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Abstract

In this paper we present a systematic approach for analytical description of SASE FEL in the linear
mode. We calculate the average radiation power, radiation spectrum envelope, angular distribution
of the radiation intensity in far zone, longitudinal and transverse correlation functions, degree of
transverse coherence etc. Using the results of analytical calculations presented in reduced form,
we analyze various features of the SASE FEL in the linear mode. The general result is applied
to the special case of an electron beam having Gaussian profile and Gaussian energy distribution.
These analytical results can be serve as a primary standard for testing the codes. In this paper we
present numerical study of the process of amplification in the SASE FEL using three-dimension
time-dependent code FAST. Comparison with analytical results shows that in the high-gain linear
limit there is good agreement between the numerical and analytical results. It has been found that
even after finishing the transverse mode selection process the degree of transverse coherence of the
radiation from SASE FEL visibly differs from unity. This is consequence of the interdependence of
the longitudinal and transverse coherence. The SASE FEL has poor longitudinal coherence which

develops slowly with the undulator length thus preventing a full transverse coherence.
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1 Introduction

Fluctuations of the electron beam current density can serve as the input signal in the
FEL amplifier. These fluctuations always exist in the electron beam due to the effect
of shot noise. An FEL amplifier which starts up from shot noise is frequently known as
self-amplified spontaneous emission (SASE} FEL.

A complete description of the SASE FEL can be performed only with three-dimensional
(3-D) time-dependent numerical simulation codes. Application of the numerical calculations
allows one to describe the general case of the SASE FEL operation, including the case
of an arbitrary axial and transverse profile of the electron bunch, the effects of finite
pulse duration and nonlinear effects. Since construction of the 3-D time-dependent codes
is a rather complicated problem, significant attention should be devoted to the testing
the codes. On the other hahd, testing the numerical simulation codes would be difficult
. without the use of analytical results of SASE FEL linear theory as a primary standard.
With the design and construction of VUV and X-ray FELs, many 3-D time-dependent
codes (GINGER [1}, GENESIS {2}, FAST [3]) have been developed over the years in order
to describe FEL amplifier start-up from shot noise. Nevertheless, it should be emphasized
that despite these codes are widely used in the design of X-ray FELs [4, 5, 6, 7], there
are no comparison between numerical simulation and analytical results of 3-D SASE FEL
theory.

In this paper we present a systematic approach for calculations of the average radiation
power, radiation spectrum envelope, and angular distribution of the radiation intensity
in the far zone, and degree of transverse coherence. These analytical results serve as a
primary standard for testing the codes. Numerical simulations have been performed with
3-D time-dependent code FAST [3]. Comparison with analytical results shows that in the
high-gain linear limit there is a good agreement between the numerical and analytical
results.

From the theoretical point of view the SASE FEL, is a rather complicated object, so
it is important to find a model which provides the possibility of an analytical description
without loss of essential information about the features of the SASE process. When
deriving analytical results we used the model of a long electron bunch with rectangular
axial profile of the current. Investigation of the SASE FEL process is preformed with
steady-state spectral Green’s function connecting the Fourier amplitudes of the output
field and the Fourier amplitudes of the input noise signal. Since in the linear regime all
the harmonics are amplified independently, we can use the result of steady-state theory
for each harmonic and calculate the corresponding Fourier harmonics of output radiation
field. In the framework of this model it becomes possible to describe analytically all the
statistical properties of the radiation from the SASE FEL.
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Some averaged output characteristics of SASE FEL in framework of one-dimensional
model have been obtained in [8, 9]. An approach for 1-D time-dependent numerical
simulations of SASE FEL have been developed in [10, 11]. Realization of this approach
allowed to obtain some statistical properties of radiation from a SASE FEL operation in
linear and nonlinear regime [12, 13]. A comprehensive study of the statistical properties
of the radiation from the SASE FEL in framework of the same model is presented in [14].
The accuracy of these numerical results is controlled by means of analytical results of 1-D
SASE FEL theory.

The 3-D theory of the SASE FEL is more complicated than that of the simplified one-
dimensional model. The actual physical picture of start-up from noise should take into
account that the fluctuations of the current density in the electron beam are uncorrelated
not only in time but in space too. Thus a large number of transverse radiation modes are
excited when the electron beam enters the undulator. These radiation modes have different
growth rates. During the amplification process, the number of transverse modes decreases.
Also, the divergence of radiation beam in far zone decreases. For a sufficiently long
undulator the fundamental mode, which has maximal gain, should survive. Information
on transverse coherence formation can be obtained with analytical solution of initial value
problem.

When the FEL amplifier operates in the steady-state linear regime, the driving electron
beam can be considered as an active medium whose properties do not depend on the
longitudinal coordinate z. Let us analyze the nature of the self-consistent solution of
Maxwell’s equations and the Vlasov equation at a fixed frequency w. The electric field of

the wave radiated in the helical undulator may be represented in the complex form:
E, +iE, = E(z,v ) expliw(z/c — )] (1)

At a sufficient distance from the undulator entrance the radiation can be presented as a

superposition of the exponentially growing guided modes
E(z,7.) =3 A;j®;(ry)exp(A;z)
J

where A; and @;(r,) are the eigenvalues and the eigenfunctions of the guiding modes,
respectively, and Re(A;) > 0 . The rigorous solution of the eigenvalue problem for an
axisymmetric electron beam with stepped profile was obtain in [15]. The model of the
FEL amplifier considered in that paper is based on a full three-dimensional description of
electromagnetic field, but the electron motion is considered to be one-dimensional. Later
the initial-value problem was solved in [16] in framework of the same model of the electron
beam.

An effects similar to the optical guiding effects occurs in optical fibers. However, unlike

guided modes in fiber optics, FEL guided modes are not orthogonal. To solve the initial
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value problem in the case of arbitrary gradient beam profile, approaches other than direct
mode expansion must be used. The first step in this direction was taken by Kim [17], who
has applied a method of solution, originally introduced by van Kampen [18]. A Laplace
transform method was employed by Krinsky and Yu [19], leading to a Green’s function.
This Green’s function can still be expanded in terms of orthonormal eigenfunctions of
the associated two-dimension Schridinger equation with non-self-adjoint Hamiltonian. In
the high-gain limit, the asymptotic representation of the Green’s function is found to be
dominated by the contribution of the guided modes.

The eigenvalue problem for the case of an arbitrary gradient axisymmetric profile is
solved by means of the multilayer approximation method [20]. Based on these solutions,
complete information on the eigenfunctions and eigenvalues can be extracted, and used,
for calculations of the output radiation field. General solution for Green’s function [19]
gives us input coupling factors A;. As a result we are able to calculate the average radiation
power, radiation spectrum envelope, angular distribution of the radiation intensity in far
zone, an degree of transverse coherence.

