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Abstract 
A basic treatment of the principle of the linac-driven free-electron laser 
(FEL) is given. The first part of the paper describes the FEL in low-gain 
approximation, and in the second part the high-gain FEL theory is given. 
The majority of the treatment describes FELs in one dimensional 
approximation, neglecting effects by diffraction of radiation and by electron 
beam emittance.  Only in the final section a few remarks on these issues are 
given. The ambition of the paper is by no means any progress in FEL theory 
but a clear presentation of basic FEL theory concepts with explicit 
derivation of the formulae from first principles. 
 
 INTRODUCTION 

The basic theory of linac-driven free-electron lasers (FEL) presented in this paper is based on lectures 
given for the CERN Accelerator School Course on “Synchrotron Radiation and Free Electron Lasers” 
2-9 July 2003 in Brunnen, Switzerland. The intention of the paper is neither a report on progress in 
FEL theory nor a complete and in-depth treatment of the subject. It is rather an attempt to present the 
basic concepts of linac-based FELs starting from first principles and deriving formulae explicitly step 
by step so that students should be able to follow without doing long derivations and calculations by 
themselves. For the sake of simplicity the FEL theory is given in one-dimensional approximation, i.e. 
only longitudinal electron motion is considered and diffraction effects of radiation are neglected. This 
approximation is particularly justified for FELs operating in  the VUV- or X-ray wavelength regime 
because 

• space charge effects are typically of less importance at ultra-relativistic energies typical for 
such kind of radiation sources.  

• the fundamental, coaxial mode typically dominates the radiation in the high-gain regime of 
FELs, which is of particular interest for such short wavelengths. 

The paper covers the material presented during the two one-hour lectures plus a few remarks 
(hopefully) useful for the student, but nothing beyond. The MKSA (or “practical”) system of units 
and a right-handed Cartesian coordinate system (with z being the longitudinal coordinate) are used 
throughout the paper. [1, 2] 

 

1.  THE FREE-ELECTRON LASER IN LOW GAIN APPROXIMATION 

1.1  Radiation power of a point-like electron distribution moving at ultra-relativistic speed 

An FEL is basically a classical device, i.e., with very few exceptions, all features can be derived and 
described by classical electrodynamics and relativistic kinematics. Thus, as an introduction to the 
principle of FELs, it is useful to recall some basics of classical electrodynamics [3].  

Let us consider an electric charge q moving at ultra-relativistic speed with respect to the 
laboratory system. Classical electrodynamics says that any accelerated charge emits electromagnetic 

radiation. The radiation power Pγ  emitted by a charge q accelerated at v∗
�  is given by 
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ε0 is the electric permittivity of vacuum and c is the speed of light. The asterisk * means that the 
respective quantity is to be evaluated in a system * moving along with the charge such that its 

velocity v∗  is much smaller than c.  

Eq. (1) makes the important statement that the power Pγ  observed in any system is the same as 

the power P ∗
γ  calculated in the co-moving system in the way given by Eq. (1)! This fact makes is easy 

to calculate the radiation power observed in the laboratory system in terms of quantities measured in 

the lab system: We just have to express the acceleration v∗
�  by quantities measured in the lab system. 

This is accomplished by the Lorentz transformation of acceleration given by (see Ref. [3] p. 47 ff) 

  * 3 * 2 * 2
  x  ,    ,  z y y xzv v v v v vγ γ γ= = =� � � � � �  (2) 
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.   The velocity 0v  of the moving system * with respect to the lab 

system is assumed to be in the z-direction, see Fig. 1. 
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Fig. 1  Definition of a coordinate system denoted with an asterisk * moving with speed 0v with 

respect to the laboratory system. 

       It is important to realize from Eq. (1) that the component zv� of acceleration parallel to the 

velocity of the moving system transforms in a different way than the components perpendicular to it. 
Acceleration perpendicular to the relativistic motion of the electron beam is the only one of practical 
relevance, because it is achieved by the motion of the electrons in presence of an external magnetic 
field. For the case of vertical acceleration, for example, Eq. (1) reads 
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indicating that one gains a large increase in radiation power when accelerating the electron 
beam to ultra-relativistic (i.e. γ >> 1) energies. 

In terms of the FEL principle, the most important consequence of Eq. (1) is that the radiation 
power scales quadratically with the charge. Taking into account that, in practice, the charge consists 
of a large number N of electrons with elementary charge e0, Eq. (3) can be written in the form 
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Obviously, the radiation power per electron is 4 2
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= � . This is, because the electrons moving in a bunch have to 

perform work against the electric field generated by the co-moving electrons. This can be considered 
the classical analogon to stimulated emission. 

The main condition for Eq. (4) to hold is that all N electrons have to make up a “point-like” 
charge distribution. For a radiating bunch of electrons moving at ultra-relativistic speed this means, in 
particular, that the longitudinal dimension of the bunch must be shorter than the radiated 
wavelengths. For wavelengths much shorter than the visible, this is difficult (or impossible) to 
achieve. In conventional synchrotron radiation sources like electron storage rings, for instance, the 
radiation wavelength attractive for users is in the Nanometer range (or below), while the sizes of 
electron bunches in storage rings is a few Millimeters typically. As a consequence, the radiation 
power of a bunch of N electrons in a storage ring is only (single electron)N Pγ⋅ : All electrons 

radiate independent of each other (incoherent radiation). Obviously, there is a factor of N (which is 
huge indeed) to be regained, if only there was a mechanism to rearrange the electrons on the scale of 
the optical wavelength. The FEL principle provides such a mechanism. 

Fig. 2 shows schematically the key components of a free-electron laser using an electron beam 
accelerated by a linear accelerator. 

 

 

 

 

 

 

 

 

 

Fig. 1  Schematic of a linac-driven free-electron laser. Major components are i) a source of electron bunches of 
high charge density, ii) a linear accelerator (using superconducting technology is preferable to achieve a high 
duty cycle, but is not a must), iii) a long undulator magnet generating periodically alternating deflection of the 
electron beam, and iiii) a bending magnet separating the FEL radiation generated in the undulator from the 
electron beam. 
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1.2  Electron motion in the undulator field 

In the present paper, we restrict ourselves to helical undulators, because this simplifies calculations.  
Extension to planar undulators can be found in the literature. It modifies some quantitative results but 
it doesn’t change essentials. 

In the vicinity of the axis of a helical undulator with period length λu , the magnetic field can be 
expressed (to first order in the distance r to the axis) by  
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The equation of motion of the electron in this field is 
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One solution to this equation is a periodic, helical motion: 

longitudinal motion: = const.,     z z zv z v t ctβ= =  
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1.3  Interaction with electromagnetic wave 

We consider an external electromagnetic wave moving parallel to the electron beam, i.e. in z-
direction. Let’s assume a plane wave, which has zero z-component of the electric field vector: 
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with the magnetic field given by: 
1

EL L
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. Lω  is the angular frequency of the e.m. “light”wave 

and the index L stand for “light”. It is certainly unnecessary mentioning that this frequency doesn’t 

need to be at all in the visible range. 
2
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=  is the wave number. Again, complex notation is very 

useful, because we have to deal with only two components of LE
�

. We define a complex electric field 

given by ( )0 0, ,E E E E expL L x L y L Li i t k z= + = − −ω ϕ . 

We now calculate the change of the electron’s energy in the combined presence of the 
undulator and the e.m. field. It is well known, that a charged particle doesn’t gain energy in any 
magnetic field, since the Lorentz force is always perpendicular to the particle’s velocity. Thus we 
have to consider the electric field only. As the e.m. wave has only electric field components 
perpendicular to the mean electron beam (z-)direction, we now recognize the important role of the 
undulator field: It generates velocity components of the electrons in the direction of the electric field 
vector, i.e. in the x- and y-direction and thus makes energy transfer between the e.m. wave and the 
electron beam possible. The electron’s energy E is changed at a rate 
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Here we have used Eq. (7) and the “ponderomotive phase” defined as ( ) 0u L Lk k z tΨ = + − +ω ϕ . If 

we use z zz v t ct= = β , we can write 
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The energy dE is taken from or transferred to the radiation field. For most frequencies, dE/dt 
oscillates very rapidly. A significant energy transfer will only be accumulated if the phase difference 
between particle motion and e.m. wave stays constant with time. Thus, there is a resonance condition 

give by     0. ( ) L
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z

d
const k k

dz c
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Solving for 
2

L
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πλ = we get the resonance condition  
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It is important to realize that the resonant wavelength Lλ  is identical to the on-axis, first harmonic 

wavelength spontaneously radiated by the undulator.  

       With Eq. (12) we have achieved a condition for continuous energy transfer from the electron 
beam to the e.m. wave. However, even if all electrons would have exactly the right energy to fulfill 
this condition when they enter the undulator, they will leave the resonance energy quickly due to the 
energy transfer to (or from) the wave. Thus, we need to investigate what happens to electrons 
particles with energies slightly off resonance. For particles slightly off resonance, the phase Ψ  will 

slip. In order to understand by how much, we note that in Eq. (10) only 2
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Deriving once more with respect to z yields 
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This is a pendulum equation in the  - γ∆ Ψ phase space: electrons with little deviation from 
resonance energy or from synchronous phase perform periodic oscillations, see Fig. 2. This is 
equivalent to the synchrotron oscillations in storage rings, with the difference that the “bucket” length 
is now the optical wavelength. Like in synchrotron oscillation, particles within the separatrix get 
bunched.  

The energy lost (or gained) by an electron increases (or decreases, respectively) the field energy. 
Thus, as seen from Eq. (11) and illustrated in Fig. 2, there is gain or loss in field energy per undulator 
passage depending on where the electron starts in the  - γ∆ Ψ  phase space.  
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1.3.1 The Separatrix 

In order to determine the parameters of the separatrix, we look for a first integral of Eq. (14): 

Multiplying 2 sin′′Ψ = −Ω Ψ  by 2 ′Ψ  on both sides and using ( )2
2  =

d

dz
′ ′′ ′Ψ Ψ Ψ  yields 
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with const. determined by initial conditions. 

 

    

 

 

 

 

 

 

 

 

Fig. 2 In presence of the undulator field and the e.m. field, buckets are formed where electrons perform periodic 
oscillation, if the deviation from resonance energy and from synchronous phase is small. In contrast to 
synchrotron oscillation buckets, the longitudinal size of our buckets is very small, i. e. the optical wavelength.  

