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Abstract

A general form of Slater's formula, taking into account perturbations of Electric as well as
Magnetic Mirror boundaries is presented. The frequency shift induced by the Magnetlc Mirror
perturbation has the opposite sign to that of the Electric one.

Introduction

The procedure shown in Fig. (1) is often used to compute frequency shifts induced by
"small" deformations of a cavity {1] under the effects of various forces: helium bath pressure,
thermal stresses, tuning [2] or Lorentz forces [3].
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FIG. 1 - Procedure to compute “small” frequency shifts.

Such scheme is very useful to evaluate the effect of “small” perturbations of the cavity
shape because it provides good and fast estimates of the frequency shift without need for time
consuming field codes that may moreover introduce errors of the same order of the frequency
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shift itself because of their finite discretization of boundary wails.

The computational scheme is however not as simple as it appears at a first glance. For
instance a not completely rigorous application of Slater's theorem may produce an overestimate
of the frequency shift, in particular when a cavity oscillating in a nt - mode is shortened under
the effects of the perturbation. Recall in particular that calculating the frequency of an
accelerating © — mode with a field code requires imposing Magnetic Mirror boundary
conditions on the iris planes.

We discuss in the next section a general derivation of Slater's theorem taking into account
both Electric (EM) and Magnetic Mirror (MM) boundary conditions.

Discussion of Slater's theorem

The frequency shift of a resonant mode under the effect of a perturbation of the cavity
wall is computed from the well known Slater's formula [4}:

dw, _ |
Soee e -wa .
where:
— 1 :
U= -{IJ‘(%E2 +uH Jdv @)
v

is the average energy stored in the cavity volume V and &v* is the volume variation caused by
the deformation at the neighborhood surface S representing the cavity wall. It is important to
stress that S is a perfectly conducting wall, on which EM boundary condition: o X E =0
applies.

The formula is incorrect for all perturbations of a MM boundary S’ where-n x H =0, as
for example in the case of a deformation of the iris plane considering the TM010; accelerating
mode. This situation can occur for perturbations leading to shortening of the cavity, see Fig.
(2).

A more general Slater's formula, taking into account the pertubation of EM as well as
MM boundary and also the possible existence of a beam current density J is the following [5}

%)Vl:%—j (eE? —uon)dv+Z% J.(uon—soEz)dv+
&'  Vald 3)
+ 4_13:101\, J‘(J - E')dv

v

The first term coincide with eq. (1), the second is valid on the iris plane and has the
opposite sign than the first, the third accounts for the beam loading effects. -
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FIG. 2 - A schematic drawn of a cavity perturbation. The Slater's theorem must be applied
not only in regions §v* where 8 < 0 but also in region dv** where dw > 0 in the accelerating
mode.

To demonstrate eq. (3), we perform a modal expansion of the wave equation.
Let E and H be written in terms of the cavity field functions {e,,hy} within a volume V
as follows:

E(x,y.2.0)=Zya,(0)ey(x,y,2)ed Oyt H(x.y,z,0)=Zyby(Ohy(x,y,2)ei Oyl 4)

where {e,,h,} must satisfy the following equations:

[sf+ ke2]e=0 [V2+ ky2)hy=0 (5)
within a volume V, where k,=w\/c. For solenoidal fields we have:

Ve eum0 Vehy=0 ©®
and the boundary conditions are (EM over a surface S and MM over another surface §'):

nxe,=0 overS n xhy=0 over§ (7a)
n-h,=0 overS n-e,=0 over§ (7b)

where n is a unit vector pointing outwards from the cavity surface. The normalization
conditions are:

JIV eV‘EP‘ dV = 5\'}1 JV hv'hp* dv = Sv” (8)
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and the coefficients au(t), by(t) in eq. (4) are given by:

ay = Jl E-e,*dv by = J H-h,*dv
v v

From Maxwell's equations we have:
V X evzkvhy V X hv:kyev

and the average stored energy is:
U—l 2 _1 b2 |
2t {af = E o
From the wave equation

vig. LIE_ 3

S

we obtain for each component of the field amplitude the following relationship:

1 dza d . *
.C_Z.Ft-él.g-kaav:—uo.a; J‘(J.ev)dv—J(nXH)'evdS +

v 5s*

__kv J(n x E) . h:,dS

&..
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(12)

13

where 8s* and 8s** are closed surfaces obtained joining the perturbed and the un-perturbed
surfaces of the EM and MM type respectively. in the last equation we take into account the
contributions of the surface current Jo=nxH (second integral) and of the fictious magnetic
surface current J,=nxE (third integral), which appear at the discontinuity in the tangential
component of the fields H and E respectively, on the perturbed surfaces (see [4] chapter IV).

The first integral accounts for the contribution of the beam current.

Setting now
E=av(l)ev H=bv(t)hv

the surface integrals in (13) become:

(14)
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=a, (h:, k., -e,- k\,e;)dv

iy | (h2-e2)av o

6\"‘.

where we applied the divergence theorem to the volume 8v** enclosed by the surface 85"* and:

j(n x byh,)-eids = kb, I(e?, —h})dv

&* .

= JW,EA, J‘(ca - h%)dv

&

(16)

where §v* is the volume enclosed by the surface 8s* and we have used the equality
k,b,=ju£,a, derived from Maxwell's equations for a source free cavity.

Introducing the above integrals in (13}, calculating the temporal derivatives da,/dt=jwa, (where
© is the frequency of the perturbed cavity) and multiplying both sides of (13) by a,* , (a-a.* =
layI2), we get:

[a)fi —w? ]a\,[2 = —aof,|a\,|2 J(63 ~ h%)dv - (!)3r|3v|2 J.(hi —e%)dv +
5v* v

(17)
‘jW&ZJ(J-E')dv

v
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To t"ustr order in &, , sening w=mw+8m, we ﬁhally oﬁtain:

%%‘i =~;—J(c3 -hf,)dv +% J‘(h\z, —-ef’,)dv +

&' '

j - (18)
+_—28J3v|203v J(J E )dv

v

that because of (11) and (14) is identical with (3).
Example

We have computed frequency and fields of a TESLA cavity with an improved version of
SUPERFISH that performs a discretization of the Helmoltz equation over an irregular triangular
mesh of up to 32000 points. The electric surface field amplitude is computed from the relation:
E=(1/kr)o(rH)/d £, £ being the path coordinate along the cavity boundary. Because the quantity
rH(r,2) is discretized up to second order on the mesh points, a three point numerical derivation
of the electric field was used to obtain the field to second order also [1].

As an example of the importance of using the complete Slater formula (3), note that
shontening the TESLA cavity by 10-3 mm, by cutting off a slice at the iris plane - where
Magnetic Mirror condition have been imposed - while leaving the rest of the cavity unchanged,
gives according to eq. (3) a frequency shift of +2.031 KHz in agreement with SUPERFISH.

This result is compared in Fig. (3) to the frequency shifts induced by a "cut” of the same
size on a Electric Mirror boundary of the same TESLA cavity.
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Fig. 3 - Generalized Slater's formula (3) results: frequency shifts induced by shortening the
TESLA cavity by 10-3 mm, by cutting off a slice at either the iris or at the equator plane - where
different boundary condition are imposed - leaving the rest of the cavity unchanged.
(Unperturbed frequencies are: 0_TMp;o = 1276.667 MHz and n_TMo;o = 1301.016 MHz).
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