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Universiẗat Rostock
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1 INTRODUCTION

1 Introduction

[3] The significance of high energy accelerators of subatomic particles is ever in-
creasing, in medical or industrial applications as well as in basic scientific research
which often results in products or tools that become valuable to the world outside
the high-energy physics.

There are two general types of accelerator designs, linear (linac) - the particles
are accelerated in a straight line, and circular (synchrotron). Today both types use
electromagnetic resonant cavities (Figure 1) made by conducting or superconduct-
ing materials to accelerate charged particles by means of radiofrequency electric
fields, the wavelength of those microwave fields is ranging from 0.1 to 1m [15].
The resonant oscillations are time harmonic. One resonant mode is suitable for
acceleration if it has a strong axial (longitudinal) electric field. The passage of
the bunches(groups of close to each other particles are usually referred to as a
bunch) is synchronized with the phase of the accelerating field, it means the size
of the cavities in the accelerator is matched to the wavelength of the microwaves
so that the electric and magnetic field patterns repeat every three cavities along
the accelerator. In such a way the particles are accelerated almost to the speed of
light. According to the relativity theory they do not exceed the speed of light, since
E = mc2 they get heavier gaining additional energy [14].

However behind the relative simple functioning principle of particle acceler-
ation there are plenty of problems which are being addressed from the scientists
in the accelerator beam physics. One kind of problem is theinteraction of the
bunches of particles of same and different kind on each other. Particles of equal
charge repel each other due to space-charge forces and it is difficult to pack a
high charge in a small volume. Another well known problem is the electron cloud
phenomenon which causes a single-bunch instability arising from the interaction
on successive turns of a single bunch with the cloud generated by the previous
bunches. This instabilities may eventually lead to a beam breakup. Another prob-
lem are the beam-induced cavity fields which are known as wake fields.

In each case there is a collective (Lorentz) force experienced by a particle in the
collective fields [3]. In order to study the effects of these forces on the trajectories
of the beam particles numerical simulations are used. The importance of the nu-
merical simulations is enormous in investigating the behaviour of the beam under
different circumstances at present beam lines as well as in the development phase
of new beam lines. Calculating the space-charge forces in order to simulate their
influence on the beam dynamics, demands calculation of the space-charge fields in
the beam line domain. Many simulation codes calculate 3D space-charge fields of
bunches in acuboidaldomain [1] where the solution methods are based on Fast
Fourier Transformations (FFT) [6] or Multigrid method [13].

This work deals in particularly with 3D numerical simulations of space-charge
fields from electron bunches in abeam pipe with elliptical cross-section. To obtain
the space-charge fields it is necessary to calculate thePoisson equation(2) with
given boundary condition and space charge distribution. The discretization of the
Poisson equation by the method of finite differences on a Cartesian grid, as well
as setting up the coefficient matrixA for the elliptical domain are explained in
the section 2. In the section 3 the properties of the coefficient matrix and possi-
ble numerical algorithms suitable for solvingnon-symmetricallinear systems of
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1 INTRODUCTION

equations are introduced. In the following section 4, the applied solver algorithms
will be investigated by numerical tests with right hand side function for which the
analytical solution is known.

The program codes for this purpose are written in the programming language
ANSI C.

The algorithms described in the sections 2 and 3 have been implemented in
thesoftware package ”MOEVE”[10]. This package solves 3D Poisson’s equation
by means of multigrid. Because of the fast computation of space-charge fields
”MOEVE” is integrated as a function in the particle tracking code ”GPT” [13].
The implementation of the routines for the case of structures with elliptic cross-
section in the package ”MOEVE” made it possible to investigate the effects of the
elliptical boundaries on the potential generated by the charged particles. Hence
in section 5 the results of the 3D space-charge field calculation in a beam pipe of
elliptical shape are compared with those of the 3D space-charge field calculation
based on a multigrid Poisson solver on a rectangular domain. Further it will be
possible to integrate the new routines as a functions in the existing tracking code
such as ”ASTRA” and ”GPT”.
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2 PROBLEM AND DISCRETIZATION

2 Problem and Discretization

The primary interest is to simulate the overall behavior of bunches of charged par-
ticles influenced from different fields along their way through the accelerator.

The aim of this work is a numerical simulation of space-charge fields of elec-
tron bunches taking into account the influence of the elliptic cross-section of the
beampipe. It is clear that for the numerical simulation the particles in the bunch
have to be abstracted with so calledmacro-particles. The macro-particles are repre-
senting many elementary particles which are comprising the bunch and the macro-
particles are the ones which are considered in the numerical simulations.

Figure 1: Superconducting 1.3 GHz 9-cell cavity for the TESLA Test Facility [2].

In order to describe the dynamics of the particles like as in Newton’s funda-
mental law of dynamicsF = ma the force and the mass are needed in order to
calculate the acceleration. Certainly here it has to be dealt with relativistic mass
and acceleration. It is being used the Lorenz factor

γi := (1− v2
i /c2)−1/2,

wherevi denotes the absolute velocity of thei-th macro-particle andc the speed
of light. The force that effects the particle is the Lorenz force

F = q(Ei + vi ×Bi),

whereq is the total charge of the macro-particle. The electric fieldEi and the mag-
netic flux densityBi are the superposition of external and self-induced fields (the
so-called space-charge forces) at the position of thei-th macro-particle. The rela-
tivistic equations of motion describing the particle dynamic read as follows [14]:

dγivi

dt
=

q

m
(Ei + vi ×Bi),

dxi

dt
= vi =

γivi√
γiv2

i /c2 + 1
, i = 1, . . . , M.

(1)

Here dxi denotes the change of the position of thei-th particle over the discrete
time stepdt andM represents the total number of macro-particles. The equations
allow to calculate the motion of each macro-particle over a discrete period of time
in which the position of the particles changes. This is nummerically realized by
means of a Runge-Kutta scheme in tracking codes such as ASTRA [4], GPT [13].
As the disposition changes, changes as well the space-charge field which effects
each macro-particle. Thus there is a need to calculate the electric field in each
discrete time step in order to track the movement of the particles. The electric field
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2 PROBLEM AND DISCRETIZATION

is calculated in the frame that is moving along with the same velocity as the bunch
itself, it is said that the problem is considered in arest frame.