There are two cases to be distinguished: 

Case 1:  0
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within a limited range of phases. This is the case of rotation within the separatrix. 

Case 2:  0
2

0

E
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q K
const.
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> . In this case all phases are possible, but 0∆γ = cannot be reached. As a 

consequence, the electron performs “libration” outside the separatrix. The separatrix is defined by the 
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limiting case: 0
2

0

E
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. Thus, the separatrix is defined by the equation  

 ( ) ( )2 0
2

0

1
E

cos
u z

q K

m c k
γ

β
∆ = + Ψ .  (16) 

The height of the separatrix is given by:  0
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i.e. it is determined by the strengths of both the external e.m. wave 0E  and of the undulator field 

(through K). 

1.3.2 Power Gain 

In practice, an electron beam consists of many particles distributed smoothly over all phases, so that it 
is not obvious from the previous analysis whether a significant over-all amplification of the e.m. wave 
can take place at all. We are now going to determine the “power gain” of the FEL in presence of the 
entire beam. Our most important assumption will be that the amplitude of the e.m. wave will change 
only little during one passage of the electron beam, i.e. the power gain (as defined below) is much 
smaller than unity: |G| < 1. This is the “low gain approximation” which is the subject of this chapter. 
We also assume an initially monoenergetic beam with some deviation γ∆ from resonance energy.  

Let’s define the power gain iG  due to a particle identified by the index i by  
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uL is the length of the undulator. Calculation of iG  requires solution of the pendulum equation (14) 
2 sin′′Ψ = −Ω Ψ  for ( )zΨ . This is done iteratively. We start with the  

ansatz  ( ) ( )0 0=z z zδ′Ψ Ψ + Ψ ⋅ + Ψ ,  (19) 

where ( )zδΨ is the higher order term. 

Step 1:   ( ) 0zδΨ = .  

Using the ansatz, a first integral of Eq. (14) is then: 
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The gain of the entire beam (consisting of pN  particles) is given by 
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The important result is that, in first order, the average gain G is zero!  

Step 2: ( ) 0zδΨ ≠ , calculating ( )zδΨ  using the results of step 1, Eq. (20). 
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The approximation is valid for ( )zδΨ π� �  which should be kept in mind when using the results. 
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are plotted in Fig. 3.  

       Let us summarize the key assumptions made for this result: a helical undulator, perfect overlap of 
electron and radiation field, perfect electron beam (zero emittance and no momentum spread). It is 
noted that the approximations don’t assume that the beam is located inside the separatrix, i.e. the 
external e.m. field may be so weak that the separatrix covers only a small fraction of the gain curve. 

     For the interpretation of Eq. (24) it is useful to express ξ  in the form 

  0 2
2

u u u
u

res res

L k L
N

γ γξ π
γ γ

′Ψ ⋅ ∆ ∆= = =  (25) 

 

                                                 
2 Using the same Volume V in the definition of the particle density as in the expression for the total field energy 
(see Eq. (18)) means that we assume perfect overlap of electron beam and e.m. field.  
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2

2

sin ξ
ξ

                                                      ( ) ( )( )
2

2 3

d 1
1 2 2

d

sin
cos sin

ξ− = − ξ − ξ ξ
ξ ξ ξ

 

 

 

 

 

 

 

Fig. 3 In low-gain approximation, the dependency of power gain on the initial momentum (right) can be written 
as the derivative of the line shape function (left) of the spontaneous undulator radiation. 

Thus, we can interpret the result as follows: To first order in the iteration, there is no net gain (G=0), 
because phase space motion is (almost) symmetric: As many particles move up as down. In second 
order it is seen however that, for positive γ∆ , the motion of particles with positive phase goes more 
rapidly downwards than the motion of the others goes upwards, i.e. there is positive gain if the 
electron energy is slightly above resonance energy ( γ∆ >0). This is illustrated schematically in Fig. 4. 
There is no gain for particles precisely on resonance energy ( γ∆ =0). For γ∆ <0, the gain is negative, 
i.e. the beam extracts energy from the e.m. wave, i.e. it gets accelerated. A device accelerating 
electrons by an e.m. wave using this mechanism is called an “inverse FEL”.  

 

 
    

                        
 
 

Fig. 4  If the electron energy is slightly above resonance energy (red broken line), some particles lose, some gain 
energy. In average, electron energy is pumped into the e.m. wave (positive power gain), which is a second order 
effect. 
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1.3.3 Madey Theorem 

Another interpretation of Eq. (24) makes use of the relation (see Eq. (12)) 
res

=
2 res

ω γ
ω γ
∆ ∆

connecting 

γ∆  to the deviation of the angular frequency ω∆  from its resonance value resω . Using this relation, 

we can write 

2

res

2

res

2

2

2 2

0 1

4
sin

( )

u

u

u u p

N
d

d
N

K

K

q N n
G

mc

ωπ
ω

ω ωπ
ω

π λ
ε γ

∆

∆

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ ⎛ ⎞
⎜ ⎟
⎝ ⎠

= −  . The expression 

2

res

2

res

sin u

u

N

N

ωπ
ω

ωπ
ω

∆

∆

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

is just the spectral line shape function of spontaneous radiation of an undulator with 

uN periods in the vicinity of the first harmonic resonance frequency resω , see the left hand side of 

Fig. 3. Thus, the following statement can be made, known as the Madey-Theorem [5]: 

The gain function of low gain FEL emission is the derivative of the line shape function of 
spontaneous undulator radiation. 
 

1.3.4 The Optical Cavity 

The amount of radiation energy produced per undulator passage is ∆ = ⋅ iE G E , with iE  the radiation 

energy before the electron bunch has passed the undulator. One might think that, for applications, a 
few % power gain (i.e. a low gain FEL) is of no interest. However, it is important to realize that the 
gain is independent of the strength of the initial, external e.m. field, i.e. whatever the initial field is, it 
will be amplified by this gain factor. With a pair of mirrors, arranged to form an optical cavity as 
shown in Fig. 5, one can accumulate the produced radiation successively, if on each round trip of 
radiation there is a fresh electron bunch available. After N round trips, the total power gain is 

N
totalG G=  , which may be a very large number indeed, even if G is not much larger than unity.  

At the end of this process, there is very much radiation energy stored in the optical cavity, so 
that even few percent amplification of this energy is a large quantity in terms of absolute numbers. In 
other words, the electrons are stimulated to emit radiation due to the presence of the existing field. In 
fact, the amplification process in the FEL can be described quantum-mechanically in terms of 
emission and absorption of radiation quanta (photons), which justifies - together with the properties 
of FEL radiation like coherence and many photons per coherence volume - the notion of a “laser”. 
Many early papers on FELs were done in the framework of quantum mechanics which explains the 
quantum-based terminology widely used in the FEL community. Nevertheless, the description of 
FELs in terms of classical physics is perfectly correct, with very few exceptions only relevant in rare 
cases. The FEL is a “classical device”.   

Some fraction of the gained radiation energy is extracted through one of the mirrors which is 
made semi-transparent. Of course, the mirror transparency must be arranged such that the total power 
losses of the optical cavity by extraction or absorption don’t exceed the power gain. 
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Fig. 5 Schematic of a free-electron laser in oscillator mode (courtesy: R. Bakker).  Even if there is only a few 
percent field gain per passage of an electron bunch (low-gain FEL), large radiation power can be generated if the 
radiation field can be stored in an optical cavity and if many electron bunches pass the cavity at a timing 
synchronized with the round-trip of radiation within the oscillator. If the power gain exceeds the accumulated 
mirror losses (including the semi-transparent mirror for extraction), the stored power increases passage by 
passage in an exponential way until saturation is reached.  

 

1.3.5 Saturation 

If the change of electron energy within one undulator passage becomes comparable with 
2

res

uN

γ
π

, the 

phase advance per undulator passage becomes large according to Eq. (13), such that the assumption 

( )zδΨ π� �  made for our gain calculation is violated. Also, the assumption of a quasi-

monoenergetic electron beam is violated, i.e. the parameter ξ defined in Eq. (25) varies significantly 

during the undulator passage, depending on the longitudinal position within the separatrix. Thus, Eq. 
(24) – anyhow not accurate any more since based on violated assumptions – becomes useless to 
calculate the over-all gain. In this case, the gain must be calculated numerically.  

According to Eq. (17), the height of the separatrix grows with the radiation energy stored in the 
cavity. Thus, more and more electrons get trapped within the separatrix, providing an efficient 
mechanism for longitudinal bunching of the electron beam at the optical wavelength (an effect 
sometimes called “micro-bunching”, to be distinguished from longitudinal bunching of the entire 
electron bunch). It turns out that the gain process saturates if most of the electrons get micro-bunched, 
i.e. if the electron density is almost completely modulated at the resonance wavelength. According to 
Eq. (4) and the explanations given there, in this case the undulator radiation power exceeds 
spontaneous radiation power by a large factor N comparable to the number of electrons per resonance 
wavelength.  

In the present chapter, only the kinematic problem of the electron beam in combined presence 
of a given e.m. wave and an undulator field has been solved, while the gain of radiation power was 
derived from an energy conservation argument: The kinetic energy taken from the electron must go 

 



TESLA-FEL Report 2004-08 

 14 

into the radiation energy – where else? It is obvious, that for a more thorough analysis, one has to 
solve both the kinematic problem and the electro-dynamical problem (i.e. the generation of radiation 
by a modulated charge according to Maxwell’s equations) simultaneously. Such a detailed analysis of 
the FEL oscillator, including the analysis of saturation, can be found in the literature, e.g. Ref. [2]. In 
the next chapter we will present a treatment of this kind for the high-gain, single-pass FEL. Indeed, 
the low-gain results of the present chapter can be derived from the general result as a special case, 
namely the low-gain approximation, which justifies with hindsight the low-gain treatment given 
above. 

Although storage-ring FELs are beyond the scope of this article, let’s conclude this section 
with a remark on FEL oscillators driven by electron bunches in a storage ring. In principle, such an 
arrangement is very attractive, since the electron bunch can be used many times (i.e. once per 
revolution), and reliable operation can be expected due to the inherent stability of storage rings in 
terms of  timing and bunch population. However, there are also inherent drawbacks: As the same 
electron bunch is used many times, the electron beam dynamics in the storage ring must be taken into 
account. As described above, close to saturation the energy width of the electron beam is increased 
considerably at each passage of the FEL. This energy broadening accumulates from turn to turn. It is 
to some extent compensated by radiation damping, but the saturation process remains drastically 
determined by this effect [6]. But even if one would consider using the beam of a storage ring only 
once per damping time, there is a fundamental issue which makes such an electron bunch unattractive 
for some cases: The product of bunch length and energy width (the so-called longitudinal emittance) 
is determined by quantum fluctuation effects in a storage ring and cannot be made as small as in a 
linear accelerator. 

