TESLA Report 2005-20

8-Channel, FPGA based, DSP Integrated
Cavity Simulator & Controller for VUV-FEL

SIMCON 3.0

Ver. 3.0.rev. 1, 06.2005

HARDWARE MANUAL

Krzysztof T. Pozniak, Tomasz Czarski, Waldemar Koprek, Wojciech Giergusiewicz,
Ryszard S. Romaniuk

ELHEP Group, http://www.desy.de/~elhep
Institute of Electronic Systems, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

ABSTRACT

The note describes integrated, eight channel system of hardware controller and simulator of
the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and
TESLA in DESY, Hamburg (now tested for the VUV FEL and developed for X-Ray FEL). The
controller bases on a programmable circuit Xilinx VirtexIl V4000. The solution uses DSP
EMBEDDED BOARD module positioned on a Modular LLRF Control Platform. The algorithm and
FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication
components, present in Virtex II chips, were used, to improve the floating point calculation efficiency.
The implementation was achieved of a device working in the real time, according to the demands of
the LLRF control system for the TESLA Test Facility (now associated with the VUV FEL machine).
The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON
throughout this work. The manual describes hardware features of SIMCON, ver. 3.0 in modular
solution.

The following components are described here in detail: functional layer, parameter
programming, foundations of control of particular blocks and monitoring of the real time processes.
This note is accompanied by the one describing the multichannel DOOCS interface for the described
hardware system. The interface was prepared in DOOCS for Solaris and in Windows. The hardware
and software of 8§-channel SIMCON was tested in CHECIA and ACC1 module of VUV FEL linac.
The measurements results are presented.

While giving all necessary technical details required to understand the work of the integrated
hardware controller and simulator and to enable its practical copying, this document is a unity with
other TESLA technical notes published by the same team on the subject. Thus, some modeling and
other subjects were omitted, as they were addressed in detail in the quoted references.

Keywords: Super conducting cavity, cavity simulator, CAVITIES CONTROLLER, SIMCON system,
linear accelerators, FPGA, FPGA-DSP enhanced, VHDL, FEL, TESLA, TTF, UV-FEL, Xilinx, FPGA
based systems, LLRF control system of third generation, electronics for UV-FEL, X-Ray FEL and
TESLA.

MAJOR CHANGES FROM

SIMCON

VERSION 1.0, REV. 1, 04.2004

PUBLISHED AS TESLA FEL REPORT 2004-04
HTTP://TESLA.DESY.DE/NEW_PAGES/FEL_REPORTS/2004/FEL2004-04.PDF

e Automatic switching of parameters and tables was added. The switching enables control
parameter changes without stopping, resetting or switching off the SIMCON.
This change was presented in chapter 8.2.3.,

e An input compensation matrix was added to the algorithm of the CAVITIES
CONTROLLER. This change was described in chapter 8.2.5.,

e The access rules to the tables have been changed.
This change was described in chapter 4.2.

e Two options for the voltage range of the cavity Simulator were introduced.
This change was described in chapter 8.2.4.

e The dimensions in bits of the tables for amplification values for CAVITIES
CONTROLLER and beam current values for cavity simulator were equalized. The
equalization enables realization of automatic switching mechanism.

This change was described in chapter 8.2.3.

¢ An additional VMEDbus interface was added.
e A number of representative exemplary results from SIMCON tests with CHECHIA were
addend.

The results are presented in Appendix D.

e Many tables and figures were updated and renumbered throughout the whole text.

MAJOR CHANGES FROM

SIMCON

VERSION 2.1, REV. 1, 02.2005

PUBLISHED AS TESLA REPORT 2005-06
HTTP://TESLA.DESY.DE/NEW_PAGES/TESLA_REPORTS/2005/PDF_FILES/TESLA2005-06.PDF

e A universal modular LLRF platform was used (PCB Backbone Motherboard, BMB). The
platform is equipped in VME controller, embedded ETRAX processor (/00 MHz) with
100Mb ETHERNET link and proprietary bus INTERNAL INTERFACE. This module is
described in chapter 3.1, and in appendix A.

¢ The superconducting cavity control algorithm was extended from a single channel to eight
channels. 8 channel algorithm is described in chapter 2.2.

e 8-channel DSP module was implemented. This module is described in chapter 3.1, and in
appendix B.

e The system implementation was realized for the chip FPGA VIRTEXII-V4000-4. The
implementation was described in chapter 3.2.

e There was implemented a nondependent service of 8 input channels. The implementation is
described in chapter 6.

e The calibration was added for input channels. This feature was described in chapter 7.

e There were realized nondependent I/Q demodulators for each channel. This feature was
described in chapter 8.2.2.

¢ The block of memory switching was modified. This modification is described in chapter
8.2.3.

o There is not implemented the service and processing of demodulated I and Q signals.

e There was implemented the control algorithm of control for 8 cavities. This feature is
described in chapter 10.

e There was introduced an individual readout of I and Q signals after detection. This feature is
described in chapters 10.2, 13.2.

e The readout of the vector sum for the I and Q was added. The vector sum is described in
chapters 10.2, 13.2.

e The readout of all input analog channels is made accessible. This feature is described in
chapter 13.2.

e There was modified the functional structure of the input multiplexer. This feature was
described in chapter 12.

e Exemplary control results of the ACC1 module of S.C. linac for the VUV FEL were added.
They were presented in appendix D.

CONTENTS

INTRODUCGTIONccceeetteeennneescsecesereess 6
CAVITY SIMULATOR AND CONTROLLER ALGORITHM.....cccuueeeeeeeeerreeeseseennenns 8
2.1 CAVITY SIMULATOR ALGORITHM ..euuitteieeeeeee et e e e eeeee e e eeeeeeeeeeeeeeeeeeeeeeenenns 8
2.2 CAVITY CONTROLLER ALGORITHMueiiiititiimueeeeeeeeetemmaeeeeeeeeeeeesmmneeaessssssssmmnnnnneseees 9
2.3 SIMULATION PROCEDUREcotuettettee ettt e e e e eee e e e eee e e e e e e e eeeaeeeenaanns 9
GENERAL DESCRIPTION OF SIMCON SYSTEM.....covteeetueeeecceeeeseesessessesssssssssssseses 12
3.1 HARDWARE STRUCTUREutttttneeeette et eeeee e e e eeee e e eeeee e e eeaaeeeeeeaaeeeeaaeeeeeaneeeennnas 12
3.2 FUNCTIONAL STRUCTUREuuuueeteeeettttteeeeeeeeeettaaaeaeesseesereasneesssesesssmnneesesssessssmnnnnns 14
STATUS CONTROLLER BLOCK DESCRIPTION.....ccoettteeeeeeccrecceerersessssssscssssessssses 16
4.1 FUNCTIONAL DESCRIPTIONcettttttuueeeeeeeettteeeeeeseeeeerenenaeeesesessssnnnsasesesssessmmnnnneseees 16
4.2 PROGRAMMING DESCRIPTIONcettuueettuneeeeeeeee e et eeeeeeeeeeeeeaeeeeeeeeeeeenaeeeeenaeeenenens 16
4.2.1 INTERNAL MOAe OPEFALIONcceveeieaiie e 17
4.2.2 EXTERNAL mode 0perationccccoceuceeviioeniiiniiiinieieieneee e 17
4.2.3 VECTOR mMOde OPErAtiON...........c.ceevuieeiiieaiiieeiee e 17
4.2.4 STEP MOde OPEration...............cccceiceiniiiiiiiiiiiiiiiiesitee e 18
TIMING CONTROLLER BLOCK DESCRIPTION....ccoeteettueeeecceeeeseessssessesssssssssssssses 19
5.1 FUNCTIONAL STRUCTURE ...uutttteee ettt e e e eeee e e et e e e e eeaeeeeeaaeeeeeaeeseenaaeaeees 19
5.2 CAVITY TIMING MULTIPLEXER DESCRIPTIONccttvtuuueeeeeeeeetmrmmneeeeeeeeemsmmnnnaeeseeesenenns 20
5.3 PROGRAMMING DESCRIPTION ...euuuttittueeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaaeseeenaeseennaeaeee 20
5.3.1 Internal timing GeNErAtiONccccocueeiouieesieieeiieeeiee e 20
5.3.2 Step OPEration PrOCESScccociicuiimiiiiiiiiiiiiiieeee ettt 21
5.3.3 Time adjustment of the trigger SIGNAlS..............cccoovvveeiiieeiiieiiieeeiieeeeeene, 22
INPUT PROCESSING BLOCK DESCRIPTIONccottteetuueecceecccerersessosssssssssssssssssssonee 23
6.1 FUNCTIONAL STRUCTUREuuuueteeeeeteteeeeeeeeeeettaaneaeesseeseteasnaaeesssssesesaneaeesesssesesmmnnnnns 23
6.2 PROGRAMMING DESCRIPTIONuutttttnetetieeeeeeeeeeeeeeeeeeeeeeeeeteaeeeeeeaaeeeeanaeeeennneeeennnns 24
OUTPUT PROCESSING BLOCK DESCRIPTIONccttteeeeueeeeecceesseessssessesssssssssssssses 25
7.1 FUNCTIONAL STRUCTUREttttueeeettee et e e et e e e e eeeeeeeeeeeeeeeaaeeeeeeaaeeeeaaeeeenaneeeennnns 25
7.2 PROGRAMMING DESCRIPTIONeiitttttuuueeeeeeeeettmeneeeseeeeeremsmeeesssesesesmmneesssssesssmmmnnnns 25
PROGRAMMABLE DATA CONTROLLERieeeeereeeeeneesssscssssssssssssssssssssessssses 26
8.1 FUNCTIONAL STRUCTURE ...cotttuuueeeeeeeetttieeeeeeeeeeeeetaaaeeeeseeesesrnnnaeesessssssmmnsaeesesessrenns 26
8.2 PROGRAMMING DESCRIPTION ...euutettttee ettt e e eeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaaeeeeeaaeseennaeaeee 27
8.2.1 Dynamic data multiplexercc.ccoouuioiiemiiiaiieeeiieeeeie e 27
8.2.2 MOAUIGIOT AVIVEFcceeoeeeeeeeeeeeeee ettt 27
8.2.3 DAtA SWILCRING........c..oeeeeeeieee et 28
8.2.4 Cavity simulator programmable data packet.....................ccccccoccnivninannne. 28

8.2.5 Cavities controller programmable data packetc..cccoevevvencnnnnne. 29

10

11

12

13

= S O = »

CAVITY SIMULATOR BLOCK DESCRIPTIONuuiiierrrrnsenssnessaenssnessansssaesssncnne 30

9.1 FUNCTIONAL STRUCTUREetttuee ettt et e e e eeeeee e e eeaeeeeeeeaeeeeeaaeeeeeaaeeenaaaeeennnaeeennnns 30
9.2 PROGRAMMING DESCRIPTIONeittttteueneeeeeeeeeteeenaeeeeeeeeeaenenaeesseseeseennnneessessseeennnnnnns 31
CAVITIES CONTROLLER BLOCK DESCRIPTION ...cccetteeeeeeeeerereeesesesessssssssssssssses 32
10.1 FUNCTIONAL STRUCTURE ...vvuueeeeeeeetteeeeeeeeeeeeeeeeeeaeeeeeeeetaeneneeeeeseesseanennaeesesessennnnnnnns 32
10.2 PROGRAMMING DESCRIPTIONeneettieeeeeeeeeeeeeeeeeeeeeeaeeeeeeaeeeeeaaeeeeeeaeeeeeeaeeeeneaananes 33
DATA ACQUISITION (DAQ) BLOCK DESCRIPTION ...ccciiiiirrneeccssneneccscnnssccssnnnes 34
11.1 FUNCTIONAL STRUCTURE ...uueetttee ettt e e e e eeeee e e eeeaeeeeeeaeeeeeaaeeeeeeeaeeeeeeaeeeeneaaaaees 34
11.2 PROGRAMMING DESCRIPTIONcettttteutueeeeeeeeeteeneaeeeeeeeetaenenneessesesseannnaeeesesessennnnnnnns 34

11.2.1 DAQ MOdes CONIIOL............ccooccueeiiieiiiiieii et 34

11.2.2 DAQ MEMOTY ACCESS ..vveeeeeeeaieee et ee e et e e e e airaeee e 35

11.2.3 DAQ FeAAOUE PFOCESS ..ot 35

11.2.4 DAQ VECIOT GENETALOTeeeeeeee et 36
INPUT MULTIPLEXERS BLOCK DESCRIPTION ...uuuueeeeeeeeeeeeeeeeeeesesssssssssssssssssses 37
12.1 FUNCTIONAL STRUCTURE ...vvueeeeeeeetteeeeeeeeeeeeeeeeeeeeeeeeestaeneneeeseeeeeseannnnaaeeseseesennnnnnnns 37
12.2 PROGRAMMING DESCRIPTIONeuuteetiee ettt e e e eeeeeeeeeaaeeeeeeaeeeeeaaeeeeenaeeeeeeaeeeeneaaaaees 38
OUTPUT SWITCH MATRIX BLOCK DESCRIPTION ...cuuueeeceeereeeenreeeeecsessessssssses 39
13.1 FUNCTIONAL STRUCTURE ...uueetttee ettt e et e e e e eeeeeeeeeeaeeeeeeaeeeeeaaeeeeeeaeeeeeeaeeeeneaaaaees 39
13.2 PROGRAMMING DESCRIPTIONceetttttuuueeeeeeeeetemueeeeeeeeeeetssmnnneessseessesmnneesssseesesmmnnnnns 40
PROGRAMMABLE 1I/O SPECIFICATION...uuttteuceeeeeereeeeessessssscssssssssssssssssssssassssses 41
14.1 1I/O SPECIFICATION LIST BY ADDRESSES....cetttttttttttteteeeeeeeeeeeeeeeeeeeeeeeeereeerereeereeeeeeeeeeeees 41
14.2 /O SPECIFICATION LIST BY NAMES . .ttettueeeeeeeeteeeeeeeeeeeeeeeeeaaeeeeeeeeeenenaaaeeeeeeeeennnnns 56
LLRF PLATFORM DESCRIPTION........ccetttetteueeecseceseeesss 58
DSP EMBEDDED BOARD SPECIFICATION ...uuuuueeeeeeeeeeeeeeeeeeeeeseeesessssssssssssssssssssssss 60
EXEMPLARY SCOPE PICTURES OF SIMCON SYSTEM OUTPUTS ..ceeeeeeeeeeeenn 69
EXEMPLARY RESULTS OF CHECHIA REAL-TIME CONTROL...........ccuueeeeeee. 73
EXEMPLARY PICTURES OF ACC1 MODULE REAL-TIME CONTROL.......... 76

1 INTRODUCTION

The TESLA — VUV-FEL/X-FEL project bases on the nine-cell super conducting
niobium resonators to accelerate electrons and positrons. The acceleration structure is
operated in standing p-mode wave at the frequency of 1,3 GHz. The RF oscillating field is
synchronized with the motion of a particle moving at the velocity of light across the cavity.

The LLRF — Low Level Radio Frequency control system has been developed to stabilize
the pulsed accelerating fields of the resonators (see fig. 1). The prospective FPGA technology
solution is projected for the digital implementation of the cavity control system algorithm.

| |
|
I :
: Klyatron S |
Vectar iple Multiple |
| Mast
o ?151 ir ™ Modulater [CAVITY r—N DownConverter '
I srilator Ilodule v Iadile :
| |
I |
o __ T _______________________________________ |
: __ Bl
I DAC i :
I Multi-chanel I
: F i CONTEOL BLOCK ADC :
I ; |
l FPGA Multiple |
| L DETECTOR I
: : :
I Feed Chain Sgt— Calibration |
: Forerard Foint I
|
|
| FP34 CONTROLLER |#—| VECTORSUM I
I |
| I
|

Fig. 1. Functional block diagram of LLRF Cavity Control System

The control section, powered by one klystron, may consists of many cavities (see fig. 2).
One klystron supplies the RF power to the cavities through the coupled wave-guide with a
circulator. The fast amplitude and phase control of the cavity field is accomplished by
modulation of the signal driving the klystron from the vector modulator. The cavities are
driven with the pulses of 1.3 ms duration and the average accelerating gradients of 25 MV/m.
The RF signal of each cavity is down-converted to an intermediate frequency of 250 KHz
preserving the amplitude and phase information. The ADC and DAC converters link the
analog and digital parts of the system.

Input data integration idea bases on 8-channel ADC board with FPGA concentrator and
fast fiber optic data transmission in future. So, the careful multi-channel solution is required
for the OPTO and PCB design. Alternatively, the first FPGA module may include also the
initial digital signal processing applied for the field vector detection (I/Q detector) and
calibration of each cavity signal. Furthermore, the vector sum of multiple signals is
considered for the actual control processing. In case of many cavities the several 8-channel
boards are applied for the initial data processing. So, the reduced data of low frequency are
transmitted to the main DSP controller board which completes the vector sum of received
partial data.

The control feedback system regulates the total vector sum of the pulsed accelerating
fields in multiple cavities. According to the desired set point, the digital controller stabilizes
the average value of the envelope detected as real (in-phase) and imaginary (quadrature)
components of the incident wave. Additionally, the adaptive feed-forward is applied to
improve compensation of repetitive perturbations induced by the beam loading and by the
dynamic Lorentz force detuning. The control block generates the required data of Set-Point,
Fed-forward and Gain for the internal memory of the FPGA based controller (see fig. 2).

The comprehensive digital system modeling has been developed for the investigation of
the optimal control method for the super conducting cavity. The design of a fast and efficient
digital controller is a challenging task and it is an important contribution to the optimization
of the TESLA — VUV-FEL/X-FEL accelerator.

2 CAVITY SIMULATOR AND CONTROLLER ALGORITHM

The cavity resonator modeling has been developed for the efficient testing of the control
system and for the investigation of the optimal control method. The FPGA hardware
implementation of the cavity model is intended for the real time operation.

2.1 Cavity simulator algorithm

The cavity electromechanical model including Lorentz force detuning and the beam
loading is applied for analyzing the basic features of the plant. The cavity control system
proceeds within the low-level frequency range of the complex envelope for the input current
and output voltage of the cavity. The complex envelope signal is represented by real (I — in-
phase) and imaginary (Q — quadrature) components. The discrete processing of the cavity
behavior has been developed for the digital implementation of the cavity model. The
functional diagram of the cavity simulator algorithm is presented in fig. 2.

Beam Table w0

I J

Electrical model :> W :> Mechanical model

Input
v0 regll')ster :> v =E*y -zl- v0 — Beam o W= A*w + B*vv
IvI® =wv o = wO+w(1)+w(3)+w(5)

| |

IF modulator: <: Output 3

I.-0.-L O... register et
iL V4 \/ u
vom

Fig. 2. The functional diagram of the cavity simulator algorithm

The electrical part of the cavity simulator consists of the DSP function block. The DSP
procedure is realized according to the state space relation with the state vector v representing
(I, Q) components of the cavity output envelope. The system matrix E depends on the cavity
detuning Ao and the cavity bandwidth only. The normalized current generator as the input
signal vy and the beam from the table drives the DSP unit. Additionally, the non-stationary
detuning A® modulates the object feature by the matrix E. The square of the cavity field
gradient |v|> = vv drives the mechanical part of the model. The input and output registers
correspond to the time delay of the cavity environment (waveguide). The intermediate
frequency modulator converts the cavity output vector to the signal v.m of frequency 250
kHz. Therefore, the data samples, like from the down-converter, can be conveyed to the outer
digital controller.

The mechanical model of the super-conductive cavity consists of the DSP unit according
to the state space relation with the state vector w. The time-varying detuning A® and its time
derivative are two state-variables for each mechanical mode. The system matrix A and the
input matrix B depend on the cavity parameters: resonance frequency, quality factor and
Lorentz force-detuning constant for each mechanical mode. Each of the mechanical modes is
driven by the square of the cavity field gradient vv generated from the electrical part of the

-8-

model. Three dominating resonance frequencies are considered in the cavity model and the
superposition of all modes, together with the initial predetuning wy, yield the resultant
detuning Ao.

2.2 Cauvity controller algorithm

The comprehensive model of the control system has been developed to investigate
different operational conditions of the cavity. The functional diagram of the controller
algorithm is presented in fig. 3.

vO & channels ~250kHz

Output ¥ 8-channel
calibration Initial calibration
&-channel
VECTOR | [/Q DETECTOR
SUM &
ﬁ Calibration
Feed-forward GAIN Set-Point

Table Table Table

Fig. 3. The functional diagram of the controller algorithm

After initial calibration (scaling and leveling), the digital processing is performed in 1I/Q
detector applying the signal v.m of intermediate frequency 250 kHz for 8 signal channels.
The resultant cavity voltage envelope (I, Q) is calibrated, so to compensate the phase shifting
for an individual measurement channel. The vector sum of 8 signals is considered for the
actual control processing. The Set-Point table delivers the required signal level, which is
compared to the actual average value of the cavities voltage envelope. The multiplier as the
proportional controller amplifies the signal error according to data from the GAIN table and
closes the feedback loop. Additionally the Feed-Forward Table is applied to improve
compensation of the repetitive perturbations induced by the beam loading and by the dynamic
Lorentz force detuning. The resultant output signal v can drive the cavity simulator.