The calculation of the fields from spatially distributed charges requires a solu-
tion of the Poisson equation [15, Page 23]

−∆ϕ =
%

ε0
, (2)

whereε0 is the dielectric constant and% the charge density. In the following two
domains are considered in which the Poisson equation has to be solved. One is the
rectangular box domainΓ with Dirichlet boundary conditions on∂Γ1 andopen
boundary conditions on∂Γ2

−∆ϕ =
%

ε0
in Γ ⊂ R3,

ϕ = g on∂Γ1,
∂ϕ

∂n
+

1
r
ϕ = 0 on∂Γ2,

(3)

where
Γ = [ax, bx]× [ay, by]× [az, bz], and the boundary∂Γ is splited into∂Γ1 and

∂Γ2 with ∂Γ = ∂Γ1
⋃

∂Γ2.
The second domainΩ is a cylindrical structure with an elliptic cross-section,

where (2) is considered with the following boundary conditions:

−∆ϕ =
%

ε0
in Ω ⊂ R3,

ϕ = 0 on∂Ω1,
∂ϕ

∂n
+

1
r
ϕ = 0 on∂Ω2,

(4)

where∂Ω1 is the coating of the cylinder with

x2

a2
+

y2

b2
= 1 andza < z < zb,

∂Ω2 are the two elliptical bases of the cylinder satisfying

x2

a2
+

y2

b2
≤ 1

and being perpendicular to thez-axis atz = az andz = bz. The boundary con-
dition ϕ = 0 on ∂Ω1 means that the surface of the cavities and the beampipe in
general act as an ideal electrical conductor (the cavities from Figure 1 are made
of superconducting material [2]). The open boundary condition inz-direction ap-
proximates the indefinitely long cylinder on a finite computational domain.

The discretization volume in which the cylindrical computational domainΩ is
embedded (see Figure 2) is the same rectangular boxΓ as in (3). Following the
notations in [11] the boxΓ is discretized along thex-, y- andz-axis inNx, Ny and
Nz subintervals, respectively. Thex-coordinate is discretized byNx subintervals
hx,0, hx,1, . . . , hx,Nx−1 with bx − ax =

∑Nx−1
i=0 hx,i. Analogously, they- and

z-coordinate are discretized byNy andNz subintervals.
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2 PROBLEM AND DISCRETIZATION

Further we introduce

h̃x,i =





hx,i−1 + hx,i

2
, i = 1, . . . , Nx − 1

hx,i

2
, i = 0, Nx

(5)

(h̃y,i, i = 0, 1, . . . , Ny andh̃z,i, i = 0, 1, . . . , Nz in the same way) which in Finite
Integration Technique is known as mesh spacing (edges) on the dual grid.

                           
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 2: Elliptic cross-section of the domainΩ embedded inΓ.

The discretization of the second order derivative with second order finite dif-
ferences in the general case gives

∂2ϕ(xi, yj , zk)
∂x2

≈ ϕ(xi−1, yj , zk)
h̃x,ihx,i−1

− 2ϕ(xi, yj , zk)
hx,ihx,i−1

+
ϕ(xi+1, yj , zk)

hx,ih̃x,i

. (6)

Let ϕi,j,k = ϕ(xi, yj , zk). Than the discretization of the Poisson equation with
second order finite differences on the above described non-equidistant mesh leads
to the following system of equations:

h̃y,j h̃z,k

(
− 1

hx,i−1
ϕi−1,j,k +

(
1

hx,i−1
+ 1

hx,i

)
ϕi,j,k − 1

hx,i
ϕi+1,j,k

)

+ h̃x,ih̃z,k

(
− 1

hy,j−1
ϕi,j−1,k +

(
1

hy,j−1
+ 1

hy,j

)
ϕi,j,k − 1

hy,i
ϕi,j+1,k

)

+ h̃x,ih̃y,j

(
− 1

hz,k−1
ϕi,j,k−1 +

(
1

hz,k−1
+ 1

hz,k

)
ϕi,j,k − 1

hz,k
ϕi,j,k+1

)

= h̃x,ih̃y,j h̃z,kfi,j,k

(7)

for i = 1, . . . , Nx−1, j = 1, . . . , Ny−1, k = 1, . . . , Nz−1. The same system of
equations is obtained with the application of the Finite Integration Technique (FIT)
which has been introduced by Weiland [16].
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2 PROBLEM AND DISCRETIZATION

For a compact notation the Kronecker product ’⊗’ for matrices is used which
is defined as (see e. g. [8])

A ⊗ B :=




a11B a12B
... ...

a21B a22B a23B
...

...
... ann−1B annB




.

The above equation (7) onΓ reads in matrix vector notation as

Aϕ = H̃z ⊗ H̃y ⊗ H̃xf ,

with

A = H̃z ⊗ H̃y ⊗Ax + H̃z ⊗Ay ⊗ H̃x + Az ⊗ H̃y ⊗ H̃x. (8)

Considering Dirichlet bounadry conditions for∂Γ = Γ1 we getH̃x=H̃x,D with

H̃x,D := diag(h̃x,1, h̃x,2 . . . , h̃x,Nx−1),

andAx=Ax,D with

Ax,D :=




(
1

hx,0
+ 1

hx,1

)
− 1

hx,1

− 1
hx,1

(
1

hx,1
+ 1

hx,2

)
− 1

hx,2

...

− 1
hx,Nx−2

(
1

hx,Nx−2
+ 1

hx,Nx−1

)




.

The diagonal matrices̃Hy andH̃z are defined analogously tõHx and the finite
difference matricesAy andAz analogously toAx. Note the different dimensions
of the matrices corresponding to the number of mesh lines in every coordinate di-
rection. The vectorsf = (fi,j,k)

Nx−1,Ny−1,Nz−1
i=1,j=1,k=1 andϕ = (ϕi,j,k)

Nx−1,Ny−1,Nz−1
i=1,j=1,k=1

contain the values of the right hand side and the potential at the mesh points, re-
spectively.