 

1.3.6 Start-up from noise 

In order to achieve maximum gain, ξ should be ~ +1, i.e. ∆γ ≈ + γ/2πΝu . Thus, the electron beam 
energy should be above resonance energy by that amount. This is easy to achieve if the initial e-m 
field is provided by an external source: The external wavelength determines, together with the 
undulator parameters, the resonance energy γres of the electron beam. Therefore, we just have to set 
the electron beam energy to γres  + ∆γ.  

But what happens, if there is no external radiation source? The FEL can still work, if the 
spontaneous radiation of the undulator is used. Using two mirrors, this radiation has to be reflected 
back to the entrance of the undulator, and it must be synchronized longitudinally with the next 
electron bunch for overlap in the undulator (see Fig. 5).  

Unfortunately, if we want to use the center of the spectrum of the spontaneous undulator 
radiation as the “external wave”, there will be no FEL gain, because this wavelength, together with 
the beam energy, exactly fulfills the resonance condition. What helps is, that the spontaneous 
spectrum has the same width (see Eq. (24) and Fig. 3) as the gain curve, thus there is always 
significant power at a wavelength with high gain. 
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Fig. 6 When starting from noise, the spontaneous radiation of the undulator serves as “external e.m. wave” to be 
amplified in the FEL. For optimum gain, the electron energy should be chosen such that it samples the gain curve 
where it is positive and maximum. Since the gain curve is centered with respect to the resonance energy (rather 
than w.r.t. the beam energy), this condition can be met, if the resonant wavelength of the optical cavity (yellow 
line) is tuned below the electron beam energy. In this way, only the low-frequency wing of the undulator 
spectrum gets amplified, but it is guaranteed by the strict relation between width of the spectrum and width of the 
gain curve (see section 1.3.3) that there is sufficient radiation power in this portion of the spectrum to serve as 
input signal.  

 

This can happen in two ways: 

1. If the bandwidth of the optical resonator formed by the two mirrors is very large, then the 
FEL will “automatically” amplify only that part of the spectrum with positive gain. This will 
happen with the lower frequency part of the spontaneous spectrum, since for this wavelength 
to be resonant, the beam energy would have to be smaller than it actually is, so the actual 
beam energy will be slightly above resonance, as it should be for positive gain. 

2. If the bandwidth of the optical resonator is small (normal case), it should be tuned below the 
center frequency of the spontaneous spectrum (same argument as before). This is illustrated 
in Fig. 6.    
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2.  THE HIGH-GAIN FREE-ELECTRON LASER 
 

If the radiation power gained within a single passage of the electron beam through the undulator is 
comparable or much larger than the input radiation power, the low-gain approximation is not 
applicable any more. In this case, we have to take into account the time-dependence of the increasing 
electro-magnetic wave as determined by the motion of the electrons in the beam. On the other hand, 
just this motion is determined by the e.m. field amplitude at any point in time and space. Thus, we 
need to treat the evolution of electron kinematics and e.m. field amplitude in a self-consistent manner.  

It is the purpose of this chapter to derive the key equations from first principles, motivating the 
approximations and providing some realistic numbers for illustration. The treatment follows closely 
the one given in Ref. [2].    

 

2.1 Generation of electro-magnetic fields by the electron beam 

We start with a derivation of the wave equation for the electric field from Maxwell’s equation. From 

Maxwell equation    rot
t

∂= −
∂

�

� B
E      we get        2

0rot rot grad div rot
H

E E E
t

∂= − ∇ = −µ
∂

�

� � �

.   (26) 

Next, we derive Maxwell equation 0rot
E

H j
t

∂= + ε
∂

�

�
�

 once more with respect to time and get   

2

0 2
rot

H Ej

t t t

∂ ∂ ∂= + ε
∂ ∂ ∂

� �
�

 .  

If we further use Maxwell equations 0divε = ρ
�

E ,  Eq. (26) can be written in the form 

2
2

0 0 0 2
0

1 E
E

j
grad

t t

∂ ∂ρ − ∇ = −µ − ε µ
ε ∂ ∂

�
�

�

 .     Using   0 0 2

1

c
µ ε = , this reads  

2
2

02 2
0

1
E

j

tc t

⎛ ⎞∂ ∂∇ − = µ + ∇ρ⎜ ⎟ ∂ ε∂⎝ ⎠

�

�

,   (27) 

which is the well-known wave equation for the electric field. In the following, we will restrict 
ourselves to a one-dimensional treatment of the FEL, i.e. we consider a purely transverse e.m. field. 
This means, in particular, that we neglect diffraction effects, which is certainly questionable for long 

wavelengths. With this approximation, Eq. (27) reads   
2 2

02 2 2
0

1 1E E j

tz c t
⊥ ⊥ ⊥

⊥
∂ ∂ ∂

− = µ + ∇ ρ
∂ ε∂ ∂

, (28) 

with the index ⊥ denoting the vector component perpendicular to the direction of electron 
propagation.  

The term 
0

1
⊥∇ ρ

ε
 in Eq. (28) can be neglected, because its contribution to radiation generation is 
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small in all practical cases3. The transverse electric field ⊥E of the e.m. wave can be written in the 

form 

0

0 0

0

cos( )

E E sin( )
L L

L L

t k z

t k z⊥

ω − − ϕ⎛ ⎞
⎜ ⎟= ω − − ϕ⎜ ⎟
⎜ ⎟
⎝ ⎠

�

. The magnetic field of the e.m. wave is then 
1

B E
Lc⊥ ⊥=

ω

� ��
. 

      In analogy to the previous chapter, we make profit of the fact that we have to deal with only two 

components of 
�

E  and define a complex electric field given by 

0 0x y L Li i t k zω ϕ⊥ ⊥= + = − −, ,E E E E exp ( ) . The only difference to the low-gain case is now, that 

the amplitude 0E and the phase 0ϕ  (which we will call Eψ  now) may vary with z (though slowly 

compared to Ltω ). We thus separate the slow part from the rapidly oscillating part by 

writing: 0 0E E ( )exp ( ) E ( )exp ( )L L E L Lz i t k z z i t k z∗= ω − − ψ = ω −� , with the slow part 

0 0E ( ) E ( )exp Ez z i= ψ�  and 0E ( )z∗
�  its complex conjugate (c.c.). Eq. (28), re-written for 

0, ,E E E ( )exp ( )x y L Li z i t k z∗
⊥ ⊥+ = ω −� reads 

2 2

2 2 2

2 2

0 02 2 2

0 0

02

1
 

1

1

, , , ,(E E ) (E E )

E ( )exp ( ) E ( )exp ( )

E ( ) exp ( ) exp ( ) E ( )

E ( ) exp ( ) exp ( )

x y x y

L L L L

L L L L

L L L L

i i

z c t

z i t k z z i t k z
z c t

z i t k z i t k z z
z z z

z i t k z i t k z
t tc

⊥ ⊥ ⊥ ⊥

∗ ∗

∗ ∗

∗

∂ + ∂ +
− =

∂ ∂
∂ ∂= ω − − ω − =
∂ ∂

∂ ∂ ∂⎡ ⎤ω − + ω − −⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂ ∂ω − + ω −
∂ ∂ ∂

� �

� � …

�
… 0E (z

t
∗�

2
0 0

2

0 02

02

1

)

(E ( )) ( )exp ( ) E ( )( )exp ( )

( )exp ( ) E ( ) exp ( ) E ( )

(E ( )) exp ( )

L L L L L L

L L L L L

L L L

z ik i t k z z k i t k z
z

ik i t k z z i t k z z
z z

z i i t k z
tc

∗ ∗

∗ ∗

∗

⎡ ⎤
=⎢ ⎥

⎣ ⎦

∂ ⋅ − ω − + − ω − +
∂

∂ ∂− ω − + ω − −
∂ ∂

∂ ⋅ ω ω −
∂

� � …

� �… …

�…
2

02

1
0E ( )( )exp ( )L L Lz i t k z

c
∗− −ω ω − +�

 

where we have made use of our assumption that the complex field amplitude does depend on the 

longitudinal coordinate z, but not (explicitly) on time t, i.e. 0 0E ( )z
t

∗∂ =
∂

� . We further neglect the 

second derivative of the field amplitude with respect to z, because it is assumed to vary only slowly 
and get: 

                                                 
3 For a more detailed justification, see Ref. [2], chapter 4.1 
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2 2

2 2 2

2
2

0 0 02

0 0 0

i i1

2i i i i

i K
2i i  i i  

, , , ,

, ,

(E E ) (E E )

( )
E ( ) exp ( ) E ( )exp ( ) E ( )exp ( )

( )
E ( ) exp ( ) exp( )

x y x y

L
L L L L L L L L

x y
L L L u

z c t

k z t k z k z t k z z t k z
z c

j j
k z t k z k z

z t

⊥ ⊥ ⊥ ⊥

∗ ∗ ∗

⊥ ⊥∗

∂ + ∂ +
− =

∂ ∂
−ω∂⎡ ⎤= − ω − − ω − − ω − =⎢ ⎥∂⎣ ⎦

∂ + ⋅ ∂∂⎡ ⎤= − ω − = µ = µ⎢ ⎥∂ ∂ γ⎣ ⎦

� � �

�                      (29)zj

t∂

Here we made use of =L
Lk

c

ω
. Also, we were able to relate the transverse components of the current 

density to its longitudinal component, since we know from Eq. (7) how electrons move in the 
presence of the helical undulator: Namely, because of j rv=

�

�

, we were able to write  

x x(j (see Eq.(7)) = i  i  ) ( ) xp( ) xp( )z
y y u z u z

z z

j c K K
i j v i v e ik z j e ik z j

v v
+ ⋅ = + ⋅ = ≈

γ γ
. 

Collecting the rapidly oscillating term and using ( )u L Lk k z tΨ = + − ω , Eq. (29) re-writes: 

0 0 0

K K
2  i iE ( ) exp ( ) expz z

L u L L

j j
k z k z k z t

z t t
∗ Ψ

∂ ∂∂⎡ ⎤− = µ + − ω = µ⎢ ⎥∂ γ ∂ γ ∂⎣ ⎦
�  (30) 

The message of the equation is pretty simple: The electro-magnetic field amplitude is generated by 
the time-dependent current density. 

