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Abstract

The paper presents comprehensive analysis of statistical properties of the radiation from self am-
plified spontaneous emission (SASE) free electron laser operating in linear and nonlinear mode.
The investigation has been performed in a one-dimensional approximation assuming the electron
pulse length to be much larger than a coherence length of the radiation. The following statistical
properties of the SASE FEL radiation have been studied in detail: time and spectral field corre-
lations, distribution of the fluctuations of the instant radiation power, distribution of the energy
in the electron bunch, distribution of the radiation energy after monochromator installed at the
FEL amplifier exit and the radiation spectrum. Linear high gain limit is studied analytically. It
is shown that the radiation from SASE FEL operating in linear regime possesses all the features
corresponding to completely chaotic polarized radiation. Detailed study of statistical properties of
the radiation from SASE FEL operating in linear and nonlinear regime has been performed by
means of time-dependent simulation codes.

All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at
the TESLA Test Facility being under construction at DESY.
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1 Introduction

Self amplified spontaneous emission free electron laser (SASE FEL) [1, 2, 3, 4] is considered
now as perspective source of coherent VUV and X-ray radiation. The projects of X-ray
SASE FELs are developed at SLAC and DESY [5, 6] and 6 nm SASE FEL is under
construction at the TESLA Test Facility (TTF) at DESY [7, 8]. The first phase of the
TTF FEL project will operate at the radiation wavelength 40 — 100 nm [9]. Peak brilliance
of the SASE FEL radiation will exceed by 6 — 10 orders of magnitude the corresponding
value available at the third generation synchrotron radiation sources. That is why the plans
of future experiments with the SASE FEL radiation are intensively discussed nowadays
[10].

Correct design of the SASE FEL and planning of user’s equipment and experiments
depend strongly on knowledge of the radiation amplification process in the SASE FEL
and properties of the output radiation. The SASE FEL is a single pass FEL amplifier
without external seeding. The process of amplification in the SASE FEL starts from the
shot noise in the electron beam having stochastic nature. It means that the SASE FEL
radiation is also stochastic object, that is why there exists definite problem for description
of the SASE FEL process requiring development of time-dependent theory of the FEL
amplifier. Till now there is no comprehensive theoretical results describing SASE FEL
process in detail. Some averaged output characteristics of SASE FEL have been obtained
in refs. [1, 2, 3, 12, 13, 14, 15, 16]. Quantum consideration of photon statistics in SASE FEL
has been performed in ref. [11]. An approach for time-dependent numerical simulations of
SASE FEL radiation has been developed in ref. [16]. Realization of this approach allowed
to obtain some statistical properties of the radiation from SASE FEL operating in linear
and nonlinear regime [16, 17].

Nevertheless, the previous studies do not give comprehensive description of the output
radiation from SASE FEL and the following statistical properties should studied in detail:

— Time and spectral field correlations;

— Statistics of the instantaneous radiation power;

— Statistics of the finite-time integrals of the instantaneous power;

— Statistics of the radiation energy after the monochromator installed at the exit of SASE
FEL;

— The shape of the radiation spectrum;

— Photoelectric counting statistics of SASE FEL radiation.

This paper gives comprehensive answers on all the above mentioned problems describ-

ing statistical properties of the radiation from SASE FEL operating in linear and nonlinear



TESLA FEL-Report 1997-02

regime. The investigation has been performed in a one-dimensional approximation. Prac-
tically important case is considered when the electron pulse length is much larger than a
coherence length of the radiation. Linear high gain limit is described analytically. Ana-
lytical formulae for the first and the second order time and spectral correlation functions
have been obtained. It is shown that the radiation from SASE FEL operating in the linear
regime possesses all the features corresponding to completely chaotic polarized radiation.
In particular, the higher order correlation functions (time and spectral) are expressed
via the first order correlation function, the probability density distribution of the instant
radiation power follows the negative exponential distribution and the probability density
function of the finite-time integrals of the instantaneous power and of the energy after
monochromator follows the gamma distribution.

More detailed analysis of the SASE FEL operation is performed by linear and nonlin-
ear time-dependent simulation codes. These codes have been constructed on the base of
existent steady-state 1-D code package FS1D [21] using time-dependent technique devel-
oped in ref. [16]. For precise reconstruction of the radiation spectrum a special technique
has been developed using Fourier transformation of the first order time correlation func-
tion. Using statistical analysis of a large number of runs we calculated numerically all
characteristics of the radiation from SASE FEL operating in linear and nonlinear regime.

Evolution of the radiation spectrum has been traced from the beginning of the am-
plification process up to deep nonlinear regime. In particular, it 1s demonstrated that
at the beginning of the SASE FEL process the spectrum shape exactly corresponds to
the spectrum of the undulator radiation. Averaged spectrum of the radiation from the
SASE FEL operating in the nonlinear regime has been calculated for the first time. It has
been shown also that statistics of the radiation from SASE FEL operating at saturation
changes significantly with respect to the linear mode of operation.

The paper is organized as follows. Statistical properties of the shot noise in the electron
beam and analytical treatment of the high-gain linear mode of SASE FEL operation is
presented in section 2. The photoelectric detection of the SASE FEL radiation is discussed
in section 3. The time-dependent simulation algorithms are described in section 4 and the
results of numerical study of the SASE FEL process are presented in section 5.

To be specific, we calculated all the numerical results for the 70 nm SASE FEL at the
TESLA Test Facility being under construction at DESY [9]. Nevertheless, they can be
simply scaled for calculation of another SASE FELs by means of application of similarity
techniques (see, e.g. ref. [20, 21}).
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2 Analytical treatment of statistical properties of SASE FEL radiation in a
high-gain linear regime

In the linear mode of operation the SASE FEL can be treated as a narrow band linear
device which filters a wide band random input signal - shot noise. General property of such
devices is that an output signal is a Gaussian random process. In other words, the output
signal is composed of a multitude of independent additive contributions and, according
to the central limit theorem, this leads to Gaussian statistics. It does not mean that any
considered physical variable is distributed in accordance with the Gaussian probability
density function. For instance, in the case of SASE FEL the real and imaginary parts of
slowly varying complex amplitudes of electric field of electromagnetic wave at the FEL
amplifier exit have Gaussian distribution. On the other hand, the instantaneous power, the
finite-time integrals of the instantaneous power and the spectral density of the radiation
energy have the other distributions as it will be shown below. Since electron pulse at the
entrance of SASE FEL has finite duration, we deal with nonstationary random process.
Analytical study of such a process in general case is very complicated, because short
electron bunch combines the features of input signal and “active medium” with time-
dependent parameters. In other words, SASE FEL is a parametric amplifier. Analysis of
design parameters of VUV and X-ray SASE FELs [5, 6, 7, 8, 9] shows that the feature of
these devices is that the bunch length is much larger than the radiation coherence length.
This fact allows one to use such a model which provides the possibility of analytical
description without lost of essential information about features of nonstationary process
(correlations in spectrum, etc). Approximations satisfying these conditions are the using
of rectangular profile of the electron bunch and application of the steady-state spectral
Green’s function. In the frame of this model it becomes possible to describe analytically
all statistical properties of the radiation from SASE FEL operating in the high gain linear

regime.
2.1 Shot noise in the electron beam

Fluctuations of the electron beam current density serve as input signal in SASE FEL.
These fluctuations always exist in the electron beam due to the effect of shot noise.
When the electron beam enters the undulator, the presence of the beam modulation at
frequencies close to the resonance frequency of the FEL amplifier initiates the process of
the amplification of coherent radiation. The shot noise in the electron beam has statistical
nature which significantly influences on characteristics of the output radiation from SASE

FEL. In this section we study statistical properties of the shot noise in the electron beam.
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Let us consider microscopic picture of the electron beam current at the entrance into
the undulator. The electron beam current is constituted by moving electrons randomly

arriving to the entrance of the undulator:

= Zét—tk

where 4(...) is delta-function, (-e) is the charge of the electron, N is the number of
electrons in a bunch and ¢; is random arrival time of the electron to the undulator entrance.
The electron bunch profile is described by the profile function F(t) and the beam current

averaged over an ensemble of bunches can be written in the form:
< I(t) >=(—e)NF(t) . (2.1)
The probability of arrival of the electron at time interval ¢,¢ + dt is equal to F(t)dt. For
the Gaussian profile of the electron bunch function F(t) is of the form:
1 t?
F(t) = —— exp(— =
(1) = Zooexp(=357)

The electron beam current I(¢) and its Fourier transform /{w) are connected by Fourier

(2.2)

transformations :

I(w): /eth zwtk
—oa k=1
1 7 : N
—/ Je ¥ dw = (~ S(t—ty) . (2.3)
2 oo k:l

It follows from eq. (2.3) that the Fourier transform of the input current, 7(w), is the sum
of large number of complex phasors with random phases ¢, = wi;. If the characteristic
duration of a bunch or is long, wor > 1, then the phases ¢ can be considered to be
uniformly distributed on interval (—m, 7). Under this condition the probability density
distribution of | I(w) |? is given by the negative exponential distribution [19]:

; 1 RICHS

Fi 2y — _ —_— , 2.4
A = Jraps e ( < T(w) P> . 24
where < ... > means the averaging over ensemble of bunches.