The above system of equations (7) hasNp = (Nx + 1)× (Ny + 1)× (Nz + 1)
unknowns in the case of open boundary conditions on the domainΓ. The matrix
Ax and the vector̃Hx in the case of open boundary conditions on∂Γ = Γ2 would
have the formH̃x=H̃x,O with

H̃x,O := diag(h̃x,0, h̃x,1 . . . , h̃x,Nx),

andAx=Ax,O with

Ax,O :=




(
1

hx,0
+ 1

r

)
− 1

hx,0

− 1
hx,0

(
1

hx,0
+ 1

hx,1

)
− 1

hx,1

...

− 1
hx,Nx−1

(
1

hx,Nx−1
+ 1

r

)




.
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2 PROBLEM AND DISCRETIZATION

Accordingly the vectors of the right hand side and the potential at the mesh points
contain as well the points on the boundaries, i.e.f = (fi,j,k)

Nx,Ny ,Nz

i=0,j=0,k=0 and

ϕ = (ϕi,j,k)
Nx,Ny ,Nz

i=0,j=0,k=0. That means that the linear system of equations in case of
open boundary conditions is larger (for the number of the boundary points) than
the system with Dirichlet boundary conditions.

x

6
y

Z

N

S

EW

Figure 3: Two-dimensional representation of the elliptic shape of the boundary.

The same discretization of Poisson’s equation (as in equation (7)) on the do-
main Ω is considering only the discrete points which are insideΩ. In that case
the number of the unknowns is considerably smaller because in each(x, y)-plane
all grid points which are outside the ellipse are skipped (Figure 3). The matrixA
remains block structured but the blocks will have different dimensions (see Fig-
ure 6). For each point near the boundary∂Ω the discretization star (equation (7)) is
not entirely determinated from the mesh. The discretization star of each point next
to the boundary has to be build in such a manner that it takes care of the distances
to the points which lay on the elliptic shape ofΩ (i.e. hn, he in Figure 4).

If equation (7) is written for the pointZ (two-dimensional representation in
Figure 4) the distanceshx,i ≡ he, hy,j ≡ hn and with it alsõhx,i, h̃y,j will have
to be extra calculated. They depend on the intersection points of the ellipse with
the grid. From Figure 4 it is evident that the discretization star for the pointZ will
be non-symmetric because the lengthshn, hs, hw, he are not equal. Especially it
differs from the neighbouring point which is situated insideΩ. This implies that
the discretization matrixA for the elliptical domianΩ will be non-symmetric. On
the other hand dispite of the non-equidistant discretization the matrixA will be
symmetric, if the domain is the boxΓ.

10



2 PROBLEM AND DISCRETIZATION

ϕi−1,j ϕi,j ϕi+1,j

ϕi,j−1

ϕi,j+1

hn

hs

hw

he
Z(x, y)

N(x, y + hn)

S(x, y − hs)

E(x + he, y)W (x− hw, y)

Figure 4: Non-symmetric 2-D Shortley-Weller Star.

In order to illustrate this we consider the first row in (7). For the two consecu-
tive pointsm andm + 1 from Figure 5 we obtain for̃hy,j :

h̃m
y,j =

hn,m + hs,m

2
, h̃m+1

y,j =
hn,m+1 + hs,m+1

2
,

wherem andm+1 in the superscript means̃hy,j for them− th and(m+1)− th
point, respectively. The first row of equation (7) will be for the pointm

h̃m
y,j h̃

m
z,k

(
− 1

hx,i−1
ϕi−1,j,k +

(
1

hx,i−1
+ 1

hx,i

)
ϕi,j,k − 1

hx,i
ϕi+1,j,k

)
(9)

and form + 1

h̃m+1
y,j h̃m

z,k

(
− 1

hx,i
ϕi,j,k +

(
1

hx,i
+ 1

hx,i+1

)
ϕi+1,j,k − 1

hx,i+1
ϕi+2,j,k

)
(10)

The discret-star equation (7) of the pointsm andm + 1 (Figure 5) determines
two neighbouring rows in the matrixA. The parts in (9) and (10) are giving the
entries ofA which are next to the main diagonal and they also contribute to the
diagonal entries. From Figure 5 it is obvious that in the case of the rectangular
domainhs,m andhs,m+1 are equal as well ashn,m andhn,m+1. Therefore the
coefficients multiplying the entries in the matrixA for two consecutive rows̃hm

y,j

and h̃m+1
y,j are equal. For symmetry ofA the coefficient ofϕi+1,j,k in (9) has to

coincide with the coefficient ofϕi,j,k in (10).
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2 PROBLEM AND DISCRETIZATION
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Figure 5: Two points determining two neighbouring rows in the matrixA.

In case of a rectangular domain it holds thath̃m
y,j=h̃m+1

y,j and the respective
matrix entries will have the same value. In the case of the cylindrical domainΩ
the same entries in the matrixA will not be equal sincehs,m 6= hs,m+1 and so
the coefficients̃hm

y,j 6= h̃m+1
y,j for two consecutive rows ofA. This in general case

results in a non-symmetrical matrixA.
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2 PROBLEM AND DISCRETIZATION

0 20 40 60 80 100 120 140 160 180 200
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nz = 1203

Figure 6: Structure of the matrixA: nz = non-zero elements.

However the band structure of the matrixA will remain symmetric with respect
to the main diagonal as shown in Figure 6. Furthermore the matrix will remain
weak diagonally dominant which eventually makes it also non-singular as it will
be shown in the section 3.
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3 NUMERICAL ALGORITHMS

3 Numerical Algorithms

As the volumeΩ was discretized and the matrixA and the right hand side vectorb
were assigned, we got the system of linear equations

Ax = b, (11)

wherex is the vector of unknowns. This is a relatively large system of equations
which depends on the number of discret nodes in the volume. Storage requirements
as well as computation times often set limits to direct methods for the solution of
such systems of linear equations. If the coefficient matrix is sparse, which is the
case here (see Figure 6) then iterative methods offer an alternative. It is worth to
mention that it is typical to have sparse coefficient matricesA for systems result-
ing from discretization of partial differential equations by finite differences, finite
integration technique or finite elements.