To proceed further, we have to say something about the current density zj .  

2.2 Kinematics of  electrons in phase space 

zj  is determined by the initial charge distribution and its evolution in presence of the e.m. field and 

the undulator field. We know that electron dynamics is governed by the Hamiltonian 

( ) ( )
1 22 22 2 4

/

( , , )z z z uH p z t p c qA q A A m c q⊥
⎡ ⎤= − + + + + φ
⎣ ⎦

, 

with uA describing the undulator field, and zA , φ  the space charge. Applying a canonical 

transformation, we can change from the canonical pair of coordinates z/ zp  to /Ψ γ  (actually, the pair 

is 
2

0

/
m c

⊥ω
Ψ γ⋅ , but 

2
0m c

⊥ω
is constant), with ( )u L Lk k z tΨ = + − ω  and 2

0m cγ  the kinetic energy of 

the electron. A consequence of Hamiltonian mechanics is Liouville’s Theorem, stating that phase 
space density f along the particle’s motion is constant. Phase space motion must be described in any 
pair of canonically conjugate variables, and we choose /Ψ γ . In coordinates z, γ , Ψ , this theorem 
reads4: 

0
df f f f

dz z z z

∂ ∂ ∂Ψ ∂ ∂γ= + + =
∂ ∂Ψ ∂ ∂γ ∂

, which is also called “Vlasov equation”  (31) 

                                                 
4 We use the longitudinal coordinate z as independent variable instead of time t, which in fact means another 
canonical transformation. 
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We have seen from Eq. (11), how the electron energy changes in the presence of e.m. field and 
undulator field. In addition to Eq. (11), we now include the energy gain due to the presence of a 

longitudinal space charge field Ez :    ( )0
2 2

0 0 0

E E
sin z

E

z

q K qd

dz m c m c

γ = − Ψ + ψ +
γ β

 . Of course, we have 

to understand that the electrical field strength 0E  isn’t constant any more. Therefore, we also allow 

for a slowly varying phase of the e.m. field, described by Eψ . 

d

dz

Ψ
 can be determined from Eq. (13): 

2

3
0 0

1

( )
L L

u L
z

d K
k k

dz c c

ω ωΨ += + − + ∆γ
β γ ⋅ γ

, where ∆γ  

denotes the deviation from 0γ . For the sake of generality, we allow now 0γ  to deviate slightly from 

resonance energy resγ described by the detuning parameter ( )
( )

L
u L

z

C k k
c

ω
γ = + −

β γ ⋅
, i.e. 

0( )resC γ = . (Note: You may ask here, why the deviation from resonance energy is split into two 

terms, 0γ  and ∆γ . The reason will become clear below, when we will use ∆γ  to describe the energy 

distribution of the beam around the center 0γ ). We get: 
2

3
0

1Ld K
C

dz c

ωΨ += + ∆γ
γ

. Eq. (31) now 

reads 

( )
2

0
3 2 2
0 0 0 0

1
0sinL z

E

qE K qEf K f f
C

z c m c m c

⎛ ⎞ ⎛ ⎞ω∂ + ∂ ∂+ + ∆γ + − Ψ + ψ + =⎜ ⎟ ⎜ ⎟∂ ∂Ψ ∂γγ γ⎝ ⎠ ⎝ ⎠
. (32) 

         Note that from now on we use z
1β ≈ . For the phase space density f we make the Ansatz 

0 1 0( , , ) ( ) ( , )cos( )f z f f zγ Ψ = γ + γ Ψ + ψ , i.e. we assume a density modulation at the optical 

wavelength, growing with z (in a way to be calculated), see Fig. 7 for illustration. The phase of this 
modulation is allowed to slowly depart from Ψ by 0ψ  (which is, in general different from Eψ ). In 

complex notation: 

1 10 1 00
1 0 2 12 2

( ) ( )( , )cos( ) . . . .( , )f fi i i if if z e e e c c ee z c cfΨ+ψ − Ψ+ ψψ Ψ Ψγ Ψ + ψ = + = +γ= + �  The complex 

amplitude 1 0
1 2( , ) f if z e ψγ =�  of density modulation contains the slowly varying phase 0ψ . A similar 

Ansatz is made for the space charge field Ez : 

i
z z s zE z z e c cE ( )cos( ) E ( ) . .Ψ= Ψ + ψ = +�     , again with its own slowly varying phase sψ . 

Vlasov equation (32) can now be written: 
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( )

2
0

3 2 2
0 0 0 0

2
i i i1 1

1 13
0

i i i i i0 0 1
2 2

0 0 0

1

1
i i

i

2
( ) ( )

E E
( ) ( sin( ) )

( )( )

E
(E E )E E

L z
E

iL

z z

q K qf K f f
C

z c m c m c

f f K
e e C f e f e

z z c

q K f fq
e e e e e

m c m c

∗
Ψ − Ψ Ψ ∗ − Ψ

Ψ +ψ − Ψ +ψ Ψ ∗ − Ψ Ψ

ω∂ + ∂ ∂+ + ∆γ + − Ψ + ψ + =
∂ ∂Ψ ∂γγ γ

∂ ∂ ω += + + + ∆γ − +
∂ ∂ γ

⎡ ⎤ ∂ ∂ ∂
+ − + + + +⎢ ⎥

∂γ ∂γ⎢ ⎥γ⎣ ⎦

� �

� �

� �

� �

i1

i
0 0

2
0 01

13 2 2
0 0 0 0i

i i i i0 1
2 2

0 0 0

(using  )

1
i i

2
0

i
2

( ) ( )

E E

E
( ) ( E )

. .
E

( ) (E E )

E

E E

L
z

z z

f
e

e

q K ff K q
C f

z c m c m c
e c c

q K fq
e e e e

m c m c

∗
− Ψ

ψ

Ψ

Ψ +ψ − Ψ +ψ Ψ ∗ − Ψ

⎛ ⎞
⎜ ⎟ =
⎜ ⎟∂γ⎝ ⎠

=

⎧ ⎫∂∂ ω ++ + ∆γ + + +⎪ ⎪
∂ ∂γγ γ⎪ ⎪⎪ ⎪= + =⎨ ⎬
⎡ ⎤ ∂⎪ ⎪− + +⎢ ⎥⎪ ⎪∂γ⎢ ⎥γ⎪ ⎪⎣ ⎦⎩ ⎭

�

��

��

�

� �

 For this equation to hold for all phases Ψ , the expression in brackets { }  must vanish. Our next step 

in approximation assumes that the modulation amplitude doesn’t depend on energy (see Fig. 7): 

1 0
f∂

=
∂γ

�

. Then: 

0

2
0 01

13 2 2
0 0 0

1
i i 0

2
( )

( , )
E( , )

( ) ( E )L
zz

q K ff z qK
C f

z c m c m c

γ
γ

∂∂ γ ω ++ + ∆γ + + =
∂ ∂γγ γ

��

�� .  (33) 

 

Fig. 7: Illustration of a possible phase space density function fulfilling the assumptions made here: The density 
modulation amplitude f1 observed at an arbitrary location z doesn’t depend on energy γ, and the amount of 
modulation in the core of the beam is small compared to the total density.  

f  

γ 

f(z, , )γ Ψ  
 

Ψ  
 

2

o

12

example density function:

f f
2

( )
exp cos

γ

γ − γ
= + Ψ

σ
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Eq. (33) is a differential equation in z of the type 
( )

( ) ( )
df z

i f z g z
dz

+ α = , which is solved by 

[ ]
0

( ) ( )exp ( )
z

f z g z i z z dz′ ′ ′= α −∫ . Thus: 

2
0 0

1 2 2 3
0 0 0 00

1

2

E ( ) ( )
( , ) E ( ) exp ( )( )

z
L

z

q z K fq K
f z dz i z i C z z

cm c m c

⎡ ⎤′ ⎡ ⎤∂ γ ω +′ ′ ′γ = + + ∆γ −⎢ ⎥ ⎢ ⎥∂γγ γ⎣ ⎦⎣ ⎦
∫

�

��    (34) 

and 1 ( , ) . .f z c c∗ γ =�   We can now calculate the current density: 

0 1

0 1 1 1

1

1  ,with      ,etc.

( , ) ( , )

( , )

( , , ) ( ) i i
z z

i i

f z d zj v c qc f z d qc f d e qc e qc f

j

d

f zj e j e j qc d

Ψ − Ψ ∗

Ψ ∗ − Ψ

= ρ ≈ ρ = γ Ψ γ γ γ γ γ
γ

= γ γ + +
γ

=
= + + =

∫ ∫ ∫ ∫
∫�

�

�

�

� �

 

With these definitions, Eq. (30) reads  

( )0 1 1

0 0 0
0 0

K K
2   E ( )

i i

i iz
L

j j e j ej
k z e e

z t t

Ψ ∗ − Ψ
∗ Ψ Ψ

∂ + +∂∂⎡ ⎤− = µ = µ⎢ ⎥∂ γ ∂ γ ∂⎣ ⎦

� �

�  

We use ( )u L Lk k z tΨ = + − ω  and assume that 1j�  is “almost" independent of time. 