Spectral correlation of the first order. Let us calculate the first order correlation of complex
Fourier harmonics [(w) and I{w'):

N N

<Iw"(w') >=€* < 3 Y exp(iwty — iw't,) >

k=1 n=1

Expanding this relation, we can write:
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N
< Hw)I*(W') >=€® < D exp[i(w — wte] > +€* < Y exp(iwty — iw't,) >
k=1 kn
N
=€’ <expli(w—w )] > +e* ) < expliwti) >< exp(—w't,) > . (2.5)
k=1 k#n

Taking into account relation (2.1) and the first relation in eq. (2.3) we obtain that

< exp(iwti) > is equal to the Fourier transform of the bunch profile function F(#):

< exp(iwty) >= / F(ty)e“Hdty = F(w) (2.6)

— 00

Fourier transform of the Gaussian profile function (2.2) has the form:

).
Substituting eq. (2.6) into eq. (2.5), we obtain:

- wiok

F(w) = exp(~

< Hw)*(W') >= €NF(w — )+ EN(N — )F(w)F* (W) .
In the case when

N|Flw)’<1, (2.7)
we can write the following expression for the first order correlation:

< I(w)I*(W') >= &NF(w — ). (2.8)

For specific cases of the Gaussian and rectangular profile of the electron bunch the first
order correlation of complex Fourier harmonics J{w) and I{w') has the form:

Gaussian profile:

A Y ]
< I(w)I*(w') >= e N exp [—&J———-——{;—)—az] , (2.9a)
rectangular profile:
T Twg @ 2 sin Lw__;,rg
< I(w)I (w) >=e€ N—W , (2913)

2
where T is the pulse duration of rectangular electron bunch.

Let us discuss practical applicability region of approximation (2.7). Physical sense of
relation (2.7) is that at given pulse duration o7, frequency w has to be large enough
(orw > 1). Let us consider specific numerical example for the case of Gaussian profile
of the bunch. At 7w = 10 we have | F(w) |*= exp(—100). As a tule, the number of the
particles the bunch N is not larger than 10", so condition (2.7) is fulfilled in practice.
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It is necessary to give some comments on the case of rectangular bunch. Formally in
this case the applicability region of condition (2.7) is less than for the case of the Gaussian
bunch of the same duration. This is due to the fact that the bunch form factor | F(w) |
decreases slowly with the frequency increase. On the other hand, in a realistic situation
there is no rigid boundary of the bunch and the beam current falls to zero value during
some time interval Ao, Ao <« T. When the beam current at the edge falls in accordance

with the Gaussian law, Aor must obey the following conditions:

AO’T N
— 1 1.
7 < 1, Aorw > 1, (Borw) (T2 &
In this case expression (2.9b} is valid within the boundaries:
1
— , r—
[ v =) < 7

Spectral correlation of the second order. Let us calculate the second order correlation of
complex Fourier harmonics I(w) and I{w'):

N N N N

< Hw) Pl 1) P>=e* < 3.3 SN expliw(tn = tm) + ' (t, — t,)] > .

n=1m=1 p=1 gq=1

The N* terms in this summation can be placed in 15 different classes (see, for instance,
ref. [19]). In the case when condition (2.7) is fulfilled, only two classes are of importance

with (n =m, p= ¢, n # p) and (n = g, m = p, n # m). Thus, we can write:
<) Iw) P I(w) Po=<| I{w) *><] I(W") *> + |< T(w) (W) >2. (2.10)
Substituting eq. (2.8) into eq. (2.10) we obtain:

<| I{w) "] I(') P>= e!N*(1+ | Flw—w') ). (2.11)
2.2 Green’s function

In the framework of the one-dimensional model and when the effects of the space charge
field and energy spread in the beam can be neglected, operation of the FEL amplifier
is described in terms of the gain parameter I” and the efficiency parameter p (see, e.g.
refs. [3, 20, 21}):

2n2jo k243, ° AT
_ | AT 08 Ay - 2.12
r [ LAy P (2.12)

where Ay is the undulator period, K = eAy Hy /2mmc? is the undulator parameter, H,, is
the undulator magnetic field, jo is the beam current density, (—e) and m are the electron
charge and mass, [4 = mc®/e > 17k A, w is the radiation frequency, Ay; = Jo(v) — J;(¥)
and v = K?/(4 + 2K?). In this paper all formulae are written for the case of a planar

undulator.
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In the previous section we have shown that due to the shot noise there is density mod-
ulation of the electron beam at the undulator entrance. It follows from the steady-state
theory of the FEL amplifier that when the electron beam is modulated at frequency w
at the undulator entrance, this initiates the amplification process of the electromagnetic
wave having the same frequency. One-dimensional model assumes that the plane electro-
magnetic wave E = E(z)exp[iw(z/c — t)] + C.C. is amplified in the FEL amplifier. In
the linear high-gain regime the amplitude of the electromagnetic field grows exponentially
with the undulator length:

~

E(z) oc exp[Az] , (2.13)
where A is the growing root of the eigenvalue equation (Re A > 0):
AA+iC) =47 . (2.14)

Here ¢ = [2r/Aw — w(1 + K?*/2)/(2¢7*)] is the detuning of the particle from resonance.
Near the exact resonance, at | C' |« I', we have the following solution for the growing

root (see, e.g., ref. [21)):

2
Re/i=§(1—%), 1m/i=%(1—%), (2.15)
where A = A/, ¢ = C/T = (wo — w)/2pwy is the detuning parameter and wp =
drey? [[Aw(1 + K?/2)] is the resonance frequency.
When modulated electron beam is fed to the undulator entrance, the solution of the
initial-value problem in a high-gain limit has the form at w > 0 (see, e.g. ref. [21], Ap-

pendix B):

Ew2) = —l-exp (Z%z> exp [ﬁ(l - 0_2)2 + %(1 - E) J(—W) ) (2.16)

EU 3 2 9 3 j{]

where E(w,z) and j(w) are, respectively, Fourier components of electric field of the wave
E(t,z) and of the beam current density j7(¢) at the undulator entrance and 2 = I'z. At
w < 0 the Fourier harmonic is defined by relation E*(w,3) = E(—w,3?). Normalizing

factors Ey and jo are given by the expressiona:
Eo =87p°v* 14/ (AwcK Ayj) , jo=1/S,

where S is the transverse area of the electron beam.

In the framework of accepted approximations we can consider Fourier component of
the input signal in eq. (2.16) as a Fourier component of the shot noise signal. Transversely
coherent fraction of the input shot noise signal is defined by the total beam current [18],

850

= , (2.17)
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where Ij is the average beam current. For the case of rectangular bunch Iy = (—e)N/T.

Using eqs. (2.16) and (2.17) we can write:

)2 }
<| E(w) [*>= Aexp [-(ii;;‘ii} <|Iw) P>, w>0, (2.18)
A
where
I . 2 pwo
A=—(—) 33) _ 3,/ 2% 2.1
s\ 7, ) V), =3 A .19

In the following we will analyze in detail the case of rectangular profile of the electron

bunch and assume pulse duration T' to be large,

oalT > 1. (2.20)

It follows from eq. (2.19) that the FEL amplifier bandwidth o4 is of the order of pwy, so
condition (2.20) can be rewritten as follows

pwol > 1. ' (2.21)

This relation means that the steady-state Green’s function (2.16) can be used for cal-
culation of the Fourier harmonics of the output field. The value pwoT is of the order of
10?2 = 10® for modern projects of VUV and X-ray SASE FELs [5, 6, 8, 9}, so the obtained

result can be used for practical calculations.

2.3 Analysis of radiation properties in frequency domain

Fourier amplitude of the electric field at the exit of SASE FEL operating in the linear
high-gain regime can be written as follows:

E(w) = Halw —wo)lw), w>0, (2.22)

where H(w — wp) 1s the Green’s function (see eqs. {2.16) and (2.18)). For many appli-
cations and for diagnostic measurements of SASE FEL radiation a monochromator will
be installed at the FEL amplifier exit. In the present treatment we assume that such a
monochromator has symmetric transmission function H,,(w — wp) with central frequency
wo corresponding to the maximum of the FEL gain curve. In this case the expression for
E(w) takes the form:

E(w) = Hp(w — wo)Halw — wo) I (w) w>0, (2.23)
It follows from eq. (2.23) that statistical properties of the Fourier amplitudes E{w) are
defined by statistical properties of the Fourier amplitudes of input current I(w). In par-
ticular, it follows immediately from eq. (2.4) that | E(w) |* is distributed in accordance

with the exponential probability density function:



TESLA FEL-Report 1997-02

I ) P) = s o (= poas ) - 224

T <TE@ P> T W) >
It should be noted that such a distribution is the feature of completely chaotic polarized
radiation (see ref. [19] for more detail).