Before proceeding to solve the emerged linear system of equations (11) and
finding a suitable algorithm, we have to consider the properties of the matrixA. As
mentioned in section 2 the matrixA resulting from the discretization of Poisson’s
equation on the domainΩ is non-symmetric (unlike the symmetric matrix that we
get if the discretization domain isΓ). A matrix M is calleddiagonal dominantif

|akk| ≥ |
N∑

n=1
n6=k

akn|, k = 1, . . . , N. (12)

A matrix M is weak diagonal dominant, if there is at least onek (one row) for
which the inequality (12) is strict [9]. This is actually the case in the rows ofA
corresponding to the discretization points next to the boundaries ofΩ, if A arises
from (4).

Although the matrixA is non-symmetric it is a positive definite. For real non-
symmetric matrices the necessary and sufficient condition to be positive definite is

that the symmetric partAs = (A+AT
)

2 , whereAT is the transpose, is positive def-
inite [7]. In our caseAs beside symmetric is also weak diagonal dominant because
bothA andAT are weak diagonal dominant. According to [9] a symmetric, weak
diagonal dominant matrix with positive diagonal elements is positive definite, this
qualifiesAs and with itA to be positive definite. Finally ifA is positive definite
than it has a positive determinant which means thatA is also a non-singular.

In order to solve the system (11) in a reasonable amount of time on a nor-
mal personal computer we consider only iterative methods. For the fast itera-
tive solution of the system there are many alternative algorithms depending on
the properties of the matrixA. The most straightforward iterative methods are
the relaxation type methods. Typical examples are the Jacobi, Gauss-Seidel, and
SOR (Successive Over Relaxation) algorithm. These classical iteration methods,
also known as stationary methods, are not fast enough in comparison with insta-
tionary methods as the Krylov-subspace methods like CG (Conjugate Gradient),
BiCG (Bi-Conjugate Gradient) and its derivates, the minimal residual algorithms
like the GMRES (Generalized Minimal Residual method) or hybrid methods like
the BiCGSTAB (Bi-Conjugate Gradient Stabilized ) [15].

Since in the application of particle tracing (calculating space charge forces in
discrete time steps) the same system of equation (11) has to be solved over and over
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3.1 BiConjugate Gradient method (BiCG) 3 NUMERICAL ALGORITHMS

again in each discrete time step, the solving time has a crucial meaning. Therefore
this work concentrates only on the fast iterative algorithms.

The discretization of Poisson’s equation necessary for the calculation of space
charge forces requires for different kinds of bunches either equidistant meshes with
a huge number of unknowns or non-equidistant meshes which have a high aspect
ratio. The aspect ratio of the mesh is defined asAmesh= hmax/hmin, wherehmax

andhmin denote the global maximal and minimal step size, respectively.
The fact that geometric multigrid technique allows higher aspect ratios is used

in [12] to build an adaptive mesh, to realize an appropriate resolution of the charged
particle bunch with a relatively small number of mesh lines. However the geomet-
rical multigrid technique as a solver is applicable if the matrixA carries in itself
the whole lexicographic order of points inΓ. Unfortunately on the domainΩ the
use of geometrical multigrid technique to solve the system would not be that strait-
forward because of the additional efforts in retaining the geometrical order of the
points while coarsening and prolongating the grid.

It is well known [9] that the CG algorithm requires a symmetric and positive
definite matrix, since the residual vector can no longer be made othogonal via
a short recurrence. The BiConjugate Gradient method takes another approach,
replacing the orthogonal sequence of residuals by two mutually orthogonal se-
quences [15], at the price of no longer providing a minimization.

The algorithms which are implemented and tested in this work to solve the non-
symmetric system of linear equations (11), are given and discussed in the following
subsections. These are the BiConjugate Gradient method, the Preconditioned Bi-
Conjugate Gradient method and the BiConjugate Gradient Stabilized method.

3.1 BiConjugate Gradient method (BiCG)

The BiConjugate Gradient method uses similar relations as the Conjugate Gradi-
ent method to update the residuals, yet it is based on both the matrixA and its
transposedAT . Thus we update two sequences of residuals

r(i) = r(i−1) − αiAp(i), r̃(i) = r̃(i−1) − αiA
T p̃(i)

and two sequences of search directions

p(i) = r(i−1) + βi−1p
(i−1), p̃(i) = r̃(i−1) + βi−1p̃

(i−1).

The BiCG algorithm for solving the linear systemAx = b is implemented as a
pair of coupled two-term recurrences as follows [5].

Algorithm 3.1 BiConjugate Gradient method

Given: initial guessx(0).
Computer(0) = b−Ax(0).
Choosẽr(0) (for example,̃r(0) = r(0)).
for i=1,2,...

ρi−1 = r(i−1)T
r̃(i−1)

if ρi−1 = 0, method fails
if i = 1

15



3.1 BiConjugate Gradient method (BiCG) 3 NUMERICAL ALGORITHMS

p(i) = ri−1

p̃(i) = r̃i−1

else

βi−1 =
ρi−1

ρi−2

p(i) = r(i−1) + βi−1p
(i−1)

p̃(i) = r̃(i−1) + βi−1p̃
(i−1)

endif
q(i) = Ap(i)

q̃(i) = AT p̃(i)

αi =
ρi−1

p̃(i)T
q(i)

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq
(i)

r̃(i) = r̃(i−1) − αiq̃
(i)

check convergence; continue if necessery

end

The choices

αi = ρi−1/p̃(i)T
Ap(i) and βi−1 = ρi−1/ρi−2

ensure that the sequence generated by the algorithm satisfies the following biorthog-
onality and biconjugacy conditions [17]:

r̃n
T rm = 0, p̃n

T Apm = 0, for m 6= n.

A general problem of all Lanczos-type algorithm (as BiCG and CG) is that the
biorthogonality (or orthogonality in the symmetric case) of the vectors is usually
lost in finite precision arithmetic. The recurrence coefficients generated in the finite
precision arithmetic may be quite different from those that would be generated in
exact arithmetic and thus the iterates computed in a finite precision arithmetic may
differ significantly from the corresponding exact quantities [5].

