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Abstract

In this paper we consider a klystron-like mechanism of ampli�cation of parasitic

density modulations in an electron bunch passing a magnetic bunch compressor.

Analytical expressions are derived for the small-signal gain. The main emphasis is

put on analysis of coherent synchrotron radiation (CSR) e�ects.
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1 Introduction

Magnetic bunch compressors are designed to obtain short electron bunches with a high

peak current for linac-based short-wavelength FELs [1{5] and future linear colliders [5{7].

The basic principle of compression is very simple. A relativistic electron bunch accu-

mulates energy chirp while passing RF accelerating structures o�-crest and then gets

longitudinally compressed due to an energy-dependent path length in the magnetic com-

pressor (for instance, in a chicane). Since, however, electron bunches are very short and

intensive, collective e�ects like coherent synchrotron radiation (CSR) [8] can seriously

inuence beam dynamics in compressors [9].

In the recent experiments with bunch compressors [10{12] and in numerical simulations

[13] the strong high-frequency perturbations of longitudinal phase space has been ob-

served. The self-consistent simulations [14] of beam dynamics in the TESLA Test Facility

(TTF) bunch compressor chicane (BCC), taking into account CSR e�ects, have also shown

phase space fragmentation. It has been explained by strong enhancement of CSR e�ects

due to the locally peaked (non-Gaussian) density distribution created during compression

process because of RF nonlinearity (see also [15]).

It has been mentioned in [14] that another mechanism can be considered which is also

relevant for the ideal linear RF modulation (or, even without modulation). Namely, high-

frequency components of the beam current spectrum (higher than typical inverse pulse

duration) cause energy modulations at the same frequencies due to wake�elds. The energy

modulation is converted into an induced density modulation while the beam is passing

the bunch compressor. If the wake�elds are strong enough, the induced modulation can be

much larger than the initial one. In other words, the system can be treated as a high-gain

klystron-like ampli�er. The general tendency is that higher frequencies (to some extent)

are going to get ampli�ed stronger so that they may become much better pronounced in

comparison with the case of undisturbed compression. Thus, the charge distribution and,

more generally, the longitudinal phase space can be essentially modi�ed.

In this paper we study such a mechanism analytically in linear approximation. Since it

is di�cult to measure (simulate) small high-frequency perturbations in the initial state
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of the beam, one cannot exactly predict its �nal state. Thus, our goal is to calculate

(estimate) the gain as a function of frequency. If the gain is large then one may expect

signi�cant modi�cations of longitudinal phase space in the bunch compressor, and vice

versa. In section 2 we study the dynamical aspect of the problem assuming linear energy

chirp along the beam and the given amplitude of parasitic energy modulation at some

frequency. In section 3 we consider the case when these energy perturbations are created

due to wake�elds upstream of bunch compressor. In section 4 we study CSR in the bunch

compressor chicane. In section 5 we estimate e�ective density modulations due to the shot

noise in electron beam.

2 Compression of the beam with linear energy chirp and superimposed si-

nusoidal modulation

In this paper we consider 1-D model of the electron beam. An undisturbed phase space

distribution of the beam with dc current, linear energy chirp along the beam and Gaussian

energy spread can be described with the following function:

f(z; �) =
I0p
2��

exp

"
�
(� � h0z)

2
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#
; (1)

where z is the coordinate along the beam (particles with positive values of z are placed

behind the particle with z = 0), 0 = E0=(mc2) is the nominal energy in units of the

rest energy, m is electron's mass, 0 � 1, c is the velocity of light, � = (E � E0)=(mc2)

is the energy deviation from the nominal value, � = �E=(mc2) is the rms local energy

spread, h = d(�)=(0 d z) describes linear energy chirp along the beam, I0 is the beam

current. Normalization is chosen in such a way that after integration over � we get the

current. We assume 0 to be large and consider small energy deviations � � 0 although

formally we let � extend from �1 to 1. The model of dc current allows us to exclude

edge e�ects from consideration and to deal with small sinusoidal modulations.