The first order spectral correlations. The first order spectral correlation function is defined
as
< E(w}E*(W') >
gi(w,w’) = - ( . 77 - (2.25)
[<| Bw) P>< B(w) |*>]

Substituting egs. (2.23) and (2.8) into eq. (2.25) we obtain analytical expression for the
first order spectral correlation function of the FEL amplifier with rectangular electron

bunch:

sin w—w )T

—;—;;rzi,—. (2.26)
2

g1(0,) = Flw — o) =

We define the spectral coherence as follows:

Aw, = f | gi(w — w') 2 d(w — ') . (2.27)
The value of the spectral coherence for the case of rectangular bunch is equal to:
2
Awe =T (2.28)

The second order spectral correlations. The second order spectral correlation function is
defined as
, <| E(w) [*| E(w') [*>
) = LB FLB P>
<| BE(w) *><| E(w') |*>
Using egs. (2.23), (2.11) and (2.29) we obtain that the first and the second order correlation

functions are connected by the relation:

(2.29)

g2(w,w’) = 1+ | 1w, ) *, (2.30)

which 1s also general property of completely chaotic polarized radiation. Explicit expres-
sion for the second order spectral correlation function of the FEL amplifier with rectan-
gular electron bunch has the form:

. ot
sin® [L—--—)—“ ; T]

G(w,w') =14+ ———r— e (2.31)
4

10
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Fluctuations of the radiation energy at the exit of the monochromator. The next problem
is description of the fluctuations of the radiation bunch energy W at a detector installed
after a monochromator with finite bandwidth. From the expression for Pointing’s vector

and Parseval’s theorem we have

S T -
W= = _0[ | B(w) |? dw, (2.32)

Taking into account eq. (2.23) we can write the expression for the average energy measured
by the detector:

ST o, _ce’SN
<W>_m!<|E(w)| > dw = o,

f | Hon(w —wo) 2] Halw —wo) * dw.(2.33)

It is seen that the average energy is the function of the frequency profile of the monochro-
mator and of the gain profile of the FEL amplifier.

The normalized dispersion of the energy distribution is calculated as follows:

W <wsps 4l <|E@) P EW) P>

<W>? [ dw <| Ew) [2> [ dw' <| E(w) |2>
Q 0

ol =

~1. (2.34)

Using definition (2.29) of the second order correlation function and relation (2.30) we

reduce this expression to the form:

[ dw [ do’ <| B(w) [2><| B(w") [>] g1(w', ") |
0 0

(2.35)

2
ow = 00 _ 00 _
[ dw <| E{w) [*> [ dw' <| E(w) |2>
0 a

Analysis of this expression shows that the energy deviation after monochromator is func-
tion of the frequency profile of the monochromator, of the gain profile of the FEL amplifier
and of the electron bunch form factor.

Let us derive analytical expressions for the energy dispersion after the monochromator
for the cases of a Gaussian and rectangular profile of the monochromator line. Rectangular

line of monochromator is defined as (w > 0):

A

| Hnw-w)P=1 at |o-—w|< =
Aw,

| Ho(w —wo) 2P=0  at  |w—uwp|> -;"— (2.36)

and the Gaussian line of the monochromator is defined as
1 (w—wp)?
—wp) |*= S L 2,
e 237)

11
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Substituting expressions (2.23), (2.18), (2.26) and (2.36) into eq. (2.35) we obtain the
expression for the radiation energy dispersion after monochromator for the case of the
rectangular monochromator line:

T, A, \171 . A, e 1 — cos{ A,
ol = [—Q-c;rAerf2 (2\/5&,4)} {\/FJAerf ( %, ) lSl(ﬂwm) — —Zé.;_l
~2

+exp (— ﬁ;"éﬂ) [Ci( Adm) — In(Adm) — G]} : (2.38)

where Abm = AwnT, 64 = 04T is G = 0.577... is Euler’s constant, erf(...) is error
function, and Ci(...) and Si(...) are integral sine and cosine, respectively [22].

The corresponding expression for the case of the Gaussian monochromator line is as

follows:
o = \{f/erf(w)d:c : (2.39)
7%
where
5= —atTm G = 0T .

Voi+en
Let us study asymptotical behavior of the expressions (2.38) and (2.39). When the

monochromator line is much narrower than the interval of spectral coherence (2.28), the

normalized dispersion tends to unity:
ol ~1 at (Awn,T , o,T) K 1. (2.40)

When the monochromator line width is much larger than the spectral interval of coherence
and much less than the FEL amplifier bandwidth, the dispersion is inversly proportional

to the monochromastor line width:

0;24, ~ 437.:,7‘ at 1 € Aw,,T <« g4T for rectangular line,

oy ~ X at 1€ o,T K 04T for Gaussian line . (2.41)

When the monochromator line width is much larger than the FEL amplifier bandwidth,
the fluctuations are defined by the FEL line width:

oby o~ ﬁ at (Awm , Om) > 04 . (2.42)
O'AT

The next practical problem is to find the probability density distribution of the radi-
ation energy after monochromator, p(W). In general, this problem has no exact solution

and we use an assumption for an approximate form for such a distribution which will be

12
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confirmed below with the results of numerical simulations. This assumption is based on
the above proved statement that the radiation from SASE FEL possesses all the features of
completely chaotic polarized radiation. Using arguments similar to that of ref. [19] (Chap-
ter 6) we suppose that the distribution of the radiation energy after the monochromator

is described rather well by a gamma probability density function:

MM W oMt w
= — -M 2.
PW) F(M)(<W>) <W>eXP( <W>) ’ (2.43)
where I'(M) is gamma function of argument M and
1
M=——. .
= (2.44)

This distribution provides correct values for the mean value of W and for the dispersion
2 1/M:
o = 1/M:

W— < W >)? 1

<z PV =47

7Wp(W)dW =< W >, ]G(

Parameter M can be interpreted as the average number of “degrees of freedom” or
“modes” in a radiation pulse. It follows from eq. (2.35) that this parameter can not
be less than unity. When M tends to unity, the distribution (2.43) tends to the nega-
tive exponential distribution (2.24). When M > 1, the distribution (2.43) tends to the

Gaussian distribution.
2.4 Analysis of the radiation properties in time domain

In the previous section we described statistical properties of the output SASE FEL ra-
diation in the frequency domain. In this section we perform similar investigation in the
time domain.

Let us start with calculation of slowly varying complex amplitude £(t) of the electric

field at a given distance from the undulator entrance, 2 = I'z. Using expressions (2.22)
and (2.16) we obtain:

~ - N _ —
E(t) puol’ exp [(\/3 + z’)f] L Z exp(iwpts) exp [— 7alt—ts tk)z] ,  (2.45)

Es  \[\f3nz 2| N & 2
where
z 1+ K?%/2
“—z(”—ewz—) !

and o4 is defined by expression (2.19). Since o4 =~ pwo is much less than wg, we can
approximately let the amplitude and the phase of each random phasor contributing to the
sum in eq. (2.45) to be independent of each other, and phases to be uniformly distributed

13
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on interval (—m, 7). Thus, with such an accuracy the distribution of the instantaneous

radiation power P | E |? is the negative exponential distribution:
- 1 | E(t) |?
p(| E(t) [) = ———o——ex (——n—-—— . 9.46
The first order time correlations. The correlation between the radiation fields at time
moments ¢ and # has the form:

< B(t)E(

':"6-

) > exp [—iwolt — ¢')] =

| =

dw [ dw' exp(—iwt + w't') < E(w)E*(W') >=

T2

.

| -

d [ du exp(=iwt + iw't’) [<] B(w) P><| B@) 5] Flo—w) . (2.47)

T2

=N

0\8 Q\g

Here formulae (2.25) and (2.26) have been used when rewriting the integral. In this
paper we use approximation (2.21) which assumes the interval of spectral coherence,
Aw, = 2n/T, to be much less than the FEL amplifier bandwidth, o4 =~ pwy. Using this
approximation we can simplify the integral in eq (2.47) in the following way. We substi-

tute the expression in square brackets by <| E{w) |*> and after integration over w and
Aw = {w — w') we obtain that

< EQt)E™(t") > exp [—iwo(t — )] =
#_{o d(Aw) exp(~iAwt)F Df wexp [—tw(t — t')] <| E(w) |*>=
E—S—) fdw exp [—iw(t — t')] <| E(w) |*>, (2.48)

where F(t) is the radiation pulse profile. For slowly varying complex amplitudes the time

correlation function of the first order is defined as follows:
< E()E~t) >

ai{t — t’) = - ~ 1/2
[<| Et) P><| E¥) [2>]

(2.49)
Using formula (2.48) we can write
T o <] E(w) > exp ifu = wo)lt = £)]
[ dw <| B) >

Remembering relation (2.22), we rewrite this expression in the following way:

a(t—t)=
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T d(Aw) | Ha(dw) | exp[—iAw(t — ¥')
at-t)=="2

& ) (2.50)
_:ofo d(Aw) | Ha(Aw) |2

where Aw = (w — wp). It follows from this expression that the correlation function of the
first order, g;, has the real part even with respect to (¢ — #') and the imaginary part odd
with respect to (¢t —t') ). When the FEL gain curve is symmetric with respect to the
resonance frequency, wy, function g is real. In the high-gain linear regime the FEL gain
function | H4(Aw) |? is symmetric (see eq. (2.18)), and we obtain the following expression

for the first order time correlation function:

(1} =ex _szwgrz)
251 = p \/§2 ’

where 7 = (t — t'). Following the approach of ref. [24], we define the coherence time 7. as

(2.51)

= [ la(r) Par. (2.52)

When SASE FEL operates in the high gain linear mode the explicit expression for the

coherence time is

_ VT [VarE 1

oA 18 pwy

(2.53)

c

As a rule, the Michelson interferometer is used for the measurement of the first or-
der time correlation function, ¢;1(r). Changing the pathlength difference in the scheme
of interferometer one gets the interferogram — the dependence of the average (shot to
shot) intensity on the pathlength difference. The module and the phase of the first order
correlation function are reconstructed using this interferogram.