The paper is organized as follows. In section 2 we discuss the coupled Vlasov-Maxwell
equations, and for the case of an electron beam with energy spread, we derive a partial
integro-differential equation describing the evolution of the radiation field. In high-gain
regime the output radiation is expressed in terms of exponentially growing guiding modes.
We analyze the FEL amplifier with an arbitrary gradient profile. Such an analysis of guided
modes is performed with the multilayer approximation method [20]. The radiated field is
determined with use of the Green’s function [19]. This systematic approach allows one to
performed a complete description of the FEL amplifier with an arbitrary gradient profile
of the electron beam. It is shown that this formalism is easily generalized to allow the
inclusion of space charge effects. Theoretical study is performed with an extensive use of
similarity techniques. In section 3 we derive analytical expressions for the average output
radiation power, spectrum and angular distribution of the radiation intensity in the far
zone for the SASE FEL. In section 4 we describe general features of the algorithm for
time-dependent simulations implemented in the code FAST {3]. In section 5 we present
specific numerical example of the SASE FEL operating in the linear regime calculated
with analytical formulae and numerical simulation code. It is shown that there is good
agreement of the analytical and numerical results in the high-gain regime. In sections 6
and 7 we analyze the process of formation of transverse coherence in the SASE FEL.
It 1s shown that even after finishing the transverse mode selection process the degree of
transverse coherence of the radiation from SASE FEL visibly differs from unity. This is

consequence of the interdependence of the longitudinal and transverse coherence. The
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SASE FEL has poor longitudinal coherence which develops slowly with the undulator

length thus preventing a full transverse coherence.

2 Analytical Description of the Steady-State Linear Regime

2.1 Self-consistent equation

Let us consider electron beam moving along the z axis in the field of a helical undulator.

The magnetic field of the undulator may be written in the complex form:
H; +iH, = Hy exp(—ikyz) .

We neglect the transverse variation of the undulator field and assume the electrons move
along constrained helical trajectories in parallel with the z axis. The electron rotation
angle is considered to be small and the longitudinal electron velocity v, is close to the
velocity of light ¢. We describe the electron motion using energy-phase variables P =
£ —& and ¥ = kyz + w(z/c—t), where £ is the kinetic energy of the electron, & is the
nominal energy. The evolution of the distribution function of the electron beam f(P,, z)
is governed by the Vlasov equation

af OHOf OHOf _

9: TP " By 5P )
where
H=CP+——_P?— (Ue" + U*e ™) +e f dyE, (3)
2cv260

is effective Hamiltonian, C' = ks — w/(2cy?) is the detuning of the electron with the
nominal energy £, U = —ebE(z,r.)/ (2i) is the complex amplitude of the effective
potential of the particle interaction with the electromagnetic wave, (—e) is the charge of

electron, E, (3, 2,7, ) is the longitudinal space charge field,
s = eHyw/(Eokw) = K/

is the rotation angle of the electron with nominal energy,
=48, y=E&/(me),

and m, is the rest mass of electron. It should be noted that the radiation field and the space
charge field depend on the transverse coordinate r, . So, in the present consideration these
fields are three-dimensional. At the same time, the dynamical equations corresponding to
the effective Hamiltonian (3) are one-dimensional. This means that from the point of view
of dynamics the transverse coordinate =, is a parameter, but not a dynamical variable.
We solve (2) using the perturbation method. For an electron beam with a small density

perturbation we seek solutions for f and E, in the form
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f=fo+ e+ fre™ | B = B4 EreV,

Here fo(r),P) is the unperturbed distribution function and filry, P, z) is the small

perturbation. In the linear approximation we get

(_‘).f_l 4 {C +wP/(C’12280)] f~1 + (iU ¢E, ) g{g

We assume that

fo=noF(P), f F(P)dP =1,

=0. (4)

where ng is the beam density. The solution of (4) has the form

fi= —no f dz' (iU — eE, exp{ [C’ +wP/(c*yz€0)] (2 — z)}
+ f1ls=0 €xp {—1 [C + wP/(cy2E ] } (5)

In the ultrarelativistic approximation v, ~ ¢, so the beam current density and the

distribution function are related as
Go = —jo(ri) + 1€+ C.C, i —ec / FdP,

where —jo(r1) ~ —ecng(ry) is the longitudinal component of the unperturbed beam
current density. The minus sign appears in the expression because electrons have charge
(—e) and move in the positive direction of the z axis.

In what follows we assume that the transverse size of the electron beam is large, i.e.
rE > v2c*/w?. In the framework of the accepted limitation on the transverse size of the
electron beam we can derive from Maxwell’s equations the following expression for the
longitudinal space charge field:

B, = _14:“31(2,@. (6)
In this paper we consider the specific, but important practical case of the following initial
conditions: - the electron beam is modulated only in density at the undulator entrance
: f1|z=0 = Gext(r1)F(P); - the field amplitude of the electromagnetic wave E takes the
value F|,—o = 0 at the undulator entrance. Substituting (6) into (5), integrating over
P and using specific initial condition at the undulator entrance, we obtain the following

integral equation for J;:

51 = ijo(ry) [z d2'[U + 4rejy fuw]
f deiEDP exp{ [C + wP/(cy2E )] (' — z)}

(T L) [_ " dPF(P)exp{~i[C +wP/(evi&0)] 7} - (7)




TESLA FEL-Report 2000-02

One more relation, connecting the field and the current density, should come from the
solution of the electrodynamic problem. We solve the electrodynamic problem using the
paraxial approximation. In this case the wave equation may be written in the following

form:
V2 4 2i(w/c)8/0z|E = —4ribw] , (8)

where V2 is the Laplace operator in transverse coordinates. This equation has been
derived using the assumption that the complex amplitudes, j; and E, are slowly varying
functions on the scale of the undulator period. _

So, we have obtained the system of self-consistent field equations (7) and (8). Let us
consider a axisymrnetric electron beam with gradient profile of the current density. When
considering axisymmetric systems, it is convenient to rewrite (7) and (8) using cylindrical
coordinates (r,, z). The general form of the transverse distribution of the beam current
density of axisymmetric electron beam is

jo(r) = IoS(r/ro) [2« I rS(r/ro)dr] " 9)
where rg is the beam profile parameter (typical transverse size of the beam) and Iy is the
beam cutrent. To be specific, we set S(0) = 1 . We represent £ and 7, as a Fourier series

in the angle ¢:

" n=4co . . n=+oo~. Cin
E(zrp)= 3 E®(zr)e™ ,  ji(zre)= 3 iP(zr)e™ .