To describe phase space transformation in the bunch compressor we assume a linear

dependence of path length in the compressor on �=0 described by the element of a
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linear transfer matrix:

R56 =
@z

@(�=0)
:

Then a particle position in the beam before and after compression, zi and zf, are connected

by

zf = zi +R56

�

0
:

Therefore, to describe the �nal state of the beam we should substitute z in (1) by z �

R56�=0. Then the new distribution will have the form of (1) where I, �, and h are

substituted by CI, C�, and Ch, respectively. Here C is the compression factor:

C =
1

1 + hR56

:

For compression one should provide hR56 < 0. For instance,R56 < 0 for the chicane so that

h has to be positive in this case. In addition, in this paper we restrict our consideration

by the condition 1 + hR56 > 0, i.e. the beam is undercompressed.

Now let us consider an energy modulation at some frequency ! on top of the linear chirp.

In front of the bunch compressor the phase space distribution has the form:

f(z; �) =
I0p
2��

exp

(
�
[� � h0z +� sin(kz)]

2

2�2



)
;

where k = !=c and � is the amplitude of energy modulation. As it was done above, we

substitute z by z�R56�=0 to describe the change of distribution function in the bunch

compressor. Then we integrate over � in order to get current as a function of z:

I(z) =
I0p
2��

1Z
�1

d � exp

(
�
[�(1 + hR56)� h0z +� sin(kz � kR56�=0)]

2

2�2


)

After change of variables x = [�(1 + hR56)� h0z] the integral takes the following form:

I(z) =
CI0p
2��

1Z
�1

dx exp

(
�
[x+� sin(Ckz � CkR56x=0)]

2

2�2



)
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The integral of such a form is known to describe the process of density bunching starting

from initial sinusoidal energy modulation but without linear energy chirp (see, for instance,

[16]). Making integration and Fourier expansion, one gets:

I(z) = CI0

"
1 + 2

1X
n=1

Jn

 
nCkR56

�

0

!
exp

 
�
1

2
n2C2k2R2

56

�2



2
0

!
cos(nCkz)

#
: (2)

Here Jn is the Bessel function of nth order. Without compression (h = 0, C = 1) the

expression (2) is reduced to the well-known one [16].

Analyzing (2) we see that the frequency range (of initial modulation), in which the beam

can be e�ectively bunched, is limited by k � (CR56�=0)
�1. Within this range the

condition CkjR56j�=0 � 1 means that the beam is completely bunched and the phase

space is fragmented. For k ' (CR56�=0)
�1 this happens when � � �. It is worth

mentioning that � always stands for the initial energy spread (before compression).

In this paper we will use linear approximation assuming that CkjR56j�=0 � 1. This

leaves us with only the �rst harmonic of the beam current (J1(X) ' X=2):

I(z) ' CI0 [1 + �ind sgn(R56) cos(Ckz)] ; (3)

where sgn(R56) is the sign of R56 and �ind is the amplitude of the �rst harmonic in the

�nal state of the beam:

�ind = CkjR56j
�

0
exp

 
�
1

2
C2k2R2

56

�2



2
0

!
: (4)

We have considered here the model of in�nitely long beam. The results of this paper can

be used for a bunch with �nite length � as soon as the following condition is satis�ed:

k� � 1 : (5)
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3 Wake�elds upstream of a bunch compressor

Let us assume that upstream of the bunch compressor there is a small density perturbation

�i at some frequency:

I(z) = I0 [1 + �i cos(kz)] : (6)

Due to some wake�elds upstream of compressor the beam gets modulated in energy at the

same frequency with the amplitude�. Describing the action of wake�elds by longitudinal

impedance Z(k) we can connect the amplitudes of energy and density modulations as

follows:

� =
jZ(k)j
Z0

I0

IA
�i ; (7)

where Z0 = 377 
 is the free-space impedance and IA = 17 kA is the Alfven current.