Apart from this numerical constraint for symmetric, positive definite systems
the BiCG method delivers the same results as CG, but at twice the cost per iteration.
In practice it is also observed that the convergence behavior may be quite irregular,
and the method may even break down. BiCG requires computing of two matrix-
vector products,Ap(i) andAT p̃(i). In some applications the latter product may
be impossible to perform, for instance if the matrix is not formed and the matrix-
vector product is only given as an operation.

In our case in order to implement the BiCG method it was necessary to get the
transposed matrixAT from the matrixA. As already mentioned the matrixA is
a large, sparse matrix (Figure 6). In order to have efficient computing and good
storage utilization the matrix is being saved as a set of floating point arrays which
point out only on non-zero elements and their position in the matrix. This kind
of so called ”compact memory technique” [9] is being used in the program ”MO-
EVE” [10]. Since this new algorithms should be a part of this software package, its
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matrix representation is adopted. The actual non-zero elements in the matrix are
saved in one array which has the length of the total number of non-zero elements.
In this array, denoted asA in the following text, the values are saved row-wise
whereby the first value written from each row is the main diagonal element. The
second arrayJA which has the same length asA gives the column number in
the matrixA for the corresponding non-zero elements from the arrayA. Another
third arrayIA is needed to point on the indices which the main diagonal elements
from the matrixA have in the arrayA. This array has the lengthn, asn is the
dimension of the squared matrixA (the number of unknowns). These three arrays
provide enough information to reconstruct the matrixA. This will be illustrated
with the following example matrixA:

A =




4 1 2 0
3 7 0 5
1 4 3 0
2 0 2 9


 .

The corresponding arrayA will be

A = [4 1 2 7 3 5 3 1 4 9 2 2].

The arrayJA for the matrixA will be

JA = [1 2 3 2 1 4 3 1 2 4 1 3]

and theIA has the entries

IA = [1 4 7 10].

In order to be compatible with ”MOEVE” and to take advantage of the already im-
plemented matrix-vector products the transposed matrixAT has to be represented
in the same way, thus the vectorsAt, JAt andIAt have to be generated.
We search the entries belonging to a column ofA one by one from the arrayA
and place them in the arrayAt, for each and every column ofA. Along with it the
vectorsIAt andJAt are being filled as well.

The pseudocode for this routine which is performed only once in the beginning
of the BiCG method is given in the following.

Algorithm 3.2 Transposed matrix

Given:
Matrix A represented withA, JA, IA
N - number of unknowns (the number of the columns ofA)
Neint length of the array A (number of non-zero elements in the matrixA )

k=0
for index = 0, 1...N

t=0
for i = 0, 1, 2...Neint
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q = 0
if(JA[ i]== index)
(Comment: If the element is in the corresponding
columnindex then find in which rowq it is.)

while(i > IA[q])

q + +
if(q > (N − 1)), break

end (while)
if(index == q − 1)
(Comment: The element is a main diagonal element)

At[k]= A[ i]
IAt[ index]= k
JAt[k]= index
k = k + t + 1

else

if (index > (q − 1))
(Comment: The element is over the main diagonal)

t + +
At[k + t]= A[ i]
JAt[k + t]= q − 1

else
if(index < (q − 1))
(Comment: The element is under the main diagonal)

At[k]= A[ i]
JAt[k]= q − 1
k + +

endif

endif

endif

end (for)

end

3.2 Preconditioned BiConjugate Gradient Method (PBiCG)

The pseudocode for the Preconditioned BiConjugate Gradient Method with (PBiCG)
preconditioner matrixM is as follows [5]:

Algorithm 3.3 PBiCG

Given: initial approximationx(0).
Computer(0) = b−Ax(0).
Choosẽr(0) (for example,̃r(0) = r(0)).
for i=1,2,...
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solveMz(i−1) = r(i−1)

solveMT z̃(i−1) = r̃(i−1)

ρi−1 = z(i−1)T
r̃(i−1)

if ρi−1 = 0, method fails
if i = 1

p(i) = zi−1

p̃(i) = z̃i−1

else

βi−1 =
ρi−1

ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

p̃(i) = z̃(i−1) + βi−1p̃
(i−1)

endif
q(i) = Ap(i)

q̃(i) = AT p̃(i)

αi =
ρi−1

p̃(i)T
q(i)

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq
(i)

r̃(i) = r̃(i−1) − αiq̃
(i)

check convergence; continue if necessery

end

As a preconditioning matrixM we used the diagonal of the matrixA. This is
known as the (point) Jacobi preconditioner. It is not difficult to realize since each
entry of the residual vector has to be divided by the corresponding diagonal element
form the matrixA : z[i] = r[i]/A[IA[i]].

3.3 BiConjugate Gradient Stabilized Algorithm (BiCGSTAB)

The biconjugate gradient stabilized algorithm (BiCGSTAB) is being used to elim-
inate the need of the transposed matrixAT which is necessary in the BiCG algo-
rithm. BiCGSTAB was developed to solve non-symmetric linear systems. It also
smooths the convergence of the Conjugate Gradient Squared method (CGS) [15]
upon which it is built. CGS is the first of this class of techniques referred to as
transpose-free variants of the bi-conjugate gradient method [15].

Algorithm 3.4 BiCGSTAB

Given: initial approximationx0.
Computer(0) = b−Ax(0) and setp0 = r0.
Choosẽr(0) such thatr0

T r̃0 6= 0 (for example,̃r(0) = r(0)).
for i=1,2,...

q
(i−1)
p = Ap(i−1)
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ai−1 =
r(i−1)T

r̃0

q
(i−1)T

p r̃0

Set

x(i−1/2) = x(i−1) + ai−1p
(i−1)

r(i−1/2) = r(i−1) − ai−1q
(i−1)
p

q
(i−1)
r = Ari−1/2

ωi =
rT
i−1/2q

(i−1)
r

q
(i−1)T

r q
(i−1)
r

.