Then:

( ) ( ) ( )i i 2i
0 0 1 1 0 1 1 0 1

0 0 0

K KK
2 i i iE ( ) i L L

L L Lk z j e i j e e j e j j
z

∗ Ψ ∗ − Ψ Ψ Ψ ∗ ∗ω ω∂⎡ ⎤ ⎡ ⎤− ≈ µ − ω + ω = µ − + ≈ µ⎣ ⎦⎢ ⎥∂ γ γ γ⎣ ⎦
�

� � � � �

(neglecting the rapidly term 2i
1j e Ψ
� ). Equally,    ( )0 1 0

0

K
iµ 2 EL

Lj k z
z

ω ∂=
γ ∂

�
�  (35) 

 

2.3 Self-consistent description of e.m. field and electron distribution  

We can now combine the “field equation” (35) and the “kinematic equation” (34) to find a self-
consistent description of the evolution of the e.m. field and the electron density distribution: 

2
0 0

0 1 1
0 0 1

2 2
0 0 0

2 2 3
0 0 0 0 01 0

i i
2 2

1
i i i(

2 2

E ( ) ( , )

E ( ) ( )
E ( ) exp )( )

z
L

z

cK Kqc
z j f z d

z

Kqc q z K fq K
d dz z C z z

cm c m c

∞

∞

µ µ∂ = = γ γ =
∂ γ γ

⎡ ⎤′ ⎡ ⎤µ ∂ γ ω +′ ′ ′γ + + ∆γ −⎢ ⎥ ⎢ ⎥γ ∂γγ γ⎣ ⎦⎣ ⎦

∫

∫ ∫

� �
�

�

�

 (36) 

The problem of this equation is, that it contains not only the desired complex transverse field 

amplitude 0E� , but also the longitudinal space charge field Ez
� . Fortunately, Ez

� can be related to 0E� in 

the following way: For our assumption of the space charge field  ( )E E . .i
z z z e c cΨ= +� , the 

longitudinal component of the 1st Maxwell equation reads (note = =0
x y

∂ ∂
∂ ∂

 in our 1D treatment):   
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( ) 00 Ez zz
H j

t

∂∇ × = = + ε
∂

       or       ( ) 2
0Ez zz c j

t

∂ = −µ
∂

,         thus ( )
2

0
1

i
Ez

L

c
z j

µ
≈ −

ω
�

� .  With 

Eq. (35) this is related to the transverse e.m. field:  

( )0
1 0

0

2
i Ej z

cK z

γ ∂= −
µ ∂

�
�    , thus    ( )0

0

2
E ( ) Ez

L

c
z z

K z

γ ∂≈ −
ω ∂

� � .  Therefore Eq. (36) becomes: 

( )
2 2 2 2 2

0 0 0
0 0 02 2 2 3

0 0 01 0

4 1
i i i(C

4

( )
E ( ) E ( ) E exp )( )

z
L

L

q K c c f K
z d dz z z z z

z z cm c K

∞ ⎡ ⎤ ⎡ ⎤µ γ ∂ γ ω∂ ∂ +′ ′ ′ ′= γ − + ∆γ −⎢ ⎥ ⎢ ⎥′∂ ∂ ∂γγ ω γ⎣ ⎦ ⎣ ⎦
∫ ∫� � �

This is an integro-differential equation for the complex amplitude of the e.m. field. Only for few non-
trivial model functions of the initial energy distribution 0f , the solution can be found analytically, 

using Laplace transform techniques. We restrict ourselves to the most simple case, a monoenergetic 
(“cold”) beam: 0 0 0( ) ( )f nγ = δ γ − γ , i.e. =0∆γ , with charge density 0qn , i.e.  

0 0 0 0( )j qc n d qcn
∞

−∞

= δ γ − γ γ =∫ .  

Integration over energy can then be executed, using partial integration: 
 

[ ]0
0 01

1 1

d ( ) ( )
( ) ( ) ( ) ( )

dF
F d F d

d d

∞ ∞
∞δ γ − γ γγ γ = δ γ − γ γ − δ γ − γ γ

γ γ∫ ∫ , thus 

2 2 2

0 0 02 3 3
0 1 0 0

2 2
0 0

0 2
0 0

2 2 2 2
0 0 0

0 05 2
0 0 0

4 1 1
i i i(C

i
4

1 4
i

4

( ) E ( ) E ( ) ( ) exp )( )

E ( )

( )
E ( ) E ( )

z

L L

L

z
L

L

c K K
dz d z z z z z z

z c cK

n q K
z

z m

n q K K c
dz z z

zm c K

∞ ω ωγ ∂ + +′ ′ ′ ′ ′γδ γ − γ − − + ∆γ −
′∂ω γ γ

µ∂ = ×
∂ γ

⎛ ⎞ ⎡ ⎤⎡ ⎤
=⎜ ⎟ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎝ ⎠ ⎣ ⎦

⎡ ⎤µ + ω γ ∂′ ′ ′= − −⎢ ⎥′∂γ ω⎣ ⎦

∫ ∫

∫

� �

�

� � [ ]

[ ]
2

3
0 03

0

iC

i iC                                                            (37)

( )exp ( )

E ( ) E ( ) ( )exp ( )
z

p

z z z z

k
dz z z z z z z

z

′ ′− − =

⎡ ⎤∂′ ′ ′ ′ ′−Γ − − −⎢ ⎥′∂Γ⎢ ⎥⎣ ⎦
∫ � �

with abbreviations: 

0

0

2 2 2 2 2
3 0 0 0

5 5
0 0 0

2 2
2 30

 3 2
0

4
17     is the "Alven current"

1 1
       Γ is called gain parameter.

4

4 1 4
     is the wave number of longitudinal plasm

( ) ( )

( )

A

L L

A

p p
A L

m c
I kA

q

n q K K j K K

m c I c

j K c
k k

I K

π
= =

µ

µ + ω π + ω
Γ = =

γ γ

π + γ= = Γ
γ ω

.

a oscillation

 

Note that kp is the only reminder of taking longitudinal space charge into account. 

We have ended with an ordinary integro-differential equation (37) for 0E� . We now derive Eq. (37) 
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with respect to z:  [ ]
22

3
0 0 0 02 3

0

 =-iC i iCE E E ( ) E ( ) exp ( )
z

pkd d d
dz z z z z

dz dzdz

⎡ ⎤
′ ′ ′ ′+ Γ − −⎢ ⎥′Γ⎢ ⎥⎣ ⎦

∫� � � � ,   where  

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
z z zd d d
dz g z h z g z dz h z g z dz h z g z h z

dz dz dz

⎡ ⎤
′ ′ ′ ′ ′ ′= = +⎢ ⎥

⎣ ⎦
∫ ∫ ∫ ) was used. 

Finally, we derive once more and get: 

[ ]
2 23 2

3 3
0 0 0 0 0 03 2 3 3

0

22 2
3

0 0 0 0 02 3 2

2

02

 =-iC i i i iC

           =-iC i i iC

-2iC

E E E ( ) E ( ) E ( ) E ( ) exp ( )

E E ( ) E ( ) ( E E )

E

z
p p

p

k kd d d d
z z C dz z z z z

dz dzdz dz

kd d d d
z z C

dz dzdz dz

d

dz

⎡ ⎤ ⎡ ⎤
′ ′ ′ ′+ Γ − − Γ − −⎢ ⎥ ⎢ ⎥′Γ Γ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
+ Γ − − +⎢ ⎥

Γ⎢ ⎥⎣ ⎦

=

∫� � � � � �

� � � � �

�

2
3 2

0 0 03
i CE ( ) E ( ) Epk d d

z z
dz dz

⎡ ⎤
+ Γ − +⎢ ⎥

Γ⎢ ⎥⎣ ⎦

� � �

Rearranging, we arrive at our final result: An ordinary linear third-order differential equation for the 

complex field amplitude 0E� :         ( )
3 2

2 2 3
0 0 0 03 2

2iC + C iE E E E ( )p

d d d
k z

dzdz dz
+ − = Γ� � � �  (38) 

At the end of this derivation, Fig. 8 illustrates the major steps and approximations taking us to the 
final  result Eq. (38). 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 8: Major steps to derive the 3rd order differential Eq. (38) for the high-gain free-electron laser 
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 Eq.            ff: self-consistent integro-differential 
           eq. for arbitrary inital energy distribution 

Cold  beam 

3rd order differential Eq. 

(35) 

 equation 

approximation step 
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2.4 Solution of the high-gain FEL-equation  

For the solution of Eq. (38) we make the Ansatz ( )0E expA z= Λ� and get the “characteristic 

equation”:  

( ) ( ) ( )23 2 2 2 2 2 2 2 3+2iC + C = 2iC C i ip p pk k C k⎡ ⎤Λ Λ − Λ Λ Λ + Λ − + = Λ Λ + + = Γ
⎣ ⎦

 (39) 

Eq. (39) has three roots, and the the general solution of Eq. (38) is constructed from three 
independent partial solutions:  

( ) ( ) ( )0 1 1 2 2 3 3E ( ) exp exp expz A z A z A z= Λ + Λ + Λ�  . (40) 

The amplitudes 1 2 3, ,A A A are determined by the initial conditions. Since there are three free 

parameters, we need three independent conditions. The most practical may to specify the these 

conditions is to specify ( ) ( ) ( )
2

0 0 02
0 0 0E , E , E

d d
z z z

dz dz
= = =� � � , or, taking into account Eq. 

(35): 0 1E
d

j
dz

∝�
� ,  to specify  ( ) ( ) ( )0 1 10  0  0E , ,

d
z j z j z

dz
= = =�

� �  . 

We write Eq. (40) in the form ( ) ( ) ( ) ( )0 1 1 2 2 3 3E E E Ez A z A z A z= + +� � � � , with ( ) ( )1 1E expz z= Λ� , 

etc.,  and we write  E E
d

dz
′=� � , etc. (note we will omit the index 0 to 0E�  in the following). The 

general solution, including its first and second derivatives, can then be written in a matrix form: 

1 2 3 1

1 2 3 2

31 2 3z z

A

A

A

E E E E

E E E E

E E E E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′ ′= ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′′ ′′ ′′ ′′ ⎝ ⎠⎝ ⎠ ⎝ ⎠

� � � �

� � � �

� � � �

, where the index z means that the matrix elements are taken at 

longitudinal position z. Since 1 2 3, ,Λ Λ Λ  are known from the characteristic equation (39), all matrix 

elements are known. Writing the initial condition in the form 

z 0

E

E

E
=

⎛ ⎞
⎜ ⎟

′⎜ ⎟
⎜ ⎟⎜ ⎟′′
⎝ ⎠

�

�

�

, we can calculate 1 2 3, ,A A A  

from      

1

1 2 31

2 1 2 3

3 1 2 3 0 0

E E E E

E E E E

E E E E
z z

A

A

A

−

= =

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ′ ′ ′= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′′ ′′ ′′⎝ ⎠ ⎝ ⎠ ⎝ ⎠

� � � �

� � � �

� � � �

.        