Then, using (4) we calculate the amplitude of the induced density modulation at the end

of bunch compressor. In general case, to �nd �nal density modulation �f one should sum

up induced modulation and (transformed to the end of compressor) initial one, taking

care of phase relations. But in this paper we use approximation

�i � �ind � 1 :

In other words, �f ' �ind and the gain in density modulation

G =
�f

�i
'

�ind

�i

is assumed to be high, G � 1 (otherwise the e�ect, considered in this paper, is not of

great importance). Under this approximation the gain depends neither on phase of Z(k)

nor on sign of R56 and is equal to

G = CkjR56j
I0

0IA

jZ(k)j
Z0

exp

 
�
1

2
C2k2R2

56

�2



2
0

!
(8)
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For broadband nonresonant wake�elds the product kjZ(k)j is usually a growing function

of k. For such cases the maximal gain is achieved at

k�1
opt
'

�

0
jR56jC : (9)

The optimal �nal frequency (when the beam is compressed) roughly does not depend on

compression factor C. A crude estimate for the maximal gain is

Gmax '
I0

�IA

jZ(kopt)j
Z0

: (10)

The term I0=(�IA) is proportional to a longitudinal brightness (particles density in lon-

gitudinal phase space). In practice the phase space distribution can be of complex shape.

We note that the local energy spread should be taken for estimations of ampli�cation

e�ect.

In the considered case the inuence of beam emittance � on longitudinal dynamics is a

second order e�ect and is negligible when

k�Sc=� � 1 ; (11)

where Sc is the length of a path through compressor and � is the beta-function. This

condition is always met in practice.

The formulas of this section can be used when the e�ect of wake�elds in front of compressor

is much stronger than any collective e�ects inside the bunch compressor.

4 CSR in a bunch compressor chicane

Wake�elds can also exist inside bunch compressors. We consider here coherent synchrotron

radiation which is an intrinsic feature of magnetic compressors. CSR e�ects can be mini-

mized there but not avoided. A CSR-induced beam instability in storage rings has been

investigated in [17]. That instability develops continuously, in small increments, like most

instabilities of relativistic electron beams. We analyze here quite di�erent klystron-like

mechanism of the instability in a bunch compressor.
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4.1 The model

In this section we consider a simpli�ed case when the beam is not compressed (no energy

chirp: h = 0, C = 0). While the formulae of the previous section are pretty general and

do not depend on a type of the bunch compressor, in this section we have to choose a

speci�c model. We consider a symmetric three-dipole chicane 1 where the �rst and the

last dipoles have the length Ld, and the middle one is as long as 2Ld. The bending angle

in the �rst dipole � is small, � = Ld=R � 1 (R is the bending radius), and the distance

�L between two subsequent dipoles is much larger then the dipole length:

�L� Ld : (12)

The R56 can then be expressed in a simple form:

R56 ' �2�L�2: (13)

To describe CSR we use the steady-state model neglecting transient e�ects. The domain

of validity of this model can be estimated as:

Ld � (24R2=k)1=3 : (14)

We neglect the inuence on CSR of transverse beam size and of the screening e�ect of

the vacuum chamber requiring that [9,19]

(R=b3)1=2 � k � (R=�3

?
)1=2 ; (15)

where b is the transverse size of vacuum chamber and �? is that of electron beam. Since

we analyze the dynamics inside bunch compressor we cannot use the condition (11) for

neglecting emittance e�ect on longitudinal dynamics. The relevant condition will be pre-

sented below. We also neglect here collective transverse forces [18].

1 Under limitations, accepted in this section, all the results are valid for a four-dipole chicane,

too.
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Under the conditions (14) and (15) the module of CSR impedance in the �rst and the

last dipoles can be expressed as [19]

jZ(k)j
Z0

=
jZl(k)jLd

Z0

=
2�(2=3)

31=3
Ldk

1=3

R2=3
; (16)

and in the middle dipole it is two times larger. Here Zl(k) is the impedance per unit length

and �(:::) is the complete gamma-function, �(2=3) ' 1:354.