Substituting (7) into right-hand side of (8), we obtain a single integro-differential equation
for the field amplitude E(". Tt is convenient to write this equation in the following

dimensionless form:

@ 1§ n? a7 ;
M -y & n Y (ﬂ.) A A
[61‘-2 T +2‘Ba“] ET(7)

2 0 19 n? a|l -
— i o(h 51 2 9 (n)(ar A
=is(7) [ dz {2+/1 laT2+rar =+ Baél]}E (#,7)

f dPdF(P )/dpexp[(P+C)z - 3)]

+4168(7) / AP F(P)exp [—i(ﬁ’+ C‘)é] : (10)

Here the following notation is introduced: 2 = I'z, #=r/ry,C = C/I is the detuning

parameter, B = rél'w/c is the diffraction parameter,
/i§ = A2/T? = 4c*(Borow) ™

is the space charge parameter,
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1/2

I'= [10w29§ (21A6273’Y fom C-S(C)dC)_l.l

is the gain parameter, I ~ 17 kA is the Alfven current. The complex amplitudes £
and E™ are connected by the relation

E™ = E™W /By, Ey= p€l/(eby)

where p = cy2I'Jw is the efficiency parameter. The complex amplitude of the first

harmonic of the beam current density 5'1(") is connected with &g") by the relation
725, 7) =~V A0, AR = ()
The energy deviation is normalized as

P = (£~ &)/(p&0) .

z=0 -

and the distribution function for the normalized energy deviation, F'(P), is normalized to
unity:
f F(P)yP =1,

When the energy spread in the electron beam is Gaussian

F(E - &) = (2n((AE))™ exp (—M) ,

2((A&)%)
the corresponding normalized distribution has the form:
il §2y-1/2 . P2
F(P)=(2nA7) " “exp| ——=] .
(F) = Cndy P exp (o)

The energy spread parameter, A%, is related to the rms energy spread, ((A€)?), as
At = ((A€)%)/(p*&3) -
2.2 Solution of the initial-value problem by the Laplace technique

Equation (10) is an integro-differential equation for the field amplitude £ and can be
solved by the Laplace transform technique. We solve the equation (10) with specific initial
conditions at z = 0:
— the electron beam is modulated in density at the undulator entrance;
~ the field amplitude of the electromagnetic wave £ takes the value E|,—o = 0 at the
undulator entrance.

The Laplace transforms of the E'("'),

E®(p,7) = fo T e P (2, )ds

satisfy the following equation
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? 18 n2 CADEIS) | mmyr sy g e ra £
57 e T B T T g by | B ) = HROSHDte) , (11
where
b fw p AF(P /dP “f kA
p+i(P+0) P +C)°

So, using the Fourier expansion and the Laplace transform allows us to go over from
partial integro-differential equation to the ordinary differential equation. To find E™,

one must solve (11) with the boundary condition
E™(p,#) =0 for #—o00.

We rewrite equation (11) as

9 18 n?

O 29 )| E® (. #) + ABpE™ (p. ) = £
FYp + FOF 72 + 9(#,p)| EM™(p,7) + 21BpE™ (p,7) = f*M(#,p) . (12)
Here the following notation is introduced
. 21D(p)S (7
g(f,p) = - #)S(7)

1 —iAzS(#)D(p) ’
FO(#,p) = 4GS (#) Do(p) -

Green’s function. Equation (11) is nonhomogeneous, linear, second-order differential

equation. The homogeneous equation is satisfied by its eigenfunctions @,;(#),

# 190 n? A \(n :
[a_ + g tolh ’)] B+ HBN By = 0. (13)

Formally this equation is similar to the two-dimensional Schrodinger’s equation with

complex potential

62 10 n? ” n
L;?f? i mTt “’(T)] Goj o+ A = 0. (14)

Nevertheless, there is a principal difference. In the equation (14) the weight function w(7)
takes the same values for all eigenfunctions, while g(#, Aﬁ")) appearing in (13) depends on
the eigenvalue /\f,-"). As a result, eigenfunctions of the homogeneous equation (13) are not
orthogonal and the eigenfunction expansion of the Green’s function does not exist. In this
case the analytical solution of the nonhomogeneous equation (11) can be obtained using

the following mathematical trick. Let us consider associated eigenvalue problem

# 18 nt ) .
72 + Fa,’ﬁ - 12_2 +g(r,p) !pnj + A-_(, )Spnj =0, (15)

For the present, we assume that p = constant, that associated differential equation is

Schrodinger’s equation where /15") is the eigenvalue and ¢(#, p) is a known weight function.
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A function ¥,;(#), which satisfies equation (15) and the imposed boundary conditions , is
called an eigenfunction corresponding to Agn). Taking the complex conjugate of equation

(15) we obtain g(#, p)* # g(#, p). This property is expressed by saying that the operator

H? 18 n?

_+_._

L=ogtigs —mtelsp)

is not Hermitian. The operator £ with appropriate boundary conditions have three
properties that are importance in our case:
— The eigenvalues of the operator £ are complex;
— The eigenfunctions of the operator £ are orthogonal;
— The eigenfunctions of the operator £ form a complete set.
It 1s relevant to mention that the orthogonality and the normalization conditions are

formulated without complex conjugation:
/D T () (F)RAF = 6
In this spirit, let us introduce inhomogeneous differential equation associated with (12):
LU, + AW, = (7). (16)
This equation can be solved by utilizing a Green’s-function technique:
v, = fo TG (#, ) OV AR

We expand the Green’s function in a series of eigenfunctions of the associated homogeneous
equation (15), that is
Wi (7)n; (7')
ELCTEI 4 WS el A WALC A
( ) ZJ: A Agn)
Now we let 4 = 21Bp and write down the corresponding Green’s function of the
inhomogeneous equation (12) determining E(*):
G006 ) = — 3 ()
7 2iBp— A
Finally, E™(#,p), the desired solution of the equation (11), is given by

_ Uoi(F) o . A2 1
EM(f,p) = - — L | @ (7)) F () d
(*,p) ;2in~A§“) | T (F) S ()7

where Ag-n)(p) is the eigenvalue and %;(#,p), the orthonormal eigenfunction of the
associated homogeneous differential equation (15).
To find E'(")(z”*, 7), we use the inverse Laplace transformation:

. o+ico _ .
B (3, 7) = f dpE™ (p, #)e?* |

2mi —ico
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where integration path in the complex plane p is paraliel to the imaginary axis. The real
constant « is larger than the real parts of all the singularities of E{(™(p,#). We shall
consider only the high gain limit. If the undulator is sufficiently long, the contributions
of the residues at p = ,\( ™ proportional to exp()\(“) ) with Re()\(")) > 0 are larger than
all the other terms, and the contributions of the latter can be neglected. In this case the
solution for the field amplitude £(™(2,+) takes the form:

dAl
E™(z,7) = Zexp &,;(7) |2iB — ( 2 )
dp ()
A

x [ @)1 A | (17)

where the eigenfunctions @,;(7) = &, ;(#,p = )\_(,-")) are solutions of the equation (13).
Let us derive explicit expression for the derivative of eigenvalue with respect to p at the

point p = Ag-"). Using associated eigenvalue equation (15) and normalization condition,

/0 2 (F)idr =1,
we find

Note that the eigenfunctions of the operator £ are orthogonal and form a complete set.
Thus, we have

dAy % 9
J :_/ !an(TA) g'(?" p) Adﬁ
dp 0 Op

For the case of Schrodinger’s equation, we explain the last relation by saying that the first-
order change in eigenvalue is equal to the “expectation” value of the perturbing potential

over the unperturbed states.