Thus,              

1

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3z z z 0 z 0

E E E E E E E E

E E E E E E E E

E E E E E E E E

−

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

′ ′ ′ ′ ′ ′ ′ ′= ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

� � � � � � � �

� � � � � � � �

� � � � � � � �

  

or, using ( ) ( ) ( ) ( )1 1 1 1 1 E exp , E exp ,z z z z′= Λ = Λ Λ� �  etc.,   
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1
1 2 3

1 2 3 1 2 3
2 2 2
1 2 31 2 3 0

1 1 1E E E E E

E E E E E

E E E E E
z z z

−

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′ ′= ⋅ Λ Λ Λ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟Λ Λ Λ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′′ ′′ ′′ ′′⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

� � � � �

� � � � �

� � � � �

. (41) 

Using the explicit expression for the inverse matrix, Eq. (41) reads   

 
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

2 3 2 3

1 2 1 3 1 2 1 3 1 2 1 3
1 2 3

1 3 1 3
1 2 3

2 1 2 3 2 1 2 3 2 1 2 3

1 2 3
z z

2 1 2 1

3 2 3 1 3 2 3 1 3 2 3 1

1

1

1

E E E E

E E E E

E E E E

⎛ Λ Λ Λ + Λ
−⎜

Λ − Λ Λ − Λ Λ − Λ Λ − Λ Λ − Λ Λ − Λ⎜⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ Λ Λ Λ + Λ′ ′ ′ ′= ⋅ −⎜ ⎟ ⎜ ⎟

Λ − Λ Λ − Λ Λ − Λ Λ − Λ Λ − Λ Λ − Λ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′′ ′′ ′′ ′′
⎝ ⎠ ⎝ ⎠ Λ Λ Λ + Λ

−
Λ − Λ Λ − Λ Λ − Λ Λ − Λ Λ − Λ Λ − Λ⎝

� � � �

� � � �

� � � �

z 0

E

E

E
=

⎞
⎟
⎟ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ′⋅ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟′′⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎜ ⎟

⎠

�

�

�

 (42) 

 

2.5 Solution for the case C = kp = 0  

To be more specific, we now investigate the most simple case:  

No detuning, i.e. all the electrons have the same energy, and this energy meets exactly the resonance 

condition: C = 0. Also, we assume negligible impact of space charge, i.e. 
2

2 0
3
0

4 1
0

( )
p

A

j K
k

I

π +
= →

γ
.    

The validity of this latter condition is a little more difficult to verify and should be considered with 
care in every specific case. It can be seen that, in tendency, this condition is valid at very high beam 
energy 0γ . With these assumptions, the three roots of Eq. (39) are:   

3 3
1 2 3

i 3 i 3
i i     

2 2
; ;

+ −Λ = Γ ⇒ Λ = − Γ Λ = Γ Λ = Γ .     (43) 

The general solution is thus:  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 1 2 2 3 3 1 1 2 2 3 3

1 2 3

i 3 i 3
i

2 2

E E E E exp exp exp

exp exp exp

z A z A z A z A z A z A z

A z A z A z

= + + = Λ + Λ + Λ

⎛ ⎞ ⎛ ⎞+ −= − Γ + Γ + Γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� � � �

 

Obviously, all contributions to this solution either vanish with increasing z, or they oscillate, except 

for the one containing 
2

3

2
expA z

⎛ ⎞
Γ⎜ ⎟⎜ ⎟

⎝ ⎠
. For an undulator much longer than 1/Γ, this part of the 

solution will dominate.   

Using 1 2 3, ,Λ Λ Λ  from Eq. (43), Eq. (42) reads now (note 1+i 3 2 i
3

exp
π= ):  
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2

1 2 3

1 2 3 2

1 2 3z z z 0

2

1 i 1

3 3 3
1 1 1

i i
3 3 6 33

1 1 1
i i

3 3 6 33

E E E E E

E E E E exp exp E

E E E E E
exp exp

=

⎛ ⎞
−⎜ ⎟

Γ Γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟π π⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′= ⋅ − − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′′ ′′ ′′ ′′⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠− π π⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟Γ Γ⎝ ⎠ ⎝ ⎠⎝ ⎠

� � � � �

� � � � �

� � � � �

  ,  (44) 

which we will evaluate in the following for two different initial conditions. 

2.5.1 Seeding by external electro-magnetic wave at the undulator entrance 

First, we consider the case of an external (“seeding”) electro-magnetic wave (with amplitude Eext ) 

existing at the undulator entrance, but no initial longitudinal modulation of the electron beam, 

i.e. ( )1 0 0j z = =� . Consequently, 

  ( ) ( ) ( )1 1

0

0 , 0 0  0 0   0

0

E E

E , E

E

ext

ext

z

d
z E j z j z

dz

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′= = = = = = → =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟′′ ⎝ ⎠⎝ ⎠

�

� �
� �

�

 .   Thus: 

2

1 2 3 1 2 3

1 2 3 2

1 2 3

2

1 1

3 3 3
1 1 1

0
3 3 6 33

0
1 1 1

3 3 6 33

E E E E E E EE

E E E E exp exp

E E E E
exp exp

ext

z z

i

i i

i i
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Explicitly, the solution for ( )E z�  is  

( )1 i 3 i 3
i

3 2 2
E( ) E exp exp expextz z z z

⎡ ⎤⎛ ⎞ ⎛ ⎞+ −= − Γ + Γ + Γ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

� . As mentioned before, for 

1z Γ� , the solution with 2Λ  dominates: 
1 i 3

3 2
E( ) E expextz z

⎛ ⎞+= Γ⎜ ⎟⎜ ⎟
⎝ ⎠

�  (45) 

The power gain, defined by 

2

2

E

Eext

G =
�

, is calculated from Eq. (45) and results in: 

2

2

1 3 3 3
1 4

9 2 2 2

E
cosh cosh cos

Eext

G z z z
⎡ ⎤⎛ ⎞

= = + Γ Γ + Γ⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

�

.  (46) 
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For 1z Γ� , this simplifies to 
1

3
9

expG z= Γ  . (47) 

The factor 1/9 describes the efficiency at which the incoming (“seeding”) electro-magnetic field 
couples to the FEL gain process. Fig. 8 shows a plot of Eqs. (46, 47) as a function of zΓ , indicating 
that, indeed, the gain grows exponentially according to Eq. (47) for 1z Γ� . The e-folding length of 

radiation power is called (power) gain length GL :  

1
5 3

2 2
0

1 1

13 3 ( )
A

G
L

I c
L

j K K

⎛ ⎞γ
= = ⎜ ⎟π + ωΓ ⎝ ⎠

. Using 
2

2

4

1( )L
u

c

K

π γω =
λ +

 and expressing the current 

density 0 2

ˆ

r

I
j ≈

πσ
 in terms of peak current Î and beam cross section 2

rπσ , this can be written 

  

1
3 2 3

2

1

43 ˆ
A r u

G

I
L

IK

⎛ ⎞γ σ λ
= ⎜ ⎟

π⎝ ⎠
 (48) 

Note that some authors use, instead, the e-folding length for the field amplitude which is 2 GL .  

Another parameter widely used is the dimensionless “FEL-parameter” ρ :  

 
1 1 1

4 4 3 4 3
u u

G GainL N

λ Γ λ
ρ = = =

π π π
.   (49) 

GainN  is the number of undulator periods within one power gain length.  

 

 

 

 

 

 

 

 

Fig. 8: Plot of the power gain of a high-gain FEL, starting with a seeding e.m. wave, see Eq. (46). The dotted like 
is the asymptotic solution Eq. (47) for 1z Γ� . The vertical scale is logarithmic. 
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2.5.2 Initial longitudinal modulation of electron beam density 

As a second example, we consider the case that there is no external e.m. wave at the undulator 
entrance but a longitudinal current modulation of the electron beam at the radiation wavelength, 
which is assumed to be stationary at the beginning:    

 ( ) ( ) ( )1 10 =0,   0 0 , 0 0E
d

z j z j z
dz

= = ≠ = =�
� � .   Thus: 

( ) ( ) ( )0 1
0

cK
0 0 , 0 0

2
E Ez i j z z′ ′′= = µ = = =

γ
� �

�   and  0 1 0
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0
0

0 0
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E

E E

E
z

z

i j

=
=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′= µ =⎜ ⎟ ⎜ ⎟⎜ ⎟γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′′ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
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Explicitly, the solution for ( )E z�  is 

( ) ( ) ( ) ( )0 1 2 3

1
z = i z i z i z

3 6 6
E E exp exp exp exp exp

⎡ ⎤π π⎛ ⎞ ⎛ ⎞′ Λ + − Λ − Λ⎜ ⎟ ⎜ ⎟⎢ ⎥Γ ⎝ ⎠ ⎝ ⎠⎣ ⎦

� � . (51) 

Again, for 1z Γ� , the solution with 2Λ  dominates: 
1 i 3

2
E( ) expz z

⎛ ⎞+∝ Γ⎜ ⎟⎜ ⎟Γ ⎝ ⎠

� � , i.e. we get an 

exponential growth with the same e-folding length as in the seeding case. The important result is that 
we don’t need any input seeding e.m. wave, a current modulation at the optical, resonant wavelength 
is as good for starting the process, no matter how small this current modulation is!  

From Eq. (50), the radiation power as a function of z is calculated: 

2 3 3 3 3
3 3

2 2 2 2
( ) E( ) cos cosh sin sinh coshP z z z z z z z∝ ∝ Γ ⋅ Γ − Γ ⋅ Γ + Γ� .  (52) 

The asymptotic behavior for 1z Γ�  is 3( ) expP z z∝ Γ  , very much like in the seeding case. 

Fig. 9 illustrates both Eq. (52) and its asymptotic behavior.  
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Fig. 9: Plot of the power gain of a high-gain FEL, starting with a longitudinal current modulation of the electron 
beam at the radiation wavelength, see Eq. (50). The dotted like is the asymptotic solution for 1z Γ� . The 
vertical scale is logarithmic. 

It is interesting to note that, like in the seeding case,  the exponential growth of the e.m. field starts 
only after approx. three gain lengths, a distance often called “lethargy regime”. 

 

2.6 Resonance width 

In the previous section we have assumed that all the electrons have the same energy, and this energy 
meets exactly the resonance condition: 0C = . Analysis of the characteristic equation (39) for 0pk =  

and 0C ≠  is a quite straight-forward algebra. It is seen that  

1. The maximum gain occurs indeed for ON-resonance operation (i.e. for  0C = ). It is 
important to point out that this behavior is fundamentally in contrast to the low gain case, 
where no gain was found for particles initially on resonance energy, see Fig. 3. 

2. The gain drops significantly when C  is increased to values corresponding to 
∆γ = ρ
γ

. 

Because of  
2

1
Lλ ∝

γ
, this means the bandwidth of a high-gain FEL is 2 2L

L

∆λ ∆γ= = ρ
λ γ

 (53) 

          All particles outside this energy window don’t contribute to the gain process constructively. 

Therefore, the relative energy spread with the electron bunch should be smaller than ρ :  
∆γ ≤ ρ
γ

. 