It should be noted that the FEL gain curve can be reconstructed from the first order
time correlation function. Indeed, functions ¢,(7) and | H4(Aw) |* are connected by the

Fourier transformation
| Ha(Aw) |2
J d(Aw) | Ha(Aw) |

- % [ dro(r)exp(~idwr) . (2.54)

Such a technique for spectrum reconstruction is named as Fourier spectroscopy and is

widely used for optical measurements.

The second order time correlations. The correlation between the radiation intensities at

time moments ¢ and ¢’ has the form;
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<| E(t) | E(t)

16W4fdw1/dw fdng

f dwg exp [—i(wn — w2)t + i(ws — wa)t'] < Blwn) E(ws) E*(wo) B*(ws) > - (2.55)

Taking into account expressions (2.22) and (2.7) we can simplify the correlation in the
integrand of eq. (2.55) in the following way:

< E'(wl)E_'(wg)E'*(ngE*(w4) >=< E(W1)E*(WQ) >< E'(wg)E*(w4) >+
+ < E(w)E*(wq) >< E(ws)E*(wy) >, (2.56)

and present integral (2.55) as a sum of two terms. To calculate the first term one should
take into account egs. (2.25), (2.26), (2.48) and (2.21) which leads to

/dwz exp [""i(&h i L:JQ)t] < E(M)E*(wz) > %
0
1 7.7 ‘ o
[ dws [ dwsexp [=ifws — wi)t] < B(w) B (wi) >=
0 0

1 7 7 , _ = 1/2 =
. f dwn f dun exp [—i(w, — wa)t] [<| B(wr) P><| B(wn) 5] Flwr — ws) x
0 1)

oo

! [ do <] B(w) P> [ d(aw)exp(~idut)F(au) x

0

[ < B@) P> [ dAw) exp(~iduwt) F(Aw) =

<| E(t) >><| Bt P> . (2.57)
In the same way we obtain the expression for the second term. Finally we obtain:
<| E@) ] E(t") P>=<| E(t) *><| E(t") *> + |< EQE*(t") >|* . (2.58)

The second order time correlation function is defined as follows:

<| E(t) PLE(®) P>

t—t) = = - 2.59
“t=8)= TE@) o<l ) P> (239
It follows from eq. (2.58) and definitions of g,(¢ — t') and g2t — t) that
gt—t)=1+alt-t) " . (2.60)
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For the SASE FEL operating in the high-gain linear regime the explicit expression for the
second order time correlation function is (see eqs. {2.51) and (2.60)):

18p2w372)

¢(7) =1+ exp (——\/_33-— (2.61)

Relations {2.46) and (2.60) shows that the SASE FEL radiation is completely chaotic

polarized radiation (see also relations (2.24) and (2.30) obtained in frequency domain).

Fluctuations of the energy in the radiation pulse. The next problem is the description of
the fluctuations of the radiation energy W detected during fimite time interval 67"
t+5T
W= [ P(1)dt .
t

It can be shown that such a distribution is described rather well by gamma probability

density function (2.43) with parameter M equal to [19]:

M =02 = ﬁerf(éT) 1 [1—e D], (2.62)
T (5T)2

where 8T = §To,. When 6T is less than coherence time 7, (2.53), parameter M tends
to unity and gamma distribution tends to negative exponential distribution. In opposite
case, when 6T >» 7. we can write:
M-——l —_ ﬁ — i
5T0’A (ST ’

and gamma distribution tends to a Gaussian one. At 47 = T we obtain relation (2.42).

(2.63)

Let us discuss the problem how to measure statistical properties of the SASE FEL
radiation. Typical pulse duration of existent projects of SASE FELs is of about a fraction
of picosecond. The resolution time of modern fast photoelectric detectors is much larger
than this value, of about a fraction of nanosecond, which allows to measure total energy of
the radiation pulse only. So, the measurement of the finite-time integrated instantaneous
power seems to be technically impossible. On the other hand, there is no such evident
technical limitations for measurement of statistical properties of SASE FEL radiation in
frequency domain. At sufficient resolution of the monochromator it seems to be technically
feasible to measure the first and the second order spectral correlation function as well as

the distribution of the radiation energy fluctuations at the exit of the monochromator.

3 Photoelectric Detection of SASE FEL Radiation

In this section we study the problem of photocount fluctuations in the detector of the
SASE FEL radiation. We assume that the SASE FEL radiation has full transverse co-

herence and time characteristics of radiation follow the laws described in the previous
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section. It has been shown above that the energy, W, in the radiation pulse reaching the
photodetector is unpredictable, we can predict the probability density p(W) only. In this
case the probability of detection of X photons is given by Mandel’s semiclassical formula
{19]:

P(K) = / (ajT:{V!)

where o = 7/hwy and 7 is the quantum efficiency of the photodetector. Using formula

exp(—alWW)p(W)dW , (3.1)

(3.1) we get the expressions for the mean and for the variance of K value [19]:

<I{2>—<K>2_ 1
< K >? < K>

<K>=a<W>, o= + a3, (3.2)

where o, = 1/M is given by formula (2.34). The expression for photocounts fluctuations

contains two terms. The first term corresponds to “photon shot noise”. The second one

corresponds to the classical fluctuations of the energy in the radiation bunch and takes its

origin from shot noise in electron bunch. The ratio of the classical variance to the “photon

shot noise” variance is equal to
<K >

=7

Parameter 4. is named as the photocount degeneracy parameter.

d¢

(3.3)

Let us consider a scheme with the monochromator installed in front of the photodetec-
tor. When monochromator linewidth is large, Aw,,, > Aw,, parameter M is equal to the
number of coherence intervals inside the monochromator linewidth and parameter 6, can
be interpreted as average number of photons detected within the coherence interval Aw:

Aw,
¢ = Awy,

In opposite case, at Aw, € Aw,, the value of parameter M is close to unity and parameter

) < K > at  Awng > Aw .

4. is equal to the average number of detected photons:
do~< K > at Awp € Aw, .

When SASE FEL operates in the linear regime, the probability density of the energy
after monochromator, p(W), is the gamma distribution (2.43). Substituting (2.43) into
Mandel’s formula (3.1) and performing integration we come to the negative binomial
distribution [19]:

I'(K + M) ( L)‘K (1+<K>)‘M
'K+ 1)I'(M) < K> M '

When parameter M tends to unity, the negative binomial distribution transforms to Bose

P(K) = (3.4)

distribution:
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<K >K
lim P(K) = s 3.5
oy FUE) (< K > +1)M* (3.5)

It means that the number of photons detected after the monochromator with the linewidth

Aw,, K Aw, is described approximately with Bose distribution (3.5).

It can be shown that the negative binomial distribution tends to the gamma distri-
bution (2.43) at large values of the count degeneracy parameter .. In particular, Bose
distribution tends to the negative exponential distribution (4, ~< K > in this case):

: <K >k 1 K
lim K+l — T K
<K>—o0 (< K > 41) <K >

T <K>P

For the further consideration we introduce the notion of the wave degeneracy parameter
dw which is equal to the average number of photons radiated by the SASE FEL inside the
spectral interval of coherence Aw,. Physically this parameter means the average number of
photons which can interfere, or, according to the quantum theory, the number of photons

in one quantum state (one “mode”). The wave degeneracy parameter can be calculated

as Tollows

BX3
W= e

where B is the peak spectral brightness (or brilliance) of the radiation source and X is

(3.6)

the wavelength. The following definition of spectral brightness is used for transversely

coherent radiation:
_4AN,,
oAAY

where AN, is the photon flux within the spectral interval AX /A. When writing down

(3.7)

expression (3.7) the following definition for the emittance of the diffractionally limited

photon beam has been used (see, e.g. ref. [23]):

A

min (&;, .) = min(2r0,, 0, ») = 3"
Substituting expression (3.7) into eq. (3.6) we obtain:

o AN,

YA
The spectrum bandwidth AX/X is connected with the coherence time as!
32
= . 3.8
e T cAX (3.8)

Thus we see that parameter dw is equal to average number of photons radiated during
coherence time 7. [19].

! There exists different definition when the spectrum bandwidth is defined as full width at half maximum of the
spectrum {FWHM). These definitions agree well with each other. For instance, for the Gaussian shape of the
spectrum eq. (3.8) and FWHM definitions differ by a factor of (2In2/x)"/? =~ 0.7 only.
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Peculiar feature of SASE FEL is that the wave degeneracy parameter is always ex-
tremely large. Let us consider specific example of VUV SASE FEL at DESY [9]. At the
wavelength of A = 70 nm the spectral brightness (in practical units) is of about

B ~ 10%phot./(sec x mrad® x mm? x 0.1 % bandw.)