Input coupling factors. The analytical results obtained above describe the high-gain linear
regime of FEL amplifier. At a sufficient distance from the undulator entrance the output
radiation can be presented as a superposition of the ”self-reproducing” field configurations:
E®)(3,7) = 37 AP®,(7) exp(A2) . (18)
2
The term ”self-reproducing” refers to the fact that the transverse dependence of the field
is independent of the axial coordinate z. The complex eigenvalues have positive real part,
Re(/\g-n)) > 0, since these correspond to exponential growth in z. The input coupling
factors Ag-n) are given by the expression

10
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A = iyl f d(F)S(F) B (F)di .

Here we use the following notation

—1
%B + f dg(7,p) Fdf
dp /)

For simplicity, in this article we confined our attention to the situations where space

i = Do(A{™)y

charge effects are negligible, /if, — 0. However, the reader can simply extend the analysis
with this effects taken into account. The field amplitude is then given by (18). The

expression for input coupling factors now reduces to [17, 19]:
AP = 2 [T a5 S(7)@n ()i

(n})

where u;" can be written in the following form:

a -1
%0 db %0
2 favads 2. - Ay A a
B [~ o2 ()idi (_dp)pﬂ(n) / ¢n,(r)5(r)rdr] :

Here and below it 1s convenient to use eigenfunctions without normalization condition.

u;n) — bo(/\gﬂ-))

Calculation of output power. An important characteristic of the FEL amplifier is the
output power. In the paraxial approximation the diffraction angles are small, the vectors
of the electric and magnetic field are perpendicular to each other and have equal absolute
values. Thus the expression for the power of the radiation with azimuthal index n, can be

written in the form:
(n):..i/‘” f(n) |2
w ol A | E\™|*2mrdr . (19)

Introducing the notion of the electron beam power, Wy, = & ly/e, we rewrite (19) in the

following normalized form:

. WM B opeo .o [ -
W = = = 7 [T B e [ csoac] (20)

Thus, the exact solution of the initial-value problem for FEL amplifier with arbitrary

gradient profile has been derived (as mentioned in section 1, we applied a method of
solution, originally introduced by S. Krinsky and L. H. Yu [19]). As a result, if we have
information on the eigenfunctions and eigenvalues, we are able to calculate radiation

properties of the FEL amplifier which operates in high gain linear regime.
2.3 A systematic approach for the determination of eigenmode

The eigenvalue problem for the case of an arbitrary gradient axisymmetric profile is solved
by means of the multilayer approximation method (see [20, 21| for more details). Let 7
be the normalized radius of the beam boundary. We divide the region 0 < # < #, into K

11
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layers. The beam current density is assumed to be constant within each layer. According

to (13), the solution for the eigenfunction within each layer is
@,&k) = CkJn(,Uk'F) + den(ka') ?

where (k — 1)/K < # < kip/K , ¢t and dj are constants, J, and N, are the Bessel
functions of the first and second kind of order n respectively, and

pi=2%DS, 1 —q°, ¢*=-2BA,

where Sy_12 = S(fr_1y2) and Fro1p2 = Fu(k — 1/2)/K. To avoid a singularity of the
eigenfunction at # = 0, we should let d; = 0. All the other coefficients are obtained
from the continuity conditions for the eigenfunction and its derivative at the boundaries

between the layers. These equations can be written in the matrix form:

Cikt1 Ck |
=T , k=1,2 ... K—1, 21
(dk+1) k(dk) (2

where the coeflicients T} are given by ( A, = #Ak/K):

(Te)u1 = (7 /2)Fe [ Tnpr (1a7k) No(pih4175)
= tth 41 (0 ) N (es17)]
(Th)rz = (= / 2)Pk [pex N1 (a7 4) New (ptr417)
— et N (16570 ) N (g Pe)]
(Te)ar = —(7/2)Fr[pdnrr (i) Tn (kg1 Pr)
— k1 In (e Jns1 (rs178)]
(Tk)az = ~(m/2)F[ttr Nups (ae) Jn(rsaPe)
— k41 Ny (P ) T (41 78)] - (22)

According to (13), the solution for the eigenfunction outside the beam, # > #,, satisfying

the condition of the quadratic integrability is
D(n)(7) = bK,o(g7) , Re(q)>0.

At the beam boundary, at # = 7, the continuity condition gives the following relations:
cxJn(pxto) + dx No(pxis) = bKa(gfs) ,
sk Jnpr(prfo) + prdr Nogi (pxts) = ¢bKnp(qf)

which can be written in the matrix form
CK 1
=b } 2

12
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The coefficient b can be expressed in the terms of the coefficient ¢; by multiple use of (21).
The coefficient ¢, may be chosen arbitrary, so without loss of generality we let ¢, = 1.

Then we can write the following matrix equation:

Ti X Tiey X ... x Ty ((1)) = T(ll}) = bG) p (24)

where the matrix T depends on the unknown quantity A. Another unknown quantity in
(24) is the coefficient b, which can be easily excluded. Thus, we obtain the eigenvalue

equation .
(T = (T)n , (25)

which allows one to find the eigenvalue A. The eigenfunction is calculated using (21) and

(23).
2.4 Electron beam with Gaussian profile

Now let us consider a beam with Gaussian distribution of the current density:

. Io 7"2
nl(r) = g7 ~55 ) -

It is reasonable to choose the rms radius, v/2¢, as the profile parameter ro. The profile

function 1is
S(7) = exp(~#7) (26)

where # = r/(v/20) . The reduced parameters in the case of the Gaussian profile are as
follows

r= [Ingﬁf(IAczfyf'y)—l]lﬂ , B=20Tw/c.