This requirement is a serious technical challenge for FELs operating at low ρ -values. In tendency, 

this is the case for very short wavelength Lλ . For instance, for the LCLS X-ray FEL presently under 

construction at SLAC, ρ is approx. 410− . An comparison of the theoretically expected bandwidth 

with measurements taken at the short-wavelength FEL at DESY is illustrated in Fig. 10. 
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Fig. 10: Wavelength spectrum of the central radiation cone measured at the high-gain FEL at DESY [7],  called 
TTF FEL. The dotted line is the theoretically expected line width.  

 

A different formulation of the same facts is as follows:  

A high-gain FEL acts as a narrow-band amplifier with bandwidth 2
∆ω ≤ ρ
ω

. 

2.7 Laser Saturation 

The exponential growth of radiation power will not proceed forever. It comes to an end latest when 
the electron beam current is perfectly modulated at the optical wavelength. The precise behavior of 
the high-gain FEL in this saturation regime cannot be treated within our analysis because our linear 

approximation is based on the assumption 
1

0

1
j

j

�

� . Some typical features of the saturation regime 

are as follows: The electrons lose so much energy that they fall out of the resonance condition. Due 
the bunching and motion in phase space, the e.m. field may even pump back some energy to the 
electron beam. A potential cure against this is undulator tapering, i.e. increasing the K-parameter to 
compensate for the loss of electron energy. Also, the energy spread of the electron beam increases 
(thus the frequency spread of radiation). In any case, the analysis of the non-linear saturation behavior 
needs numerical simulation and is beyond of the scope of this paper. 

          However, we are able to perform a simple estimate of the radiation power at saturation: Let’s 

assume 1 0j j=�  , i.e. full modulation. With Eq. (35) we estimate the field amplitude at saturation by 

the assumption that the major part of radiation is generated within the last gain length:   

  ( ) ( )0 0 0 0
02

E EG G G G

d cK
z L L L j L

dz
= ≈ × ≈ µ

γ
� �    Plugging GL  in from Eq. (48) yields 
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

ε ε σ µ λ= × ≈ ≈
σ

. (54) 

        It is interesting to note that, within this approximation, the saturation power doesn’t depend on 
neither beam energy γ nor radiation wavelength Lλ , very much in contrast to the power of 

spontaneous undulator radiation. Typical numbers may be: 

r1000 A, K=1, 0 03 ,  0 1 m  2 GWˆ . .u satI m m P= λ = σ = → ≈   

Fig. 12 illustrates onset of FEL saturation at a power level of 1 GW observed at the TTF FEL at 
DESY/Hamburg with parameters close to these values.  

         The amount of electron beam power converted to FEL output radiation is called power 

efficiency and is given by: 
2

0
ˆ

o

sat sat

beam m c I q

P P
P γ

= ≈ ρ , i.e. it is just given by the FEL parameter ρ.   

As a rule of thumb, saturation sets on after 20 power gain lengths. For the most challenging high gain 
FEL projects aiming at sub-nanometer wavelengths (e.g. LCLS/SLAC, and the European 
XFEL/DESY), satL will be as long as 100-200 m. 

 

2.8 Start-up from noise: Self-Amplified Spontaneous Emission (SASE) 

It was found in section 2.5.2 that an arbitrarily small current modulation of the electron beam current 
at the entrance of the undulator will be sufficient to start the exponential FEL process. Of course, this 
modulation must be at the resonant radiation wavelength Lλ , determined by the electron energy and 

undulator parameters  λ  ,u K , see Eq. (12). For very short wavelengths, (say micrometers or 

nanometers), this is very difficult to achieve. In fact, because of the narrow-bandpass property 
described in the previous section, it would be sufficient if the longitudinal electron bunch profile 
would contain Fourier components at Lλ . However, for normal electron bunch lengths of some 1 mm 

and Lλ well below a micrometer, this is (practically) not the case.  

A very elegant way out is making use of the fact that the electron beam is actually made up of 
many point-like charges (i.e. electrons) randomly distributed in space and time5. Such a random 
distribution generates a white noise spectrum of current modulation, which always contains some 
spectral contribution within the FEL bandwidth. This principle was proposed first by Kondratenko 
and Saldin in 1980 [8] and is widely called the “Self-Amplified Spontaneous Emission” mode 
(SASE) of high-gain FELs. It is most attractive for very short wavelengths, where no mirrors are 
available to construct an optical cavity, and no external lasers are available to produce a sufficiently 
powerful input wave. Tuning of FEL output wavelength is extremely simple in the SASE mode: You 
just change the electron energy (or, if you prefer, the undulator K-parameter) accordingly, and the 
SASE process “automatically” selects the correct modulation wavelength from shot noise. 

                                                 
5 There is a simple proof that this random distribution really exists: It is the basis for the spontaneous undulator 
radiation. As long as the observed characteristics of spontaneous undulator radiation agree with theoretical 
expectations, we can safely assume that electrons are distributed randomly. 
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          A characteristic property of SASE FELs is that the output radiation spectrum is noisy, because 
the FEL amplifies a part of the shot noise spectrum. Fig. 11 illustrates an extreme case of such a noisy 
output spectrum. The frequency width ∆ω  of the individual spikes in the output spectrum is 

determined by the length of the electron bunch bunchl  according to 
2

bunch

c

l

π∆ω = , i.e. the Fourier 

transform limit given by the bunch length.  

         Another important quantity is the number G
G

u

L
N =

λ
 of undulator periods within one gain 

length. Since the radiation pulse slips by one wavelength per undulator period with respect to the 
electron bunch, it is this quantity GN   which determines the number of wavelengths where coherence 

is expected within the FEL process. The quantity  coh G Ll N≈ ⋅ λ  is called coherence length. Using 

Eq. (49), it can be written L
cohl

λ≈
πρ

 (note the factor π  comes from a more detailed analysis, Ref. 

[2]). We would expect that the quantity L

cohl

λ ≈ πρ should determine the relative bandwidth of the 

FEL, which is indeed the case, see Eq. (53). If this quantity is larger than ∆ω , it determines the 
envelope spectrum containing M spikes in statistical average. In terms of cohl , it is the number of the 

coherence lengths cohl  within the bunch length that determines the average number bunch

coh

l
M

l
≈  of 

spikes within the FEL output spectrum. M is called the number of longitudinal modes. 

 

 

Fig. 11: Since SASE FELs start from shot noise, also the output radiation spectrum is expected to be noisy. In 
the extreme case of the numerical simulation shown on the left hand side, there is a very large number of spikes 
(large number of “longitudinal modes”) which will fluctuate from electron bunch to electron bunch in intensity 
within the bandwidth of the FEL. The plot on the right hand side shows measurement at TTF FEL of a single 

shot spectrum with mode number M ≈ 6. The envelope of this spectrum corresponds to about 0 015.ph

ph

∆λ
≈

λ
, in 

agreement with  Fig. 10. 
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       How can we calculate the initial conditions the FEL process is subjected to by the shot noise? 

One way is to estimate the effective current modulation within the bandwidth 2ph

ph

∆λ
= ρ

λ
 and use 

this value as “initial longitudinal current modulation” in the analysis described in section 2.5.2. 
Another way is to calculate the equivalent input power generated within the first gain length by shot 
noise and use this value as an external “seed wave” in section 2.5.1. This “effective input power” 

shP of shot noise can be estimated at 
3

ln
sh beam

c c

P P
N N

≈ ρ
π

 (see Ref. [2], Eq. (6.95)).  (55) 

Here, beamP  is the electron beam power and cN  is 0.5 times the number of electrons within the 

coherence length. The power gain of a SASE FEL  at saturation can be estimated from Eqs. (54,55) 

at: 
1

3
lnsat beam

sat c c
sh sh

P P
G N N

P P

ρ= = ≈ π , i. e. it is roughly given by the number of electrons in the 

cooperation length. The quantity shP  is relevant in two ways:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: Energy in the radiation pulse as a function of longitudinal position in the undulator measured at the 
SASE FEL at DESY at λL  = 98 nm (dots).  The vertical scale is logarithmic. The solid line is the theoretical 
expectation. If the exponential gain curve is (exponentially) extrapolated down (blue arrow) to the beginning of 
the undulator, it hits the vertical axis at a value very much in agreement with Eq. (55). 

1. Having an estimate for shP  available makes it possible to compare the theoretical SASE 

model with measurements. Fig. 12 shows the exponential gain observed at the SASE FEL at 
DESY. Within the first five gain lengths, the measured radiation power is dominated by the 
spontaneous undulator radiation, so that the start-up process and the lethargy regime cannot 
directly be observed. However, if the exponential gain curve is (exponentially) extrapolated 
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down to the beginning of the undulator it hits the vertical axis at a value very much in 
agreement with Eq. (55). Since shP  is the power amplified by the high-gain FEL, Fig. 12  

indicates a total power gain by 8 orders of magnitude, which is indeed about the number of 
electrons in the cooperation length. Note that this does not mean that the FEL output power 
exceeds the power of spontaneous undulator radiation by this factor. In contrast, the power of 
spontaneous undulator radiation may even be comparable to FEL saturation power, but is 
radiated into a much wider spectrum and opening angle. 

2. If one plans to improve the spectral purity of the FEL by using a seeding laser, Eq. (55) 
provides a lower limit of its required power. If the seed laser power would not exceed shP , 

the output radiation would still be determined by shot noise rather by the seed laser spectrum. 

 

2.9 3D effects 

Analysis of effects due to the finite transverse size of both the radiation and the electron beam 
goes beyond the scope of this article. However, some 3D effects have a tremendous practical 
relevance and will be summarized here in a semi-quantitative way. 

 

2.9.1 Transverse overlap between electron beam and e.m. radiation 

The most prominent 3D issue is that the FEL gain process requires complete transverse overlap 
between the electron beam and the radiation beam during the complete passage of the undulator to 
ensure that the interaction between e.m. wave and the electron beam takes place as described. Taking 
into account that, for short-wavelength FEL, the transverse rms beam size is 100 µm or less (see 
below), this means that the electron orbit must not depart from a perfectly straight line by more than 
some 10 µm over several gain lengths. This puts stringent tolerances on undulator field errors and is 
technically difficult both to realize and to verify. 

 

2.9.2 Diffraction 

Due to diffraction, even a perfectly coherent plane wave grows in transverse size after a while if it is 

collimated to a transverse radius of rσ . The distance 
2
r

R
L

L
πσ=
λ

 after which the radiation beam is 

grown by approx. a factor of 2 is called Rayleigh-length and provides an estimate of the opening 

angle σ
�

of the radiation: 
2

2
r L

R rL

σ λσ ≈ ≈
σ�

.  