2.3 Simulation procedure

The FPGA cavity simulator and controller are coupled to the MATLAB system via
communication interface. The real time tests are carried out according to the schematic block
diagram in fig. 4. The MATLAB system initiates the simulation process for the given primary
parameters. The list of parameters for user utility is combining in the table below. The
secondary, internal parameters required for the FPGA system are calculated in the beginning.
Additionally the optimal data for Set Point and Feed Forward tables are generated according
to the cavity model. Finally, the MATLAB simulation process is verified by plot. The
resulting example, for the real operational condition, is presented in fig 5. The cavity is driven
in the pulse mode forced by the control feedback supported by the feed forward.

Subsequently, resultant parameters and data are loaded to the FPGA memory tables. The
cavity simulator and controller can be driven independently via the external connection
applying the analog-to-digital converters (ADC- 14-bit resolution). Alternatively, the FPGA

-9.-

controller can drive the FPGA cavity simulator via internal digital connection (18-bit data
resolution). Then, the FPGA system can run itself cyclically according to the given data tables
(see below). The digital-to-analog converter (DAC) conveys data from the FPGA cavity
simulator or from the FPGA controller outside the system.

Tables of the primary parameters for user utility.

CAVITY SIMULATOR parameters CONTROLLER parameters
fo=1300 [MHz]........c.ccvvvnennnn. resonance frequency |Gooiiiiiiiiii e gain
P=520[Q] ceveiririiiirinnnn characteristic resistance |cal initial calibration vector for 8 channels
QL=310° ... loaded quality factor | ¢ ininput calibration vector for 8 channels
Af=Aw0/2n=390 [Hz]........ccoveverinn. pre-detuning | c out............ooeviiiininnnin. output calibration vector
dl=0,d2=1.....ccceiriiiiiin... input, output delay CONTROL parameters
f=1[235, 290, 450] [Hz].. resonance frequencies vector -
F=1,0)..ccccccenrn.... Feed-forward enable, (disable)
Q=[100,100,100] quality factors vector . . .
a=25[MV] ... Set point for cavity amplitude
K =1[0.4, 0.3, 0.2] [Hz/(MV)?]... LFD constants vector . .
ph=0[rad] Set point for cavity phase
Ib=8[mMA] ..o average beam) .
D=509 .o filling time
D1=509,D2=1300c....oeevnn..... start, stop beam .
L=800...ccccieiiiiiiiiiiiiiiiie e flattop time
ADC N LT o| DAC
CAVITY SIMULATOR
BEAM TABLE
FPGA MATLAB FPGA
internal connection SYSTEM internal connection
| V
GAIN TABLE
SET-POINT TABLE
FEED-FORWARD TABLE

CONTROLLER

Fig. 4. Functional diagram for one chip FPGA system

-10 -

=
.. —_
: : ; ; : : : &
H]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ i)
')
fanl
EX
=
e
=
=
' o
'] =
..... R GEEEEEE TR]
i ' . ¥y
: o : . :
: i : : :
' o, ' ' '
' ' e ' ! ' ! :
L 1 _rfl.l.l.[1 Il 1 1 =]
mow ™ o - o o ow - u o
=
)
Lo
=
... (=}
=
@
| 2
T
-]
oW '
5 !
e !
L |]
....... R =]
i (Y]
[

steps

steps

Phase of cavity voltage and controller output [rad]

B pmmmeeemnne e

Fa) SRS

— cavity

— contraller

1

]

H
o
=

[zH] £auanha.

contoller

100 premmmmmmmeeees

1}

2300 fremmmee e

0 S

-600

H
[fs
[}

[pel] aseyq

Y- R

1800

1000

400

1500

1000

staps

steps

Fig. 5. The MATLAB results of simulation for real operation condition

-11 -

3 GENERAL DESCRIPTION OF SIMCON SYSTEM

The integrated and parameterized controller and simulator system for the resonant,
superconducting, narrowband cavity of the UV-FEL (SIMCON) was implemented in a
programmable FPGA chip Virtex I V4000. The chip has inbuilt hardware DSP components
[7]. This chapter presents in a general way the functional and hardware structure of the
device.

3.1 Hardware structure

The hardware layer was realized with modular DSP EMBEDDED BOARD [11]
positioned on a Modular LLRF Control Platform [8].

DSP EMBEDDED BOARD module was designed as integrated board for amplitude and
phase control of the EM field for a single section of the VUV FEL accelerator. Its
construction is presented in fig. 6. The DSP EMBEDDED BOARD module possesses:

¢ Eight input analog channels:

e Each channel was equipped

in nondependent ADC, "

ADG6645 by Analog Devices ~ 4

[14] of 14-bit resolution. g4
e High analog input §a 4

bandwidth 270MHz E°*

enables the work with high © —»

intermediate frequency ~—

signals [F=81 MHz or o

bigger. 3
e The sampling frequency of é o

the converter is from 50 to 2

100 MSPS. There is the ¢ “ %

ability to realize a hardware R

based, fast averaging of the

1/Q vector. 1 2 102
e The output range of voltage o s

1s £1V/509,

e There was applied an input
isolating amplifier with
symmetric input to the converter, to minimize the SNR,

Fig. 6. DSP Embedded Board PCB

¢ Four analog input channels:

e Each channel is controlled by the DAC, AD97724 by Analog Devices [15] of 14-bit
resolution with symmetric output to minimize the SNR.

e The frequency range of DAC is from 40 to 160 MSPS (the converter realizes additionally
the hardware based signal approximation),

e The output voltage range is 1V/500,
¢ The output isolating amplifier of the following voltage range +1V/500.

e Two input and two output buffered digital channels in the LVTTL standard predicted to
input and output the synchronization channels.

-12 -

The DSP EMBEDDED BOARD module is realized on a single PCB board (see appendix
B) embedded in two slots of the Modular LLRF Control Platform [8]. This solution makes the
LLRF Platform a universal, modular and reconfigurable test ground for specialized functional
modules basing on FPGA matrices. This solution enables extraction of common components
of LLRF system and use them in multiple ways instead of multiplication of the same modules
in separate functional block. This leads to considerable simplification of hardware layer of
these repeated modules and to unification of the control from the software level. The design
process embraces less variations of the functionalities and, thus, is less time consuming and
cheaper. The general structure of the LLRF Modular Platform was presented in Appendix A.
This solution provided:

e Standardized communication
system with VME-bus [12] and via
Ethernet 100T [10],

e Remote configuration of FPGA via
the JTAG standard [13],

e Fast, electrical data transmission
buses for connections with other
embedded modules, for example
with the OPTO module [9] which
provided optical data transmission
with the rate 1.6Gb/s,

e Distribution of common clock and
synchronization signals, to enable
synchronous work of several
embedded modules on a single
LLRF System Modular Platform,

e Necessary supply voltages for
FPGA chips, converters and digital
buffers.

The module DSP EMBEDDED
BOARD positioned on the Modular
Control Platform occupies two clots
in the VME-6U crate. The power \ l
supply is provided via the VMEDbus.

A complete system is presented in Fig. 7. Installation of the LLRF modular platform in
fig. 7. the VME crate with the DSP EMBEDDED

Application of the VME bus BOARD module.

[12] stems from the requirements

imposed by the DOOCS system [1]. The DOOCS is obligatory GUI to control the accelerator
of the FEL. The access was realized in the 424D32 mode. There are 24 lines of address bus
and 32 lines of data bus. The access is SLAVE for AM=39H and MASTER for AM=3DH [12].
The base address of the PCB in the address space of the VME bus is defined by the 4 oldest
address bits (423-420). The VME-BUS controller was realized in the FPGA ACEX 100K
matrix chip by Altera.

)N

The communication inside the LLRF Platform is realized in the proprietary INTERNAL
INTERFACE [7] standard, for the following configuration - 32-bits of data and 32-bits of
address.

-13 -

3.2 Functional structure

Integrated SIMCON system was realized in the form of parameterized structure of
functional blocks in the VHDL language (Very High Speed Integrated
Circuit Hardware Description Language). The implemented code was loaded in the Xilinx
VirexIl V4000-4 chip on the DSP EMBEDDED BOARD [11]. There were used the AD and
DA converters situated on this board. The optional connection of the external control to the
simulator or controller of the FEL cavity is possible. The digital TTL inputs present on the
base DSP EMBEDDED BOARD were used for synchronization with the / MHz clock and
5 Hz trigger. These signals are distributed in the whole control system of the FEL. The digital
TTL outputs provide monitoring of internal signals. An overall functional structure of the
SIMCON, implemented in ver.3.0 was presented in fig. 8.

DSP EMBEDDED BOARD
Xilinx Virtex V4000-4 |

l
CAVITY 1 >
SIMULATOR

x

PROGRAMMABLE
DATA
CONTROLLER

v

8 CAVITIES

CONTROLLER T’

TIMING COMMUNICATION STATUS
CONTROLLER CONTROLLER | i CONTROLLER

Tl

4 *DATA

PROCESSING | |[ACQUISITON

INPUT
PROCESSING

INPUT
MULTIPLEXERS

OUTPUT
SWITCH MATRIX

L

OUTPUT

PC EMBEDDED INTERNAL INTERFACE VME INTERFACE

Fig. 8. Multi-Layered hardware and functional structure of the SIMCON, ver. 3.0.

The solution applied in the SIMCON system bases on the backbone of parameterized
and programmable blocks of parallel processing.

The core is constructed of two nondependent modules CAVITY SIMULTOR and
8-CAVITIES CONTROLLER. They were programmed inside the FPGA Virtex Il 4000-4
chip as hardware DSP algorithms. The algorithms use fast internal multiplication components.
The blocks work in parallel in the real time. They are controlled by programmable parameters
provided by the PROGRAMMABLE DATA CONTROLLER block. The parameters are scalars
(like parameters of the cavity and controller) and vectors (like the feed-forward for
CAVITIES CONTROLLER, beam of cavity simulator). The set parameters stem from the
algorithms described in detail in the following papers [4,5,6].

The block of INPUT MULT IPLEXERS serves for programmable choice of the control
signals of the controller and simulator blocks. The realization of the following functions is
possible through this functionality: internal digital feedback loops, connection of external
analog signals from the AD converters, set test vectors initially programmed in the DAQ

-14 -

block. The task for the OUTPUT SWITCH MATRIX block is a programmable choice of the
signals outputs for the DA converters or signal registration in one of the four memories in the
DATA ACQUISITION block. A suitable configuration of the switching matrices gives
appropriate analog feedback between the modules of CAVITIES CONTROLLER and
simulator

The block TIMING & STATUS CONTROLLER provides internal synchronization of
the all processes of SIMCON system. It is possible to choose the external clock signals
provided by the accelerator control system or from the external generators. The latter case
enables autonomous work of the system. Switching of the work states of the system is
possible, i.e. performing of processes in real time or in step simulation regime with reference
vectors.

The programming layer of all the blocks of SIMCON system is realized by the
supervisory control computer system with the aid of the COMMUNICATION CONTROLLER
block. The VME-BUS [12] hardware transmission protocol was used via the block VME
INTERFACE [8] or network communication via 100Mb ETHERNET with the control
realized via the block EMBEDDED PC (ETRAX processor [10]). The information distribution
bases on the Internal Interface standard, described in detail in [2,7]. The bus is controlled by
INTERNAL INTERFACE block.

-15-

4 STATUS CONTROLLER BLOCK DESCRIPTION

The SIMCON system may work in several work states (called operation modes). It
provides possibility to realize various functionalities in a single integrated system. The work
states are: autonomous, cooperation with external timing systems, functional tests state,
diagnostic state and system programming state. Inside each operation mode two work states
are available SETUP and RUN.

4.1 Functional description

The block STATUS CONTROLLER manages the work states of the SIMCON system.
From the operation point of view, setting of a particular work state has a superior character.
There are distinguished four system work states in the SIMCON:

e INTERNAL — the work in the real time mode is possible with the usage of internal timing
signals (see chapter 5.2, 5.3.1)

o EXTERNAL — the work in the real time mode is possible with the usage of external timing
signals (see chapter 5.2)

e VECTOR — the work is possible in the real time mode with internal timing signals and set
exciting vectors (see chapter 5.2, 11.2.4)

e STEP — the work is possible in the step operation mode with the usage of internal timing
and programmable set input exciting data, separately for each step (see chapter 5.2, 5.3.2)

Each of the above modes has SETUP stage. The SETUP enables full programmers approach
to the spaces of registers and memory through COMMUNICATION CONTROLLER. Each of

the above modes has RUN mode. The RUN realizes functionalities of the system mode.
4.2 Programming description

The choice of the system work mode is set with the aid of the register:
MODE_OPER_SEL. The register has the following values:

e value 0 — INTERNAL work mode is chosen (compare chapter 4.2.1),
e value 1 — EXTERNAL work mode is chosen (compare chapter 4.2.2),
e value 2 — VECTOR work mode is chosen (compare chapter 4.2.3),

e value 3 — STEP work mode is chosen (compare chapter 4.2.4),

The flag CTRL_PROC_REQ enables, for the block CAVITIES_CONTROLLER, enables
the choice between activation or programming of tables for the CAVITIES CONTROLLER
inside the block of PROGRAMMABLE_DATA_CONTROLLER. It also allows activation of
static values (compare chapter 8.2.5). The acknowledgement of setting the required work state
is done through reading the identical logical state of the flag CTRL_PROC_ACK:

e CTRL_PROC REQ=0 and CTRL_PROC_ACK=0 causes switching of tables TSETPOINT I,
TSETPOINT_Q, TFEEDFORWARD _I, TFEEDFORWARD_Q, TGAIN_I and TGAIN_Q to the access
of memory programming by the user via the block COMMUNICATION CONTROLLER. It
also causes automatic activation of respective static registers: SSETPOINT_|, SSETPOINT_Q,
SFEEDFORWARD _|, SFEEDFORWARD_Q, SGAIN_| and SGAIN_Q.

e CTRL_PROC_REQ=1 and CTRL_PROC_ACK=I1 causes connection of tables TSETPOINT I,
TSETPOINT_Q, TFEEDFORWARD_I, TFEEDFORWARD_Q, TGAIN_| and TGAIN_Q to the
CAVITIES CONTROLLER. The values of the static registers SSETPOINT _I, SSETPOINT_Q,

- 16 -

SFEEDFORWARD_I|, SFEEDFORWARD_Q, SGAIN_I and SGAIN_Q are ignored.

The flag SIM_PROC_REQ enables, for the block CAVITY SIMULATOR, a choice of
activation or programming of tables in the block PROGRAMMABLE DATA CONTROLLER
and respectively activation of the static values (compare chapter 8.2.3). The

acknowledgement of the setting of required state is done through reading of identical logical
state of the flag SIM_PROC_ACK:

e SIM_PROC_REQ=0 and SIM_PROC_ACK=0 causes table switching TBEAM_| and TBEAM_Q to
the access of memory programming by the user via the block COMMUNICATION

CONTROLLER. It also causes automatic activation of respective static register: SBEAM_| and
SBEAM_Q.

e SIM_PROC _REQ=1 and SIM_PROC_ACK=1 causes connection of the tables TBEAM | and
TBEAM_Q to the CAVITIES CONTROLLER. The values of the static registers SBEAM_| and
SBEAM_Q are ignored.

The request to change the flag state CTRL_PROC_REQ or SIM_PROC_REQ should result in
respective change in the state of CTRL_PROC_ACK or SIM_PROC_ACK during the time period
of 100 ns.

The programming conditions for particular work states are described below in the
successive sub-chapters.

4.2.1 INTERNAL mode operation

In the INTERNAL work state the system is fully real-time and totally autonomous with
the internal triggering signals and control tables (compare chapters 8.2.3 and 8.2.5).

4.2.2 EXTERNAL mode operation

In the EXTERNAL mode of operation the outside timing signals are used in the TTL
standard (compare chapter 5.1). The signals are respectively connected to the LEMO sockets
(compare chapter 3.1):

o EXTERNAL CAVITY STROBE connected to DIGITAL INPUT 2,
o EXTERNAL CAVITY TRIGGER connected to DIGITAL INPUT 3.

From the programming steering side, the EXTERNAL operation mode is considerably
identical with the INTERNAL operation mode (compare chapter 4.2.1). Additional
functionality is the possibility to adjust external clock signals via the modules CAVITY
STROBE DELAY and CAVITY TRIGGER DEL in block TIMING CONTROLLER (compare
chapter 5.3.3).

4.2.3 VECTOR mode operation

The VECTOR mode operation uses internal memories DAQL.. DAQ3 implemented in the
block DATA ACQUISITION as programmable input signal generators (compare chapter
11.2.4). By the choice of the channels in the block INPUT MULTIPLEXERS they are
respectively connected to the input of the CAVITIES CONTROLLER and input of the cavity
simulator. (compare chapter 12.2).

From the programming steering side, the EXTERNAL operation mode is considerably
identical with the INTERNAL operation mode (compare chapter 4.2.1). Only in the case of the
DAQ memory choice as an input generator, it requires programming with a set of signals
(compare chapter 11.2.4). The memory module working as a generator may not be used
simultaneously for data acquisition.

-17 -

4.2.4 STEP mode operation

In the STEP operation mode there are used the internal registers to control and read the
results of the DSP processing from the block CAVITY SIMULATOR (see chapter 8.2.3) and
the block CAVITY CONTRLLLER (see chapter 8.2.5). A single step is realized in the module
CIVITY STROBE STEP TIMER in block TIMING CONTROLLER (see chapter 5.3.2).

The STEP operation mode is used for service purposes and tests, like emulation of
vector content TSETPOINT_I, TSETPOINT_Q, TFEEDFORWARD_|, TFEEDFORWARD_Q and
other ones. Due to this reason, the STEP operation mode may not be used in the real
time.

For the servicing purposes, the access to the read registers of signals from the DSP
processing of the cavity simulator and controller via the block COMMUNICAT ION
CONTROLLER may be done in an arbitrary moment of time during the SIMCON system
activity. It is recommended for the users to read from these registers after the operation
step was completely done.

- 18 -

5 TIMING CONTROLLER BLOCK DESCRIPTION

The block TIMING CONTROLLER processes and controls the timing signals
distributed in the whole SIMCON system. It generates internal timing signals of the
parameters set by program. The system has three basic clock signals. The time dependence
between these signals were presented in fig. 8):

T
SIMCON CLOCK

CLOCK Juuutuuvuuuuyuutn

CAVITY < TsTroBE >

STROBE B M M

T

CAVITY ’ TECRR >

TRIGGER B

Fig. 8. Time dependencies between clock signals in the block TIMING CONTROLLER

e SIMCON CLOCK - internal timing signal with the period Tcrock=235 ns (40 MHz),

o CAVITY STROBE — internal or external synchronizing signal for processing of the analog
signals in the AD and DA converters with the period Tstrose=1 us (I MHz),

e CAVITY TRIGGER — internal or external signal initializing the process of cavity control,
now the period of this signal for FEL is Trrigger=200 ms (5 Hz) but may be changed on
demand.

51 Functional structure

o.EXT. CAVITY STROBE QUARTZ SIMCON CLOCK _
g GENERATOR g
OEXT. CAVITY TRIGGER "
O _|cAVITY STROBE CAVITY STROBE _
CAVITY STROBE | zw & DELAY -
GENERATOR T=5 'y
(|
CAVITY TRIGGER =
GENERATOR dl == CAVITY TRIGGER| CAVITY TRIGGER _
T 22| DELAY >
o=
" SIMCON CLOCK OUT
R e — CAVITY STROBE OUT
Y / | il e
2 kM TSN:;R i {STATUS 0
. i CONTROLLER
TRIGGER CAVITY TRIGGER OUT~
4

COMMUNICATION
CONTROLLER

Fig. 9. Functional structure of the block TIMING CONTROLLER

The functional structure of the block TIMING CONTROLLER was presented in fig. 9.
The are three processing layers in this structure:

e Choice of the clock signals, which are realized in the module CAVITY TIMING
MULTIPLEXER,

e Generators of internal clock signals; the following modules create this structure: CAVITY
STROBE GENERATOR, CAVITY TRIGGER GENERATOR, CIVITY STROBE STEP
TIMER, QUARTZ GENERATOR,

-19-

e Timing adjustment consists of the following modules: CAVITY STROBE DELAY, CAVITY
TRIGGER DELAY,

External signals EXTERNAL CAVITY TRIGGER and EXTERNAL CAVITY STROBE are
output to the digital LEMO connectors. For the diagnostic and synchronization purposes with
the external devices, the timing signals SIMCON CLOCK OUT, CAVITY TRIGGER OUT and
CAVITY STROBE OUT were output to the digital LEMO connectors.