We substitute (26) into (20) and obtain

W = B f Z B rdr | (27)
E™(3 ZA(")@,,J(F)exp(A(") ), (28)
where

2uf” f GCA(F) exp(—7)B,s ()i

u_(gn) — ﬁo(/\gn))

Bfomgpij(?*)fdﬁ_ (%g_)p;\j /()W P2 () exp(—7?)Fdf

13
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Gaussian energy spread. For a Gaussian energy spread in the electron beam, the functions
D(p) and Dy(p) are given by

D=i[ cexp[-Ate/2— (p+i0)e] e,
Do =f exp [~ ARE2/2 — (p +1C)€] de .
0
Taking into account the definition of the function D()), we get

Q - 1")()\(“)) - L 1 + )\;ﬂ) +iC + Agn) +iC
d - 3 2 (n) 4 A A2 44 '
p p=,\§n} A A lC AT AT

In the limit of negligibly small energy spread, A2 — 0, the function D and its derivative

with respect to A at A = Af,-n) takes the following simple form:
D()\(n)) Ti.._.__ (Q) — —W'g'i—._
(A +iC)2 dp / posim (A" +iC)

3 Start-up from Shot Noise

Fluctuations of the electron beam current density serve as the input signal in the SASE
FEL. These fluctuations always exist in the electron beam due to the effect of shot
nose. Let us consider the microscopic picture of the electron beam current density at
the entrance to the undulator. The shot noise in the electron beam causes fluctuations
of the beam current density which are random in time and space. As a result, the beam

current density at the entrance to the undulator can be written in the form:
j(rl,tz|z_0— Z(St—tk TL—T(J_)),

where 4(...) is the delta function, (—e) is the charge of the electron, N is the number of
(k)

the electrons in a bunch, ¢, and 7}’ are the random arrival time and transverse coordinate
of the kth electron at the undulator entrance. The beam current density averaged over

an ensemble of bunches can be written in the form:

(jz('l‘J_,O,t)) = _jo(rl)F(t) H

where F(t) is the longitudinal profile function. The averaging symbol {...) means the
ensemble average over bunches. In this paper we shall consider a rectangular electron
bunch of sufficient duration, T', such as pwoT > 1, where wyp is the resonance frequency
and p is the efficiency parameter. The physical interpretation of this approximation is that
the electron bunch is much longer than the slippage of the radiation with respect to the

electrons per gain length. It allows us to neglect edge effects and to use the steady-state
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Green’s function for any frequency within the FEL bandwidth. It is assumed that only the
fluctuations of the beam current density define the value of input signal. This means that
we can neglect the effect of longitudinal velocity fluctuations connected with the finite

energy spread in the beam.
3.1 Average radiation power

We start with the calculation of the average radiation power at the undulator exit. The
components of electric field of the electromagnetic wave in the time domain, E, ,(r L,t)
and its Fourier transform, E;,(r),w), are connected by
1 oo _ :
Ea:.y(ri.a Z,t) = };,""/ Ex,y(TJ_,z,w)e_Wtdw .
T J—0o
Using the expression for Poynting’s vector and Parseval’s theorem, we calculate the

radiation energy in one radiation pulse:

= .i T 2 2
g - 471- fdrl/; dt[Ez(TJ.azat)‘i‘ Ey(‘l"_l_,z,t)]
[ 00 _ _
= [ ars [ alB sz £ B,z )

Taking into account that radiation field is circularly polarized, i. e. E, = iE,, we obtain
that

c OO - .=
£ =5 [ire [T @lBri,n) +iB sz (30)

Let us recall some results of the steady-state 3-D theory of the FEL amplifier. In section
2 we considered the special case of initial conditions when the electron beam, modulated
in frequency w, is fed to the undulator entrance. The output radiation also has the
same frequency, w. In the high-gain linear regime the radiation can be presented as a
superposition of the exponentially growing guiding modes. In this section we study the
case when the initial modulation of the electron beam is defined by the shot noise and has
a white spectrum. Under the accepted limitations the results of the steady-state theory
can be extended to this complicated case. Indeed, we can decompose the input signal into
Fourier harmonics:

Jext(PL,w) = dte“"t_';z(rl, z,t)|2=0 = (—¢€) Z elutk&(r )

-0
Since in the linear regime all the harmonics are amplified independently, we can use
the result of steady-state theory (28) for each harmonic and calculate the corresponding

Fourier harmonics of output radiation field. For w > 0 the asymptotic expression for the

harmonic of the field takes he form:
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E'i"’)(r, z,w)+ iE‘é")(r, Z,w) = Z 2eiwz/cy, (n)@nj(') exp(/\g-”)é)

N
Z ni( r( ) exp incpk-{-iwtk)]

(; [ s ) (31)

When w < 0 the Fourier harmonics defined by the relation £{")(r, z, —w) = (E{)(r, 2,w))".
It should be noted that eigenvalues )«J(;“), eigenfunctions &,; and coefficients ufiﬁ) are
universal functions of the detuning parameter ¢ = (wp — w)/(2pwp). Substituting
expression (31) in (29) we obtain the radiation energy in one pulse. Then we divide the
result by the pulse duration, T, and average over an ensemble. This gives us the averaged
radiation power

(W) = (W)/(pWh) = S (W™) (32)

”

where the contribution of the radiation with azimuthal index n to the total radiation

power is given by the expression [17, 19]:

. B o .,
(7)Y (m) (n) (n) (n)y*
(W)= f_mdc{zjk,j u{(u{?)" exp {0 + ()]}
x fu (7 B2, (7)S(F)Fd7 fo @nk(f)qs;j(f)fdf}, (33)

where N, = N,/(2mp), Ny = 2nly/(ewp) is the number of electrons per radiation
wavelength, Iy = eN/T is the average beam current. The parameters of the SASE FEL
are usually chosen in such a way that transverse coherence is achieved at the end of
amplification process. This happens due to transverse mode selection, i.e. only one ground

mode survives in the end. For this limit we can write the following asymptotic expression

for the output power:

(W) =

B [ (0)y »
N f_oo dC {exp[2Re()\0 )z]

-2

\ oo . (dD o

><|JDO|2 B/n @&(r)rdr — (‘CE)FAQJ/‘; @?}U(r)S(r)rdr_

X f [@oo(7) |28 (7)Fd7 f |€15oo(f)|2ﬁdr‘-} . (34)
0 0

3.2 Averaged angular distribution of the radiation intensity

At a sufficiently large undulator length the spectrum of the SASE radiation is concentrated
within the narrow band near the resonance frequency wq. Therefore, the electric field of

the wave can be presented as
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E. +iE, = E(ry, 2z, t)el/<D L C.C. |

where E is the slowly varying complex amplitude. The next problem of interest is the
angular distribution of the radiation intensity. The radiation field at the undulator exit
may be written as a superposition of plane waves. The spatial Fourier transform of the

complex amplitude Eis
Ak, z,t) = fE(rL,z,t)exp(—ikLr_L)drl . (35)