Set

x(i) = x(i−1/2) + ωir
(i−1/2)

ri = ri−1/2 − ωiq
(i−1)
r

bi =
ai−1

ωi

riT r̃0

r(i−1)T r̃0

pi = ri + bi(pi−1 − ωiq
(i−1)
p ).

end

The numerical test examples of the next two sections (4 and 5) show that beside the
stabilizing effect the BiCGSTAB method is much faster than BiCG and PBiCG.
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4 Comparison of the Solvers with a Test Case Function

In order to perform numerical tests we need to have the particle charge distribution
% for which we know the analytical solution of the Poisson equation, namely the
potential distributionϕ as a function of the space coordinates (x, y, z). For the
purpose of these numerical test simulations we choose the elliptical domainΩ to
be a cylinder. Hence the Poisson equation is given as:

−∆ϕ(x, y, z) = f(x, y, z) in Ω
with Ω : = {(x, y, z) ∈ R3 :

√
x2 + y2 < 1

2 , | z |< 1
2},

ϕ = 0 on ∂Ω.

(13)

A particulary suitable potential distribution function for this case will be a rotation
symmetrical distribution with respect to thez-axis (the axis along the way of the
bunch). Furthermore we take a function that is also symmetrical with respect to
the(x, y)-plane atz=0. The following function given in cylindric coordinates fits
those requirements:

ϕ(r, φ, z) = (1− 2r)3(6r + 1) sin(π(z − 0.5)) (14)

with

r =
√

x2 + y2 <
1
2
, −1

2
< z <

1
2
.

For this analytical expression of the potentialϕ we calculate the right hand side of
the Poisson equation (13) by applying the Laplace operator∆ on ϕ(r, φ, z). The
Laplace operator for cylindric coordinates has the following form:

∆ϕ(r, φ, z) =
1
r

∂

∂r
(ρ

∂ϕ

∂r
) +

1
r2

∂2ϕ

∂φ2
+

∂2ϕ

∂z2
.

Because of the rotation symmetrical distribution the second term∂2ϕ
∂φ2 = 0, thus we

get only:

∆ϕ(r, φ, z) =
1
r

∂

∂r
(r

∂ϕ

∂r
) +

∂2ϕ

∂z2
. (15)

For the first part of the equation above we obtain

∂

∂r
(r

∂ϕ

∂r
) = −96r(1− 2r)(1− 4r) sin(π(z − 0.5)) (16)

and for the second

∂2ϕ

∂z2
= −(1− 2r)3(6r + 1)π2 sin(π(z − 0.5)). (17)

Finally from (16) and (17) we get the right hand sidef of the Poisson equation
(13):

f = (96(1− 4r) + (1− 2r)2(6r + 1)π2)(1− 2r) sin(π(z − 0.5)). (18)

We discretize (18) in the elliptical domainΩ (13) which is embedded inΓ as
defined in (3) with unit side length in each direction. The end coordinates ofΓ are
ax = −0.5, bx = 0.5, ay = −0.5, by = 0.5 az = −0.5, bz = 0.5.
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Figure 7: Simulated potential distribution,(x, y)-plane cross-section atz = 0.
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Figure 8: Analytical potential distribution,(x, y)-plane cross-section atz = 0.
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Figure 9: Numerical error of the potential distribution,(x, y)-plane cross-section
atz = 0.
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Figure 10: Numerical error of the potential distribution,(z, x)-plane cross-section
aty = 0.
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Figure 11: Weighted residual vs. iteration step for an equidistant grid withNx =
Ny = Nz = 30.

The simulated (Figure 7) as well as the analytical (Figure 8) potential distri-
bution are displayed at the cross-section of the beam pipe atz = 0. Although the
Figures (7) and (8) coincide there is a difference between the exact analytical values
of the potential and the simulated ones. The relative error between the analytical
and the simulated potential is shown in Figure 9 and Figure 10. Nevertheless a gen-
eral conclusion from the Figures 7 to 10 will be a validation of the 3D numerical
computation of space-charge fields in a beam pipe with elliptical cross-section.

The different algorithms given in the previous section have been performed
until the relative residual was smaller than10−6 in the maximum norm, where the
relative residual is given by‖ r(k) ‖ / ‖ r(0) ‖, with ‖ r(k) ‖=‖ f −Aϕ(k) ‖.

In Figures 11 to 16 the development of the relative residual is shown for each
method, for different number of grid points (Nx = Ny = Nz = 30 andNx =
Ny = Nz = 40) and for equidistant as well as for non-equidistant distribution
of the mesh points. From Figures 12, 14 and 16 it is evident that the BiCGSTAB
method converges in much less iteration steps than the BiCG or the pre-conditioned
BiCG algorithm. Comparing Figure 12 and 14 we see that with rising number of
grid points the PBiCG starts to perform better than BiCG. In Figures 11, 13 and
15 can be spotted a certain stabilization effect while preconditioning, but still the
performance of BiCGSTAB justifies its name. However a general conclusion is that
at bigger number of unknowns all methods are becoming less stabile and certainly
need more iteration steps for the solution. For the non-equidistant discretization
(Figure 16) all algorithms perform slower but the convergence is more stabile than
in the case of an equidistant grid (Figure 14).

Although the BiCG method can even become instable for some problems and
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Figure 12: Logarithmic scaling of the weighted residual vs. iteration step for an
equidistant grid withNx = Ny = Nz = 30.
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Figure 13: Weighted residual vs. iteration step for an equidistant grid withNx =
Ny = Nz = 40.
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Figure 14: Logarithmic scaling of the weighted residual vs. iteration step for an
equidistant grid withNx = Ny = Nz = 40.
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Figure 15: Weighted residual vs. iteration step for an non-equidistant grid with
Nx = Ny = Nz = 40.
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Figure 16: Logarithmic scaling of the weighted residual vs. iteration step for an
non-equidistant grid withNx = Ny = Nz = 40.

eventually diverge [5], here we have not experienced such a behavior.
Nevertheless the main drawback for the use of BiCG (and the same applies for

PBiCG) here is that we have to find the transpose of the coefficient matrixAT .
The proposed algorithm (3.2) performs it at the cost ofN ·Neint operation, where
N is the number of the unknowns and theNeint is number of non-zero elements
in the matrixA which is certainly less than7 · N . Due to the assigning ofAT

the BiCG and PBiCG algorithm have a much longer performance than BiCGSTAB
algorithm, as it can be observed from the Figures (17) and (18). For instance if
Nx = Ny = Nz = 40, BiCG and PBiCG need more than 120 second to solve the
system whereas with BiCGSTAB takes less than 2 second.