5.2 Cavity timing multiplexer description

Choice of the source for clock signals is done automatically in accordance with the state
of the register MODE_OPER_SEL. The register is situated in block STATUS CONTROLLER:

e For the operation modes of the system MODE OPER INTERNAL and
MODE OPER VECTOR the clock signals are taken from the internal generators CAVITY
STROBE GENERATOR, CAVITY TRIGGER GENERATOR,

e For the operation mode of the system MODE OPER EXTERNAL, there are taken external
clock signals EXTERNAL CAVITY TRIGGER and EXTERNAL CAVITY TRIGGER. They
are automatically synchronized with the signal SIMCON CLOCK,

e For the operation mode MODE OPER STEP, the clock signal is taken from internal
generator CIVITY STROBE SIMULATOR TIMER and signal SIMULATOR CIVITY
TRIGGER, which is programmed in block COMMUNICATION CONTROLLER.

5.3 Programming description

The extent to program the block TIMING CONTROL includes setting the parameters of
internal generators of clock signals and values of delays.

5.3.1 Internal timing generation

The usage of internal clock signals requires a priori programming of the generator
parameters CAVITY STROBE GENERATOR and CAVITY TRIGGER GENERATOR. To set
the operation mode the following registers are used:

e For the CAVITY STROBE GENERATOR the signal period CAVITY STROBE is defined as a
number of the periods of the signal SIMCON CLOCK (25 ns). The value of the rate
diminished by / is stored in the signal register GENER_STROBE_RANGE. The period may be
calculated using the following expression, where x is given parameter:

Tsrrose = Tepock * (x+1) = x :m_l,
CLOCK

The nominal range of register values is confined to 0 - 63. To obtain the period equal to 7 us
from the signal SIMCON CLOCK (25 ns) it is necessary to set the value 39.

The implemented DSP algorithms allow to set the minimum value equal to 7. The sampling
period is then 200 ns, or the modulated signal reaches /.25 MHz.

e For the CAVITY TRIGGER GENERATOR the signal period CAVITY TRIGGER is defined as
a number of the signal periods CAVITY STROBE. The rate value diminished by / is stored
in the signal register GENER_TRIGGER_RANGE. The period may be calculated using the
following expression, where y is set parameter:

T T
Tivioer = Tsirone * (0 + 1) = Tope * (x + 1) *(y+1) = p = 1= TRIZGER
STROBE Tepock *(x+1)

-20 -

The nominal range of the values for the register is from 0 to 1048575 (OxFFFFF). To obtain
the period 200 us from the signal CAVITY STROBE (1 us) it is to input the value 199999,
and the maximal period of the trigger signal is / s.

5.3.2 Step operation process

The operation mode STEP OPERATION PROCESS is a dedicated method of a computer
aided DSP processes testing. The foundation of this operation mode is that the SIMCON
system works in the real time during a strictly defined period of time. The time period is set as
REAL-TIME STEP PERIOD. During the breaks in the processing, it is possible to do
computer based reading of the DSP processing results and to set new input data for next DSP
processes.

The step operation method is active when the state register MODE_OPER_SEL of the
operation mode is set for MODE OPER STEP. The period REAL-TIME STEP PERIOD is
generated in the module CAIVITY STROBE STEP TIMER according to the prior setting of the
parameters. The module is triggered with the signal SIMCON CLOCK. The timing diagram
STEP OPERATON PROCESS is presented in fig 22:

A BC D EFG

9 99 (X
ori: 0 RIS e éiClilll B —_——
STEP TIMER LIMIT [
STEP_TIMER_START [|
STEP TIMER ENA I |
AL L) N N L = e
STEP TIMER COUNT _ _[__ | | ¢ e ————— == T le———
STEP CAVITY STROBE __ __ _ S N A) 1 IS
STEP CAVITY TRIGGER _ & . e e

i REAL-TIME STEP o

! COMMUNICATION CONTROLLER !
Fig. 10. Time diagram for the process STEP OPERATION

o initialization of the global conditions of the process STEP OPERATION embraces
setting of the following:

— register STEP_TIMER_LIMIT to the value equal to number of signal periods SIMCON
CLOCK in the range from 0 to 63. The given data are diminished by /, i.e. for the
value 0 a single signal period for SIMCON CLOCK will be registered.

— register STEP_CAV_TRIG should be set to the appropriate value:

0: in the current step will not be generated STEP CAVITY TRIGGER,
I: in the current step will be generated STEP CAVITY TRIGGER.

o initialization of the module STEP TIMER through setting STEP_TIMER_START=1.

o activation of the module STEP TIMER through setting STEP_TIMER_ENA=1. From this
very moment, the STEP OPERATON PROCESS is automatically triggered. The counter
starts STEP_TIMER_COUNT which measures the time of the process.

o Elautomatic stop of the DAQ process after the counter STEP_TIMER_COUNT reaches a
value set in the register STEP_TIMER_LIMIT. The following flag is set STEP_TIMER_STOP=1.

ochecking flag reading STEP_TIMER_STOP. Reading of value 0 means that STEP

-21 -

OPERATON PROCESS continues. Reading the value / means that the process is finished.
The flag reading may be done many times, waiting for the process to be finished.

. stopping the work of the module STEP TIMER through setting STEP_TIMER_ENA=0.

J introducing the module in the blocked state STEP TIMER through setting
STEP_TIMER_START=0. The flag is deleted STEP_TIMER_STOP=0 and zeroing of
STEP_TIMER_COUNT.

If the global acquisition conditions remain not changed, the next initialization of the DAQ

process may disregard the stage @

Temporary change in the flag state STEP_DSP_RESET from the value 0 to value / causes
asynchronous resetting of the DSP processes in the CAVITIES CONTROLLER and
simulator. For the servicing purposes of the flag state through the block COMMUNICATION
CONTROLLER may be done in an arbitrary moment of the SIMCON system work. The
SIMCON system users are strongly advised to reset the DSP processes only in the STEP
MODE OPERATION just before doing the stage [A].

The flag state STEP_DSP_STOP=1 which means finishing of the calculation period for
both DSP processes. For the servicing purposes of the flag state through the block
COMMUNICATION CONTROLLER may be done in an arbitrary moment of the work state of
SIMCON system. The users are strongly advised to reset the DSP processes only in the
STEP MODE OPERATION just after doing the stages [E], [F] or [G].

5.3.3 Time adjustment of the trigger signals
Time adjustments of the triggering signals is done by two modules:

e Module CAVITY STROBE DELAY delays the signal CAVITY STROBE of set number of
signal periods SIMCON CLOCK (25 ns) in the range from 0 to 63. The value of delay is set
in the register CAV_STROBE_DELAY. The range of delay embraces approximately /.5 us, or
exceeds a single period of signal CAVITY STROBE. Taking the value 0 means no additional
delay of the signal CAVITY STROBE.

e Module CAVITY TRIGGER DELAY delays the signal CAVITY TRIGGER of set number of
signal periods CAVITY STROBE (I us) in the range from 0 to 2047. The value of delay is set
in the register CAV_TRIGGER_DELAY. The range of delay embraces above 2 ms, or exceeds
the longest control time of the cavity. Taking the value 0 means no additional delay of the
signal CAVITY TRIGGER.

The signals CAVITY STROBE and CAVITY TRIGGER considered in the next part of this
document are referenced only to the signals after the delay modules.

-22 -

6 INPUT PROCESSING BLOCK DESCRIPTION

The block INPUT PROCESSING provides proper conversion of values between a
physical 14-bit resolution of the ADC converters and 18-bit resolution of the internal DSP
processing, input signal calibration including amplification and regulated shift of constant
voltage value, as well as initial smoothing of the input channels using a method of averaging
of a set value of samples.

6.1 Functional structure

The block INPUT PROCESSING consists of an input module for resolution conversion
INPUT RESOLUTION CONVERTER, INPUT CALIBRATION module and an averaging
module INPUT SIGNAL AVERAGING for the input signal. Its functional structure is
presented in fig. 11.

Y

o—> ADC[0]—> INPUT | INPUT JARCIO] 7= = =
e L] [W 1 SIGNAL ol INPUT
"ADCI7]1->| CONVERTER |-» CALIBRATOR | | © | AVERAGING [ADCI7L} MULTIPLEXER !

L I

F 3 Y A i s

4

COMMUNICATION CONTROLLER
Fig. 11. Functional structure of the block INPUT PROCESSING

The module INPUT RESOLUTION CONVERTER realizes nondependently for each
input channel the change from a /4-bit U2 code obtained from particular ADC converter to
18-bit representation of U2 code for the DSP processes. The conversion process relies on
multiplication of the input signal value by the correction coefficient equal to /6, what in such
a case is equivalent to a logical shift of the input value to four places to the left.

The module of INPUT CALIBRATOR allows for fitting of the real input signal to the set
levels of signals required in the algorithms of cavity simulator and controller. The module
realizes, nondependently for each input channel a correction of the input signal. The
performed process relies on the following DSP operation for all ADC channels in the 18-bit
range:

y=x*G+0

where, the G parameter is the gain, the O parameter is constant voltage shift added to the
signal.

The module INPUT SIGNAL AVERAGING realizes nondependently for each input
channel the following averaging functional operation:

K-1
Z Xt

YAV[K]:%

where: Y /K] expresses the averaging value of the last K samples, or the current sample
(time moment t=0), and the preceding samples, from ¢=(-1..-K+1) moments of time. The
timing of the samples is defined by the signal CAVITY STROBE. The averaging coefficient K
is set as: K=2", or for the range N=0..3, there are obtained the following values K=1,2,4,8.

-23 .-

C o z-‘a%y z*eg»)a z-‘a%A z*»&)» z"»é» Z"-'(:ID—' z-‘a%) N

>>1 >>2 >>3

ouT

A 4

¥
o= MN W

A 4

Fig. 12. Time dependencies for cyclical data

For the value N=0 (K=1) work of the averaging circuit is confined for transmission of
the input value to the output: Y,y/1]/=xy. The structure of the averaging module is presented in
fig.12.

6.2 Programming description

Programming of the block INPUT PROCESSING relies on setting of individual
calibration coefficients for all 8 ADC channels and the choice of a common averaging
coefficient for all channels.

The calibration parameters are determined, respectively for NV channels (in the range of
N from 0 to 7) registers ADC_GAIN[N] and ADC_OFFSET|N].

The choice the common averaging coefficient for all ADC channels is performed by
writing to the register ADC_AVER. The value of the averaging coefficient is in the range from
0 to 3.

In order to dynamically change the parameters of the calibration one has to use the
exchange registers ADC_GAIN_BUF[N] and ADC_OFFSET_BUF|N] respectively for N channels in
the range from 0 to 7 (chapter 8.2.3).

For the servicing purposes, the choice of the value for the averaging coefficient through
the block COMMUNICATION CONTROLLER may be done during the arbitrary moment of
the SIMCON system work time. The users of the SIMCON system are strongly advised to
set the averaging coefficient choice register only during the SETUP MODE
OPERATION.

The current state of the ADC converter from the N-th channel, in the range from 0 to 7,
may be done through reading of the register ADC_DATA|N].

The following reading of the ADC analog channels are only for service purposes. It is to
remember, that the read values may possess instable character, because they stem from the
analog character of the input signals. The sampling period of the A/D converters results from
the signal period SIMCON CLOCK and equals 25 ns.

-4 -

7 OUTPUT PROCESSING BLOCK DESCRIPTION

The block OUTPUT PROCESSING provides proper value conversion between the
physical 18-bit resolution of the internal DSP processing and 14-bit resolution of the DAC
converters.

7.1 Functional structure

The block OUTPUT PROCESSING consists only from the output module of resolution
bits conversion OQUTPUT RESOLUTION CONVERTER. lts functional structure was
presented in figure 13.

| OUTPUT 0D > OUTPUT » DAC[0] —e
I\ SWITCH OUEL RESOLUTION

| 1

L __MATRIX | DACI1] SEREEEE CONVERTER |—>i DAC[1]——e

A

COMMUNICATION CONTROLLER
Fig. 13. Functional structure of the block INPUT PROCESSING

The module OUTPUT CALIBRATOR enables fitting of the real output signal to assumed
signal levels required respectively in the algorithms of the CAVITIES CONTROLLER and
simulator or required by the vector modulator or klystron. The module realizes, for each
output channel, a nondependent correction of the input signal. For all DAC channels, there is
performed a nondependent DSP process with 18-bit range:

y=x+0, where O is a constant shift of the output signal to the DACs.

The module OUTPUT RESOLUTION CONVERTER realizes, for each input channel, no
dependently, the change of 7/8-bit U2 code, used in the DSP processes, to [4-bit
representation NB required by the DA converters. The performed process relies on the
dividing of the DSP signal value by the correction number equal to /6, what in this case is
equivalent to logical shift to the value to the left of 4 bits, and changing of the notation from
U2 to NB.

7.2 Programming description

The programming of block OUTPUT PROCESSING relies on setting the calibration
coefficients for both DAC channels. The calibration parameters are determined by the
respective registers DAC_OFFSET[0] and DAC_OFFSETI[1].

_25.-

8 PROGRAMMABLE DATA CONTROLLER

The block PROGRAMMABLE DATA CONTROLLER provides programming facility and
data input to both DSP processes (for both cavity SIMULATOR and CONTROLLER) as well
as data enabling control of the DSP processes. Three kinds of data are distinguished by the
system:

1. static data — they are input in the form of constant values (cavity parameters, controller
parameters, like amplification coefficient of the CAVITIES CONTROLLER SGAIN_| and
SGAIN_Q, see chapters 2.2, 10.2),

2. dynamic data — signal tables which are input in a form of a priori preprogrammed time
dependent shape. Triggering of the beginning of the function is done by the signal
CAVITY TRIGGER, and the next changes of these values are timed by the signal CAVITY
STROBE. The example may be the values of tables TBEAM_| and TBEAM_Q of the cavity
simulator (compare chapters 2.1, 9.2),

3. control data — they are automatically generated in accordance with a priori set parameters
and given in a form of periodic functions. The example may be values of I/Q modulator
controller, which is described in the next chapter.

8.1 Functional structure

DRIVER
> MODULATOR
r
rl:

caviry | [T INDEX | [SwITCHED 0 cavity
TRIGGER | COUNTER [| DATA "FES] L, SMULATOR
yEORY | 003 CAVITY
7 CONTROLLER

Y \ 4

COMMUNICATION
CONTROLLER

Fig. 14. Functional structure of the block PROGRAMMABLE DATA CONTROLLER

The functional structure of the block PROGRAMMABLE DATA CONTROLLER was
presented in fig. 14. The block provides separate mechanisms of data input to the both DSP
blocks, depending on the data type:

e Only the static type data are provided directly from the block registers of
COMMUNICATION CONTROLLER. Each register is 18-bit. During the real time work it is
possible to change the values of respective control register of the DSP process. A priori, the
alternative registers are programmed and the request for change is performer. The change is
done automatically before the cavity process starts.

e For the dynamic data, the module INDEX COUNTER calculates the current address of the
cells SWITCHED DATA MEMORY. From the moment of signal trigger CAVITY TRIGGER,
the successive cells in the memory table are input to the particular DSP process. The change
of index has a periodic nature from 0 to 2047, till the next value of 0. The signal CAVITY
STROBE means next steps of the process. The time dependencies of this process were
shown in fig. 16.

- 26 -

CAVITY STROBE 1 1 M M N M N 1 N
CAVITY TRIGGER N

GENERATOR VALUE [2 [2 | | T) e | o | 1
GENERATOR INIT S=2 S=2

Fig. 15. Time dependencies for cyclic data.

The dynamic data are remembered in a form of tables of the dimensions 18-bits for 2048
cells. In this way, the change dynamics is provided for / us for the period of time 2048 us,
which embraces the whole period of cavity control by the controller.

During the real time work it is possible to change the values of tables by earlier
programming of alternative tables and setting the request for change. The change is done
automatically before the cavity control process begins (compare chapter 8.2.3).

The choice of data of dynamic or static type (variant advice only in the STEP MODE
OPERATION) is done through the control of the module DATA MUX.

¢ Control data for the modulation are generated with the aid of a cyclic generator working in
the range from 0 to 3 in the module DRIVER MODULATOR. The signal CAVITY TRIGGER
initializes cyclic generator to the initial value (S), but the change of his value is triggered by
the signal CAVITY STROBE. The time dependencies were shown in fig. 15 for the
initializing value S=2.

CAVITY STROBE Nn 1 M M 1 I 1 M
CAVITY TRIGGER Nn
DATA TABLE INDEX g L 1 1 2 | 3 [2046 [2047 | 0

Fig. 16. Time dependencies for dynamic data

8.2 Programming description

The programming of the block PROGRAMMABLE DATA CONTROLLER relies on the
input of static data (writing of 18-bit register) and dynamic data (filling the memory areas of
2048 cells 18-bit each) and on the choice of the channel in the module DATA MUX. The
details of programming of particular components are described in the chapters below.

8.2.1 Dynamic data multiplexer

The multiplexer DATA MUX controls the choice of data kind, in dependence on the
values of flags CTRL_PROC_REQ and SIM_PROC_REQ (compare chapter 4.2):

e CTRL PROC REQ=0 chooses channel 0 for all static data of block CAVITIES
CONTROLLER (compare chapter 8.2.5),

e SIM_PROC _REQ=0 chooses channel 0 for all static data block CAVITY SIMULATOR
(compare chapter 8.2.3),

e CTRL_PROC_REQ=1 chooses channel [for all dynamic data block CAVITIES
CONTROLLER (compare chapter 8.2.5),

e SIM_PROC_REQ=1 chooses channel / for all dynamic data block CAVITY SIMULATOR
(compare chapter 8.2.3),

8.2.2 Modulator driver

The module MODULATOR DRIVER requires programming of the initial value in the
register VM_DRV_START[N] in the range from 0 to 3, for each channel N=0...7.

_27 -

Physical writing of the value VM_DRV_START[0...7] to the module MODULATOR DRIVER is
done through performing write operation of an arbitrary value to the register
VM_DRV_COUNT[O...7].

For the servicing purposes, there is a possibility to read the current value of the module
MODULATOR DRIVER via the register VM_DRV_COUNT[0..7]. This value has, however, a
nonstable character, because it changes periodically in the range from 0 to 3 every / us. The
stable value is obtained in the STEP MODE OPERATON or SETUP MODE OPERATON.

8.2.3 Data switching

The request to change the static and dynamic data relies on the negation of the actual
state of appropriate flags: : SWITCH_ADC_GAIN, SWITCH_ADC_OFFSET, SWITCH_CAL,
SWITCH_COMP, SWITCH_TFEEDFORWARD, SWITCH_TSETPOINT, SWITCH_TGAIN, i.e.
changing its value from 0 to 1 or vice versa. The acknowledgement of the change causes
stetting of the flag TAB_SWITCH_ACK to 1 till the request is done. Then the value of the flag
TAB_SWITCH_ACK returns to 0, what means the acknowledgment of the change

The change of registers and memory is started by signal CAVITY TRIGGER in an
automatic way, simultaneously for all of the following components, when there was recently
the change of the switching flag:

e SWITCH_ADC_GAIN[0..7] - ADC_GAINJ[0..7] with ADC_GAIN_BUF[0..7],
e SWITCH_ADC_OFFSET[0..7] - ADC_OFFSET][0..7] with ADC_OFFSET_BUF[0..7]

e SWITCH_CAL - ROT1 with ROT1_BUF and ROT2 with ROT2_BUF,
e SWITCH_COMP - COMP1 with COMP1_BUF and COMP2 with COMP2_BUF
e SWITCH_TSETPOINT - TSETPOINT_| with DAQ1 and TSETPOINT_Q with DAQ?2,

e SWITCH_TFEEDFORWARD - TFEEDFORWARD_| with DAQ3
and TFEEDFORWARD_Q with DAQ4,

e SWITCH_TGAIN - TGAIN_I with TBEAM_| and TGAIN_Q with TBEAM_Q.

Till the moment to obtain the acknowledgment TAB_SWITCH_ACK it is necessary not to
change the value of any SWITCH flag.

8.2.4 Cavity simulator programmable data packet

The block CAVITY SIMULATOR, in accordance with the algorithm described in
chapter 2.1 requires setting of the following data:

e BEAM (dynamic data): is represented by a table TBEAM_| and TBEAM_Q or alternatively by
the registers SBEAM_| and SBEAM_Q,

-
® ROTATION MATRIX [R] (static data): R={ 1} are expressed in succession by the
r

parameters ROT1 and ROT2,

A

o COMPENSATION MATRIX [C] (static data): C ={ } are expressed in succession by the

)
parameters COMP1 and COMP2,
e MATRIX_Al 21 and MATRIX_Al 22 — individual coefficients of the matrix [A],

1
o MATRIXES [A;], [A2], [A3] (static data): 4,_, , ={ 2 } are expressed by the following

ay dp

-28 -

parameters:

0 MATRIX_A12 — common coefficient a;, for all three matrixes,

0 MATRIX_Al 21 and MATRIX_Al 22 — individual coefficients of the matrix [A;],
0 MATRIX_A2_21 and MATRIX_A2_22 — individual coefficients of the matrix [A;],
0 MATRIX_A3 21 and MATRIX_A3_22 — individual coefficients of the matrix [As],

® MATRIXES [B], [B.], [B;] (static data): B,_,; = [b, 0] the are expressed by the following

parameters b; appropriately for the successive matrixes: MATRIX_B1_1, MATRIX_B2_1 and
MATRIX_B3_1,

e COEFFICIENT ,,H” (static data): is expressed by the PARAM_H,

e COEFFICIENT ,,P” (static data): is expressed by the PARAM_P,
o flag SIM_MODE (static data) sets the dynamic range of the cavity voltage simulation:

0 the value 0: 16 MV/m,
0 the value I: 32 MV/m.

e Activation of the static register requires setting SIM_PROC_REQ=0, alternatively switching
on the set point tables SIM_PROC_REQ=1 (compare chapter 4.2).

