this results in significant increase
of the calculation time because of necessary geometrical calculations for each iteration.
This (slow) iteration option represents an alternative in case of exhausted memory using
method Iterate from storage(). Note, exhausted memory would kill the pro-
gram automatically by the system kernel without comment!

19All header files of the software package are tagged with the extension ”.hh” .
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➫ TH2D my* reconstruct histo2D from Hspace
(int nbinsX, int nbinsY, char *name, int n smooth)

This method provides two-dimensional ROOT histograms20 of the reconstructed distri-
bution. It is calculated from the actual values of the Lagrange Multipliers of the recent
iteration. The user defines the number of bins in the both coordinate axis. The parame-
ter n smoothing can optionally be defined. The default n smoothing=0 gives the
precise reconstructed value in the user-defined rectangular grid, i.e. each bin contains the
exact integral over the occupied bin area divided by its size (fig. 8). Visualisation artefacts
due to the chosen binning are excluded. For n smoothing>0 it defines the number of
sub-bins within each bin where the reconstructed function is sampled.

➫ void test(void)
Complete test example of the MENT algorithm with simple, simulated distributions using
ordinary rotations from 0 degree to 180 degree. The code of this method documents the
logical order of all relevant method calls for the reconstruction.

A.2 Class MaxEntropy Long [Iteration]

The class MaxEntropy Long contains few specific code adaptations to cope also with the
non-linear transformations occuring in Longitudinal Phase Space Tomography (sec. 5). Basic
difference compared to class MaxEntropy is the additional sub-binning within each data bin.
Non-linear effects can be regarded as linear in the examined sub-bins. So each bin can accu-
rately be treated under longitudinal phase space transformations provided that the sub-bins are
chosen reasonably small. The non-linear effects do not accumulate to sizeable deviations over
larger ranges of the phase space (see also sec. 5).

For the user the handling does not differ compared that of class MaxEntropy (sec. A.1).
Only the data members are slightly modified and instances of class ProjectionElement
Long have to be used instead of class ProjectionElement. The class Projection
Element Long contains additional information about the non-linear matrix elements of lon-
gitudinal phase space transformations (sec. A.4).

A.3 Class ProjectionElement [Data Representation]

This class defines the data interface to the class MaxEntropy. Each class instance makes a
measurement under fixed transformation conditions available to the reconstruction. A specific
instance contains a one-dimensional intensity distribution. Also the transformation conditions
refering to the profile measurement have to be given. A two-dimensional matrix defines the
transformation of the initial distribution (to be reconstructed) to the observed distribution at the
position of the measuring device.

For simulation purposes an initial two-dimensional distribution can be defined which is
used to analytically calulate the one-dimensional projection profile. The profile is treated anal-
ogously to measurements. It enters the MENT algorithm and the unfolded 2D distribution can
be compared to the known original distribution. The simulation features have extensivly been
used for tests of the correctness of the software.

20Class TH2D my inherits from the ROOT class TH2D but has additional functionality (sec. A.7).
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A.3.1 Puplic Methods for Data Access

➫ void set matrix X(Matrix M)
void set matrix Y(Matrix M)
Define a 2  2 transformation matrix extracted from the 6  6 resp. 4  4 beam transfer
matrix in the � - � � phase space or � - � � phase space respectively (sec. 3.2).

➫ void set rotation matrix(double angle degree)
Define a 2  2 rotation matrix as transformation matrix only by giving the rotation angle.

➫ void set id(int id)
Set an identification code (integer value) of the instance. The ID is necessary to distin-
guish different measurements for the geometrical calculations. The value is arbitray but
must be unique! Consecutive numbering of data sets is recommended.

➫ void set projection data(Matrix M, TH1D* histo1D, int id)
Define a complete (single) measurement by giving all relevant components simultane-
ously, namely the transformation matrix, the measured data represented by 1D ROOT
histogram and a unique identification code.

➫ double projection normalisation(void)
Calculate the normalisation of the 1D intensity distribution.

➫ void clip(void)
Skip all bins of the 1D input distribution at the left/right border which are 0 ( � 1E-10) to
reduce calculation effort without affecting the reconstruction results.

➫ int number of bins(void)
Return the actual number of valid bins.