It is obvious that for the application in particle tracking BiCG and PCBiCG are
not suited because we need the transpose of the coefficient matrixAT .
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Figure 17: Computation time of BiCG for gradually increasing number of dis-
cretization points in each coordinate (Nx,Ny,Nz).
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Figure 18: Computation time of PCBiCG for gradually increasing number of dis-
cretization points in each coordinate(Nx,Ny,Nz).
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Figure 19: Computation time of BiCGSTAB for gradually increasing number of
discretization points in each coordinate(Nx,Ny,Nz).

5 Space-Charge Fields of Spherical Electron Bunches Com-
puted in a Beam Pipe

Numerical simulations with the program ”MOEVE” [10] employ solvers based on
the geometrical multigrid method for the fast calculation of space-charge fields
in the cuboidal domainΓ (defined in (3)). Furthermore it is presumed that the
real elliptical boundary of the beam pipe lies far enough from the bunch so that
its influence on the field distribution can be neglected. This presumption allows
the rectangular cross-section in the(x, y)-plane of the discretization domainΓ to
be smaller than the real cross-section of the beam pipe, as shown in Figure 20.
Consequently on the boundaries of such a reduced domain which incorporates the
bunch, we define open boundary conditions. However solving equation (3) by
applying open boundary conditions on the rectangular surfaces ofΓ does not match
the actual geometry and the boundary conditions of the beam pipe. On the other
hand we define the domainΩ as given in (4) to match the real dimensions of the
beam pipe. The elliptical boundary∂Ω of the domainΩ with the potentialϕ = 0
gives a good approximation of the conducting or superconducting surface of the
beam pipe. Hence it is interesting to calculate the space-charge fields in the domain
Ω and investigate the effects of the elliptical boundaries on those fields.

One particular question that arises is in how far the simulations in the reduced
domainΓ (with open boundary conditions) differs from the simulations inΩ taking
into account the elliptical conductive boundaries.

In order to answer this question we compare the potential distribution calcu-
lated in the discretization domainΩ as defined in (4), with the potential distribution
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Figure 20: The rectangular domainΓ inside the beam pipe.

calculated in a smaller rectangular domainΓ as defined in (3) where∂Γ2 includes
all rectangular boundary surfaces ofΓ, meaning that open boundary condition are
defined on each of them. We calculate the difference between the potentials we
obtained in the simulations inΩ andΓ at each mesh point inside the discretization
domainΓ. Thus we have to provide that the grid in the space ofΓ is the same
for both discretization domains. Obviously the resulting linear system of equations
from (4) would be larger for the number of points inΩ which are outside of the
domainΓ.

After providing that the grid in the space ofΓ is the same for both discretization
domainsΓ andΩ, we can calculate the space-charge fields. As a model for an
electron bunch we assume a sphere with homogeneous charge distribution. For the
radius of the sphere we takeRsph = 0.2. As a typical values of the total charge
that one bunch may carry we takeQ = 10−9C, dividing it with the volume of the
sphere and the vacuum permittivityε0 we obtain the right hand side of the Poisson
equation (2) :

f(x, y, z) =
%

ε0
=





3Q

4πε0R3
sph

√
(x2 + y2 + z2) ≤ Rsph,

0
√

(x2 + y2 + z2) > Rsph.

(19)

In the numerical simulations that follow the linear system of equations from the
discretization of (4) is being solved with the BiCGSTAB (Algorithm 3.4), while
the linear system of equations resulting from (3) is being solved with the multigrid
algorithm, which is part of the software package ”MOEVE”.

Two elliptical domains have been considered. The first one is a cylinder with
the circular cross-section:

Ω1 = {(x, y, z) ∈ R3 :
√

x2 + y2 < 1.9, | z |< 1}.

The number of the mesh points in each direction are chosen asNx = 51, Ny = 51,
Nz = 41. The second one is a cylinder with the elliptical cross-section with half-
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axesa = 1.6 andb = 2.3:

Ω2 = {(x, y, z) ∈ R3 :

√
x2

a2
+

y2

b2
< 1, | z |< 1}.

Here the number of the mesh points in each direction, areNx = 43, Ny = 59,
Nz = 41.

Based inside of these elliptical domainsΩ1 andΩ2 we define the cuboidsΓ
with different quadratic cross-sections in the(x, y)-plane. They have a common
center of axis with the domainΩ1 or Ω2. Furthermore we perform simulations
with both equidistant and non-equidistant mesh distribution. The number of mesh
points in each direction in the domainsΩ1 andΩ2 remains the same in both cases
only the step sizes are different. Since the same meshing have to be adopted in the
cuboidsΓ we chose their sides such that they coincide with the mesh lines of the
largerΩ domain and also taking care that they have to be completely inside the
elliptical domain. Thus the domiansΓ have the form

Γ = [−a, a]× [−a, a]× [−1, 1].

The sides of the domainsΓ depend only on the disceretization. Therefore they are
different for non-equidistant and equidistant grids. In the following tables the side
coordinates| x |=| y |=| a | are given as well as the number of the discretiza-
tion points in each direction, note that for thez-direction there is always the same
number of discretization points since that side remains unchanged.

a Nx = Ny Nz MAXIMUM RELATIVE DIFFERENCE

0.72 19 41 0.0737
0.8 21 41 0.0760
0.96 25 41 0.0787
1.2 31 41 0.0789
1.36 35 41 0.0790

Table 1: Maximum relative difference of the potential calculated in different do-
mainsΓ and in the domainΩ1 for equidistant grid.

a Nx = Ny Nz MAXIMUM RELATIVE DIFFERENCE

0.56 19 41 0.0996
0.65 21 41 0.1062
0.83 25 41 0.1134
1.1 31 41 0.1172
1.28 35 41 0.1177

Table 2: Maximum relative difference of the potential calculated in different do-
mainsΓ and in the domainΩ1 for non-equidistant grid.