One can use the impedance (16) to calculate energy modulation only if the relative change

of density modulation is small on the scale of formation length (24R2=k)1=3 (see [20] for

more details). In our model the density changes on the scale of Ld and this condition is

met (see (14)).

4.2 "Cold" electron beam

Let us �rst consider the case when the energy spread can be neglected. In the framework

of the accepted model we consider the two-stage ampli�cation in the bunch compressor.

The gain is assumed to be large in each stage.

An initial density perturbation (6) causes energy modulation in the �rst dipole (see (7),

(16)). This modulation increases linearly inside the dipole:

d�

0 d s1
=
jZl(k)j
Z0

I0

0IA
�i ; (17)

where s1 is a coordinate along the reference trajectory, s1 = 0 at the entrance to the �rst

dipole. The amplitude of the induced density modulation in the second dipole can then

be calculated using simple generalization of formula (4) for cold beam:

�2(s2) = �k
LdZ
0

d s1
d�

0 d s1
R56(s1 ! s2) ; (18)

where s2 = 0 at the entrance to the second dipole and R56(s1 ! s2) connects energy kick

at s1 and a change of position z at s2. Under the condition (12) it is well approximated
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by

R56(s1 ! s2) ' �
�L

R2
(Ld � s1)s2 : (19)

Then we get

�2(s2) =
1

2

jZl(k)j
Z0

I0

0IA

k�LL2

d

R2
�is2 : (20)

Since we assumed that the induced modulation �2 is much larger than the initial one (gain

is large), the CSR-induced energy modulation in the second dipole is

d�

0 d s2
=
jZl(k)j
Z0

I0

0IA
�2(s2) ; (21)

with negligible initial value �(s2 = 0) � 0.

Then we do similar calculations for the third dipole (s3 = 0 at its entrance):

�3(s3) = �k
2LdZ
0

d s2
d�

0 d s2
R56(s2 ! s3) ; (22)

where

R56(s2 ! s3) ' �
�L

R2
(2Ld � s2)s3 : (23)

Finally, using (20)-(23) we obtain the total gain as a ratio between �nal and initial am-

plitudes of density modulation:

G =
�3(s3 = Ld)

�i
=

2

3

jZl(k)j2

Z2

0

 
I0

0IA

!
2

k2�L2L6

d

R4
:

With the help of (13) and (16) we rewrite the expression for the gain in a di�erent form:

G =
2�2(2=3)

35=3

 
I0

0IA

!
2

k8=3jR56j2L2

d

R4=3
: (24)

When deriving this expression we neglected density bunching inside a dipole caused by

the energy modulation induced in the same dipole. In other words, we ignored a self-
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consistent process inside a dipole which may eventually lead to an exponential growth of

the modulation. Thorough analysis shows that the expression (24) is accurate as soon as

Ld � Lg ;

where

Lg =

�
0IA

I0

�1=4
k�1=3R2=3 :

In the case when Ld � Lg one could expect an exponential growth inside magnets with

the growth rate about L�1
g
. In practice, however, for any reasonable set of electron beam

parameters, this regime cannot be achieved because the frequency range will be limited

by the energy spread and/or emittance. The exponential growth (with a di�erent scaling

for the growth rate) inside dipoles of a bunch compressor has been predicted in [21] but

the results of that paper are incorrect 2 .

4.3 Gaussian energy spread

Let us �rst make a simple estimation of the gain. If we assume that energy modulation

happens only in the �rst dipole, we can use (with C = 1) the relations (9), (10) and (16)

to estimate the gain at Gmax ' g0, where

g0 =
I0

�IA

 
0

�

!
1=3

Ld

(R2jR56j)1=3
: (25)

Actually, we have two-stage ampli�cation and should expect the dependence Gmax ' g2
0
.