Substituting this value into formula (3.6) we obtain that parameter dy ~ 10*4. Typical
values of dw will be about 10'° = 10'? for X-ray SASE FELs.
The formula for calculation of the photocount degeneracy parameter 4. is given by
Awp,

8, = nTm 22" 5
YR

where T, is the transmission factor of the monochromator. Assuming the monochromator
linewidth to be of about Aw,/w ~ 107* and rms bunch length to be o, =~ 200 pum, we

obtain that the monochromator linewidth corresponds to one interval of coherence, i.e.
Awp > Aw,,  M~1.

Assuming that 5 ~ T}, ~ 107! we estimate the value of count degeneracy parameter to
be 4. = 10'* for the 70 nm SASE FEL at DESY. In accordance with expression (3.3) the
classical fluctuations are 10'? times larger than ”photon shot noise” fluctuations.

On the base of consideration performed in this section we can state that classical
approach is adequate for description of statistical properties of the radiation from SASE
FEL, and experimental investigations of these properties can be performed and interpreted

in the frame of classical theory.

4 Algorithms for numerical simulation of SASE FEL operation

Analytical considerations presented above refer only to the high gain linear mode of the
SASE FEL operation. To obtain more detailed information about the properties of the
SASE FEL operating in linear and nonlinear regime, numerical simulation codes should be
developed. Analytical results serves as primary standard for testing numerical simulation

codes.

4.1 Method for time-dependent simulation

Time-dependent algorithm for the simulation of the FEL amplifier should take into ac-
count the slippage effect which connected with the fact that electromagnetic wave moves
with the velocity of 1ight ¢, while the electron beam moves with the longitudinal velocity
v,. Electron motion in the undulator is a periodic one, so the radiation of each electron

E(z,t) is also periodic function:
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Elz,ty=f(z—ct)= flz —ct+ }),

with period
C=U Aw _ 14 K?/2
v
It seems to be natural to construct the following algorithm [16]. Suppose, we have
electron bunch of length {,. We divide this length into Ny = I, /A boxes. FEL equations

are used in each box for calculation of the motion of the electrons and evolution of the

A=A (4.1)

Uy _ﬁ_

radiation field within one undulator period, i.e. within Az = Ay I". The using of steady-
state FEL equations averaged over undulator period is justified by the fact that FEL
amplifier is resonance device with a narrow bandwidth (see eq. (2.18) remembering that
p < 1). Then we should take into account the slippage effect, i.e. that electromagnetic
radiation advances the electron beam by the wavelength A while electron beam passes
one undulator period. It means that the radiation which interacted with the electrons in
the 7 th box slips to the electrons located in the next, 7 + 1 th box. Then procedure of
integration is repeated, etc.

This algorithm allows us to calculate the values of radiation field for each box as
function of longitudinal coordinate z. Time dependence of the radiation field has the

form:
E(z,t) = E(z,1)e7 /=8 4 C.C. (4.2)

at any position along the undulator. Here we explicitly segregated slowly varying complex
amplitude E(z,). At any fixed point z along the undulator the time interval between the
arrival of the radiation connected with adjacent boxes is equal to At = 1,4, —¢; = A/c,
so we have discrete representation of E(z,1;).

To calculate spectral characteristics we use Fourier transformation:

[= o]

_ 1 . —wt
E(z,t)= 2ﬂ__0/0 E(z,w)e ™ dw
E(z,w) = / Bz, et 4 C.C.Jdt . (4.3)

Taking into account that the radiation field E(z,1) is calculated in discrete time moments,

we can write:
— 27 o ..
E(Z, w) — w_ z E!(‘;r)e—‘Z'J"n_','.At.p"/'t.:.ro1
0

where Aw = w — wp and w > 0.

The spectral density of the radiation energy is given by the expression:
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dW__ <8
d(Aw) ~ 4r?

which is related with the total radiation energy in the pulse as:

E(z, AW)E*(z, Aw) , (4.4)

f E(z,1)d / dg;) d(Aw) | | (4.5)

The first and the second order time correlation functions, g,{7) and g,(7), are calculated
in accordance with the definitions given by relations (2.49) and (2.59).

4.2 Linear simulation code

All formulae, presented below, are written for the case of stepped axial profile of electron
beam. Extending of these formulae to the case of an arbitrary gradient axial profile could
be performed in a simple manner.

When performing numerical simulations, we neglect the effects of the space charge
fields and the longitudinal velocity spread in the beam. The length of the electron beam
[y is assumed to be rather large, {, > (1 + K?/2)/(2v*I"). We also assume that the
fluctuations of the beam current density define the value of the input shot noise signal. It
means that we neglect the effect of the longitudinal velocity fluctuations connected with
finite energy spread in the beam. One can show that the ratio of the noise signal due to
the fluctuations of the velocity to the shot noise signal is of the order of 6%/£%p?, where
og 1s the energy spread in the beam. This ratio is always less than unity, because the
safety margin for the FEL amplifier operation assumes that ¢%/£? « p?.

Linear time-dependent simulation algorithm is organized as follows. We divide the
electron beam into Ny, = [,/X boxes. Linear steady-state FEL equations are used in each

box to calculate the evolution of the radiation field within one undulator period, i.e. within
Az = AT (see, eg. [21]):

=il (4.6)

where EU) = F /Eo is the reduced complex amplitude of electric field of the ‘electro-
magnetic wave in the j th box and Ep = 87p?y*[4/{(AwcK Ayy). Simulation of the time-
dependent effects is performed using the algorithm described in the previous section.
When constructing numerical simulation code, it is more convenient o rewrite eq. (4.6)

in the following form:
daf _ 50) dED _
d3? ’ d3 b

(4.7)

To find the evolution of the beam bunching a{’’ and of the electromagnetic field, we should
define the initial conditions at the undulator entrance at 2 = 0. At the entrance of the
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undulator there is no radiation field and the fluctuations of the beam current density
caused by shot noise in the electron beam play the role of input signal. At the number
of the particles in the bunch equal to N, the number of particles per one box is equal to
Ny = N/N,,. To calculate correctly the initial conditions, the following algorithm can be
used [18]. One can distribute Ny particles randomly in each box. Amplitude and phase of

the beam bunching are calculated in accordance with relation:

. N .
0P |so0 = N1 exp(—i")
k=1

()
% licg =0, (4.8)
where 1/),(3 )= 27rs§cj ) /A is the electron phase and sf ) is axial coordinate of the particle in
the bunch. The initial condition on the derivative of the density modulation is set equal
to zero, because the effect of the velocity fluctuations at the undulator entrance can be
neglected as we discussed above.

Giving the possibility to simulate actual number of the particle in the beam, such an
algorithm for preparing initial conditions requires considerable CPU time. In the program
we realized another approach which provides the same results without extra consumption
of CPU time. The idea is as follows. The number of particles per box N, is large, typical
values are 10* + 10® for the X-ray and VUV FELs. In this case the bunching in each
box is the sum of large number of random phasors with fixed amplitudes and uniformly
distributed on (0, 27 ) phases. Using the central limit theorem, we can conclude that phases
of bunching parameters are distributed also uniformly and squared modules of amplitudes,
| a1 |?, are distributed in accordance with the negative exponential distribution:

2
where <| a; |[*>= 1/N,. The distribution of the modules, | a; |, is the Rayleigh probability
density function [19]. So, we use the negative exponential random generator setting 1/Ny
as mean value to extract the values of | a; |? for each box and then we extract the square
root to find the values of | @) |. The phases of ay are produced by random generator of

uniform distribution from 0 to 2r.
4.3 Nonlinear simulation code

Nonlinear time-dependent simulation algorithm is based on similar technique described
in the previous sections. We divide the electron beam into N, = l,/ A boxes. Steady-state

FEL equations are used in each box to calculate the motion of the electrons and the
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evolution of the radiation field within one undulator period, i.e. within A2 = A, I" (see,
e.g. [21]):

dPP jdz = —ED exp(iy)) + C.C.,

dp1ds = P9 (4.10)
dEW [ds = o (4.11)

where j = 1,... M, k = 1,... N, and N,, is the number of macroparticles in each box
and P,Ej’ = (E,Ej) — &) /(p&s) is the reduced energy deviation from nominal value. The
amplitude and the phase of the beam bunching are calculated as follows:

, N .
of? = N;' Y exp(—i(”) (4.12)
k=1

where 1/;}3 ) is the electron phase.

To take into account slippage effect, we transfer radiation which interacted with elec-
trons in the j th box into j + 1 th box after each undulator period.

For the initial shot noise simulations we have used technique proposed in ref. [25]. We
choose the number of macroparticles in each box to be equal to N, <« N,. The particles
are distributed over phase 3 in the following way:

0 = ]2\,—”(1\: — %) + (2F) — 1)é, (4.13)

where F|] is a pseudo-random variable uniformly distributed between 0 and 1 and é =
A/ 3Nm /Ny,

It is not evident that such an artificial distribution corresponds to actual initial condi-
tions described above. We performed thorough check of this method and obtained that it is
really provides correct statistics, the phases of the bunching, a,, are distributed uniformly

on (0,2r) and squared modules, | a, |?, are distributed in accordance with eq. (4.9).

5 Numerical simulations of statistical properties of SASE FEL radiation

5.1 Parameters of 70 nm option of SASE FEL at DESY

All the numerical results presented in this section refer to the 70 nm option of SASE FEL
at DESY [9] which is the first stage for realization of a full scale facility operating at the
wavelength of 6 nm [7, 8].