8.2.5 Cavities controller programmable data packet

The block CAVITIES CONTROLLER, in agreement with the algorithm described in
the chapter 2.2 requires setting the following data CTRL PROC REQ=0:

e SET POINT (dynamic data): is represented by the tables TSETPOINT_| and TSETPOINT_Q or
alternatively by the registers SSETPOINT_| and SSETPOINT_Q,

o FEED FORWARD (dynamic data): is represented by the tables TFEEDFORWARD_| and
TFEEDFORWARD_Q or alternatively by the registers SFEEDFORWARD | and
SFEEDFORWARD_Q,

e GAIN (dynamic data): is represented by the tables TGAIN_| and TGAIN_Q or alternatively by
the registers SGAIN_| and SGAIN_Q,

® ROTATION MATRIX (static data): is represented by registers ROT1 and ROT2, (swap
registers: ROT1_BUF and ROT2_BUF)

o COMENSATION MATRIX (static data): is represented by the registers COMP1 and COMP2.
(swap registers: COMP1_BUF and COMP2_BUF)

Activation of the static registers requires setting MODE_OPER_SEL=3. The following
work mode is set: STEP OPERATON PROCESS (chapter 4.2.4).

-29.

9 CAVITY SIMULATOR BLOCK DESCRIPTION

The block CAVITY SIMULATOR performs, in the real time, the algorithm of the
superconducting cavity behavior, in agreement with the requirements of the LLRF system
(see chapter 2.1). An 18-bit fixed point algorithm was implemented with the use of the DSP
components present in the FPGA chip Xilinx VirtexII-V4000.

9.1 Functional structure

The block CAVITY SIMULATOR consists of the synchronous numerical processing
module DSP CAVITY ALGORITHM, from the modules of signal delays INPUT DELAY and
OUTPUT DELAY and from the modulator module of I/Q MODULATOR. lIts functional
structure was presented in figure 17.

& <CAV_VMOD
>
F
zg AN PNeuT
o CAV IN Q_f DELAY | >
'
PROGRAMMABLE S —— > MODSEATOR x
DATA DSP x
CONTROLLER > CAVITY CAV DETUN ™1 Sg
ALGORITHM ™™ \v MODE(1..3.1D..3D) L Ex
CAVITY TRIGGER R 30 BT | 1 RO
—> OUTPUT > =
CAVITY STROBE . | | ety [cAv ouT o " %
A CAV_WV
r
v LA B J Y.Y

COMMUNICATION
CONTROLLER

Fig. 17. Functional structure of the block CAVITY SIMULATOR

The module DSP CAVITY ALGORITHM processes the signal vector for cavity control
CAV IN I and CAV _IN Q, which is provided from the block INPUT MULTIPLEXER (see
chapter 12) in accordance with the parameters provided from the block PROGRAMMABLE
DATA CONTROLLER (see chapter 6). There are the following signals obtained at the output
of this block:
e Basic signals from the cavity (CAV_OUT [and CAV_OUT _Q),
e Modulated signal I/Q (CAV _VMOD),
e Detuning signal from the cavity mechanical model (CAV_DETUN),
e Six signals of the state vector [W] of the mechanical model (CAV _MODE(1..3,1D..3D)).
» Signal of the square value for the high power EM field gradient v’ (CAV_V'V),

The module 7/Q MODULATOR realizes modulation process for the signals I and Q from
the cavity. The modulator control is provided by the module MODULATOR DRIVER situated
in the block PROGRAMMABLE DATA CONTROLLER (see chapter 8.1).

The modules of delay of the input and output DSP data (/NPUT DELAY and OUTPUT
DELAY) allow to simulate the physical delays introduced by the transmission lines
(waveguides). A single step of the delay defines the timing of the signal CAVITY STROBE,
which is currently equal to / us.

-30 -

9.2 Programming description
The programming of the work of the block CAVITIES CONTROLLER relies on:

e Setting of proper parameters in the block PROGRAMMABLE DATA CONTROLLER (see
chapter 8.2.5). These are the following parameters: BEAM, matrixes [A;], [A2], [A43], [Bi],
[B>], [B;3], coefficients ,,H” and ,,P”,

e Setting of the modulation phase realized in the module 7/Q MODULATOR in reference to
the demodulation realized in the CAVITIES CONTROLLER (compare chapter 8.1 and
8.2.2). The phase change is determined by the register VM_DRV_OFFSET[N] in the value
range of 0 - 3, for channels N=0...7;

¢ Setting of the delays for the input and output signals, respectively via the programming of
the registers CAV_DELAY_IN and CAV_DELAY_OUT. Each of the registers allows to write the
values from 0 to /5. In this way, the range of delays is provided up to /5 us with a step of
I us. Setting the value of 0 means no additional delay introduced.

In the operation mode STEP OPERATON PROCESS the following registers are made
available for computer based writing via the block COMMUNICATION CONTROLLER. The
registers have the same eigen-names with the source signals for the cavity simulator DSP
processing:

o registers CAV_IN_| and CAV_IN_Q controlling directly the signals CAV IN Iand CAV IN Q.

In the operation mode STEP OPERATON PROCESS, for the computer based reading,
via the block COMMUNICATION CONTROLLER, there are made available the following
current values of the cavity simulator DSP processing results, via the registers with the eigen-
names equal to the relevant signals:

e signals CAV _OUT I and CAV_OUT Q respectively through the registers CAV_OUT _| and
CAV_OUT_Q,

e signal CAV_VMOD via the register CAV_VMOD,
e signal CAV _DETUN via the register CAV_DETUN,
e six signals of mechanical modes CAV _MODE(1..3,1D..3D) via the registers:
0 CAV _MODE]I — the first mechanical mode is accessible in the register CAV_MODE1,

0 CAV _MODEID — derivative of the first mechanical mode is accessible via the register
CAV_MODE1D,

CAV_MODE? — the second mechanical mode is accessible in the register CAV_MODE2,

CAV_MODE2D — derivative of the second mechanical mode is accessible via the
register CAV_MODEZ2D,

CAV_MODES3 — the third mechanical mode is accessible via the register CAV_MODES3,

CAV_MODE3D — derivative of the third mechanical mode is accessible via the register
CAV_MODES3D.

e The signal CAV V'V via the register CAV_VV,

For the servicing purposes, the access to the read registers of the signals from the cavity
simulator DSP process, via the COMMUNICATION CONTROLLER, may be done in the
arbitrary moment during the work time of the SIMCON system. The users are strongly
recommended to read these registers only during the SETUP MODE OPERATION.

231 -

10 CAVITIES CONTROLLER BLOCK DESCRIPTION

The block CAVITIES CONTROLLER performs, in the real time, a control algorithm
for the superconductive cavity, in agreement with the requirements of the LLRF system
design parameters (compare chapter 2.2). There was implemented an 18-bit fixed point

algorithm, with the usage of the DSP components integrated into the FPGA Xilinx VirtexII-
V4000 chip.

10.1 Functional structure

The block CAVITIES CONTROLLER consists firm the synchronous module of
numerical processing (DSP CONTROLLER ALGORITHM) and from synchronization module
of I/Q detection (DRIVER MODULATOR). Its functional structure was presented in figure 18.

X ig
g
5y
aa
Zg CTRL_VMODI0..7]
=
CTRL_OUT | R
x
PROGRAMMABLE CTRL_OUT.Q >
DATA DSE =k
CONTROLLER Cﬁ'ggg#hﬁ CTRL_DET 1[0..7] ; ?__z
CTRL DET Q[0..7] g 25
CAVITY TRIGGER L|CONTROLLER| | CTRL_VSUM | Og
GATE CTRL VSUM Q 7]
A
CAVITY STROBE
A
Y Y Y.Y h 4

COMMUNICATION
CONTROLLER

Fig. 18. Functional structure of the block CAVITIES CONTROLLER

The module DSP CONTROLLER ALGORITHM processes the appropriate modulated
input signals CTRL VMOD/0..7] provided from the block INPUT MULTIPLEXER (see
chapter 12) in accordance with the parameters provided by the block PROGRAMMABLE
DATA CONTROLLER (see chapter 6). The output of the module gives two output vectors:

e Basic control signal for vector modulator of the klystron (CTRL I, CTRL Q),

e Vector sum (SUM I, SUM Q) for monitoring purposes,

e Auxiliary signal after the detection (CTRL_DET [0...7], CTRL_DET _QJ0...7]) for monitoring
purposes.

The module CONTROLLER GATE allows to activate the block CAVITIES
CONTROLLER only during the active state of the time gate, and during the rest of time the
output data from the block have 0 value. The signal CAVITY TRIGGER initializes the gate for
a set period of time by the time range (R). The gate is timed with the signal CAVITY STROBE.
The time dependencies of these processes are presented in fig. 19.

CAVITY STROBE___ | || I | | N | |

CAVITY TRIGGER

TIMER COUNTER 0] R | R1] R2 |
TIMER RANGE R R
g
ACTIVE DATA GATE

Fig. 19. Time dependencies of signals for the time gate of the CAVITIES CONTROLLER

10.2 Programming description
The programming of the block CAVITIES CONTROLLER relies on:

e Setting of appropriate parameters in the block PROGRAMMABLE DATA CONTROLLER
(see chapter 8.2.3). These are the following parameters: SET POINT, FEED FORWARD and
GAIN.

e setting of activity time for the time gate in the register CTRL_ACTIVE in the range from / to
2047 periods of the signal CAVITY STROBE (or nominally every 7 us).

Setting the value to 0 in the register CTRL_ACTIVE is reserved only to the servicing purposes
— it keeps the gate active all the time, or the CAVITIES CONTROLLER DSP process is all
the time zeroed.

In the operation mode STEP OPERATON PROCESS, for the computer reading, via the
block COMMUNICATION CONTROLLER, the following register is made available with the
name identical as the CAVITIES CONTROLLER DSP processing source signal:

e register CTRL_VMOD controlling directly all the signals CTRL VMOD/0...7].

In the operation mode STEP OPERATON PROCESS, for the computer reading, via the
block COMMUNICATION CONTROLLER, the following current values of the DSP

processing are made accessible, via the registers of the names identical as the CAVITIES
CONTROLLER DSP signals:

e signals CTRL I/N] and CTRL Q[N] respectively through the registers CTRL_OUT _I[N] and
CTRL_OUT _QIN] for input channels N=1...7,

e signals CTRL DET I and CTRL DET Q respectively through the registers CTRL_DET _|
and CTRL_DET_Q,

For the servicing purposes, the access to the reading registers of the CAVITIES
CONTROLLER DSP process signals is available, via the block COMMUNICATION
CONTROLLER. The access may be done during the arbitrary moment of the SIMCON system
activity. The SIMCON users are strongly recommended to read these data from these
registers only during the SETUP MODE OPERATION.

-33 .

11 DATA ACQUISITION (DAQ) BLOCK DESCRIPTION

The block DATA ACQUISITION (DAQ) allows for current monitoring of the most
important signals in the system. These may be input signals, as well as output, internal results
from the DSP processing in the algorithms of the cavity simulator and controller. It may
additionally fulfill the function of a programmable signal generator for tests of input and
output signals.

11.1 Functional structure

The block DAQ realizes parallel, synchronized registration of four data streams. Its
functional structure is presented in figure 20.

> DAQ4
e = DAQ3 Gl
2O AR
EEE——| DAQ2 >
=yt r il Ee
om= > DAQ1 > =
MEMORY
CAVITY START .| DAQ
TRIGGER | DELAY | TIMER
r A
Y Y Y.Y Y Y

..........

COMMUNICATION CONTROLLER

Fig. 20. Functional structure of the block DATA ACQUISITION

The choice of the source data streams is done in the block OUTPUT SWITCH
MATRIX. The block DAQ bases on four memory modules. Each memory (DAQ1L .. DAQ4) has
2048 words per 18-bits each. The acquisition process is controlled by the DAQ TIMER, in
agreement with the a priori set parameters. Triggering of the acquisition process is done by
the signal CAVITY TRIGGER. This signal may be delayed in the module START DELAY of a
preset number of clock signals CAVITY STROBE (I MHz). In this way, one obtains the
possibility to shift the reading time window in relation to the trigger signal, with the step of
1 us.

Additionally, the block DAQ realizes the functions of programmable input test vectors in
the operation mode VECTOR OPERATION. The data from the memory DAQ1 .. DAQ3 are
transmitted via the block INPUT MULTIPLEXERS respectively to a single input of the
CAVITIES CONTROLLER and to two inputs of the cavity simulator.

11.2 Programming description

The programming of the block DATA ACQUISITION allows to set operation modes,
for direct access to the memory areas, programming the conditions of the acquisition in the
real time and control of the status of the data acquisition process.

11.2.1 DAQ modes control

The basic operation modes of the DAQ block are set with the flag DAQ_PROC_REQ.
Acknowledgement of the required operation mode is obtained by reading of the identical

-34 -

= >(START)<)

[DAQ_PROC_REQ=0] [DAQ_PROC_REQ=1|
=1 =0

v \ 4
[DAQ_PROC_ACK=? D QDAQ_PROC_ACK:? |

' MODE_OPER_SEL=VECTOR!

______ o —— e —————

CONTROL

OPERATION CONDITIONS OPERATIONS

EXTERNAL

MODE

GENERATOR

Fig. 21. Flow diagram for the choice of the operation mode of the DAQ block.

logical state of the flag DAQ_PROC_ACK. Till the time, both flags have the same states, the
DAQ block is in the state of switching and has no defined state. The block DAQ may be set in
one of three different operation modes, what was presented in fig. 21. The choice of the
operation mode in the real time is forced by the current state of the register MODE_OPER_SEL.
The particular operation modes are described in details in the next sub-chapters.

11.2.2 DAQ memory access

For the flag value DAQ_PROC_REQ=0 (and acknowledgement via setting of the value of
flag DAQ_PROC_ACK=0) the direct access to the memory DAQL..DAQ4 is obtained in the write
or read mode. The base addresses are determined by the parameters DAQL..DAQ4_MEM. Each
memory represents a continuous area of 2048 relative address positions counted from the
value of 0 till 2047 and including 18-bit words.

11.2.3 DAQ readout process

The operation mode DAQ READOUT PROCESS is obtained after programming the
value of the flag DAQ PROC REQ=1 (confirmed by setting the value of the flag
DAQ_PROC_ACK=1) and after fulfilling the condition, that no operation mode
OPER _MODE VECTOR was programmed for the system in the register MODE_OPER_SEL.
The debated operation mode allows for parallel data acquisition of four data streams. It is

T S T
DAQ STROBE ENA |
DAQ _DELAY [
DAQ TIMER LIMIT |
DAQ TIMER START [1
DAQ TIMER ENA [~ 11
RAQ TIMER STOP__ _ _ _ S —
DAQ TIMER COUNT__ ____ =777 77 f;
CAVITY TRIGGER __ _ . A PP e (S| VY M| S
DELAYED TRIGGER _ _ _] | SIS WA L) X et

—¢
DELAY SYNCHRONOUS READOUT

COMMUNICATION CONTROLLER |

e

Fig. 22. Time diagram of the data acquisition process in the block DAQ

-35-

performed automatically, according to the a priori preset parameters. The key stages of the
control process for the data acquisition are presented in figure 22:
J initialization of the global parameters for the acquisition process embraces setting of the
following parameters:
— flag DAQ_STROBE_ENA respectively to the value:
0: data will be registered with the speed of the system clock 40 MHz (every 25 ns),
I:data will be registered with the speed of the FEL clock I MHz (every I us)
— register DAQ_TIMER_LIMIT to the value of successive number of data registered in the
DAQ memories in the range of from 0 to 2047. The set values are diminished by 7,
1.e. for the value 0 the registration of a single data is done.
— register DAQ_ DELAY to the value of signal delay CAVITY TRIGGER. The delay
means the number of clock signals of / MHz, or a single step is / us. Assuming the
value of 0 means no additional delay for the signal CAVITY TRIGGER.

. module initialization DAQ TIMER via setting DAQ_TIMER_START=1.

o module activation DAQ TIMER via setting DAQ_TIMER_ENA=1. From this moment on,
the block waits for the signal CAVITY TRIGGER, which synchronously triggers the data
acquisition process.

o Elautomatic triggering of the delay process for the signal CAVITY TRIGGER. The delay
value is determined by the value of the register DAQ_DELAY

J automatic triggering of the data acquisition process delayed by the signal CAVITY
TRIGGER. The counter starts DAQ_TIMER_COUNT which counts the amount of the
registered data.

. automatic ending of the data acquisition process, after the counter DAQ_TIMER_COUNT
reaches the value set in the register DAQ_TIMER_LIMIT. The flag is set DAQ_TIMER_STOP=1.

o checking reading of the flag value DAQ_TIMER_STOP. Reading of the value 0 means, that
the data reading process still lasts. Reading the value / means , that the DAQ process was

finished. Reading of the flag state may be done many times, waiting for the end moment of
the DAQ process.

o stopping of the work of the module DAQ TIMER via setting DAQ_TIMER_ENA=0.

o introduction of the module in the blocked state DAQ TIMER via setting
DAQ_TIMER_START=0. The flag is deleted DAQ_TIMER_STOP=0. In this operation mode of
the DAQ TIMER it is possible to switch the operation modes of the block DAQ, for example

to read the contents of the memories DAQl.DAQ4 during operation mode
DAQ MEMORY ACCESS (see chapter 11.2.2).

If the global DAQ conditions remain unchanged, at the next initialization of the DAQ process,
the stage @may be omitted.

11.2.4 DAQ vector generator

The work in operation mode DAQ VECTOR GENERATOR relies on periodic
generation of the of the memory contents DAQL.. DAQ3 synchronously with the signal CAVITY
TRIGGER. In the operational sense, the generators are acting identically as
CONTROL DATA TABLES. It requires only previous data loading in the operation mode
DAQ MEMORY ACCESS (see chapter 11.2.2).

The operation mode DAQ VECTOR GENERATOR is now in the testing period.

-36 -

12 INPUT MULTIPLEXERS BLOCK DESCRIPTION

The input multiplexers allow for nondependent programmable choice of the input
control signals for the blocks CAVITY SIMULATOR and CAVITIES CONTROLLER.
Choice of the multiplexer input signals provides the realization of the feedbacks (external
analog, internal digital) between the DSP blocks and nondependent control of the particular
DSP blocks (external analog, internal testing digital).

12.1 Functional structure

The block INPUT MULTIPLEXERS provides simultaneous choice of the two input
signals for the block CAVITY SIMULTOR and a single signal for the block CAVITIES
CONTROLLER. Both multiplexers have 4 variants for the choice of the inputs. . The
functional structure of the block INPUT MULT IPLEXERS was presented in figure 23.

"1 DAQ2 >
|3
z DAQ3 ADC[O]:\
12 >
- ADC[1], |2 £ § xX}—» CAVITY
£ g », 22— SIMULATOR
53 | 14 N 15 —/
O » h
2 ona g
CTRL_OUT_Q
CTRL_OUT |
2 3
5 & ADC[0..7] e
2 4) ¢ £ 5) CTRL_VMOD[0..7] CAVITY i~
z9 Eg2 >. CONTROLLER
% — 14 1 =
& o)
O 4
—— V
CAV_VMOD

: COMMUNICATION CONTROLLER :
Fig. 23. Functional structure of the block INPUT MULT IPLEXERS

For each of the multiplexers, the following types of the input signals are distinguished:

e channel 0: realization of full resolution (18-bit) of the digital feedback between the DSP
blocks of the CAVITIES CONTROLLER and simulator. The input signal is transmitted to
all channels in parallel for the block CAVITIES CONTROLLER (see chapter 10.1),

e channel I: digital simulation of the analog (14-bit) feedback, respectively between the DSP
blocks of CAVITIES CONTROLLER and simulator, simulating the resolution of the AD
and DA converters. The input signal is transmitted to all channels in parallel for the block
CAVITIES CONTROLLER (see chapter. 10.1),

e channel 2: connection of respective signals from the AD converters from blocks
ADCJO..7], to particular input channels of block CAVITIES CONTROLLER. For the

-37 -

block CAVITY SIMULATOR, the signal ADC[O] is connected to input CAV_IN 1
and respectively signal ADC[1] is connected to input CAV_IN_Q (see chapter 9.1),

e channel 3: connection of blocks DAQ1. . DAQ3 with the choice of the VECTOR operation
mode (see chapter 4.2.3) or zeroing the inputs for the rest of the operation modes. For the
block CAVITIES CONTROLLER the input signal DAQ1 is output to all channels in
parallel. For the block CAVITY SIMULATOR the signal DAQ1 is connected to the input
DAQ3 and respectively the signal ADC[1] is connected to input CAV_IN_Q (see chapter
9.1),

12.2 Programming description

The choice of the source channel (compare figure 20) is done for each multiplexer
nondependently. The number of the chosen channel in the range of from 0 to 3 is programmed
in the block COMMUNICATION CONTROLLER:

e For the module CAVITY INPUT MUX in the register MUX_IN_CAVITY
e For the module CONTROLLER INPUT MUX in the register MUX_IN_CONTRL

For the servicing purposes the choice of the active multiplexer channel, via the block
COMMUNICATION CONTROLLER may be done during an arbitrary moment of the SIMCON
activity. The users are strongly recommended to set the registers only during the SETUP
MODE OPERATION.