Then the averaged angular spectrum can be written as

(IA(kJ.) 2y t)|2>
J{A(kL, 2, t)2dky |

Taking into account (35) and Parseval’s theorem, we obtain

Wik, z) = JHE(rL, 2, ) E* (v, 2,1)) exp[—iky (v, — 7/ )]dr dr),
v (@) ([ E(ry, 2, )P)dr. |

Using the notation p = v, — ¢/, and R = (r,. +7')/2, we can rewrite the latter expression

hiky,z) =

as
Wk, o) = | J(E(R + p/2,2,t) E"(R — p/2,2,1)) exp(~ikyp)dpdR
(2m)? [(|E(R, z,)[)dR
Then we can introduce the definition of effective transverse correlation function:
o J(E(R+p/2,2,t)E*(R = p/2,2,t))dR
)= FER. = PR

The angular spectrum and the effective correlation function are connected by the

Fourier transform
1 eff .
Mki,2) = oo [ 70, 2) exp(—ikp)dp

Thus, the averaged intensity distribution in the far zone h{k,, z) is totally defined by the
effective transverse correlation function. On the other hand, if one knows h(kL, z), then
v*(p, z) can be calculated by means of the inverse Fourier transformation.

Let us consider a axisyminetric electron beam. Using cylindrical coordinates we
represent output power as a Fourier series in the azimuthal angle ¢:

~ n=+0oo ~ .
E(z,r ety = > E™(z,r t)e7im |

The radiation field at the undulator exit may be written as a superposition of plane
waves. The value k, /k gives the sine of the angle between the z axis and the direction of
propagation of the plane wave with the wavenumber k = w/c. In paraxial approximation

k) /k = sin(@) =~ 0. The spatial Fourier transform of the radiation field is given by
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A(b,p,2,t) = Z e_in“’E(”)(G, 2,t)

n

=21y eTinletn/2) /oo E™(r, 2,)Jo(Bwor/c)rdr | (36)
n (4}

where J,, is the Bessel function of first kind. In the case of axisymmetric electron beam

statistical process is isotropic. Then the averaged angular spectrum can be written as

h(8, ) l2|”(“)9,z,t H Z/ =09, 2, 1)) )0d0]

Using (36) and Parseval’s theorem we obtain

-1

= [; _/000 /OOO(E'(")(T,z,t)(E(")(r',z,t)) Jn(Bwor/c)J, (Bwor'/c)rr'drdr]

X [271';fom-(|E’(n)(r,z,t)|2)rdr] . (37)

Since in the linear regime all the harmonics are amplified independently, we can use
in high-gain regime the asymptotic result of steady-state theory (31) for each Fourier
harmonics of output radiation. Finally, the angular spectrum is written in the following

dimensionless form:

h(0,2) = LG f_ dC (9;5?) / B (F) L (67)7d7 /0 gs;j(,:r)Jn(gf,)ﬁ,dﬁ,)}

[2172 f ac (9(“) sﬁnk(ﬁ)qs;j(f)ﬁdf)] . (38)

n,k,J

To simplify this expression, we use the following notations: § = fworg /e,

.(2("') = uk J exp{[)\(“) )\("]) ]z}/ Dok (7)D7,;(F)S(F)FAF .

4 An approach for constructing time-dependent numerical simulation codes

Complete calculation of the parameters of the FEL amplifier can be performed only with
numerical simulation codes. Time-dependent simulations of the FEL amplifier are being
performed by simultaneous solutions of Maxwell’s equations and the equations of motion
of the electrons. To be specific, in this section we describe a three-dimensional, time-
dependent code FAST developed for simulations of the SASE FEL [3].

The radiation field and the beam current density are presented in the form:

E. +iE, = E(r, z,t)e*/) L C.C. ,
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j;_, = —jo(T‘L,Z,t) +51(TL,Z,t)ei¢ -+ CC 3

where ¢ = ky, 2 + wo(z/c — t), and —jp is the ensemble averaged current density.
We solve the electrodynamic problem using the paraxial approximation. In this case

the wave equation may be written in the following form:

0 10\ =~
[Vl +21— (az + z—a-t-')] E(TJ_,Z,'&)

iy ~
ik woJl("L,z t). (39)

The solution of this equation is

. z
18,0

E(T_L,Z,t) =

!
~ Z— Z
! rfL,z',t—
c

lwolry ~ 7' |2
X 40
P [ 2¢(z — 2") (40)
The complex amplitudes, £ and 7;, are expanded in a Fourier series in the angle ¢,
w Lot v
> EM(r 2z, t)e ¢ | Z ] (r,2,t)e” "%
Then we get from (40) the expression for the Fourier harmonics:
. 278, ¢odz n -
E™(r, 2,t) = _czf-‘-’o "”"'”f z /dr'r'g{ ) (r',z’,t _Z cz)
0
Worr 1w0(r +r'?)
XJy | —— —_ 41
(c(z—z’)) P [ 2¢(z — 2) (41)

Prior to the detailed analysis of start-up from noise (i.e. the self-consistent solution of
(39) and the equations of particle motion under the shot noise initial conditions at the
undulator entrance), it is relevant to discuss the region of applicability of the paraxial
wave equation (39). The paraxial approximation assumes complex amplitude E(r, z, )
to be a slowly varying function on the scale of the radiation wavelength. When we consider
start-up from noise, the beam current, 31(1' 1,%,t), is not a slowly varying function. The
first limitation on the problem parameters means that the undulator should be sufficiently
long, kwz 3> 1. When the latter condition is fulfilled, we still cannot expect correct results
in the three-dimensional case. Indeed, the incoherent undulator radiation has a wide
continuous spectrum. When kyz > 1, (39) correctly describes the fields in the narrow

frequency band near the resonance frequency only, Aw/wy < 1. In terms of the far field
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zone, it gives correct results only for that part of the incoherent undulator radiation which
is concentrated within the angle A@ « 1/+, near the z axis.

When the FEL amplifier starts from the shot noise, a lot of transverse radiation modes
are excited at the beginning of the amplification process; the radiation spectrum and the
angular distribution in the far zone are relatively large. During the amplification process,
the number of transverse radiation modes decreases, and the contribution of the coherent
radiation into the total radiation power is increased. Also, the angular distribution of the
radiation intensity in the far zone decreases. When it becomes much less than 1/v,, we
obtain a correct quantitative description of the amplification process starting from the
shot noise.