In the present study we consider the model of rectangular profile of the electron pulse
of duration T = v2r¢,/c ~ 2 ps.
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Table 8.1, Parameters of 70 nm SASE FEL at DESY

Electron_beam

Energy, & 300 MeV
Peak current, fop 500 A
rms bunch length, o, 250 pm
Normalized rms emittance , ¢z 27 mm mrad
External S-function, 100 ¢cm
Number of bunches per train 7200
Repetition rate 10 Hz
Undulator
Type Planar
Length of undulator, L., 13 m
Period, Aw 2.73 em
Peak magnetic field, H,, 4.97 kGs
Radiation
Wavelength, A 71.4 nm
Bandwidth, 4A/A 1%
Power averaged over pulse 600 MW
Flash energy 0.1m]
Average power 90 W

5.2 General remarks

In this section we present the results of numerical studies of the operation of SASE FEL
in the linear and nonlinear regime. Simulations have been performed by means of large
number of simulation runs. The result of each run contains parameters of the output
radiation (field and phase) stored in the boxes over the full length of the radiation pulse.
We performed 2400 statistically independent runs with linear simulation code and 100
runs with nonlinear simulation codes. At the next stage of numerical experiment the
arrays of data have been handled with postprocessor codes to extract different statistical
properties of the SASE FEL radiation. The first and the second order time correlation
functions are calculated using eqs. (2.49) and (2.59). Spectrum of the radiation pulse is
calculated by means of Fourier transformation (4.3) of the temporal structure. The first
and the second order spectral correlation functions are calculated using eqs. (2.25) and
(2.29). Normalized envelope of the radiation spectrum is reconstructed from the first order

time correlation function as follows
G(Aw) = L 7dTg1(T) exp(—1AwT) . 3 {(5.1)
2 ~ ’

Different types of statistical distributions have been studied by means of plotting his-
tograms of large number of statistical data.

Parameters for the numerical example correspond to those presented in Table 1. For
this numerical example parameter p is equal to 4 x 10~3, the integration step of the
dimensionless equations (4.7), (4.10) and (4.11) is equal to 0.05 and the number of boxes
1s equal to 8400. When performing linear simulation, initial shot noise conditions have

been simulated with the technique described in section 4 which correctly corresponds to
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actual number of the electrons in the bunch, N = 6 x 10°, Nonlinear simulations have
been performed using 20 macroparticles per box. Initial shot noise also corresponds to
that of actual electron beam. Integration of the self-consistent equations (4.7), (4.10) and
(4.11) has been performed by Runge-Kutta scheme. The codes operate relatively fast and
provide the possibility to store the required number of statistical data within reasonable
time.

To test linear simulation code we used rigorous results of the SASE FEL theory pre-
sented in section 2. Nonlinear simulation code has been tested by means of linear simu-
lation code at the linear stage of operation. Such a cross-testing have shown full physical
consistency of the results obtained by means of analytical approach and by means of

numerical codes.
5.3 Linear mode of operation

We begin study the properties of SASE FEL radiation with the high gain linear regime
for specific example of the reduced length equal to 2 = 11. Parameters of the radiation
at this point correspond to the exit of the second stage of 70 nm option SASE FEL at
DESY.

Temporal and spectral structure of the radiation pulse. Fig. 5.1 presents typical time struc-
ture of the radiation pulse. Fig. 5.2 presents the spectrum of the radiation pulse corre-
sponding to this shot. The time and spectral structure of the radiation pulse changes from
shot to shot and the information about the properties of the radiation can be obtained
only on the statistical analysis of series of shots. Below we present such analysis of SASE
FEL linear mode of operation and compare the results with theoretical predictions of

Section 2.

Fluctuations of the radiation power. A brief view on Fig. 5.1 indicates that instant values
of the radiation power are random values and practically important problem is to find the
law for the probability density function. It has been shown in section 2 that in the linear
regime of SASE FEL operation instant values of the radiation power must be distributed
in accordance with the negative exponential law. Histogram presented in Fig. 5.3 agrees
very well with this prediction.

The first and the second order time correlation functions. In Fig. 5.4 we present the results
of calculations of the first and the second order time correlation functions. The circles on
these plots are calculated with analytical asymptotical formulae (2.51) and (2.61).

In Fig. 5.5 we present the plot of the real and imaginary parts of the first order
time correlation function. It is seen that at finite undulator length there exists nonzero
imaginary part of the first order correlation function. The real part is close with graphical

accuracy to the asymptotical value.

26



TESLA FEL-Report 1997-02

1000 .
{a)

a00 |

200 1

0 500 1000 1500 2000
-1 (ts)

1000 —————r

(b)

800 -

600 -

P (MW)

400

1 Fig. 5.1. Typical temporal structure of
] the radiation pulse (one shot) at the re-
duced length of the FEL amplifier 3 = 11.
Graph (a) is plotted over the full length of
the radiation pulse and graph (b) presents
enlarged fraction of graph (a). Calcula-
tions have been performed with linear sim-

1300 1400 1500  Wation code.
-t (te)

200}

o PR | I
1000 1100 1200

27



dW/d{Am/o) (mJd/%)

dw/d{Aw/e) (mJd/%)

p(P)

1.0

(a)

Awim (%)

1.0 T
{b)
0.8
06| R
041
02t V\/\/\J J
0.0 & : — :
-0.2 -0.1 0.0 01
Ao/e (%)

28

TESLA FEL-Report 1997-02

Fig. 5.2. Typical spectrum of the radia-
tion pulse (one shot) at the reduced length
of the FEL amplifier # = 11. Graph (a)
is plotted over the full spectrum width
and graph (b} presents enlarged fraction
of graph (a). Calculations have been per-
formed with linear simulation code.

Fig. 5.3. A histogram of probability den-
sity distribution, p(P)}, of instant output
power at the reduced length of the FEL
amplifier £ = 11, Calculations have been
performed with linear simulation code
over 2 x 10° independent statistical events
(see Fig. 5.1). < P > denotes the aver-
age power. The solid curve represents the
negative exponential distribution p(P) =
exp(—P{ < P >},
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Fig. 5.4. Module of the first order time
correlation function, |gi(7)| (curvel), and
the second order time correlation func-
tion, g2(7) (curve 2), of the radiation pulse
at the reduced length of the FEL amplifier
Z = 11. Solid curves are the results of cal-
culations with analytical formulae (2.51)
and (2.61). Circles are the result of cal-
culations with linear simulation code over
5 x 10* independent statistical events.

Fig. 5.5. Real and imaginary parts of
the first order time correlation function
¢1() of the radiation pulse at the reduced
length of the FEL amplifier # = 11. Cal-
culations have been performed with linear
simulation code over 5 x 10 independent
statistical events.
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The spectrum of SASE FEL. Visual analysis of the spectrum of the radiation pulse for
several shots (see Fig. 5.2) indicates that spikes in the spectrum are approximately inside
some envelope. The straightforward way to obtain this envelope is to average large number
of spectrum data. In Fig. 5.6 we present spectrum of SASE FEL radiation averaged over
2400 shots. It is seen that even at such a number of independent runs the accuracy of the
spectrum reconstruction is not excellent and relative error in each point of spectrum is
still visible.
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Fig. 5.8. Normalized spectrum of the ra-
diation from SASE FEL, G(4w), at the
reduced length of the FEL amplifier # =
11. Averaging has been performed over
2400 shots. Smooth curve is the result of
spectrum reconstruction using the first or-
0.2} ] der time correlation function (see Fig. 5.5

[ ] and eq. (5.1)). Graph (a) is calculated over
0.0 . , full spectrum and graph (b) is enlarged
-0.5 0.0 05 fraction of graph (a).

Aw/w (%)

GlAw)

Another technique for obtaining the envelope of spectrum of SASE FEL consists in its
reconstruction from the first order time correlation function (5.1). Analysis of the plot
presented in Fig. 5.4 indicates that the first order correlation function is calculated with
much higher accuracy. This is connected with the fact that the statistics for the correlation
function calculations is higher by a factor of the number of spikes in the bunch. In Fig. 5.5

we present the real and imaginary parts of the first order time correlation function. These
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2.0 " — : —_

1.5})

Fig. 5.7. Module of the first order
spectral correlation function, |[g:1{Aw})|
(curvel), and the second order spectral
correlation function, g2{Aw) (curve 2), of
the radiation pulse at the reduced length
of the FEL amplifier £ = 11. Selid curves
are the results of calculations with ana-
lytical formulae (2.26) and (2.31). Clircles
are the result of calculations with linear
simulation code over 5 x 10* independent
statistical events.

lg, (Aw)|, g (A}

AT

data have been used for the spectrum reconstruction (solid line in Fig. 5.6). It is seen
that such a technique provides very precise results. Our experience have shown that this
technique provides almost perfect reconstruction of the spectrum at the number of runs
of several tens. Analysis of the spectrum presented in Fig. 5.6 shows that its shape and
position of the maximum only slightly differ from those predicted by analytical asymptotic
formula (2.18). This difference is connected mainly with nonzero imaginary part of the

first order time correlation function at finite undulator length (see Fig. 5.5).

