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Consider a particle energy distribution f(z) after beam-beam interaction
as shown in Fig. 1(a).  denotes the fractional energy loss 6E/Eo due to
beamstrahlung. Let T = (z) denote the average fractional energy loss and
o2 its variance. In numerical simulations, it is sometimes observed that o5 is
larger than Z, and it might be interesting, whether there is a principal upper
limit on o, at given T. If F(z) and ¢(z) denotes the first and second integral
of f(z), respectively, and if f(z) is normalized to unity, it is seen by partial
integration, that

T = 7)3«"1‘(:1?)013lc =zF[ - 7Fd$ =(z -5 (1)

A simple geometric interpretation of of the quantity T*/2 is given by the
dotted area in Fig.lc.

Similarly, it is seen that
o2 = (z) ~7* =2 [ pdz — I )
0

Therefore, the geometric interpretation of ¢2/2 is just the hatched area 1n
Fig.lc.

Because of Fi(z — oo} = 1, the asymtote of ¢ must have a slope equal to
unity. Since f is positive everywhere, F' is monotonous, and ¢ is above its
asymptote everywhere.

Now consider the ratio R = (02/2)/(7%/2) = o2/T*. From its geometric
interpretation (Fig.lc) it is obvious that R could be infinitely large if the
maximum value of # with nonzero probability (denoted by & in the following)
is infinite. However, considering beamstrahlung, & is limited. Then, the
maximum value of ¢2/2 is given by the triangle 4, X in Fig.1c. Thus,

_(g—-7)-z/2 &
-Rma:r:—"'w‘—_%_l (3)
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Oz z
'%—(' %—1 (4)
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For the principal upper limit Z = 1 and a typical T = 5% we get & < 4.4.
For the ratio to attain that maximum value, however, the distribution func-
tion f(z) would have to look very funny (see Fig.2). Above all, the distri-
bution function f(z) would have to be non-monotonous (see Fig.2a}. For
any physically reasonable distribution function, ¢,/ would have to be much
smaller. It is worth noting that a distribution function as illustrated in Fig.2a
is characteristic for a numerical simulation with a too small number Ny of
particles. The effect of just one missing (macro-) particle between T and £ is
illustrated in Fig.2c. Because the slope of ¢ is constant where f is zero (no
particle), any additional {macro-) particle between = and & would consider-
ably reduce R. A very rough estimate of the fluctuation of R due to such a
fluctuation of the particle distribution can also be found from Fig.2c: it is the
hatched area, divided by T2/2. The hatched area is, roughly speaking, given
by 6’ - F2/2, with 8¢’ being the change in slope of ¢ at , if one particle is
added. Since 8¢’ = §F = N[Ny = 1/Ny, we get

b -322 2
bR~ z2/2  Noi? (5)

Using & = 1, we get
1
R = (6)

Nyz?

If we want to reduce the statistical fluctuation of B from seed to seed well
below unity, we get

§R <1 (M)

~ N 032
or
N> @) (8)

For example, if the average fractional energy loss is 2%, one has to track
much more than 2500 particles to be sure that o,/ would not fluctuate by
more than unity from seed to seed.
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