The accurate calculations con�rm this estimate. Leaving out the details of calculations

we present here the �nal result for the gain

G =
2�2(2=3)

35=3
g2
0
f(k̂) : (26)

2 An incorrect equation of longitudinal motion has been used.
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Here

k̂ =
�

0
jR56jk ;

and the function f is

f(k̂) = 3k̂2=3 exp (�k̂2=2)
"
1 +

p
�

2

k̂2 � 2

k̂
exp (k̂2=4)erf(k̂=2)

#
; (27)

where

erf(x) = 2��1=2
xZ
0

d t exp (�t2)

is the error function. For k̂ � 1, when the inuence of energy spread is negligible, we get

f(k̂) ' k̂8=3 and (26) is reduced to (24).

The maximal value of f is achieved at k̂opt = 2:15 and is equal to 1:98. Thus, the maximal

gain is

Gmax = 1:16g2
0

(28)

in agreement with a simple estimate. The accurate result (28) di�ers by only a few per

cent from the result of ref. [22], although an incorrect assumption of constant density

modulation inside dipoles has been used in [22].

4.4 Estimation of emittance e�ect

One of the limitations due to emittance (15) was already presented. More stringent lim-

itation, however, comes from the longitudinal motion inside dipoles 3 . Indeed, a particle

with an o�set x from the reference orbit moves along the beam:

d z

d s
= �

x

R
:

3 The net e�ect through the whole compressor is of the second order, see (11).

12



For a typical o�set x '
p
�� the maximal change of coordinate z can be estimated at

p
��Ld=R. Therefore, the above presented results for the gain can be used if

k
p
��Ld

R
� 1 : (29)

The energy spread cuts o� the gain at k ' ��1

0jR56j�1. Using (13) we estimate that

formula (26) is valid in the entire wavelength range when

q
�� �

�

0
�L

Ld

R
: (30)

In other words, transverse size, de�ned by emittance, should be smaller than dispersion-

induced transverse size in the middle dipole. In opposite case the cut-o� will be de�ned

by the condition k ' R=(
p
��Ld). To roughly estimate maximal gain one can substitute

this expression for k into formula (24).

5 Estimation of shot noise e�ect

In this paper we considered a bunch compressor as a high-gain linear ampli�er of klystron

type. It ampli�es initial density modulations within some frequency band. For broadband

wake�elds (like CSR) we have a broadband ampli�er with �! ' !0, where !0 is some

optimal frequency de�ned by the energy spread (eventually by emittance). Even with-

out macroscopic density modulation the initial signal for such an ampli�er always exists

because of the shot noise in electron beam.

Let us consider the beam consisting of randomly emitted electrons with an average current

I0. Its spectrum is a "white" noise which will be �ltered by the ampli�er. The time domain

uctuations of the current at the ampli�er entrance within a frequency band �! are

de�ned by Schottky formula:

< i2 >=
eI0�!

�
: (31)

Since �! ' !0 in the considered case, we can write down the following expression for
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relative initial uctuations:

< �2
i
>sh=

< i2 >

I2
0

'
e!0

�I0
'

1

N�

; (32)

where N� is a number of particles per wavelength � = 2�c=!0. Thus, e�ective initial

density modulation due to the shot noise is

(�i)sh '
1

p
N�

: (33)

The coherence length for such a broadband system is about lc ' 2�c=!0 = �. Thus,

the e�ective shot noise bunching is about inverse square root of number of particles per

coherence length.

Relative amplitude of ac current behind the bunch compressor is then of the order of

�f '
Gmaxp
N�

: (34)

Due to the lack of coherence this current will constitute irregular, spiky structure on a

time scale of !�1
0
.

For typical parameters of electron beams one can estimate (�i)sh at 10�4. Thus, for a

su�ciently large gain (especially in a chain of bunch compressors) the shot noise bunching

can become important.

Finally, we note that when simulating bunch compressors with the help of macroparticles

approach, one should eliminate arti�cial noise connected with a relatively small number

of macroparticles. If, for instance, one uses Nm macroparticles in a bunch and they are

distributed in phase space randomly, then the noise e�ect will be overestimated by a factorq
Nb=Nm, where Nb is actual number of particles in the bunch.
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