The first and the second order spectral correlation functions. At large number of statisti-
cally independent runs there is the possibility to perform precise calculations of the first
and the second order spectral correlation functions. Fig. 5.7 presents the results of the
calculations of these functions. It is seen that there is excellent agreement between numer-
ical and analytical results. In principle, this numerical results model actual experimental
situation and give the answer on the required statistics. The results of spectral correlation
measurements can be used as a tool for measurements of the radiation bunch profile [26].
In the modelled situation the bunch profile was a rectangular one which defined the shape
of correlation functions (see eqs. (2.26) and (2.31)).

Fluctuations of the energy in the radiation pulse. We performed numerical study of the
fluctuations of the energy in the radiation pulse integrated over finite time. In accordance
with theoretical predictions the probability density function of the energy can be described
rather well with the gamma distribution (2.43) which is general feature of completely
chaotic polarized light. In Figs. 5.8 and 5.9 we present series of histograms calculated
with 2400 independent shots. The value of parameter M reconstructed from simulated
distributions is close with an accuracy of about one per cent to theoretical values given

by relation (2.62). Analysis of these histograms shows that within statistical accuracy the
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Fig. 5.8. Histograms of the probabil-
ity density distribution, p(W), of the ra-
diation energy W detected during time
4T. The reduced length of the FEL am-
plifier is equal to £ = 11. Calculations
have been performed with linear simula-
tion code over 2400 shots (see Fig. 5.1).
Measurement time interval §T and param-
eter M are connected by relation (2.62)
{see also Fig. 5.10). < W > denotes the
average energy. The solid curves represent
gamma distribution (2.43).



|

M=10

2,5
2,04

1,5

p(W)

1,04

0,5

M=20

0,0
0,0

0,5

1,5 2,0

1
N
11
2z

> |

M=100

0,75

1,00
W/<W>

1,25

1,50

TESLA FEL-Report 1997-02

Fig. 5.9. Histograms of the probabil-
ity density distribution, p(W), of the ra-
diation energy W detected during time
§T. The reduced length of the FEL am-
plifier is equal to £ = 11. Calculations
have been performed with linear simula-
tion code over 2400 shots (see Fig. 5.1).
Measurement time interval 8T and param-
eter M are connected by relation (2.62)
(see also Fig. 5.10). < W > denotes the
average energy. The solid curves represent.
gamma distribution (2.43).
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gamma distribution describes rather well the probability distribution of the energy in the

radiation pulse.

10% |

=10 F Fig. 5.10. The dependence of the param-
eter M on the value of the time interval
dT = §To 4. FEL amplifier operates in the
linear regime at the reduced length of the
FEL amplifier 2 = 11. Solid curve is the
result of calculations with analytical for-
mula (2.62). Circles are the result of cal-
100 L A L o ) culations with linear simulation code over
1 D.‘ 1 00 1 0| 4 02 2400 shots.

Fluctuations of the radiation energy at the exit of the monochromator. For a number of
planned experiments a monochromator should be installed at the exit of SASE FEL and
the problem arises about the shot-to-shot distribution of the radiation energy after the
monochromator. Theoretical analysis predicts that energy at the exit of the monochroma-
tor will be approximately distributed in accordance with the gamma distribution (2.43).
Parameter M = 1/0}, of the distribution, is given by formulae (2.39) and (2.38) for
the Gaussian and rectangular monochromator line, respectively. Figs. 5.11 and 5.12 show
good agreement between the analytical and numerical calculations of the parameter of the
gamma distribution, M. Figs. 5.13 and 5.14 show that gamma distribution fits rather well
the numerical data. It is important to notice that the gamma distribution describes the
fluctuations of the energy after monochromator with any arbitrary line shape. Parameter

of the distribution, M, should be calculated numerically in this case.

Effective power of shot noise. In the high gain linear regime the output radiation power of
SASE FEL grows exponentially along the undulator length. The radiation power (Pous) =
(W)/T averaged over an ensemble is equal to {12, 13, 14]:

v
< Poy >= pri- exp[v33] , (5.2)
3y V3iN,

where P, = ymc®ly/e is the electron beam power, z = I'z and N, = 2r 1,/ ewp.

When simulating SASE FEL with steady-state codes, the notion of "effective” power
of input signal is usually introduced. The output power of the stead-state high gain FEL
amplifier changes exponentially with the undulator length (see, e.g. ref. [21]):
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Fig. 5.11. The dependence of the param-
eter M on the value of the width of the
monochromator, om, with Gaussian pro-
file. FEL amplifier operates in the lin-
ear regime at the reduced length of the
FEL amplifier £ = 11. Solid curve is the
result of calculations with analytical for-
mula (2.39). Circles are the result of cal-
culations with linear simulation code over
2400 shots.

Fig. 5.12. The dependence of the pa-
rameter M on the value of the width of
the monochromator Awm with rectangu-
lar profile. FEL amplifier operates in the
linear regime at the reduced length of the
FEL amplifier £ = 11. Solid curve is the
result of calculations with analytical for-
mula (2.38). Circles are the result of cal-
culations with linear simulation code over
2400 shots.
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Fig. 5.13. Histograms of the probability
density distribution, p(W), of the radia-
tion energy after monochromator for dif-
ferent values of parameter M. Calcula-
tions have been performed with linear sim-
ulation code over 2400 shots (see Fig. 5.2).
< W > denotes the average energy. The
solid curves represent the gamma distribu-
tion {2.43) where values of M have been
calculated with formula (2.44) (see also
Figs. 5.11 and 5.12).
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Fig. 5.14. Histograms of the probability
density distribution, p(W), of the radia-
tion energy after monochromator for dif-
ferent values of parameter M. Calcula-
tions have been performed with linear sim-
ulation code over 2400 shots (see Fig. 5.2).
< W > denotes the average energy. The
solid curves represent the gamma distribu-
tion (2.43) where values of M have been
calculated with formula (2.44) (see also
Figs. 5.11 and 5.12).
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Fig. 5.15. The first and the second order
time correlation functions, g;(r) {curvel)
and gz2{t) (curve 2), of the radiation pulse
at different reduced length of the FEL am-
plifier. Calculations have been performed
with linear simulation code over 10* inde-
pendent statistical events.
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Fig. 5.16. Normalized spectrum of the ra-
diation from SASE FEL G(Aw) at differ-
ent reduced length of the FEL amplifier.
Spectrum has been reconstructed from the
first order time correlation function (see
Fig. 5.15 and eq. (5.1)). Circles correspond
to normalized spectrum of the undulator
radiation.
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Fig. 5.17. Normalized spectrum of the ra-
diation from SASE FEL G(4w) at differ-
ent reduced length of the FEL amplifier.
Spectrum has been reconstructed from the
first order time correlation function (5.1).
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Pout = %Pgn exp(v/3%) , (5.3)

where B, is the input power. Combining equations (5.2) and (5.3) we can write the

following formula for the effective power of the shot noise, Py:

33/4P2Pb 4
Ph=Po=—22/T .
h N, 3 (5.4)

In the considered example the reduced length of the undulator is equal to 2 = 11, p =
4 x 1072, the number of electrons per wavelength is equal to Ny = 7.44 x 10° and the
value of effective power of shot noise is equal to Py, ~ 7.9 W.

The value of Py, can be also obtained from numerical simulations. In the presented
numerical example the output power averaged over 2400 shots is equal to < P,y >o
141.3 MW which corresponds to the value of the effective power of shot noise Py, ~ 8§ W

(see eq. (5.3)). We see that there is good agreement of analytical and numerical results.

Formation of the amplification process in SASE FEL. In conclusion to this section we
present the study of the amplification process formation in SASE FEL. Simulations have
been performed with nonlinear simulation code with 100 shots. Temporal structures of
the radiation pulses have been used for calculations of the time correlation functions (see
Fig. 5.15). Then the radiation spectrums have been reconstructed using Fourier trans-
formation of the first order time correlation function. Figures 5.16 and 5.17 show the
evolution of the radiation spectrum with the step equal to one field gain length. One
can see that after the first gain length the spectrum of the SASE FEL is identical to
the spectrum of the undulator radiation. After several gain lengths the spectrum shape

transforms to usual gain curve of the high gain FEL amplifier.
5.4 Nonlinear mode of operation

Nonlinear mode of SASE FEL operation has been studied by means of nonlinear simu-
lation code described in section 4. Parameters of the numerical example correspond to

those presented in Table 1. The number of shots is equal to one hundred.

Temporal and spectral structure of the radiation pulse. Fig. 5.18 presents typical time
structure of the radiation pulse of the FEL amplifier operating in nonlinear regime at the
reduced length of the undulator z = 20. Fig. 5.19 presents the spectrum of the radiation
pulse corresponding to this shot.