The maximum difference between the value of the potential simulated in one
Ω domain (Ω1 or Ω2) and the potential simulated in the correspondingΓ domain
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a Nx = Ny Nz MAXIMUM RELATIVE DIFFERENCE

0.56 19 41 0.1314
0.65 21 41 0.1383
0.83 25 41 0.1459
1.1 31 41 0.1498
1.28 35 41 0.1503

Table 3: Maximum relative difference of the potential calculated in different do-
mainsΓ and in the domainΩ2 for non-equidistant grid.

at the same point, divided by the maximal value of the potential inΩ we get the
maximum relative difference given in the tables. As it can be realized from the
tables and the Figures 23 to 37 the difference between the potential simulated in
oneΩ domain and the potential simulated in the correspondingΓ domain rises as
the domainΓ gets larger.

Applying open boundary conditions onΓ was conditional since we assumed
that the real elliptical boundary of the beam pipe lies far enough from the bunch so
that its influence on the field distribution can be neglected. However as the domain
Γ gets larger it is also nearer to the real elliptic boundary of the beam pipe so the
open boundary conditions on the domainΓ are no more justified. From Table 2 and
Table 3 can be observed that the maximum differences between the potential for the
same domainΓ in Ω1 (circular cross-section) andΩ2 (elliptical cross-section) are
not equal. The differences are larger in the case ofΩ2, since for the same domain
Γ its rectangular cross-section will be nearer to the boundary of the elliptical cross-
section ofΩ2 than to the boundary of the circular shaped cross-sectionΩ1.

In addition the figures of the potential distribution calculated in the described
domainsΩ1 andΩ2 are shown for non-equidistant grid. It is noticeable that the
maximum potential value for the simulation in the circular domainΩ1 is slightly
larger than the one simulated in the domainΩ2, there is also certain difference in
the distribution to be recognize on Figures 21 and 22. The plots of the relative
difference between the potential simulated in oneΩ domain (Ω1 or Ω2) and the
potential simulated in the correspondingΓ domain are shown in Figures 23 to 37.
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Figure 21: Potential distribution inΩ1, (x, y)-plane cross-section atz = 0.
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Figure 22: Potential distribution inΩ2, (x, y)-plane cross-section atz = 0.
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Figure 23: Relative differencea = 0.72 Nx = Ny = 19, Nz = 41, equidistant
grid, (x, y)-plane cross-section atz = 0.
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Figure 24: Relative differencea = 0.8 Nx = Ny = 21, Nz = 41, equidistant grid,
(x, y)-plane cross-section atz = 0.
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Figure 25: Relative differencea = 0.96 Nx = Ny = 25, Nz = 41, equidistant
grid, (x, y)-plane cross-section atz = 0.
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Figure 26: Relative differencea = 1.2 Nx = Ny = 31, Nz = 41, equidistant grid,
(x, y)-plane cross-section atz = 0.
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Figure 27: Relative differencea = 1.36 Nx = Ny = 35, Nz = 41, equidistant
grid, (x, y)-plane cross-section atz = 0.
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Figure 28: Relative differencea = 0.56 Nx = Ny = 19, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0.

36



5 FIELDS OF SPHERICAL ELECTRON BUNCHES INΩ

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.086

−0.084

−0.082

−0.08

−0.078

−0.076

−0.074

−0.072

Figure 29: Relative differencea = 0.65 Nx = Ny = 21, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0.
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Figure 30: Relative differencea = 0.83 Nx = Ny = 25, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0.
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Figure 31: Relative differencea = 1.1 Nx = Ny = 31, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.09

−0.085

−0.08

−0.075

−0.07

−0.065

−0.06

−0.055

Figure 32: Relative differencea = 1.28 Nx = Ny = 35, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0.
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Figure 33: Relative differencea = 0.56 Nx = Ny = 19, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0, elliptical domainΩ2.
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Figure 34: Relative differencea = 0.65 Nx = Ny = 19, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0, elliptical domainΩ2.
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Figure 35: Relative differencea = 0.83 Nx = Ny = 25, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0, elliptical domainΩ2.
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Figure 36: Relative differencea = 1.1 Nx = Ny = 31, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0, elliptical domainΩ2.
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Figure 37: Relative differencea = 1.28 Nx = Ny = 35, Nz = 41, non-equidistant
grid, (x, y)-plane cross-section atz = 0, elliptical domainΩ2.

6 Conclusions

The computation of space-charge forces of bunches of charged particles is an im-
portant part of the simulation of the particle dynamics. Most of the particle tracking
software packages calculates the 3D space-charge fields of bunches in a rectangu-
lar domain. In this work the space-charge fields are calculated in different 3D
elliptical cross-section domains that are corresponding to the real boundaries of
the beam pipe. The results (from section 5) of different simulations made in the
elliptical domainsΩ1 andΩ2 compared with the results from the simulations of
the same bunch model in a rectangular domain with open boundary condition (Γ)
show that neglecting the influence of the elliptic boundaries and solving the Pois-
son equation in a rectangular domain with open boundaries is error prone. The
difference between the potential simulated in an elliptical cross-section domainΩ
and the potential simulated in the correspondingΓ domain rises as the domainΓ
gets larger.

The implemented BiCGSTAB algorithm for solving the non-symmetrical lin-
ear system of equations resulting from the discretization in the elliptical cross-
section domain performs in relative short time. That makes these routines suitable
for implementation in tracking programs where it is necessary to perform consec-
utive space-charge fields calculations.

Prospective work in the direction simulation of space-charge fields in ellipti-
cal cross-section domains would be to broaden the same algorithm for elliptical
domains with variable cross-section along thez-axis. This would allow us to sim-
ulate the space-charge fields in arbitrary cavity shapes. Applying the multigrid
method to solve the resulting linear system of equations from the discretization of
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the elliptical cross-section domain is another further intention, which would allow
higher aspect ratio discretizations and it would generalize the software package
”MOEVE” further as a multigrid solver of the Poisson equation in arbitrary ellip-
tical cross-section domains.

References

[1] W. Chou and J.M. Jowett. Appendix 1.ICFA Beam Dynamics Newsletter
No.31, August 2003.

[2] Tesla Colaboration Community. Superconducting TESLA cavities.PHYSI-
CAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, 092001
(2000), VOLUME 3:25, 2000.

[3] G. Dugan. USPAS Jan 2002 Accelerator School, Phys 450B: Introduction
to Accelerator Physics. http://www.lns.cornell.edu/ ∼dugan/
USPAS, New York, 2002.
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