➫ double get xmax(void)
double get xmin(void)
Return the valid range of the measured data.

➫ double get ymax(void)
double get ymin(void)
Return the valid range of the unobservable coordinate within 2D space! In principle
these values are unknown for a single measurement. However, the overlay of different
measurements restricts the 2D space also in the complement coordinate. Class MaxEn-
tropy calculates the range and set the values automatically via methods set ymax()
and set ymin() before reconstructing the given profiles.

➫ double get G data(int index)
Return the data value of a specific bin of projection data (G data). The valid range of
index goes from 0 to (number of bins()-1).

➫ void reset G data(int index)
Return the data value of a specific bin of projection data (G data). The valid range of
index goes from 0 to (number of bins()-1).

39



➫ double get xlow(int index)
double get xup(int index)
double get xwidth(int index)
Return the bin boundary properties of specific data bin. The valid range of index goes
from 0 to (number of bins()-1).

➫ TH1D* get projection histo1D(void)
Create a new 1D ROOT histogram of the projection data (G data) for purposes of vi-
sualisation. The ownership of the returned histogram goes beyond the scope of the pro-
ducing instance! In addition method TH1D* get projection histo1D(TAxis*
axis) creates a rebinned histogram. The ROOT object TAxis defines the binning.

➫ void show projection(void)
Show the 1D ROOT histogram of the projection data (G data) within a instance’s private
canvas.

A.3.2 Puplic Methods concerned with Simulation

The following methods have been implemented to realise simulations as verification of the
MENT algorithm capabilities.

➫ void set initial histo2D(TH2D t* histo2D)
Define a 2D histogram containing a global INITIAL 2D distribution. It can be used to
”simulate” the measured data by calculating its projection with respect to the defined
transformation of the instance. The instance copies the histogram and will not be owner
of the offered histogram (histo2D).

➫ void calc transformation from initial histo2D
(int nbinsX, int nbinsY)

Transform the initial 2D histogram (defined with method set initial histo2D())
to the final position using the prevoiusly defined transfer matrix. The values of nbinsX
and nbinsY define the number of bins in both coordinates for the transformed histogram.
For the transformation the exact bin boundaries are taken into account, i.e. the analyti-
cal calculations avoid numerical inaccuracy. From the simulated 2D histogram the pro-
jection is calculated and filled into the projection data structure (G data) used for the
reconstruction.

➫ TH2D t* get transformed histo2D(void)
Return the 2D histogram calculated by calc transformed 2Dhisto from initial

histo2D(). The ownership of the returned histogram goes beyond the scope of the
producing instance!
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A.4 Class ProjectionElement Long [Data Representation]

This class defines the data interface for the baisc class MaxEntropy Long (sec. A.2). Com-
pared to class ProjectionElement it contains some minor adoptions related to the specific
properties of longitudinal phase space transformations (sec. 5) and the data handling does only
slightly differ with respect to the definition in section A.3. The modified public methods are
described below:

➫ void set trafo(Matrix M, double A13)
Define the transformation ensemble consisting of a 2  2 transformation matrix and an ad-
ditional matrix element

� * � which describes a specifc longitudinal phase space transfor-
mation corresponding to eq. (75). The basic adoptions are mainly related to the methods

- polygone trafo()

- get point transformed()

- get point transformed invers().

➫ void set projection data
(Matrix M, double A13, TH1D* hist1D, int id)

Define a complete (single) measurement by giving all relevant components simultane-
ously, namely the transformation matrix, the additional matrix element, the measured
data represented by 1D ROOT histogram and a unique identification code.

A.5 Class Polygon [Geometry Calculations]

The class Polygon is implemented as chained list of 2D points. After constructor initialisation
the list is empty. Then the polygon can be constructed by successively adding points to a class
instance. The order of the points within the list determines the frequency polygon, i.e. which
point has a link to the subsequent point. To get a closed polygon the last point in the chained
list is assumed to be related to the first point of the list. All declarations and detailed comments
can be found in the corresponding header file. The MENT algorithm intensively uses the class
features, but there is no need to directly access class Polygon for the standard reconstruction.