One more relation, connecting the field and the current density, should come from the
solution of the dynamical problem. When the space charge field can be neglected, the
equations of motion may be written in the form:

%—‘; = -l—zeféew +C.C.,

L —wpf(ers)-

To perform the simulations, we divide the electron beam into a large number of
elementary volumes. The size of the divisions of the electron beam in the longitudinal
direction should typically be chosen equal to the radiation wavelength. The number of
azimuthal harmonics for calculations of the radiation field, N, defines the number of
azimuthal divisions of the electron beam. Typically, it should be by an order of magnitude
larger than N,,. Finally, the radial mesh should be chosen. The simulations are performed
with a macroparticle method. The number of macroparticles in each volume is equal to

Nn. At each integration step we calculate the bunching, &,, in each elementary volume:

&1 — N_ Ze—i¢m .

m m=]

These values are used to calculate the azimuthal harmonics. The radiation field of the
nth azimuthal harmonic in the discrete representation is calculated using the rigorous
solution (41). At the next integration step, the sum of the azimuthal harmonics of the
field is substituted into the equations of macroparticles motion in each volume, etc. As
a result, one can trace the evolution of the radiation field and the particle distribution
when the electron beam passes the undulator.

The initial shot noise in the electron beam is simulated according to the algorithm
described in [14]. Since the actual number of particles per elementary volume, Ny, is
large, the bunching in each box is the sum of a large number of random phasors with

fixed amplitudes and uniformly distributed on (0,27) phases. Using the central limit
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Fig. 1. Distributions of the radiation intensity across one slice of the radiation pulse at different undulator lengths,

#=25,2=10, and 2z = 15 (left, middle, and right plots, respectively). The coordinates are normalized to 2!/24,.
Here B =1, A2 -0, and A% = 0. Calculations have been performed with linear simulation code

theorem, we can conclude that the phases of the bunching parameters are also distributed
uniformly and the squared modulus of the amplitudes, |d;|?, are distributed by the

negative exponential distribution:

z ——1 ex __|&1|2
)‘<|fn|2> p( <|a1|2))’ (42)

where (|a1[*) = 1/N,. So, a negative exponential random generator with a mean value

A

ay

P

of 1/N, is used to extract the values of |a,|* for each volume. The phases of &; are
produced by a random number generator for the uniform distribution from 0 to 2.
These values are directly used as input parameters for the linear simulation code. In
the nonlinear simulation code the macroparticles are distributed in such a way that the
resulting bunching corresponds to the target value of &; in each elementary volume.

The output of the code are the arrays for the field values in the Fresnel diffraction
zone. Typical slice for the radiation pulse is presented in Fig. 1. Figure 2 presents typical
temporal structure of the radiation pulse from the FEL amplifier starting from shot
noise. Post-processor programs are used to extract additional information for the field
distribution in the far diffraction zone, for the spectrum, for the time, space and spectral
correlation functions, and for the probability distributions of the radiation power and the

radiation energy.

5 Comparison of analytical and simulation results

One can easily obtain that identical physical approximations have been used for analytical
description of the high-gain linear regime and for numerical simulation algorithm. So, we
should expect full agreement of the results in the high-gain linear regime. In other words,
analytical results should serve as a primary standard for testing numerical simulation

code. To be specific, we present the results for the following set of parameters: diffraction

21



TESLA FEL-Report 2000-02

21107 - r T T . 08
1 06
~ —_
3 3
& 1x0 & o4l
e —
2 3
02|
[} 1 N Il i i L 0.0 N N N n
100 110 120 130 140 150 100 110 120 130 140 150
part port

Fig. 2. Temporal structure of the radiation pulse from the FEL amplifier starting from shot noise at the length
of undulator of 2 = & (left plot) and 2 = 15 (right plot). Here B =1, A3 — 0, A% =0, and 3 = 15. Calculations
have been performed with linear simulation code FAST

parameter B = 1, space charge parameter Ag — 0, energy spread parameter A% = 0, and
N,=Tx107.

Analytical calculations have been performed taking into account nine beam radiation
modes, TEM,,,, for m,n = 0,1,2. Numerical simulations have been performed with

expansion of the radiation field up to the 6th azimuthal harmonic.
5.1 Averaged radiation power

Figure 3 shows the evolution of the total radiation power from SASE FEL versus the
undulator length. Simulation results have been obtained by means of averaging of the
radiation power along the bunch (see Fig. 2). It is seen that analytical and simulation
results agree well at 2 > 7.

Another interesting topic is partial contribution of different beam radiation modes
into the total radiation power (see Fig 4). It is seen that both numerical and analytical
results agree well at an increase of the undulator length. One can obtain that numerical
simulations always give the value of the radiation power higher than analytical results.
The reason is that the numerical simulation code calculates total gain, while the analytical

formulae describe only the high-gain asymptote.
5.2 Averaged angular distribution

Analytical predictions for the averaged angular distribution of the radiation power are
given by (38). Similar characteristic can be also calculated with numerical simulation
code. Numerical simulation code produces an array containing values for the radiation
field in the near zone. Using the values for the radiation field in the near zone, we find the
radiation field propagating at any angle in the far diffraction zone. It is seen from Fig. 5
that both approaches agree well in the high-gain linear regime. It is important to stress

that even after finishing the transverse mode selection process (which takes place after
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Fig. 3. Averaged power versus undulator length for the FEL amplifier starting from shot noise. Here B = 1,
A2 =0, A2 =0, and N = 7x 107. Solid curve represents analytical results calculated with (32) and (33} for nine
beam radiation modes (m,n = 0, 1, 2). The circles are the results obtained with Linear simulation code FAST.
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Fig. 4. Partial contributions to the total power (see 3) of three azimuthal modes with m = 0, 1, and 2. Here
B=1,4A -0, A% =0, and N. = 7 x 10", Solid curves represent analytical results calculated with (32) and
(33) for sum of three radial modes (n = 0, 1, 2). The circles are the results obtained with linear simulation code
FAST.
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h(8)/h(0)

Fig. 5. Averaged angular distribution of the radiation intensity in the far zone for the FEL amplifier starting from
shot noise. Here B = 1, A2 — 0, and A% = 0. Solid curves are the results of analytical calculations with (38), and
the circles are the results obtammed with linear simulation code FAST. Dashed line represents angular distribution
of the fundamental TEMy; mode for maximum growth rate calculated in the framework of the steady-state theory.

2 > 10 for the considered numerical example) the distribution in the far zone differs visibly
from the angular distribution of the fundamental TEMgo mode for maximum growth rate
calculated in the framework of the steady-state theory (dotted line in Fig. 5).