-38 -

13 OUTPUT SWITCH MATRIX BLOCK DESCRIPTION

The switching matrix realized in the block OUTPUT SWITCH MATRIX allows for
nondependent programmable choice of the output signals from the blocks PROGRAMMABLE
DATA CONTROLLER, CAVITY SIMULTOR, CAVITIES CONTROLLER, ADC[O..7]
and from the module TEST GENERATOR to the inputs of the blocks DAQ[O..1] and
DAC1. .2. The choice possibility for input signals of multiplexers provides realization of
monitoring of particular signals and choice of signals output in the analog form from the
SIMCON system to the outer world, via the DAC converters.

13.1 Functional structure

The block OUTPUT SWITCH MATRIX is a switching matrix of 23 inputs to 6 outputs.
It enables a simultaneous choice of the output signals for four DAQ blocks and for two DAC

channels. All 23 input signals may be nondependently connected to each output. The
functional structure of the block OUTPUT SWITCH MATRIX is presented in figure 24.

The module TEST GENERATOR generates a rising saw-like signal initialized by the

TEST . DAQ1
GENERATOR & >
O
PROGRAMMABLE DAGE <
DATA > 373
CONTROLLER | DAQ3 >33
' OUTPUT -1
CAVITY | SWITCH DAL,
SlMULATOR »~ MATR'X H
CAVITY : : of
CONTROLLER » DAC[0] ,:, £
.. | 52
DAC[] .i2 8

NPT _ADC[0.7] »Z9
PROCESSING v

signal CAVITY TRIGGER. The initialization of the generator causes its setting to 0 value and
next each clock of the signal SIMCON CLOCK increases this value by 1. The generator gives
18-bit values in a periodic way.

For each input channel there are distinguished the following kinds of the input signals of
18-bit in resolution:

e channel 0: test signal from module TEST GENERATOR,

e channel I: external signal CAV_OUT I (compare chapter 9.1),
e channel 2: internal signal CAV_ OUT _Q (compare chapter 9.1),
e channel 3: internal signal CAV_ DETUN (compare chapter 9.1),

-30 .

e channel 4:

e channels 5-12:
e channels 13-20:

e channel 21:
e channel 22:
e channel 23:

e channel 24:

e channel 25:
e channel 26:

e channel 27 :

e channel 28:
e channel 29:
e channel 30:
e channel 31:
e channel 32:
e channel 33:
e channel 34:
e channel 35:
e channel 36:

e channels 37-44:

e channel 45:
e channel 46:

13.2

internal signal CAV_VMOD (see chapter 9.1),

internal signal CTRL DET 1/0..7] (compare chapter10.1),
internal signal CTRL _DET Q[0..7] (compare chapter10.1),
internal signal CTRL I (compare chapter10.1),

internal signal CTRL _Q (compare chapter10.1),

internal signal TGAIN [(compare chapterS8.1),

internal signal TGAIN Q (compare chapter8.1),

internal signal TSETPOINT I (compare chapter8.1),
internal signal TSETPOINT Q (compare chapter8.1),
internal signal TFEEDFORWARD I (compare chapter8.1),
internal signal TFEEDFORWARD Q (compare chapter8.1),
internal signal TBEAM I (compare chapter8.1),

internal signal TBEAM _Q (compare chapter8.1),

internal signal CAV_MODE] (compare chapter 9.1),
internal signal CAV_MODE1D (compare chapter 9.1),
internal signal CAV_MODE?2 (compare chapter 9.1),
internal signal CAV_MODE?2D (compare chapter 9.1),
internal signal CAV _MODE3 (compare chapter 9.1),
internal signal CAV _MODE3D (compare chapter 9.1),
input signal ADC/0..7] (compare chapter6.1),

internal signal SUMV I (compare chapter.10.1),

internal signal SUMV_Q (compare chapter 10.1),

Programming description

The choice of the source channel (compare figure 20) is done for each output of the

switching matrix nondependently. The number of the input channel in the range of from 0 to
22 is programmed in the block COMMUNICATION CONTROLLER:

e for the block DAQ1 for the register MUX_OUT_DAQ1,
e for the block DAQZ2 for the register MUX_OUT_DAQ?2,
e for the block DAQ3 for the register MUX_OUT_DAQS3,
e for the block DAQ4 for the register MUX_OUT_DAQA4,
e for the block DAC[O] for the register MUX_OUT_DACO,
e for the block DAC[1] for the register MUX_OUT_DAC1.

The choice of improper channels numbers from the range 23-31 automatically switches the
channel 0. The users are strongly advised not to set the improper channel values.

For the servicing purposes, the choice of the active channels via the block COMMUNICAT I1ON
CONTROLLER may be done during an arbitrary moment of the SIMCON activity. The users
are strongly advised to set the choice for the multiplexer channel numbers only during
the SETUP MODE OPERATION.

- 40 -

14 PROGRAMMABLE I/O SPECIFICATION

This chapter presents the specification for the I/O space of the SIMCON system, which
is made accessible for the priority computer control via the block COMMUNICATION
CONTROLLER.

14.11/0 specification list by addresses

CHECKSUM (0000H)

31|30[29|28|27]26|25|24|23|22|21|20]19|18|17|16|15]14]13]12]11]10| 9 | 8| 7| 6| 5| 4| 3| 2] 1] 0
CHECKSUM

CHECKSUM (RO) - contains constant hexadecimal control value: 0029633BH.

CREATOR (0001H)

31|30[29|28|27]26|25|24|23|22|21|20]19]18|17|16|15]14]1312|11]10| 9 | 8| 7| 6| 5| 4| 3| 2] 1] 0
CREATOR

CREATOR (RO) - contains constant ASCII symbol which identifies the constructor (group
~ELHEP-WARSAW?”): _EHWA?”, what in the hexadecimal reading means the value:
45485741H.

IDENTIFIER (0002H)

31/30|29|28[27/26|25/24[23|22]21|20]19|18|17|16]1514/13]12]11]10/ 9 | 8| 7| 6| 5|4 | 3] 2|1] 0
IDENTIFIER

IDENTIFIER (RO) - contains constant ASCII symbol identifying the system: ,,SIMC”,
what in the case of hexadecimal reading means: 4D435452H.

VERSION (0003H)

31|30[29|28|27|26|25|24|23|22|21|20]19|18|17|16|15]14]13]12|11]10 9 | 8| 7| 6| 5] 4| 3] 2| 1] 0
MAIN VERSION SUB VERSION REV VERSION

Packet VERSION - contains constant identifier of the version expressed hexadecimally:
e MAIN_VERSION (RO): contains value 03H,

e SUB_VERSION (RO): contains value 00H,

e REV_VERSION (RO): contains value 0001H,

USER_REG1 (0004H)

31|30[29|28|27|26|25|24|23|22|21|20]19|18|17|16|15]14]13]12]11]10 9 | 8| 7| 6| 5| 4| 3] 2| 1] 0
USER REG1

USER_REG1 (RW) — control-test register designed solely for the user.

-4] -

USER_REG2 (0005H)
31|30[29|28|27|26|25|24|23|22|21|20]19|18|17|16|15]14]13]12]11]10 9 | 8| 7| 6| 5| 4| 3] 2| 1] 0

USER_REG2

USER_REGZ2 (RW) — control-test register designed solely for the user.

STATUS (0006H)
3130P9R8l726]25]24]23]22]21]2010|18]17|16]1514/1312]11/10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0

TAB_SWITCH_ACK—
SIM_MODE
SIM_PROC_ACK————
SIM_PROC_REQ
CTRL_PROC_ACK
CTRL_PROC_REQ
MODE_OPER_SEL

Packet STATUS contains global components of the control of SIMCON system:
e MODE_OPER_SEL (RW): see chapter 4.2,

e CTRL_PROC_REQ (RW): see chapter 4.2,

e CTRL_PROC_ACK (R): see chapter 4.2,

e SIM_PROC_REQ (RW): see chapter 4.2,

e SIM_PROC_ACK (R): see chapter 4.2,

¢ SIM_MODE (RW): see chapter 4.2,

e TAB_SWITCH_ACK (R): see chapter 4.2,

SWITCH_TAB (0007H)
31/30)29]28|27|26|25/24]23|22[21]20]19|18]17|16/15]14{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2| 1] 0

SWITCH_COMP —
SWITCH_TGAIN S—
SWITCH_TFEEDFORWARD
SWITCH_TSETPOINT

Packet SWITCH_TAB contains control components for step mode of SIMCON system:
e SWITCH_COMP (RW): see chapter 8.2.3,

e SWITCH_TGAIN (RW): see chapter 8.2.3,

e SWITCH_TFEEDFORWARD (RW): see chapter 8.2.3,

e SWITCH_TSETPOINT (RW): see chapter 8.2.3,

-4 -

STEP (0008H)
31/3029]28|27|26/25|24|23]22|21/20[19]18]17|16]15]14|13]12]11]10| 9 | 8| 7| 6| 5| 4| 3] 2

STEP_DSP_STOP—
STEP_DSP_RESET
STEP_CAV_TR1G———
STEP_TIMER_ENA
STEP_TIMER_STOP

STEP_TIMER_START

Packet STEP contains components for the step control of the SIMCON system:
e STEP_TIMER_START (RW): see chapter 5.3.2,

e STEP_TIMER_STOP (RO): see chapter 5.3.2,

e STEP_TIMER_ENA (RW): see chapter 5.3.2,

e STEP_CAV_TRIG (RW): see chapter 5.3.2,

o STEP_DSP_RESET (RW): see chapter 5.3.2,

e STEP_DSP_STOP (RO): see chapter 5.3.2.

DAQ (0009H)
31[30[29|28[27]26]25|24|23]22|21|20|19]18]17|16]1514|13]12]11]10| 9 | 8| 7| 6| 5| 4| 3] 2

DAQ_STROBE_ENA—
DAQ_PROC_ACK
DAQ_PROC_REQ———

DAQ_TIMER_ENA

DAQ_TIMER_STOP

DAQ_TIMER_START

Packet DAQ contains control components for the DAQ process of the SIMCON system:
e DAQ_TIMER_START (RW): see chapter 11.2.3,

e DAQ_TIMER_STOP (RO): see chapter 11.2.3,

e DAQ_TIMER_ENA (RW): see chapter 11.2.3,

e DAQ PROC_REQ (RW): see chapter 11.2.1,

e DAQ_PROC_ACK (RO): see chapter 11.2.1,

e DAQ_STROBE_ENA (RW): see chapter 11.2.3.

-43 -

SIGNAL_MUX (OOOAH)

31/3029]2827|26|25|24|23]22|21|20|19]18|17|16]15]14]13]12|11/10| 9 | 8| 7| 6| 5| 4| 3] 2| 1] 0

MUX_OUT DAC1——

MUX_OUT_DACO
MUX_IN_CAVITY:

MUX_ IN_CONTRL

Packet SIGNAL_MUX contains control components for input DSPs and DACs signal:

e MUX_IN_CONTRL (RW): see chapter 12.2,
o MUX_IN_CAVITY (RW): see chapter 12.2,
e MUX_OUT_DACO (RW): see chapter 13.2,
e MUX_OUT_DAC1 (RW): see chapter 13.2.

DAQ_MUX (0O00BH)

31[30[20|28]27/26]25|24]23]22/21|20|19|18]17]16]1514|13/12]11]10/ 9 | 8| 7| 6| 5] 4| 3] 2] 1] 0

MUX_OUT_DAQ1———
MUX_OUT_DAQ2
MUX_OUT_DAQ3

MUX_OUT_DAQ4

Packet DAQ_MUX contains control components for multiplexers for DAQ blocks:

e MUX_OUT_DAQ1 (RW): see chapter 13.2,
e MUX_OUT_DAQ2 (RW): see chapter 13.2,
e MUX_OUT_DAQ3 (RW): see chapter 13.2,
e MUX_OUT_DAQ4 (RW): see chapter 13.2.

SWITCH_ADC_GAIN (O0OCH)
31|30|29|28|27/26|25|24]23|22|21]20]10|18|17|16|15]14]13]12]11]10] 9| 8

7]l6|s|al3]|2]1]0

SWITCH ADC GAIN

Register SWITCH_ADC_GAIN (RW) — see chapter 8.2.3.

SWITCH_ADC_OFFSET (OOODH)
31[3029|28[27]26|25|24|23]22]21/20]19]18|17|16]15]14|13|12]11]10| 9| 8

7]l6l5]4]3|2]1]0

SWITCH_ADC_OFFSET

Register SWITCH_ADC_OFFSET (RW) — see chapter 8.2.3.

SWITCH_CAL (OOOEH)
31|30|29|28|27]26|25|24]23|22|21]20|10|18|17|16|15]14]13]12]11]10] 9| 8

7]l6ls|al3]|2]1]0

SWITCH CAL

Register SWITCH_CAL (RW) — see chapter 8.2.3.

-44 -

STEP_TIMER_LIMIT (OOOFH)
31|30|29|28|27]26|25|24]23|22|21]20]19|18|17|16]1514|13]12]11/10| 9|8 | 7 | 6|5 | 4| 3| 2] 1] 0

STEP_TIMER LIMI

Register STEP_TIMER_LIMIT (RW) — see chapter 5.3.2.

STEP_TIMER_COUNT (0010H)
31|30|29|28|27]26|25|24]23|22[21]20|19|18|17|16]1514|13]12]11/10| 9|8 | 7 |6 |5 | 4| 3| 2] 1] 0

STEP_TIMER COUN

Register STEP_TIMER_COUNT (RO) — see chapter 5.3.2.

DAQ TIMER LIMIT (O011H)
31|30|29|28|27]26|25|24]23|22|21]20|19]18|17|16/15]14/13|12]11]10/ 9|8 | 7|6 |5 | 4| 3| 2] 1] 0

DAQ TIMER LIMIT

Register DAQ_TIMER_LIMIT (RW) — see chapter 11.2.3.

DAQ_TIMER_COUNT (0012H)
31[3029|28[27]26|25|24|23]22|21]20]19]18|17|16]15]14]13]12]11]10] 9|8 | 7 |6 | 5| 4 | 3| 2| 1] O

DAQ_TIMER COUNT

Register DAQ_TIMER_COUNT (RW) — see chapter 11.2.3.

VM_DRV_START (0013H)

31/3029]28|27|26]25|24|23]22|21/20[19]18|17|16]1514]13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2| 1] 0
7 6 5 4 3 2 1 0
VM_DRV_START—

Register VM_DRV_START[0..7] (RW) — see chapter 8.2.

VM_DRV_COUNT (0014H)
31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|15]14/13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

716]15]14]3[]2]1]0O0

VM_DRV_COUNT—
Register VM_DRV_COUNTJ0..7] (RW) — see chapter 8.2.

VM_DRV_OFFSET (0015H)
31[30[29|28|27|26|25|24]23]22]21]20]19]18|17|16|15]14[13]12|11/10| 9 | 8| 7| 6| 5| 4| 3| 2| 1| 0

VM_DRV_OFFSET—
Register VM_DRV_OFFSET (RW) — see chapter 9.2.

- 45 -

ADC_GAIN (0016H-002DH)
31[3029|28|27|26|25/24|23|22[21|20]19|18

17/16|15/14]1312/11]10/ 9| 8| 7|6|5] 4] 3|2]1]0

ADC_GAIN

Register ADC_GAIN[0..7] (RW) — see chapter 6.2.

ADC_OFFSET (002EH-0025H)

31[3029|28|27|26|25/24|23|22[21/20]19|18

17/16|15/14]1312/11]10/ 9| 8|7 |6]5]4]3|2]1]0

ADC_ OFFSET

Register ADC_OFFSET[0..7] (RW) — see chapter 6.2.

ADC_GAIN_BUF (0026H-002DH)

31/30[29]28|27/26/25/24]23]22/21/20]19]18

17/16/15)14[13/12/11l10/ 9| 8| 7|6 |5]4]3]2]1]0

ADC GAIN BUF

Register ADC_GAIN_BUF[0..7] (RW) — see chapter 6.2.

ADC_OFFSET_BUF (002EH-0035H)

31[30[29]28|27|26/25[24]23]22/21]20]19]18

17)16/15)14{13)12/11]10/9|8|7|6|5]4]3]2]1]0

ADC_OFFSET BUF

Register ADC_OFFSET_BUF[0..7] (RW) — see chapter 6.2.

ADC_AVER (0036H)

31/3029]28|27|26]25/24/23]22]21/20l19]18]17]16]1514/13]12/111]10| 9| 8| 7|6 | 5] 4| 3] 2] 1] 0

ADC_AVER—

Register ADC_AVER (RW) — see chapter 6.2.

ADC_DATA (0037H-003EH)
31[3029|28|27|26|25/24|23|22[21]20[19|18

17/16|15]1413]12/11]10/ 9] 8| 7|6]5] 4| 3|2]1]0

ADC_DATA

Register ADC_DATAI0..7] (RO) — see chapter 6.2.

DAC_OFFSET (OO3FH-0040H)

31[3029|28|27|26(25|24]23|22|21]20]10/18|17|16|15|14/13]12]11]10| 9| 8| 7| 6| 5] 4| 3| 2| 1] 0

DAC_OFFSET

Register DAC_OFFSET][0..1] (RO) — see chapter 6.2.

- 46 -

CAV_STROBE_DELAY (0041H)
31|3029|28|27|26|25|24|23]22|21|20|19|18|17|16]15]14]13]12]11|10| 9 | 8| 7| 6|5 | 4| 3] 2| 1] 0O

CAV_STROBE_DELAY——1
Register CAV_STROBE_DELAY (RW) — see chapter 5.3.3.

CAV_TRIGER_DELAY (0042H)
31[3029|28[27]26]25|24|23|22|21|20[19|18]17]16]1514|13]12]11]10| 9 | 8| 7| 6| 5| 4| 3] 2] 1] 0

CAV_TRIGGER DELAY

Register CAV_TRIGGER_DELAY (RW) — see chapter 5.3.3.

DAQ DELAY (0043H)
31[30/29|28|27|26]25|24|23]22|21|20|19|18|17|16]1514]13]12]11/10| 9| 8| 7| 6| 5| 4| 3] 2| 1] O

DAQ DELAY

Register DAQ_DELAY (RW) — see chapter 5.3.3.

CTRL_ACTIVE (0044H)
31[30|29|28|27|26|25|24]23]22|21|20|19|18|17|16]15|14]13]1211|10| 9 | 8| 7| 6| 5| 4| 3] 2| 1] O

CTRL ACTIVE

Register CTRL_ACTIVE (RW) — see chapter 10.2.

SSETPOINT 1 (0045H)
31|30[29|28|27|26]25|24|23|22]21|20[19]18|17|16]15|14|13]12]11]10| 9 | 8| 7| 6| 5| 4| 3] 2] 1] O

SSETPOINT 1

Register SSETPOINT_I (RW) — see chapter 8.2.5.

SSETPOINT_Q (0046H)
31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|1514{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

SSETPOINT Q

Register SSETPOINT_Q (RW) — see chapter 8.2.5.

ROT1 (0047H-004EH)
31/30[29|28|27|26]25|24|23|22]21|20[19]18|17|16]15]14|13]12]11]10| 9 | 8| 7| 6| 5| 4| 3] 2] 1] 0

ROT1

Register ROT1[0..7] (RW) — see chapter 8.2.4.

-47 -

ROT2 (004FH-0056H)
31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|1514{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

ROT2

Register ROT2[0..7] (RW) — see chapter 8.2.4.

ROT1 BUF (0057H-005EH)
31/30[29|28|27|26]25|24|23|22]21|20[19]18|17|16]15|14|13]12]11]10| 9 | 8| 7| 6| 5| 4| 3] 2] 1] 0O

ROT1 BUF

Register ROT1 _BUF[0..7] (RW) — see chapter 8.2.4.

ROT2_BUF (O05FH-0066H)
31[3029|28|27|26|25/24|23|22[21|20|19|18]17|16|15]14{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

ROT2 BUF

Register ROT2_BUF[0..7] (RW) — see chapter 8.2.4.

SGAIN_1 (0067H)
31[30[29|28|27]26]25]24|23]22|21|20[19|18]17]16]1514|13|12]11]10| 9| 8| 7| 6| 5] 4| 3] 2| 1] 0

SGAIN 1

Register SGAIN_| (RW) — see chapter 8.2.5.

SGAIN_Q (0068H)
31[30[20|28|27]26]25/24]23]22]21/20l19|18]17]16]1514/13/12]11]10/ 9| 8| 7|6 | 5] 4| 3] 2] 1] 0

SGAIN 0

Register SGAIN_Q (RW) — see chapter 8.2.5.