Using statistical technique described above, in this section we study statistical prop-

erties of nonlinear mode of operation of SASE FEL.
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Fig. 5.18. Typical temporal structure of
the radiation pulse (one shot) at the re-
duced length of the FEL amplifier 2 = 20.
Graph (a) is plotted over the full length of
the radiation pulse and graph (b} presents
enlarged fraction of graph (a). Calcula-
tions have been performed with nonlinear
simulation code.
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Fig. 5.19. Typical spectrum of the radia-
tion pulse (one shot) at the reduced length
of the FEL amplifier 2 = 20. Graph (a)
is ploited over the full spectrum width
and graph (b} presents enlarged fraction
of graph (a). Calculations have been per-
formed with nonlinear simulation code.
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Average output power. In Fig. 5.20 we present the dependence of the average power of
SASE FEL on the reduced length?. For comparison we also present the plot for the output
power for the steady-state FEL amplifier starting with the value of input power of 8 W

(corresponding to the value of effective power of shot noise).

20—
1.5+
A
<& 1.0}
Fig. 5.20. Average power of the radiation
from SASE FEL, < P >, as function of
ost the reduced length of the FEL amplifier.
' Calculations have been performed with
nonlinear simulation code over 10* inde-
pendent events. The dotted curve presents
0.0 ‘ the output power of the FEL amplifier op-
T 5 erating in the steady-state regime.

It is seen that the main difference occurs at the nonlinear stage of amplification. In
the case of the FEL amplifier with external seeding the output power reaches its maximal
value at the saturation point, while the output power of SASE FEL begins to grow.
Saturation effect in the steady-state FEL amplifier is defined by the fact that the bunched
beam effectively interacts with the electromagnetic wave along the length which is of the
order of the gain length {; ~ I'"'. At this stage of amplification electrons lose a visual
fraction of their energy which results in the violation of the resonance condition. As a
result, the beam is overmodulated, the most fraction of electrons fall into the accelerating
phase of effective potential and the electron beam becomes to take off the power from the
electromagnetic wave.

In the case of SASE FEL the process of the field growth does not stop at saturation
point.

The first and the second order time correlation functions. In Fig. 5.21 we present the results
of calculations of the first and the second order time correlation functions. It is seen that
there is significant difference with respect to the linear mode of operation (see Fig. 5.4).
First, we obtain that relation go(7) = 1 + |g1(7)|* does not takes place in the nonlinear
regime. Second, the first order time correlation function begins to have two maxima at

the increase of the undulator length.

2 This plot is in full agreement with previous calculations presented in ref 6]
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Fig. 5.21. The first and the second order
time correlation functions, |gi(7)| (curve
1), g2(7) (curve 2), Re{gi(r)) (curve 3)
and Im(gi{r}) (curve 4) of the radia-
tion pulse at different reduced length of
the FEL amplifier operating in nonlinear
regime. Calculations have been performed
with nonlinear simulation code over 107
independent statistical events.
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Fig. 5.22. The first and the second order
time correlation functions, {g1(7)| (curve
1), g2(7) (curve 2}, Re(g1(7)) fcurve 3)
and Im{g:1{7}) (curve 4) of the radia-
tion pulse at different reduced length of
the FEL amplifier operating in nonlinear
regime. Calculatiens have been performed
05 e . ‘ e with nonlinear simulation code over 10*
o 10 20 30 40 independent statistical events.
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Fig. 5.23. Coherence time 7. as function
of the reduced length of the FEL ampli-
5| | fier. The values of 7. have been calculated
by means of integration of the first order
time correlation function (see Figs. 5.15,
5.21 and 5.22, and eq. (2.52)). Calcula-
0 e N ‘ e tions have been performed with nonlinear
0 5 10 15 20 25 simulation code.

N>

Coherence time, 7. (see eq. (2.52), decreases drastically in the nonlinear regime (see
Fig. 5.23).

The spectrum of SASE FEL. In Figs. 5.24 and 5.25 we present the evolution of the radi-
ation spectrum in the nonlinear mode of operation. Spectrums have been reconstructed

using calculated values of the first order time correlation function (see Figs. 5.21 and

5.22).

The first and the second order spectral correlation functions. In Fig. 5.26 we present the
first and the second order spectral correlation functions for the radiation of SASE FEL
operating at saturation. With the accuracy of performed calculation we can state that
spectral correlation functions are the same as those for the linear mode of the SASE FEL

operation (see Fig. 5.7).

Fluctuations of the radiation power. In Fig. 5.27 we present the results of calculation of
the normalized rms deviation of the instant fluctuations of the radiation power, o, =
(P = (PY)»)Y2/(P), as function of the undulator length. One can see from this figure
that at the linear stage of the SASE FEL operation the value of the deviation is equal to
unity. This case has been analyzed in detail in the section devoted to the linear theory.
It has been shown that the probability density distribution is described by the negative
exponential law. In the nonlinear mode of operation the deviation of the power fluctuations
differs significantly from unity. It indicates that the probability density function should
differ from the negative exponential law. Figs. 5.28 — 5.30 present the distributions of the
instant power fluctuations at different length of the undulator. It is interesting to notice
that in the deep nonlinear regime this distribution tends again to the negative exponential

one and the value of the rms deviation also tends to unity (see Fig. 5.27).
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Fig. 5.24. Normalized spectrum of the ra-
diation from SASE FEL G(Aw) at differ-
ent reduced length of the FEL amplifier
operating in nonlinear regime. Calcula-
tions have been performed with nonlinear
simulation code over 100 shots. Smooth
curves present the spectrum reconstructed
from the first order time correlation func-
tion {see Fig. 5.21 and eq. (5.1}).
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Fig. 5.25. Normalized spectrum of the ra-
diation from SASE FEL G{Aw) at differ-
ent reduced length of the FEL amplifier
operating in nonlinear regime. Calcula-
tions have been performed with nonlinear
simulation code over 100 shots. Smooth
curves present the spectrum reconstructed
from the first order time correlation func-
tion (see Fig. 5.22 and eq. {5.1)).



2.0

1.5

lg, (A}, g.{Aw)

1.2

1.0

0.6}

0.4

Aw-T

10

N>

15

20

50

25

TESLA FEL-Report 1997-02

Fig. 5.26. The module of the first or-
der spectral correlation function, lg: (Aw)|
{curvel), and the second order correlation
function, gz(Aw) (curve 2), of the radi-
ation pulse at the reduced length of the
FEL amplifier £ = 13 (saturation point).
Solid curves are the results of calculations
with analytical formulae (2.26) and (2.31).
Circles are the result of calculations with
nonlinear simulation code over 500 inde-
pendent statistical events.

Fig. 5.27. Normalized rms deviation of
the instant fluctuations of the radiation
power, op, as function of the reduced
length of the FEL amplifier. Calculations
have been performed with nonlinear sim-
ulation code over 10* independent statis-
tical events.
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Fig. 5.28. Histograms of the probabil-
ity density distribution, p(P), of the in-
stant output power at different reduced
length of the FEL amplifier. Calculations
have been performed with nenlinear sim-
unlation code over 10* independent statis-
tical events. < P > denotes the average
power.
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Fig. 5.29. Histograms of the probabil-
ity density distribution, p{P), of the in-
stant output power at different reduced
length of the FEL amplifier. Calculations
have been performed with nonlinear sim-
ulation code over 10* independent statis-
tical events. < P > denotes the average
power.
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Fig. 5.30. Histograms of the probabil-
ity density distribution, p{P), of the in-
stant output power at different reduced
length of the FEL amplifier. Calculations
have been performed with nonlinear sim-
ulation code over 10" independent sta-
tistical events. < P > denotes the av-
erage power, Solid curve represents the
negative exponential distribution p(FP) =
exp(—P/ < P >).
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Fluctuations of the energy in the radiation pulse. We performed numerical study of the
fluctuations of the energy in the radiation pulse integrated over finite time. Fig. 5.31
presents the normalized rms deviation of the energy fluctuations in the radiation pulse as
function of the undulator length. It is seen that the fluctuations achieve their maximum
in the end of linear regime. The first local minimum corresponds to the saturation point
(¢ = 13). This is in a good agreement with Figs. 5.27 and 5.28 showing that relative

fluctuations of the instant radiation power achieve their minimum at the saturation point.

10¢
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Fig. 5.31. Nermalized deviation of the
at | energy fluctuations in the radiation pulse,
1 ow, as function of the reduced length of
the FEL amplifier. Calculations have been
0 . ‘ , ‘ . performed with nonlinear simulation code
0 5 10 15 20 ag over 100 shots.
z
1,0
0,8-
J Fig. 5.32. A histogram of the probabil-
ity density distribution, p{W), of the ra-
o~ 036 T diation energy after monochromator. The
g - reduced length of the undulator is equal
ey 0.4- to £ = 13 (saturation point). The width
’ of the monochromator is less than charac-
. teristic width of the spikes in the spectrum
0.2- {see Fig. 5.19). Calculations have been
’ - performed with nonlinear simulation code
. over 10% independent statistical events.
0.0 | ] {W} denotes the average energy. The solid
’

j ’ ’ ) ) curve represents the negative exponential
0 1 2 3 4 5  distribution p(W) = exp(—W/{W}).
W/<W>

Fluctuations of the radiation energy at the exit of monochromator. In Fig. 5.32 we
present the histogram of probability density distribution of the radiation energy after
the monochromator. The reduced length of the undulator is equal to # = 13 (saturation

point). The width of the monochromator is less than characteristic width of the spikes in

b4
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the spectrum. It is seen from this plot that at a small window of the monochromator the

fluctuations of the radiation energy follow the negative exponential law.
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