5.3 Averaged radiation spectrum

As we mentioned above, numerical simulation code produces an array containing values
for the radiation field in the near zone. Integral spectrum of the radiation pulse can be
calculated in the following way. Using the values for the radiation field in the near zone,
we find the radiation field propagating at any angle in the far diffraction zone. At the next
step of calculations we find the spectral distribution of the radiation power for each angle,
and after integrating over all angles we obtain integral spectrum of the radiation pulse.
Typical spectrum of the radiation pulse obtained from numerical simulations is present
in Fig. 6. |

Analytical results give predictions for the averaged radiation spectrum (see (32) and
(33)). To obtain averaged spectrum from numerical simulation code, we performed large
number of statistically independent simulation runs. Each run gives spectrum with spiky
structure as shown in Fig. 6. Average of a Jarge number of radiation spectra is presented
in Fig. 7. It is seen that the analytical and simulation results for the averaged radiation

spectrum agree well in the high-gain linear regime.
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Fig. 6. Typical spectrum of the radiation from the FEL amplifier starting from shot noise at the undulator length
2 =15. Here B =1, Af, — 0, A2 =0, and N, = 7 x 107. Calculations have been performed with linear simulation
code FAST.

<(dW)/(dC)>

Fig. 7. Averaged spectrum of the radiation from the FEL amplifier starting from shot ncise at the undulator
length 2 = 15. Here B =1, A2 — 0, A} = 0, and N, = 7 x 10". Solid curve represents analytical results calculated
with {32} and (33) for nine beam radiation modes (m,n = 0, 1, 2). The circles are the results obtained with linear
simulation code FAST.
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Fig. 8. Degree of transverse coherence of the radiation from the FEL amplifier versus the undulator length. Solid
curve represents analytical results, and the circles are the results obtained with linear simulation code FAST,
Here B=1, A2 50, A2 =0, and N: =7 x 10,

6 Transverse coherence

In the case of axisymmetric electron beam the radiation field statistically isotropic. For
such a field the effective correlation function depends only on the modulus |p| and the

angular spectrum depends on the modulus |k, |. Thus, we have
158(5,2) = 2r [ Jo(pb)h(f)ded (43)

where p = |p|/ro. It is natural to define the area of coherence for an isotropic inhomogeneous
field as:

Sean(2) = 21 [ 12575, 2)Ppp - (44)
Using the relation Seon = 772, it is conventional to introduce the notion of the radius of
coherence Fegh.

To describe the formation of the transverse coherence, we should define the degree of
coherence. One possible definition can be made as follows. After statistical analysis of the
numerical results we find 7n. Then we find the radius of coherence Fpax for the fully
coherent radiation which is represented by the fundamental $go(7) mode for maximum
growth rate. The field distribution of this mode for Gaussian density distribution in the

electron beam can be found by the multilayer approximation method described in section

2.2. The degree of coherence, {, may be defined as
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(= f'coh/frznax : (45)

Using angular distributions of the radiation field in the far diffraction zone we can trace
the dependence of the degree of transverse coherence versus undulator length. Solid line in
Fig. 8 1s the results of analytical calculations, and the circles are the results obtained with
numerical simulation code. We can state that there is good agreement between analytical
and simulation results. It is clearly seen that the degree of coherence differs visibly from
the unity in the high-gain linear regime, ( ~ 0.9 at 2 = 15.

Another possible way to define the degree of coherence is based on the statistical
analysis of fluctuations of the instantaneous power. Since in the linear regime we deal
with a Gaussian random process, the power density at fixed point in space fluctuates
in accordance with the negative exponential distribution [21]. If there is full transverse
coherence then the same refers to the instantaneous power W equal to the power density
integrated over cross section of the radiation pulse. If the radiation is partially coherent,

then we have a more general law for instantaneous power fluctuations, namely the gamma
distribution [21, 22]:

MM wA\MT W
p(W =-——-(—————) —ex (—M——-—) \ 46
=ron\wy) W e \"Mon (“6)
where I'(M) is the gamma function with argument M, and
1
M=o o= (W = (W))W, (47)
W
The parameter M = 1/0? of this distribution can be considered as the number of

transverse modes. Then the degree of coherence in the linear regime, (, may be defined

as follows

(= =0l (48)
The value of M should be calculated with numerical simulation code producing time-
dependent results for the radiation power (see Fig. 2). Figure 9 presents the probability
distribution of the fluctuations of the radiation power for two different undulator lengths
of 2 =8 and z = 15. In Fig. 10 we present the dependence of the number of transverse
modes on the undulator length for the specific value B = 1 of the diffraction parameter.

It is seen that both definitions for the degree for the transverse coherence, (45) and (48),

are consistent in the high-gain linear regime.

7 Discussion

Let us discuss asymptotical behaviour of the degree of transverse coherence. At a large

value of the undulator length it approaches to unity asymptotically as (1 — ¢{) o« 1/z,
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Fig. 9. Histogram of the probability distribution of the instantaneous radiation power from the FEL amplifier
starting from shot noise. at the length of undulator of # = 8 (left plot) and £ = 15 (right plot). Here B = 1,
Af, — 0, A% = 0, and # = 8. Calculations have been performed with linear simulation code FAST. Solid lines
represents gamma distribution with M = 2 (left plot} an M = 1.1 (right plot).

1/¢

Fig. 10. Inverse value of transverse coherence versus undulator length. Here B = 1, A2 — 0, A% = 0, and

N. = 7 x 107. Calculations have been performed with linear simulation code FAST. Curve 1 is calculated using
instantaneous fluctuations of the radiation power (48). Curve 2 is calculated with (45)
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but not exponentially, as one can expect from simple physical assumption that transverse
coherence establishes due to the transverse mode selection. The latter effect indeed takes
place as it is illustrated in Fig. 1. That is why the degree of coherence grows quickly at
an early stage of amplification. Starting from some undulator length the contribution to
the total power of the fundamental mode becomes to be dominant (see Fig. 4). However,
one should take into account that the spectrum width has always finite value (see Fig. 7).
Actually this means that in the high gain linear regime the radiation of the SASE FEL
is formed by many fundamental TEMy, modes with different frequencies. The transverse
distribution of the radiation field of the mode is also different for different frequencies. As a
result of interference of these modes we do not have full transverse coherence. Taking into
account this consideration, we can simply explain asymptotical behaviour of the degree of
transverse coherence — this is reflection of the slow evolution of the width of the radiation
spectrum as z~/? with the undulator length.

All the results presented above have been obtained in the framework of the linear
theory. Simulations with nonlinear code shows that for the considered numerical example
the saturation occurs at 2 ~ 18. Using the plot presented in Fig. 8 we find that the value
of the transverse coherence is less than 0.9 in the end of the linear regime. A typical range
of the values of N is 108-10° for the SASE FEL of wavelength range from X-ray up to
infrared. The numerical example presented in this paper is calculated for N, = 7 x 107
which is typical for a VUV FEL. It is worth to mention that the dependence of the
saturation length of the SASE FEL on the value of N, is rather weak, in fact logarithmic
(see (33)). Therefore, we can state that obtained effect limiting the value of transverse

coherence might be important for practical SASE FELs.
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