SFEEDFORWARD 1 (0069H)
31[3029|28|27|26|25/24|23|22|21|20]10|18|17|16|1514{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

SFEEDFORWARD 1

Register (RW) SFEEDFORWARD_|- see chapter 8.2.5.

SFEEDFORWARD _Q (006AH)
31[3029|28|27|26|25/24|23|22[21|20|19|18]17|16/15/14{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

SFEEDFORWARD Q

Register SFEEDFORWARD_Q (RW) — see chapter 8.2.5.

- 48 -

COMP1 (006BH)
31|30[29|28|27|26|25|24/|23|22]21]20[19]18

1716|15/14]1312/11]10/ 9] 8| 7|6|5]4]3|2|1]0

COMP1

Register COMP1 (RW) —see chapter 8.2.5.

COMP2 (006CH)
31/30[29|28|27|26/25|24/23]22]21|20[19|18

17/16|15/14]13]12/11]10/ 9] 8| 7|6|5]4]3|2|1]0

COMP2

Register COMP2 (RW) — see chapter 8.2.5

COMP1_BUF (006DH)
31|30[29]28|27|26|25|24/23]22]21]20[19|18

17|16/1514/13)12/11/10/ 9| 8| 7|6 |5]4]3]2]1]0

COMP1 BUF

Register COMP1_BUF (RW) —see chapter 8.2.5.

COMP2_BUF (0O06EH)
31[3029|28|27|26]25/24(23]22]21|20[19]18

17|16]1514/13]12/11/10/9|8|7|6|5]4]3]2]1]0

COMP2_BUF

Register COMP2_BUF (RW) — see chapter

8.2.5.

CTRL_DET 1 (006FH-0076H)

31/30[29]28|27|26/25[24]23]22/21/20]19]18

17/16/15/14[13/12/111l10/ 9| 8| 7|6 |5]4]3]2]1]0
CTRL DET 1

Register CTRL_DET [0..7] (RW) — see chapter 10.2.

CTRL_DET_Q (0077H-007EH)

31[3029|28|27|26|25/24|23|22]21]20]19|18

17/16|15]14/1312/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

CTRL DET Q

Register CTRL_DET_Q[0..7] (RW) — see chapter 10.2.

CTRL_VMOD (007FH)
31[3029|28|27|26|25[24|23|22[21]20]19|18

17/16|15/14]1312/11]10/ 9] 8| 7|6]5] 4| 3|2]1]0

CTRL VMOD

Register CTRL_VMOD (RW) — see chapter

10.2.

- 49 -

CTRL_OUT_I (0080H)

31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|1514{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0
CTRL_OUT 1

Register CTRL_OUT _| (RW) — see chapter 10.2.

CTRL_OUT_Q (0081H)

31[3029|28|27|26|25/24|23|22[21/20|19|18]17|16/15]14{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0
CTRL OUT O

Register CTRL_OUT_Q (RW) — see chapter 10.2.

CAV_DELAY (0082H)
31/30[29|28]27]26|25/24|23]22[21]20]19|18]17|16/15/14]13]12]11]10/ 9| 8] 7| 6] 5] 4| 3| 2| 1] 0

CAV_DELAY IN——
CAV_DELAY_OUT.

Packet CAV_DELAY contains control components for the delays of input and output signals
of the DSP process of the cavity simulator:

e CAV_DELAY_IN (RW): see chapter 9.2,

e CAV_DELAY_OUT (RW): see chapter 9.2,

MATRIX_A12 (0083H)

31[3029|28|27|26|25/24|23|22[21/20|19|18]17|16/15]14{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0
MATRIX Al12

Register MATRIX_A12 (RW) — see chapter 8.2.4.

MATRIX_Al1 21 (0084H)

31[3029|28|27|26|25/24|23|22|21|20]10|18|17|16|1514{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0
MATRIX AL 21

Register MATRIX_A1 21 (RW) — see chapter 8.2.4.

MATRIX_A1_22(0085H)

31[3029|28|27|26|25/24|23|22[21|20|19|18]17|16/15]14{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0
MATRIX ALl 22

Register MATRIX_Al 22 (RW) — see chapter 8.2.3.
MATRIX_A2_ 21 (0086H)

31/30[29|28|27/26|25|24]23]22]21]20]19]18|17|16|15/14/13]12]11]10/ 9| 8| 7|6 |5] 4| 3] 2] 1|0
MATRIX A2 21

Register MATRIX_A2_21 (RW) — see chapter 8.2.3.

-50 -

MATRIX_A2 22 (0087H)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16|15/14]1312/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

MATRIX A2 22

Register MATRIX_A2_22 (RW) — see chapter 8.2.3.

MATRIX_A3 21 (0088H)
31[3029|28|27|26|25[24|23|22[21]20]19|18

17/16|15/14]13]12/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

MATRIX A3 21

Register MATRIX_A3 21 (RW) — see chapter 8.2.3.

MATRIX_A3 22 (0089H)
31/30[29]28|27|26/25[24]23]22/21/20]19]18

17/16/15/14[13/12/11l10/ 9| 8| 7|6 |5]4]3]2]1]0

MATRIX A3 22

Register MATRIX_A3_22 (RW) — see chapter 8.2.3.

MATRIX_ B1 1 (OO08AH)
31[30[29|28|27|2625[24]23]22]21/20]19]18

17/16/15)14{13/12/11]10| 9|8 | 7|6 |5]4]3]2]1]0

MATRIX BL 1

Register MATRIX_B1 1 (RW) — see chapter 8.2.3.

MATRIX_B2_ 1 (008BH)
31/30[29]28|27|26/25[24]23]22/21/20]19]18

17/16/15/14[13/12/111l10/ 9| 8| 7|6 |5]4]3]2]1]0

MATRIX B2 1

Register MATRIX_B2_1 (RW) — see chapter 8.2.3.

MATRIX_B3_1 (008CH)
31[3029|28|27|26|25/24|23|22]21]20]19|18

17/16|15]14]1312/11]10/ 9] 8| 7|6]5] 4| 3|2]1]0

MATRIX B3 1

Register MATRIX_B3_1 (RW) — see chapter 8.2.3.

PARAM_H (008DH)
31[3029|28|27|26|25[24|23|22[21]20]19|18

17/16|15/1413]12/11]10/ 9] 8|7 |6|5] 4| 3|2]1]0

PARAM H

Register PARAM_H (RW) — see chapter 8.2.3.

-51 -

PARAM_P (008EH)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16|15/14]1312/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

PARAM P

Register PARAM_P (RW) — see chapter 8.2.3.

SBEAM_1 (OOSFH)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16|15/141312/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

SBEAM 1

Register SBEAM_I (RW) — see chapter 8.2.3.

SBEAM_Q (0090H)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16/15/14[13/12/111l10/ 9| 8| 7|6 |5]4]3]2]1]0

SBEAM Q

Register SBEAM_Q (RW) — see chapter 8.2.3.

CAV_IN_1 (0091H)
31[30[29|28|27|2625[24]23]22]21/20]19]18

17)16]15)14{13/12/11]10| 9|8 | 7|6|5]4]3]2]1]0

CAV_IN 1

Register CAV_IN_| (RW) — see chapter 9.2.

CAV_IN_Q (0092H)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16/15/14[13/12/111l10/ 9| 8| 7|6 |5]4]3]2]1]0

CAV_IN Q

Register CAV_IN_Q (RW) — see chapter 9.

CAV_OUT I (0093H)
31[3029|28|27|26|25/24|23|22]21]20]19|18

2.

17/16|15]14/1312/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

CAV _OUT I

Register CAV_OUT _| (RO) — see chapter 9.2.

CAV_OUT_Q (0094H)
31[3029|28|27|26|25[24|23|22[21]20]19|18

17/16|15/1413]12/11]10/ 9] 8|7 |6|5] 4| 3|2]1]0

CAV_OUT Q

Register CAV_OUT_Q (RO) — see chapter

9.2.

-52-

CAV_VMOD (0095H)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16|15/14]1312/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

CAV_VNOD

Register CAV_VMOD (RO) — see chapter 9.2.

CAV_DETUN (0096H)
31[3029|28|27|26|25[24|23|22[21]20]19|18

17/16|15/14]13]12/11]10/ 9] 8| 7|6]5] 4] 3|2]1]0

CAV_DETUN

Register CAV_DETUN (RO) — see chapter 9.2.

CAV_MODE1 (0097H)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16/15/14[13/12/111l10/ 9| 8| 7|6 |5]4]3]2]1]0

CAV_MODE1

Register CAV_MODEL (RO) — see chapter

CAV_MODE1D (0098H)
31[30[29|28|27|2625[24]23]22]21/20]19]18

9.2.

17/16/15)14{13/12/11]10| 9|8 | 7|6 |5]4]3]2]1]0

CAV_MODE1D

Register CAV_MODE1D (RO) — see chapter 9.2.

CAV_MODE2 (0099H)
31[3029|28|27|26|25/24|23|22[21]20]19|18

17/16/15/14[13/12/11l10/ 9| 8| 7|6 |5]4]3]2]1]0

CAV_MODE2

Register CAV_MODE2 (RO) — see chapter

CAV_MODE2D (009AH)
31[3029|28|27|26|25/24|23|22]21]20]19|18

9.2.

17/16|15]14]1312/11]10/ 9] 8| 7|6]5] 4| 3|2]1]0

CAV_MODE2D

Register CAV_MODE2D (RO) — see chapter 9.2.

CAV_MODE3 (009BH)
31[3029|28|27|26|25[24|23|22[21]20]19|18

17/16|15/1413[12/11]10/ 9] 8|7 |6]5] 4| 3|2]1]0

CAV_MODE3

Register CAV_MODE3 (RO) — see chapter

9.2.

-53 -

CAV_MODE3D (009CH)
31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|1514{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

CAV_NMODE3D

Register CAV_MODE3D (RO) — see chapter 9.2.

CAV_\VV (009DH)
31[3029|28|27|26|25/24|23|22[21/20|19|18]17|16/15]14{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

CAV_WV

Register CAV_VV (RO) — see chapter 9.2.

GENER_STROBE_RANGE (009EH)
31/3029|28|27]26/25]24]23]22/21/20]19|18]17]16]15]14/13/12]11]10/ 9| 8| 7| 6] 5] 4| 3] 2] 1] 0

GENER_STROBE_RANGE——
Register GENER_STROBE_RANGE (RW) — see chapter 5.3.1.

GENER_TRIGER_RANGE (O09FH)
31[30|29|28|27|26|25|24]23]22|21|20|19|18|17|16]15|14]13]1211|10| 9 | 8| 7| 6| 5| 4| 3] 2| 1] O

GENER TRIGGER RANGE

Register GENER_TRIGGER_RANGE (RW) — see chapter 5.3.1.

TSETPOINT _1 (O800H-0OFFFH)
31[3029|28|27|26|25/24|23|22[21/20|19|18]17|16/15]14{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

TSETPOINT 1

Table TSETPOINT_| (RW) — see chapter 8.2.5.

TSETPOINT_Q (1000H-17FFH)
31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|1514{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

TSETPOINT O

Table TSETPOINT_Q (RW) — see chapter 8.2.5.

TFEEDFORWARD_ 1 (1800H-1FFFH)
31[3029|28|27|26|25/24|23|22[21/20]19|18]17|16/15/14{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

TFEEDFORWARD 1

Table TFEEDFORWARD _| (RW) — see chapter 8.2.5.

-54 -

TFEEDFORWARD_Q (2000H-27FFH)
31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|1514{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

TFEEDFORWARD Q

Table TFEEDFORWARD_Q (RW) — see chapter 8.2.5.

TGAIN_I (2800H-2FFFH)
31[30[29]28|27|26|25|24]23]22|21|20]19|18|17|16]15|14]13]12]11/10| 9 | 8| 7| 6|5 | 4| 3] 2| 1] 0

TGAIN 1

Table TGAIN_| (RW) — see chapter 8.2.5.

TGAIN_Q (3000H-37FFH)
31[30[29]28[27]26]25|24|23|22|21|20|19]18]17]16]1514|13]12]11]10| 9| 8| 7| 6| 5] 4| 3] 2] 1] 0

TGAIN Q

Table TGAIN_Q (RW) — see chapter 8.2.5.

TBEAM I (3800H-3FFFH)
31/30[29]28|27]26|25|24|23]22|21]20]19|18|17|16/15]14]13]12]11]10| 9| 8| 7| 6| 5] 43| 2| 1] 0

TBEAM 1

Table TBEAM_I (RW) — see chapter 8.2.3.

TBEAM_Q (4000H-47FFH)
31[3029|28|27|26|25|24]23|22|21]20]19|18|17]16|15]14/13]12]11]10/ 9| 8| 7| 6| 5| 4| 3| 2| 1] 0

TBEAM O

Table TBEAM_Q (RW) — see chapter 8.2.3.

DAQ1 (4800H-4FFFH)
31[3029|28|27|26|25/24|23|22|21|20]10|18|17|16|1514{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

DAQL

Table DAQL (RW) — see chapter 11.2.

DAQ2 (5000H-57FFH)
31[3029|28|27|26|25/24|23|22[21/20|19|18]17|16/15]14{13]12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

DAQ2

Table DAQ2 (RW) — see chapter 11.2.

-55-

DAQ3 (5800H-5FFFH)

31[3029|28|27|26|25/24|23|22|21|20]10|18]17|16|1514{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

DAQ3

Table DAQ3 (RW) — see chapter 11.2.

DAQ4 (6000H-67FFH)

31[3029|28|27|26|25/24|23|22[21/20]19|18]17|16/15]14{13|12]11]10| 9| 8| 7| 6| 5| 4| 3] 2] 1] 0

DAQ4
Table DAQ4 (RW) — see chapter 11.2.
14.21/0 specification list by names
ADC_AVER (0086H) ...cccoovvrvvrvesossnssosoeissn 46 CTRL_OUT_I (008OH) ..oooovvcveosonsoeosorss 50
ADC_DATA (0037H-003EH) ..o 46 CTRL_OUT_Q (0081H) oo 50
ADC_GAIN (0016H-002DH).......cccvvrrvvrvrrrvrvrrno 46 CTRL_PROC_ACK in STATUS (0006H)covvev.e 42
ADC_GAIN_BUF (0026H-002DH)oovevrrrvrrr 46 CTRL_PROC_REQ in STATUS (0006H).............00e... 42
ADC_OFFSET (002EH-0025H)occ.ccoosvervvrrr 46 CTRL_VMOD (Q07FH) .o 49
ADC_OFFSET_BUF (002EH-0035H)c...0.vosvrre 46 DAQ (0009H) ..o 43
CAV_DELAY (0082H) ..c.oocvvovveversvessossnscsssnsno 50 DAQ_DELAY (0043H) ..o 47
CAV_DELAY_IN in CAV_DELAY (0082H)................ 50 DAQ_MUX (000BH) ..o 44
CAV_DELAY_OUT in CAV_DELAY (0082H)............. 50 DAQ_PROC_ACK in DAQ (0009H).....cccccvrrvvrvvrre 43
CAV_DETUN (0096H)......0c.c0ovvrrvrvrrrvnsssnsesiosons 53 DAQ_PROC_REQ in DAQ (0009H)............osvrvrrr 43
CAV_IN_I(O09TH) oo 52 DAQ_STROBE_ENA in DAQ (0009H).............ocr.. 43
CAV_IN_Q (0092H).....ccvrveerrsvesessenssvesensneein 52 DAQ_TIMER_COUNT (0012H) ..o 45
CAV_MODEL (0097H) c..oovevevrrsveesssvssssssnsno 53 DAQ_TIMER_ENA in DAQ (0009H)occcvvovrrrveens 43
CAV_MODEID (0098H)......oc.vooreveseorsosrro 53 DAQ_TIMER_LIMIT (00L1H) oo 45
CAV_MODE2 (0099H) ..o 53 DAQ_TIMER_START in DAQ (0009H)c.ccvvrrveer 43
CAV_MODE2D (009AH) ..o 53 DAQ_TIMER_STOP in DAQ (0009H).......c.....oesvrrr 43
CAV_MODES (009BH) ..o 53 DAQ1 (4800H-8FFFH) ..o 55
CAV_MODESBD (009CH) ..o 53 DAQ2 (B000H-57FFH) ..o 55
CAV_OUT_I (0093H) ..covrvvvcvrvrssvesnssseissnsnnn 52 DAQB (B800H-5FFFH) ... 56
CAV_OUT_Q (0094H)......occcovvrvrsrvrssosvnsssssnsno 52 DAQ4 (6000H-6TFFH) ... 56
CAV_STROBE_DELAY (0041H) ...occoocovrvrrrrrrrrrr 47 GENER_STROBE_RANGE (009EH)ovsvrrvvrrr 54
CAV_TRIGER_DELAY (0042H)......c.c.00orvvrvvrrvrirn 47 GENER_TRIGER_RANGE (009FH)......c.c...orsvrrrvrre 54
CAV_VMOD (0095H) ...c.oovovvrorcsesesossoscsno 53 IDENTIFIER (0002H) ...oocvovoveeocossossrssssc 41
CAV_VV (009DH)....ocvevooeossessessossesosseso 54 MAIN_VERSION in VERSION (0003H)...........occ.... 41
CHECKSUM (0000H) ... 41 MATRIX_AL_21 (0084H) ..o 50
COMPL (00BBH) ..o 49 MATRIX_AL_22(0085H) ...cccovvveervvrcvrvrcsssnno 50
COMPL_BUF (00BDH) ...ocooooeoeveosoecosseo 49 MATRIX_A12 (0083H) ..cc.ocovevreorcoesosoessseo 50
COMP2 (00BCH) ..o 49 MATRIX_A2_21 (0086H)covvevrvvecvrercvenno 50
COMP2_BUF (00BEH) ..o 49 MATRIX_A2_22 (0087H) ..ccccovvevvrvvecorsrcsssnno 51
CREATOR (0001H) ..o 41 MATRIX_A3_21 (0088H) ...cc.cvrvvrvvrvororcsrsr 51
CTRL_ACTIVE (0044H) ..o 47 MATRIX_A3_22 (008IH) ...ccccvvovrrrvecvrercvenne 51
CTRL_DET_I (006FH-0076H) ... 49 MATRIX_B1_1 (008AH)...covrvvoevrserscvrsrsssssnno 51
CTRL_DET_Q (0077H-007EH)....oovevvrvrovrrr 49 MATRIX_B2_1 (008BH)....occvrvvovvrorcororcsssrno 51

- 56 -

MATRIX_B3_1 (00BCH) .. evvveereseeereeeersesseressserns 51
MODE_OPER_SEL in STATUS (0006H).........c......... 42
MUX_IN_CAVITY in SIGNAL_MUX (000AH) 44
MUX_IN_CONTRL in SIGNAL_MUX (000AH)............. 44
MUX_OUT_DAC1 in SIGNAL_MUX (000AH).............. 44
MUX_OUT_DACO in SIGNAL_MUX (000AH).............. 44
MUX_OUT_DAQL in DAQ_MUX (O00BH)........c......... 44
MUX_OUT_DAQ2 in DAQ_MUX (000BH).................. 44
MUX_OUT_DAQ3 in DAQ_MUX (000BH)........c......... 44
MUX_OUT_DAQ4 in DAQ_MUX (O00BH).................. 44
PARAM_H (008DH) ...vvveeeeeeeveeeeeseesereessenessserns 51
PARAM_P (00BEH).....oreeevrseernssseesesseesssssessessiren 52
REV_VERSION in VERSION (0003H)covoeorrrecen 41
ROTL (0047H-004EH).....coove e ereeeereesseresssens
ROT1_BUF (0057H-005EH)

ROT2 (004FH-0056H)covvcvrreereseeressseressenns
ROT2_BUF (005FH-0066H)

SBEAM_| (008FH)...c..cooeeeeeeeeessecresseeesssseresssens
SBEAM_Q (0090H) ...vovevereeeeesesersseersssseresssens
SGAIN_| (00B7H) vvvvvereeeseeerssesesseeserssssesessseons
SGAIN_Q (00B8H)evereeererereeeessseressseresssens
SFEEDFORWARD [(0069H).....ovcecerreerrreeererssens 48
SFEEDFORWARD._Q (008AH) ...vccevoreereeseerssssens 48
SIGNAL_MUX (Q00AH) ..o veeeecresesreessseresssen 44
SIM_MODE in STATUS (0006H)vvocerereerersen 42
SIM_PROC_ACK in STATUS (0006H)creercerrereen 42
SIM_PROC_REQ in STATUS (0006H).......reerocreeen 42
SSETPOINT I (0045H) .o 47
SSETPOINT_Q (0046H) ..vvvvecveeeereeerssesseresssenns 47
STATUS (0006H) «.rrcevereereeeereesseseesseesssserssesen 42
STEP (0008H) ...covseverersseceesseesesssressssenesssons 43
STEP_CAV_TRIG in STEP (0008H).....cc.ccrerrrrcn 43

-57 -

STEP_DSP_RESET in STEP (0008H)ccc.coovvvrrrre 43
STEP_DSP_STOP in STEP (0008H)rcccccoonrerrrere 43
STEP_TIMER_COUNT (0010H).....osseccrrecrrreerrrene 45
STEP_TIMER_ENA in STEP (0008H) ...roecccrrsvrreere 43
STEP_TIMER_LIMIT (O00FH) ..o 45
STEP_TIMER_STOP in STEP (0008H).......cc....cvvrer.e 43
STEP_TIMER_START in STEP (0008H).........cc.cc..n.. 43
SWITCH_ADC_GAIN (000CH)oorsceerscerreeersne 44
SWITCH_ADC_OFFSET (000DH)...oscccorvecrrreerrrne 44
SWITCH_CAL (000EH)....vreeerrecreesseersserssssenessnes 44
SWITCH_COMP in SWITCH_TAB (0007H) ...occ.coo.... 42
SWITCH_TAB (0007H) .cvvveeeereereeseessscessesrnsesne 42
SWITCH_TGAIN in SWITCH_TAB (0007H)cc.cco..... 42
SWITCH_TFEEDFORWARD in SWITCH_TAB (0007H)

.. 42
SWITCH_TSETPOINT in SWITCH_TAB (0007H)........42
SUB_VERSION in VERSION (0003H)......cc.cooerevrrreee 41
TAB_SWITCH_ACK in STATUS (0006H)...........c..c.... 42
TBEAM_I (3800H-3FFFH) wvveooeeeeveescersee e 55
TBEAM_Q (4000H-47FFH) ..o 55
TFEEDFORWARD_| (1800H-1FFFH) w...oovvevrrscee 54
TFEEDFORWARD_Q (2000H-27FFH)....ovveoocrrreceee 55
TGAIN_| (2800H-2FFFH) ..o 55
TGAIN_Q (3000H-37FFH) c.vevereceeseeesseeresessnens 55
TSETPOINT | (0800H-OFFFH)....ccccoveereee e 54
TSETPOINT_Q (1000H-17FFH) oo 54
USER_REGL (0004H) w...vveeeveseecesesseeessseessesresssnes 41
USER_REG2 (0005H) ...vvveveeesverrseeerssssensseseresssnes 42
VERSION (0003H)cooreceeseeeeseeeesssseresssenesssens 41
VM_DRV_COUNT (0014H) v.rceevereeeeeeeeessscresssens 45
VM_DRV_OFFSET (0015H) c.ccvvrveevveeeernsssersessen 45
VM_DRV_START (0013H) wvvvveerereereseseresseeresssenn 45

A LLRF PLATFORM DESCRIPTION

The LLRF Control Platform [2] was adapted toward the key requirements of the TESLA
experiment [5,6]. The control of the system was provided via the VMB bus [12] and the
DOOCS control interface [1]. The construction provides distribution of clock signals and the
work of distributed modules in a synchronous way. General functional diagram of the
Modular Control Platform is presented in fig. 25.