A.5.1 Puplic Methods

➫ void add at first(double X, double Y)
Add an additional point with coordinates (X,Y) at the beginning of the chained list of
points.

➫ Polygon* clone(void)
Provide an exact copy of the polygon without changing the original polygon.

➫ int get npoint(void)
Get the number of points of the polygon. Note, for get npoint()  3 the polygon
representation is degenerated.
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➫ double contents(void)
Calculate the area of the full polygon by summing up all sub-triangles.

➫ Polygon* split(double X0)
Split the current polygon along the line with X=X0 and Y= � ��� �

� �
. The part of the

polygon with X  X0 remains in the current instance. The part of the polygon with X � X0
forms an independent instance which returns. Note, the returned pointer to the new in-
stance can also be NULL and the current instance can contain zero points (degeneration)
after execution of method split(). This is important for the consecutive exception
handling.

➫ Polygon* split Y(double x0)
Does the same as split() but for the complementary coordinate.

➫ void shrink Xrange(double Xmin, double Xmax)
void shrink Yrange(double Ymin, double Ymax)
Shrink the polygon to the given values in X resp. Y coordinate. The methods have no
effect, if the defined ranges are larger than the occupied range of the polygon.

➫ int count points(void)
Move explicitly through the chained list of points and count points.

➫ void polygon trafo(Matrix* M)
Transform polygon to new coordinates using the defined 2  2 transformation matrix.

➫ void get extrema
(double &Xmin, double &Xmax, double &Ymin, double &Ymax)

Return the dimensions of the current polygon.

➫ TPolyLine* get polyline(int Color)
Create and return pointer of an instance of the ROOT class TPolyLine containing all
points of the point list. TPolyLine can be drawn and visualises the geometry of current
polygon.

A.6 Class Matrix

This class was developed to handle simple operations on any kind of
�  � matrices (e.g. matrix

multiplications, determinant calculation, etc.). Details about the class functionality can be found
in the header file Matrix.hh.

A.7 Class TH2D my

This class inherits and extends the functionality of the ROOT class TH2D which allows the
handling of 2D histograms. The following useful methods have been added:

➫ void normalise()
Normalise the 2D histogram to unit (value of 1).
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➫ double get normalisation()
Calculate the current normalisation.

➫ double integral over polygon(Polygon* &P)
Calculate the exact (!) integral of the 2D histogram over the area occupied by the given
polygon. All relevant histogram bins are weighted with the area fractions intersecting
with the polygon. All products of bin content times area fraction are summed up.

➫ void add volume element(Polygon* &P, double function value)
Add to each occupied bin the value of function value  ���������

➫ void clear(void)
Reset all bins of the histogram.

➫ TH1D* projection X(void)
TH1D* projection Y(void)
Create a 1D histogram containing the projection to the

�
axis resp. � axis.

➫ TH2D my* rebinned histo(int nbinsX, int nbinsY)
Rebin the 2D histogram within an equidistant grid of nbinsX resp. nbinsY bins.

➫ TH2D my* transformed
(Matrix* M, char *name, int nbinsX, int nbinsX)

Transform complete histogram with respect to defined 2  2 transformation matrix and
rebin the transformed 2D histogram. Exact bin boundaries are taken into accout, i.e.
numerical artefacts are avoided!

➫ TH2D my* rotate
(double theta degree, char *name, int nbinsX, int nbinsY)

As method above, however introduce a simple rotation with an angle of theta degree.
Exact bin boundaries are taken into accout, i.e. numerical artefacts are avoided.

➫ TH2D my* exchanged XY(void)
Exchange X and Y coordinates of the current histogram.

➫ void calculate moments(void)
Calculate the first and second moments of 2D histogram distribution. The values can be
printed with method print moments(void).

➫ double deviations(TH2D my* histo2D)
double deviations(TH2D *histo2D)
Calculate deviations with respect to reference histogram corresponding to eq. (42).

➫ void draw(void)
Draw the current 2D histogram onto private canvas.
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[11] M. Hüning, Analysis of Surface Roughness Wake Fields and Longitudinal Phase Space
in a Linear Electron Accelerator, DESY-THESIS-2002-029, Deutsches Elektronen Syn-
chrotron, Aug. 2002
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