VME-bus slot Ethernet 100T
VME-bus PC-Embedded 5
conroller slot conroller slot =
Internal Interface i §
AL L - — S
Data & Timing %
Controller T
Fast signals
SlotA distribution Slot B
®
2
=
2
Slot D £
E
]
®
>
0
A— w
&
Slot C 3

) -

Fig. 25. Functional structure of LLRF modular platform

The block PLATFORM CONTROLLER consists of three closely co-working modules:

e The VME bus communication is realized by the module VME BUS CONTROLLER.
It is a variant of a passive control, in which full control over the LLRF is provided by
outside controller. This solution enables integration of the LLRF platform together
with executive (actuating) modules with the DOOCS programming environment [1].
The control is done via SUN-SPARC computer which has the VME controller.

e The active control is provided by an alternative communication module PC
EMBEDDED CONTROLLER. Implementation of a PC allows to realize inside the
board of complex control, data acquisition, data processing, and monitoring operations
for the LLRF system. Standard Ethernet connection was used for communications
with the outside control systems, and with particular blocks of the LLRF system [10].

e The module DATA & TIMING CONTROLLER provides global distribution of fast
synchronization signals and data to all slots. The distribution system resides on a
programmable matrix FPGA. Its functionality may be modified depending on the
current needs of the LLRF control system. In particular, the configuration of the
executive hardware blocks, positioned in different platform slots, may be changed.

The communications inside the platform modules is realized using the proprietary
standard INTERNAL INTERFACE [7]. The modules VME BUS CONTROLLER and PC
EMBEDDED CONTROLLER play the role of communication bus controller. The rest of

-58 -

modules work in the ,,slave” work mode. The communication layer of the platform with upper
supervisory computer system provides all the mechanisms to configure programmable the
FPGA chips which are present on the platform and which are on the functional blocks inserted

to the platform slots A - D.
The platform has four universal user slots predicted for insertion of functional modules.

The slots A, B and C are configured in parallel, this is peer to peer, and the slot D was
configured as a central one. Direct signal connections are provided between slots. They assure

transmission of fast data and synchronization signals between slots.
The modular platform for LLRF control system was realized as a multilayer PCB in

mechanical standard EURO-6HE. It is designed to work with the communication VME-BUS
[12]. Fig. 26 presents the board from the front side, while fig. 27 presents the same board

from the rear side.
The front side has the following features. (fig. 26):
e slots for inserted communication modules VME BUS CONTROLLER and PC
EMBEDDED CONTROLLER,
e module DATA & TIMING CONTROLLER implemented fully in the FPGA Cyclone
matrix by Altera,

e block POWER SUPPLY consisting of a few nondependent resistive voltage
stabilizers, providing the following voltages: 1.5V, 1.8V, 2.5V, 3.3V

e links of VME-BUS (J1 and J2), connector RS 232C (to the PC-EMBEDDED
terminal), socket ETHERNET 100Mb and USB 1.0.
e slot for the D module.
At the rear side of the Platform PCB (fig. 27) there are situated slots for module A, B and C.

AfFrmnnr
T ANy

#

aas 3
Errrre et e L
Py

T

111]1: A

s f
& A '“nl. T 1.0 ‘

-

Fig. 26. Front side of the LLRF Modular Fig. 27. Rear side of the LLRF Modular
Platform PCB Platform PCB

-59 -

B DSP EMBEDDED BOARD SPECIFICATION

The PCB of the DSP EMBEDDED BOARD module [11] was done using standard
laminate FR4. The board consists of 16 layers: four negative power supply layers, and twelve
signal layers. The power supply layers have three values of voltages for analog parts: (-5V;
+5V; +3.3V), three voltages for the digital part of the board: (+1.5V; 3.3V; +5V) and
separately the analog chassis and digital chassis. The analog part was separated from the
digital with the aid of separating coils of the inductance 45 uH.

The discrete components, sockets, converters, amplifiers were positioned on the front
side of the PCB, for the easy access to the signals with the measurement probe. There were
used the high quality, high frequency (up to several GHz) subminiature sockets of MCX type.
The small dimensions allow to position all necessary 12 connections on a single side of the
board. The PCB possesses 4 additional digital sockets to distribute the synchronization signals
of the LLRF control system. The board possesses 8 LEDs and an 8-bit port controlled directly
from the FPGA chip, to provide monitoring of the FPGA chip itself.

The FPGA chip was positioned on the rear side of the board. The package is of the BGA
fine pitch type. The pins in fine-pitch package are placed all over the chip surface creating a
matrix. The package footprint is composed by small soldering pads connected with a matrix
of vias. Thus, there is a direct access to all of the pins at the opposite side of the PCB.

The performed tests showed the ability of the debated system to control the resonant
cavity at the total latency in the control, feed back loop below 1 us. With this latency, the
possible amplification in the control loop is over 100. Table 1 gathers technical parameters of
the DSP EMBEDDED BOARD module. Table 2 has the signal description which are
connected to the Xilinx Virtex II 4000 chip [13].

Table 1.
Fundamental technical data of the 8-channel LLRF control module
Parameter Value
Dimensions 162 mm x 142 mm; thickness 2,3 mm
Number of channels 8
Range + 1V
. . 13
Analog inputs Maximum range of input voltage 3.8V
. Minimum 30 MHz
Range of sampling .
Maximum 105 MHz
Analog bandwidth 270 MHz
Number of channels 4
. Depending on the work mode:
Analog outputs Range of sampling)
from 3 MHz to maximum 160 MHz
Range of output voltage + 1V
Number of 5
. channels
Digital inputs
Standard LVTTL
Input impedance 50 Q
o Number of channels 2
Digital outputs
standard LVTTL

- 60 -

Parameter Value
+5V =2.04A (+5V =4A together for DSP-board +
Mother-board)
Current. Only the module DSP EMBEDDED 3.3V ~0.32A
consumption BOARD
+1.5V =0.02A
- 12V =0.4A
Inbuilt clock
L Frequency 60 MHz
circuit
Table 2.
Description of signals connected to the Xilinx Virtex II 4000 chip
. L . Xilinx Virtex 11
part Signal description Signal name Pin number remarks
adc _data(1)(0) | U2
adc data(1)(10) | F2
adc data(1)(11) | F3
adc data(1)(12) | G3
adc _data(1)(13) | H3
adc data(1)(1) | T2
. adc data(1)(2) | P2
Data bits adc_data(1)(3) | N2
adc data(1)(4) | M2
ADC 1 adc data(1)(5) | L2
adc data(1)(6) | K2
adc data(1)(7) | J2
adc data(1)(8) | H2
adc data(1)(9) | G2
differential clock input LVPECL adc_clk n(1) P1
standard (negative part)
differential clock input LVPECL adc_clk p(1) N1
standard (positive part)
Data ready bit adc dry(1) E2
Over flow bit adc ovr(1) D2
adc data(2)(0) | U3
adc data(2)(10) | J4
adc data(2)(11) | K4
adc data(2)(12) | L4
adc data(2)(13) | M4
adc data(2)(1) | T3
. adc data(2)(2) | R3
Data bits adc_data(2)(3) | P3
adc data(2)(4) | N3
ADC 2 adc data(2)(5) | M3
adc data(2)(6) | L3
adc data(2)(7) | J3
adc data(2)(8) | F4
adc data(2)(9) | H4
differential clock input LVPECL adc_clk n(2) A4
standard (negative part)
differential clock input LVPECL adc_clk p(2) AS
standard (positive part)
Data ready bit adc dry(2) B5
Over flow bit adc ovr(2) C8
ADC3 Data bits adc data(3)(0) | BS

adc data(3)(10) | B16

-61 -

Xilinx Virtex 11

part Signal description Signal name Pin number remarks

adc_data(3)(11) | Al17

adc data(3)(12) | B17

adc data(3)(13) | Cl6

adc data(3)(1) | B9

adc data(3)(2) | BIO

adc data(3)(3) | BI1

adc data(3)(4) | B12

adc data(3)(5) | B13

adc data(3)(6) | Al3

adc data(3)(7) | B14

adc data(3)(8) | Al4

adc data(3)(9) | AlS

differential clock input LVPECL adc_clk n(3) All
standard (negative part)

differential clock input LVPECL adc_clk p(3) Al2
standard (positive part)

Data ready bit adc dry(3) Cl4

Over flow bit adc ovr(3) D10

adc data(4)(0) | C6

adc data(4)(10) | D16

adc data(4)(11) | D15

adc data(4)(12) | D14

adc data(4)(13) | D13

adc data(4)(1) | Cl1

. adc data(4)(2) | Cl12

Data bits adc_data@)(3) | C13

adc data(4)(4) | C15

ADC 4 adc data(4)(5) | AlS8

adc data(4)(6) | B18

adc data(4)(7) | C18

adc data(4)(8) | D18

adc data(4)(9) | D17

differential clock input LVPECL adc_clk n(4) A21
standard (negative part)

differential clock input LVPECL adc_clk p(4) A22
standard (positive part)

Data ready bit adc dry(4) C27

Over flow bit adc ovr(4) D27

ADC 5 adc data(5)(0) | D19

adc data(5)(10) | C22

adc data(5)(11) | B22

adc data(5)(12) | D23

adc data(5)(13) | C23

adc data(5)(1) | C19

. adc data(5)(2) | B19

Data bits adc_data(5)(3) | D20

adc data(5)(4) | C20

adc data(5)(5) | A20

adc data(5)(6) | D21

adc data(5)(7) | C21

adc data(5)(8) | B21

adc data(5)(9) | D22

differential clock input LVPECL adc_clk n(5) A30
standard (negative part)

differential clock input LVPECL adc_clk p(5) A3l

standard (positive part)

-62 -

Xilinx Virtex 11

part Signal description Signal name Pin number remarks

Data ready bit adc_dry(5) C33

Over flow bit adc ovr(5) E33

adc data(6)(0) | B23

adc data(6)(10) | B26

adc data(6)(11) | B27

adc data(6)(12) | B28

adc data(6)(13) | A28

adc data(6)(1) | A23

. adc data(6)(2) | D24

Data bits adc_data(6)(3) | C24

adc data(6)(4) | B24

ADC 6 adc data(6)(5) | A24

adc data(6)(6) | D25

adc data(6)(7) | B25

adc data(6)(8) | D26

adc data(6)(9) | C26

differential clock input LVPECL adc_clk n(6) E34
standard (negative part)

differential clock input LVPECL adc_clk p(6) D34
standard (positive part)

Data ready bit adc _dry(6) C28

Over flow bit adc ovr(6) B32

adc data(7)(0) | A29

adc data(7)(10) | G32

adc data(7)(11) | F33

adc data(7)(12) | H32

adc data(7)(13) | G33

adc data(7)(1) | B29

. adc data(7)(2) | C29

Data bits adc_data(7)(3) | D29

adc data(7)(4) | B30

ADC 7 adc data(7)(5) | B31

adc data(7)(6) | F32

adc data(7)(7) | D32

adc data(7)(8) | D33

adc data(7)(9) | E32

differential clock input LVPECL adc_clk n(7) G34
standard (negative part)

differential clock input LVPECL adc_clk p(7) F34
standard (positive part)

Data ready bit adc_dry(7) U34

Over flow bit adc ovr(7) L32

ADC 8 adc data(8)(0) | H33

adc data(8)(10) | T33

adc data(8)(11) | U33

adc data(8)(12) | R32

adc data(8)(13) | P32

adc data(8)(1) | J33

. adc data(8)(2) | K33

Data bits adc_data(8)(3) | L33

adc data(8)(4) | M33

adc data(8)(5) | N33

adc data(8)(6) | P33

adc data(8)(7) | N34

adc data(8)(8) | P34

adc data(8)(9) | R34

-63 -

Xilinx Virtex 11

part Signal description Signal name Pin number remarks
differential clock input LVPECL adc_clk n(8) M34
standard (negative part)
differential clock input LVPECL adc_clk p(8) L34
standard (positive part)
Data ready bit adc dry(8) J34
Over flow bit adc ovr(8) N32
dac data(1)(0) | N31
dac data(1)(10) | W32
dac data(1)(11) | K31
dac data(1)(12) | J31
dac data(1)(13) | H31
dac data(1)(1) | M31
. dac data(1)(2) | L31
Data bits dac_data(1)(3) | AB31
dac data(1)(4) | AA31
dac data(1)(5) | Y31
dac data(1)(6) | W3l
DAC 1 dac data(1)(7) | V31
dac data(1)(8) | U31
dac data(1)(9) | T31
differential clock input LVPECL dac_clk n(1) AC34
standard (negative part)
differential clock input LVPECL dac_clk p(1) AD34
standard (positive part)
DIV0 dac_div(1)(0) R31
DIV1 dac_div(1)(1) P31
MODO dac_mode(1)(0) | V32 fiffig:‘;‘fxgg
MOD1 dac_mode(1)(1) | V33
PLLLOCK dac pll lock(1) | V34
dac data(2)(0) | AM4
dac data(2)(10) | AM15
dac data(2)(11) | AP17
dac data(2)(12) | AN17
dac data(2)(13) | AM16
dac data(2)(1) | ALS
. dac data(2)(2) | AM6
Data bits dac_data(2)3) | AM7
dac data(2)(4) | AMS
dac data(2)(5) | AM9
dac data(2)(6) | AMI11
DAC?2 dac data(2)(7) | AMI12
dac data(2)(8) | AMI13
dac data(2)(9) | AM14
differential clock input LVPECL dac_clk n(2) AP31
standard (negative part)
differential clock input LVPECL dac_clk p(2) AP30
standard (positive part)
DIV0 dac_div(2)(0) AM17
DIV1 dac_div(2)(1) AL17
MODO dac_mode(2)(0) | AL6 fiffig:‘;‘fxgg
MOD1 dac_mode(2)(1) | AL8
PLLLOCK dac pll lock(2) | AL16
DAC3 Data bits dac data(3)(0) | AAI
dac data(3)(10) | AC3
dac data(3)(11) | AD3
dac data(3)(12) | AF3

- 64 -

Xilinx Virtex 11

part Signal description Signal name Pin number remarks
dac data(3)(13) | AG3
dac data(3)(1) | V2
dac data(3)(2) | W2
dac data(3)(3) | AA2
dac data(3)(4) | AC2
dac data(3)(5) | AHI
dac data(3)(6) | W3
dac data(3)(7) | Y3
dac data(3)(8) | AA3
dac data(3)(9) | AB3
differential clock input LVPECL dac_clk n(3) AK34
standard (negative part)
differential clock input LVPECL dac_clk p(3) AL34
standard (positive part)
DIV0 dac_div(3)(0) AL3
DIV1 dac_div(3)(1) AK3
MODO dac_mode(3)(0) | AJ3 fiffig:‘é‘r‘fﬁfgg
MOD1 dac_mode(3)(1) | AH3
PLLLOCK dac pll lock(3) | AJ4
DAC 4 dac data(4)(0) | AL18
dac data(4)(10) | AL27
dac data(4)(11) | AL29
dac data(4)(12) | AL30
dac data(4)(13) | AD31
dac data(4)(1) | AL19
. dac data(4)(2) | AL20
Data bits dac_data@)(3) | AL21
dac data(4)(4) | AL22
dac data(4)(5) | AL23
dac data(4)(6) | AL24
dac data(4)(7) | AN26
dac data(4)(8) | AL25
dac data(4)(9) | AL26
differential clock input LVPECL dac_clk n(4) AP24
standard (negative part)
differential clock input LVPECL dac_clk p(4) AP23
standard (positive part)
DIV0 dac_div(4)(0) AG31
DIV1 dac_div(4)(1) AF31
MODO dac_mode(4)(0) | F31 fi‘:zg:éﬁfg;
MOD1 dac_mode(4)(1) | E31
PLLLOCK dac pll lock(4) | AE31
ii_addr(0) AP18
ii_addr(10) AN25
ii_addr(11) AP26
ii_addr(12) AN27
ii_addr(13) AP28
ii_addr(14) AN28
ii_addr(15) AP29
ii_addr(16) AN29
ii_addr(17) AN30
ii_addr(18) AN31
ii_addr(19) AN32
ii_addr(1) AN18
ii_addr(20) AM19
ii_addr(21) AM20

-65 -

Xilinx Virtex 11

part Signal description Signal name Pin number remarks

ii_addr(22) AM21
ii_addr(23) AM22
ii_addr(24) AM23
ii_addr(25) AM?24
ii_addr(26) AM26
ii_addr(27) AM27
ii_addr(28) AM28
ii_addr(29) AM29
ii_addr(2) AN19
ii_addr(30) AM31
ii_addr(31) AM33
ii_addr(3) AP20
ii_addr(4) AN21
ii_addr(5) AP21
ii_addr(6) AP22
ii_addr(7) AN22
ii_addr(8) AN23
ii_addr(9) AN24
ii_data(0) AL32
ii_data(10) AG32
ii_data(11) AG33
ii_data(12) AF32
ii_data(13) AF33
ii_data(14) AF34
ii_data(15) AE33
ii_data(16) AD32
ii_data(17) AD33
ii_data(18) AC32
ii_data(19) AC33
ii_data(1) AL33
ii_data(20) AB32
ii_data(21) AB33
ii_data(22) AB34
ii_data(23) AA32
ii_data(24) AA33
ii_data(25) AA34
ii_data(26) Y32
ii_data(27) Y34
ii_data(28) W33
ii_data(29) AK31
ii_data(2) AK32
ii_data(30) AJ31
ii_data(31) AC31
ii_data(3) AK33
ii_data(4) AJ32
ii_data(5) AJ33
ii_data(6) AJ34
ii_data(7) AH32
ii_data(8) AH33
ii_data(9) AH34
ii_irgN(0) Ml
ii_irgN(1) L1
ii_irgN(2) J1
ii_irgN(3) Gl
ii_irgN(4) F1
ii_irgN(5) C2

- 66 -

. o . Xilinx Virtex 11
part Signal description Signal name Pin number remarks
ii_irgN(6) B4
ii_irgN(7) A6
ii_operN M32
ii_resetN A26
ii_strobeN E17
ii_writeN D9
bus d(0) AN16
bus d(10) AN10
bus d(11) AN9
bus d(12) AP9
bus d(13) AN
bus d(14) AN7
bus d(15) AP7
bus d(16) AN6
bus d(17) AP6
bus d(18) ANS5S
bus d(19) APS
bus d(1) AP15
bus d(20) AN4
bus d(21) AP4
bus d(22) AN3
bus d(23) AM2
bus d(24) AL2
bus d(25) AL1
bus d(26) AK2
bus d(27) AK1
bus d(28) AJ2
bus d(29) All
bus d(2) AN14
bus d(30) AH2
bus d(31) AG2
bus d(3) AP14
bus d(4) AN13
bus d(5) AP13
bus d(6) AN12
bus d(7) AP12
bus d(8) AN11
bus d(9) AP11
clk D12
clkout DI11
trgout B3
mclk(0) B6
mclk(1) T32
mclk(2) J32
mclk(3) B7
mtrg(0) A7
mtrg(1) D8
mtrg(2) D6
mtrg(3) A9
ii_ackN C9
Local clock Iclk E19
Auxiliary LED led(0) ABI
diodes led(1) AB2
led(2) ACI
led(3) ADI1

-67 -

. o . Xilinx Virtex 11
part Signal description Signal name Pin number remarks
led(4) AD2
led(5) AE2
led(6) AF1
led(7) AF2
conf led AL9 Not mounted
inputs s%g%n(O) Yl
Digital In/out S}gm(1) vl
outputs s%gout(O) Ul
sigout(1) R1
sigtest(0) C7
sigtest(1) D3
sigtest(2) E3
8 bits digital sigtest(3) E4
auxiliary port sigtest(4) Dl
sigtest(5) El
sigtest(6) N4
sigtest(7) P4

- 68 -

C

Run: 250kS/s Average
F T

Averages: 62

-

]

Exemplary scope pictures of SIMCON system outputs

Acquisition

Mode Respietr!'gllve
Average gm

Stop After

Limit Test

Mode
AL

Sample

gt

Peak Detect

IL

Ave I'EI.E

Limit fest it Lo
Limit Test
R/S button | Setup sources | Tomplate

Fig. 28. I and Q outputs of cavity simulator driven by feedback and supported by feedforward

Run: 250ks/s Average
E.

Trigger Position: 10%
1

=

........ 2.0.0.“.55 Ch3 J' o 1 06 v..:.

Trigger
Pos?tgfon

+T+

10%

| Pretrigger

H—

Set to 10%

—

Set to 30%

—

Set to 90%

Time Base
Main

Horiz

Scale PoS

Setup

Horiz | '

(/div)

FastFrame

Setup
504

T<td Acq ‘

Fig. 29. I and Q outputs of CAVITIES CONTROLLER operated in feedback and feedforward

mode

-69 -

Run: 250KkS/s Average Averages: 62 0
E.

fF 1
o . Acquisition
Mode
NG sample
mlﬁ/ : \ o
i)))) i)))) | Peak Detect
IL
Hi Res
R P P P P P P P Envelope
. . I I . L I . . I I i
Chl 200mv<g [@fF 200nV<$ M 200ps Ch3 S 1.06 Y 1L
' : : : : i : : : : : Averae
Mode : Stop After Limit Test | Limit Test | Creat
Pt Signal Limit Test
N R/S button | Setup Sources Template

Fig. 30. I and Q outputs of cavity simulator driven by low gain feedback.

Run: 250kS/s Avarage Avearages: 62 0
Fo T 1
E i E]
o Acquisition

Mode
A7

Sample

it

Peak Detect

IL
Hi Res
o

Envelope
!

1L

Mode f Stop After Limit Test | Limit Test |, .-\
et Signal Limit Test
N R/5 button Setup sources | Template

Fig. 31. I and Q outputs of CAVITIES CONTROLLER operated in low gain feedback mode.

-70 -

Run: 250KkS/s Average Averages: 62 0
E.

T]
E T A

Acquisition

Mode
A7

Sample

t

| Peak Detect

1L
Hi Res
ok

Envelope
!

=3

...................... J_L

Average

—“ N T petitive P _|_C_I_‘rea e
Ar:'le'(;gs.s' Signal Llslghtrlgsst Limit Test
i ' ON Template

Fig. 32. I and Q outputs of CAVITIES CONTROLLER operated in delay loop condition.

Limit Test
Setup

Stop After
R/S5 button

Run: 250kS/s Avearage Avearages: 62 0
Fo T 1
E T k|
o Acquisition
Mode
Sample

gt

Peak Detect

IL

Average

PR T potitive = reate
Artrler:;g;e Signal ngiltr'(lz'gsst Limit Test
' . onf Template

Fig. 33. I and Q outputs of CAVITIES CONTROLLER with the beam switched on during the
flattop.

Stop After
R/75 button

Limit Test
Setup

-71 -

Run: 50.0M5/s Average [Fe DPO Brighthess: 46 % 0
| —— 1
E T

k]

Display
Intensity

xxxxxx

: : Text/Grat
o .. S 100
- S Ak
T

Waveform
iag

""" DPO
- Brightness
46 %

. . . . , , Palette
BT A R S Temp

Settllngs
<Display=| <DPO>

Fig. 34. Cavity simulator output for IF modulated signal (presented in DPO scope mode).

AutoBright
On

u ccumulatt1 Graticule

Shafliow Full

FormatfRO‘

Run: 50.0kS/s Avearage Trigger Position: 0%
T 1

4| Trigger

. Pos?t%on

+T+

0%
Pratrigger

(LI

Set to 10%

—

Set to 50%

—

Set to 90%

FastFrame
Setup

Horiz
Pos

Scale

Setup
(/div)

500

. .H.O,rl.z_ . |

Time Base
Main

Fig. 35. Cavity simulator output for detuning signal related to I component of envelope.

TRtd Acq ‘

-72 -

Exemplary results of CHECHIA real-time control

D

Cavity output envelope [MV]

1400 1600 1800 2000

1200

1000
microseconds

Fig. 36. Feed-forward cavity driving: selected readout of output envelope for 30 MV flattop

Klystron output [mA]

level.

microseconds

Fig. 37. Feed-forward cavity driving: selected readout of input envelope for 30 MV flattop

level.

-73 -

Cavvity output envelope [MV]

1200 1400 1600 1800 2000

1000
microseconds

Fig. 38. Feed-forward with feedback cavity driving (gain = 100): selected readout of output

envelope for 25 MV flattop level.

Klystron output [mA]

I
I
I
I

1
i

I
I
:

.
I
I

1200 1400 1600 1800 2000

1000
microseconds

Fig. 39. Feed-forward with feedback cavity driving (gain = 100): selected readout of input

envelope for 25 MV

-74 -

Canity output envelope [MV]

microseconds

Fig. 40. Feedback cavity driving (gain = 100): selected readout of output envelope for 25

MV flattop level.
Klystron output [mA]

20 7777777777777 \7777777777777 777777777777 T |

M l l 1 P

RN TR AT | | |

15 PWWWMWM fil ‘, e L :\DA -

| Mol :

10 - -2 | ""‘lr’n‘ = 77 i e RN — e ___ |

Pk T H | |

s IS ST ¥ B |

Op - |h ****** f || * ******* : :

T S |

Q l l l l

TC) N [L [|

15l l l l l
15O 500 1000 1500 2000

microseconds

Fig. 41. Feedback cavity driving (gain = 100): selected readout of input envelope for 25 MV
flattop level.

=75 -

o
o
o
N
©
5 | T g
c | E —
O[
=
o | o
= o
£ | 3 S
- | = —
- | @
o | 8
- | <
o
© | & 2
>
©
(@]
m o
— C
3
o
< g
[T,
(@)
o
o
= 3
-’
©
o
> 3
S S
=1
=
[¢D) o
ﬂ B
L
o

microseconds

microseconds

Detuning monitoring [Hz]

Phase of Cavity and Controller [rad]

—— supposed detuning
— estimated detuning

1000 1500 2000
microseconds

500

1000 1500 2000 0

microseconds

500

Fig. 42. Feed-forward single cavity driving for ACC1 module

-76 -

Controller output [mA]

Output envelope [MV] of CAVITY-8

1500

1000

1000 1500 2000

microseconds

500

microseconds

Detuning monitoring [HZ]

Phase of Cavity and Controller output [rad]

-~ _|—— supposed detuning
— estimated detuning

l
|
CONTROLLER
|
|
|
|
|
|
:
.

2000 ~

1000 1500 2000
microseconds

500

0

1000 1500

microseconds

500

Fig. 43. Feed-back and feed-forward single cavity driving for ACC1 module

=77 -

10.

11.

12.
13.
14.
15.

References

P.Rutkowski, R.Romaniuk, K.T.Pozniak, T.Jezynski, P.Pucyk, M.Pietrusinski,
S.Simrock: “FPGA Based TESLA Cavity SIMCON DOOCS Server Design,
Implementation and Application”, TESLA Technical Note, 2003-32

K.T.Pozniak, R.Romaniuk, K.Kierzkowski: “Parameterized Control Layer of FPGA
Based CAVITIES CONTROLLER and Simulator for TESLA Test Facility”, TESLA
Technical Note, 2003-30

K.T.Pozniak, T.Czarski, R.Romaniuk: “Functional Analysis of DSP Blocks in FPGA
Chips for Application in TESLA LLRF System”, TESLA Technical Note, 2003-29
T.Czarski, K.T.Pozniak, R.Romaniuk, S.Simrock: “TESLA Cavity Modeling and
Digital Implementation with FPGA Technology Solution For Control System Purpose”,
TESLA Technical Note, 2003-28

T.Czarski, R.S.Romaniuk, K.T.Pozniak S.Simrock “Cavity Control System Essential
Modeling For TESLA Linear Accelerator”, TESLA Technical Note, 2003-08

T.Czarski, R.S.Romaniuk, K.T. Pozniak “Cavity Control System, Models Simulations
For TESLA Linear Accelerator”’, TESLA Technical Note, 2003-09

K.T.Pozniak, M.Bartoszek M.Pietrusinski: “Internal Interface for RPC Muon Trigger
electronics at CMS experiment”, Proceedings of SPIE, Photonics Applications II In
Astronomy, Communications, Industry and High Energy Physics Experiments, Vol.
5484, 2004

K.T.Pozniak, R.S.Romaniuk, K.Kierzkowski, “Modular & Reconfigurable Common
PCB-Platform of FPGA Based LLRF Control System for TESLA Test Facility”,
TESLA Technical Note, 2005-4

K.T.Pozniak, R.S.Romaniuk, W.Jalmuzna, K.Olowski, K.Perkuszewski, J.Zielinski,
K.Kierzkowski: “FPGA Based, Full-Duplex, Multi-Channel, Multi-Gigabit, Optical,
Synchronous Data Transceiver for TESLA Technology LLRF Control System”, TESLA
Technical Note, 2004-07

P.Roszkowski, W.M.Zabolotny, K.Pozniak, R.S.Romaniuk, K.Kierzkowski, S.Simrock:
“Prototype Implementation of the Embedded PC Based Control and DAQ Module for
TESLA Cavity SIMCON”, TESLA Technical Note, 2004-11

W.Giergusiewicz, W.Koprek, W.Jalmuzna, K.T.Pozniak, R.S.Romaniuk: “FPGA Based,
DSP Integrated, 8-Channel SIMCON, ver. 3.0. Initial Results for 8-Channel Algorithm”,
TESLA Technical Note, 2005-14

W. Petersen “The VMEbus Handbook™

http://www xilinx.com/ [Xilinx Homepage]
http://www.analog.com/en/prod/0,2877,AD6645,00.html [AD6645 datasheet]
http://www.analog.com/en/prod/0%2C2877%2CAD9772A%2C00.html [AD9772
datasheet]

-78 -

	INTRODUCTION
	CAVITY SIMULATOR AND CONTROLLER ALGORITHM
	Cavity simulator algorithm
	Cavity controller algorithm
	Simulation procedure

	GENERAL DESCRIPTION OF SIMCON SYSTEM
	Hardware structure
	Functional structure

	STATUS CONTROLLER BLOCK DESCRIPTION
	Functional description
	Programming description
	INTERNAL mode operation
	EXTERNAL mode operation
	VECTOR mode operation
	STEP mode operation

	TIMING CONTROLLER BLOCK DESCRIPTION
	Functional structure
	Cavity timing multiplexer description
	Programming description
	Internal timing generation
	Step operation process
	Time adjustment of the trigger signals

	INPUT PROCESSING BLOCK DESCRIPTION
	Functional structure
	Programming description

	OUTPUT PROCESSING BLOCK DESCRIPTION
	Functional structure
	Programming description

	PROGRAMMABLE DATA CONTROLLER
	Functional structure
	Programming description
	Dynamic data multiplexer
	Modulator driver
	Data switching
	Cavity simulator programmable data packet
	Cavities controller programmable data packet

	CAVITY SIMULATOR BLOCK DESCRIPTION
	Functional structure
	Programming description

	CAVITIES CONTROLLER BLOCK DESCRIPTION
	Functional structure
	Programming description

	DATA ACQUISITION (DAQ) BLOCK DESCRIPTION
	Functional structure
	Programming description
	DAQ modes control
	DAQ memory access
	DAQ readout process
	DAQ vector generator

	INPUT MULTIPLEXERS BLOCK DESCRIPTION
	Functional structure
	Programming description

	OUTPUT SWITCH MATRIX BLOCK DESCRIPTION
	Functional structure
	Programming description

	PROGRAMMABLE I/O SPECIFICATION
	I/O specification list by addresses
	CHECKSUM (0000H)
	CHECKSUM
	CREATOR (0001H)
	CREATOR

	IDENTIFIER (0002H)
	IDENTIFIER

	VERSION (0003H)
	MAIN_VERSION
	SUB_VERSION
	REV_VERSION

	USER_REG1 (0004H)
	USER_REG1

	USER_REG2 (0005H)
	USER_REG2

	STATUS (0006H)
	TAB_SWITCH_ACK
	SIM_MODE
	SIM_PROC_ACK
	SIM_PROC_REQ
	CTRL_PROC_ACK
	CTRL_PROC_REQ
	MODE_OPER_SEL

	SWITCH_TAB (0007H)
	SWITCH_COMP
	SWITCH_TGAIN
	SWITCH_TFEEDFORWARD
	SWITCH_TSETPOINT

	STEP (0008H)
	STEP_DSP_STOP
	STEP_DSP_RESET
	STEP_CAV_TRIG
	STEP_TIMER_ENA
	STEP_TIMER_STOP
	STEP_TIMER_START

	DAQ (0009H)
	DAQ_STROBE_ENA
	DAQ_PROC_ACK
	DAQ_PROC_REQ
	DAQ_TIMER_ENA
	DAQ_TIMER_STOP
	DAQ_TIMER_START

	SIGNAL_MUX (000AH)
	MUX_OUT_DAC1
	MUX_OUT_DAC0
	MUX_IN_CAVITY
	MUX_IN_CONTRL

	DAQ_MUX (000BH)
	MUX_OUT_DAQ1
	MUX_OUT_DAQ2
	MUX_OUT_DAQ3
	MUX_OUT_DAQ4

	SWITCH_ADC_GAIN (000CH)
	SWITCH_ADC_GAIN

	SWITCH_ADC_OFFSET (000DH)
	SWITCH_ADC_OFFSET

	SWITCH_CAL (000EH)
	SWITCH_CAL

	STEP_TIMER_LIMIT (000FH)
	STEP_TIMER_LIMIT

	STEP_TIMER_COUNT (0010H)
	STEP_TIMER_COUNT

	DAQ_TIMER_LIMIT (0011H)
	DAQ_TIMER_LIMIT

	DAQ_TIMER_COUNT (0012H)
	DAQ_TIMER_COUNT

	VM_DRV_START (0013H)
	VM_DRV_START

	VM_DRV_COUNT (0014H)
	VM_DRV_COUNT

	VM_DRV_OFFSET (0015H)
	VM_DRV_OFFSET

	ADC_GAIN (0016H-002DH)
	ADC_GAIN

	ADC_OFFSET (002EH-0025H)
	ADC_OFFSET

	ADC_GAIN_BUF (0026H-002DH)
	ADC_GAIN_BUF

	ADC_OFFSET_BUF (002EH-0035H)
	ADC_OFFSET_BUF

	ADC_AVER (0036H)
	ADC_AVER

	ADC_DATA (0037H-003EH)
	ADC_DATA

	DAC_OFFSET (003FH-0040H)
	DAC_OFFSET

	CAV_STROBE_DELAY (0041H)
	CAV_STROBE_DELAY

	CAV_TRIGER_DELAY (0042H)
	CAV_TRIGGER_DELAY

	DAQ_DELAY (0043H)
	DAQ_DELAY

	CTRL_ACTIVE (0044H)
	CTRL_ACTIVE

	SSETPOINT_I (0045H)
	SSETPOINT_I

	SSETPOINT_Q (0046H)
	SSETPOINT_Q

	ROT1 (0047H-004EH)
	ROT1

	ROT2 (004FH-0056H)
	ROT2

	ROT1_BUF (0057H-005EH)
	ROT1_BUF

	ROT2_BUF (005FH-0066H)
	ROT2_BUF

	SGAIN_I (0067H)
	SGAIN_I

	SGAIN_Q (0068H)
	SGAIN_Q

	SFEEDFORWARD_I (0069H)
	SFEEDFORWARD_I

	SFEEDFORWARD_Q (006AH)
	SFEEDFORWARD_Q

	COMP1 (006BH)
	COMP1

	COMP2 (006CH)
	COMP2

	COMP1_BUF (006DH)
	COMP1_BUF

	COMP2_BUF (006EH)
	COMP2_BUF

	CTRL_DET_I (006FH-0076H)
	CTRL_DET_I

	CTRL_DET_Q (0077H-007EH)
	CTRL_DET_Q

	CTRL_VMOD (007FH)
	CTRL_VMOD

	CTRL_OUT_I (0080H)
	CTRL_OUT_I

	CTRL_OUT_Q (0081H)
	CTRL_OUT_Q

	CAV_DELAY (0082H)
	CAV_DELAY_IN
	CAV_DELAY_OUT

	MATRIX_A12 (0083H)
	MATRIX_A12

	MATRIX_A1_21 (0084H)
	MATRIX_A1_21

	MATRIX_A1_22(0085H)
	MATRIX_A1_22

	MATRIX_A2_21 (0086H)
	MATRIX_A2_21

	MATRIX_A2_22 (0087H)
	MATRIX_A2_22

	MATRIX_A3_21 (0088H)
	MATRIX_A3_21

	MATRIX_A3_22 (0089H)
	MATRIX_A3_22

	MATRIX_B1_1 (008AH)
	MATRIX_B1_1

	MATRIX_B2_1 (008BH)
	MATRIX_B2_1

	MATRIX_B3_1 (008CH)
	MATRIX_B3_1

	PARAM_H (008DH)
	PARAM_H

	PARAM_P (008EH)
	PARAM_P

	SBEAM_I (008FH)
	SBEAM_I

	SBEAM_Q (0090H)
	SBEAM_Q

	CAV_IN_I (0091H)
	CAV_IN_I

	CAV_IN_Q (0092H)
	CAV_IN_Q

	CAV_OUT_I (0093H)
	CAV_OUT_I

	CAV_OUT_Q (0094H)
	CAV_OUT_Q

	CAV_VMOD (0095H)
	CAV_VMOD

	CAV_DETUN (0096H)
	CAV_DETUN

	CAV_MODE1 (0097H)
	CAV_MODE1

	CAV_MODE1D (0098H)
	CAV_MODE1D

	CAV_MODE2 (0099H)
	CAV_MODE2

	CAV_MODE2D (009AH)
	CAV_MODE2D

	CAV_MODE3 (009BH)
	CAV_MODE3

	CAV_MODE3D (009CH)
	CAV_MODE3D

	CAV_VV (009DH)
	CAV_VV

	GENER_STROBE_RANGE (009EH)
	GENER_STROBE_RANGE

	GENER_TRIGER_RANGE (009FH)
	GENER_TRIGGER_RANGE

	TSETPOINT_I (0800H-0FFFH)
	TSETPOINT_I

	TSETPOINT_Q (1000H-17FFH)
	TSETPOINT_Q

	TFEEDFORWARD_I (1800H-1FFFH)
	TFEEDFORWARD_I

	TFEEDFORWARD_Q (2000H-27FFH)
	TFEEDFORWARD_Q

	TGAIN_I (2800H-2FFFH)
	TGAIN_I

	TGAIN_Q (3000H-37FFH)
	TGAIN_Q

	TBEAM_I (3800H-3FFFH)
	TBEAM_I

	TBEAM_Q (4000H-47FFH)
	TBEAM_Q

	DAQ1 (4800H-4FFFH)
	DAQ1

	DAQ2 (5000H-57FFH)
	DAQ2

	DAQ3 (5800H-5FFFH)
	DAQ3

	DAQ4 (6000H-67FFH)
	DAQ4

	I/O specification list by names
	LLRF PLATFORM DESCRIPTION
	DSP EMBEDDED BOARD SPECIFICATION

	Fundamental technical data of the 8-channel LLRF control mod
	Exemplary scope pictures of SIMCON system outputs
	Exemplary results of CHECHIA real-time control
	Exemplary pictures of ACC1 module real-time control
	References