An equivalent estimate comes from the transverse phase space volume covered by a perfectly 

coherent source known to be 
2

L
r

λσ σ =
�

, thus 
2

L

r

λσ =
σ�

. 

Typical numbers for the LCLS project are 10
r10 m, 30 mL

−λ ≈ σ ≈ µ , yielding 2 radσ ≈ µ
�

. It is 

interesting to note that this value is much smaller than the characteristic opening angle of undulator 

radiation 
1

30 rad≈ µ
γ

! The reason is that FEL radiation is no single-charge radiation but is a 

product of coherent superposition of radiation coming from many electrons distributed in longitudinal 
direction, very much like an array of antennas is able to generate a directional characteristic of radio 
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wave emission.  

Within our FEL analysis we have implicitly assumed that the e.m. wave is transversely 
coherent during the entire process. This is certainly not the case for SASE. The SASE FEL starts with 
many transverse optical modes. Since the axial mode achieves the highest gain, it reaches saturation 
first, so that at saturation “normally” the radiation is almost fully coherent.  

 

2.9.3 Emittance of the electron beam 

The emittance of the electron beam introduces a longitudinal velocity spread in the electron 
beam very much like energy spread does. Thus, in terms of FEL gain, electron emittance is equivalent 
to addition energy spread. The equivalent energy spread is 

 ( )
2

21eff K

∆γ γ ε≈
γ β +

   (β is the Twiss parameter of electron focusing). 

With the condition 
∆γ < ρ
γ

 derived from Eq. (53) this gives a limit for the beam emittance: 

( ) ( )2 2

2 2

1 1

2
èff

K Kβ + β +∆γε ≈ < ρ
γ γ γ

,   (56) 

where the factor 2 makes sure the emittance contributes less than 50% of the effective energy spread 
budget (if the latter is defined such that it contains both contributions by emittance and momentum 
spread).  

         A second condition comes from the diffraction effect: We want to maintain both complete 
overlap of electron beam and radiation (calling for long RL  thus large rσ ) AND maximum possible 

gain (calling for small rσ , thus small RL ) . The best compromise is R gL L≈ 6, thus 
2 1

4 3
ur

R G
L L

L L
λπσ πβε= = ≈ =

λ λ ρπ
. With the help of Eq. (56), ρ can be eliminated, yielding  

( )1
4 42 3

L Lλ λε < ≈
ππ

.         
4

Lλε <
π

  is a rather challenging condition for Lλ  in the nanometer range. 

 
 
 

 

Fig. 13: Sketch of the growth of the transverse size of the radiation beam due to diffraction within a  distance 
called Rayleigh length  RL . 

                                                 
6 Note that this condition also enables development of transverse coherence in case the process starts from noise 
(i.e. from a transversely incoherent source like in the SASE case), because it provides transverse mixing of 
radiation fields originating from different portions of the electron beam. 
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2.10 Velocities 

When we introduced the complex field amplitude 0 0E ( ) E ( )exp Ez z i= ψ�  in Sect. 2.1, we have 

intentionally introduced an additional phase Eψ . This slowly varying phase describes the slippage of 

the e.m. phase with respect to a free wave propagating at phase velocity c. We can determine Ecos ψ  

by (see. Fig. 14): 

( ) 3
2

2 2

3 3 3
1 4

2 2 2

cos cos cosh
E

cos
E

cosh cosh cos

E

z
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.  For 1/z Γ�  this  reads 

 
E

i 3
z

2 i z
= z

2 2i 3
z

2

exp
E

cos exp cos
E

exp

⎛ ⎞+ℜ Γ⎜ ⎟
ℜ Γ⎛ ⎞⎝ ⎠ψ = = ℜ Γ =⎜ ⎟

⎛ ⎞ ⎝ ⎠+ Γ⎜ ⎟
⎝ ⎠

�

�
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2

/E

z
z
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Fig. 14: Development of the slowly varying phase Eψ  as a function of the longitudinal coordinate z, normalized 

to the gain parameter Γ. Eψ  describes the slippage of the e.m. phase with respect to a free wave propagating at 

phase velocity c.  

 

We can now calculate the phase velocity of the e.m. wave during the FEL process: 

phv

2L
k k

ω ω= = Γ+
, i.e. it is reduced by   1

2 2ph
L L L

c v c c
k k k

⎛ ⎞ω Γ Γ− ≈ − − =⎜ ⎟
⎝ ⎠

   with respect to a free 

e.m. wave.  
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In a similar way, we can calculate the phase velocity of density modulation. Due to Eq. (35), and 
using Eq. (44):  

( )i i0
0 1 0 2 2

0

0

2 1
i

3

3
i

2 2

. . E exp . .

.exp exp . .

z ext

u L

j j j e c c j z e c c
cK

z
j const k k z t c c

Ψ Ψγ= + + = − Λ Λ + =
µ

⎡ ⎤Γ Γ⎛ ⎞= + ⋅ + + − ω +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

�

 

Thus, the phase velocity of the density modulation is given by  

j1v
2

2
eff u L L

u L

c
k k k kk k

ω ω ω Γ= = ≈ −Γ ++ +
. Since 

u Lk k

ω
+

 is the mean longitudinal velocity of the 

resonant electrons, it is seen that the growing density modulation slowly slips backwards with respect 
to the bunch center.  

Finally, the group velocity of e.m. wave packets during the FEL process is of interest:  

Analyzing how 2Λ  depends on C  shows that 
2

g 2
0

1
v 1

3

d K
c

dk

⎛ ⎞ω += ≈ −⎜ ⎟γ⎝ ⎠
.  

In conclusion, we can distinguish 4 characteristic velocity slippages with respect to c in the high-gain 
FEL: 

ph ph
L

2

g g2
0

2

z z2
0

c v = c   with v  the phase velocity of e.m. wave during gain process.
2k

1 K
c v = c  with v  the group velocity of e.m. wave during gain process.

3

1 K
c v = c  with v  the longitudinal velocity

2
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+−
γ

+−
γ

2

j1 j12
0 L

 of the electron bunch 

                                 (i.e. of resonant particles, "kinematical slippage").

1 K
c v = c +  with v  the phase velocity of density modulation during gain p

2 2k

⎛ ⎞+ Γ− ⎜ ⎟γ⎝ ⎠
rocess.

 

From these relations, we can calculate the slippage g zv v−  of radiation wave packages (“spikes” in 

time domain) with respect to the electron bunch. It is 3 times smaller than the kinematic slippage: 

g z

z

v v 1

c v 3

−
=

−
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3. APPENDIX 

3.1 How to recover the low gain result from high gain solution 

Since the low gain FEL is just a special case of the high gain FEL, it should be possible to recover the 
properties of low gain FELs, in particular the Madey Theorem (see Section 1.3.3), from high gain 
solutions. To do so, we present a semi-analytically treatment, closely following J.B. Murphy and C. 
Pellegrini [9]. It comes in three steps: 

1. For the high gain FEL, gain is defined by 
( )

2

high gain 2
0

E( )

E( )

uz L
G

z

=
=

=

�

, so high gain 1G =  if there is no 

gain at all. In contrast, the gain defined for low gain FELs is 

( )
( )

2 2

low gain 2

0

0

E( ) E( )

E( )

uz L z
G

z

= − =
=

=

�

, see Eq. (18). Thus, if we want to recover the low gain 

result, we must investigate   low gain high gain 1G G= −  (57) 

2. In order to recover Madey’s Theorem, we must consider a finite deviation of the electron 
energy from resonance condition, i.e. the case of non-zero detuning. For simplicity, we 

assume 0pk = . Thus we must investigate the characteristic equation ( )2 3i iCΛ Λ + = Γ  , 

see Eq. (39). Since we are seeking for a solution for significant detuning ∆γ γ  but a very 

small gain parameter Γ , it is reasonable to define dimensionless, reduced parameters ˆ C
C =

Γ
 

and  ˆ ΛΛ =
Γ

 thus rewriting the characteristic equation 

  ( )2
i iˆˆ ˆ CΛ Λ + =  . (58)  

We will look for a solution valid for 1Ĉ � . If we interpret ∆γ  as the energy deviation from 

resonance energy 0γ  and observe the definition of C along with Eq. (13), we see that 

0

2 uk
C = ∆γ

γ
 and  

0 0

4 3 1ˆ G

u

LC
C

π ∆γ ∆γ= = =
Γ λ γ ρ γ

.  Thus, our assumption 1Ĉ �  

corresponds to ρ ∆γ γ� . Approximate solutions to Eq. (58) are given by 

1 2 32

i 1 1
 ;   i C   ;  i C

C C C
ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ

⎛ ⎞ ⎛ ⎞−Λ ≈ Λ ≈ − Λ ≈ − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (59) 

We now demonstrate that these solutions are indeed good for 1Ĉ �  by calculating 

( ) 3 2 2 2ˆ ˆ ˆˆ ˆ ˆ
i i iF C iC C i= Λ + Λ − Λ −  (i = 1,2,3). This quantity should be zero for all ˆ

iΛ  

satisfying Eq. (58). Indeed, as seen from Fig. 15, ( )ˆF C  approaches zero for all ˆ
iΛ , as long 

as 15ˆ C
C = >

Γ
. 
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Fig. 15: Plots of ˆ( )F C  as a function of Ĉ , for 1 2 3, ,iΛ = Λ Λ Λ . Note that, in this plot, ˆx C≡  and f(x), g(x), 

h(x) stand for F(x) with 1 2 3, ,iΛ = Λ Λ Λ , respectively. While the real parts are zero anyhow, the imaginary 

parts approach zero for 15ˆ C
x C= = >

Γ
, thus indicating that 1 2 3, ,iΛ = Λ Λ Λ  as given by Eq. (59) are the 

three independent solutions to Eq. (58) in this regime. 

3. We now use 1 2 3, ,iΛ = Λ Λ Λ  as given by Eq. (59) to construct the solution E( )z  according to 

section 2.4. In terms of initial conditions, the low gain FEL corresponds to the case “Seeding by 
external electro-magnetic wave at the undulator entrance” treated in section 2.5.1, i.,e. 
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 .   According to Eq. (42) we get  

( ) ( ) ( )11 1 21 2 21 2E( ) E exp exp expextz M z M z M z⎡ ⎤= Λ + Λ + Λ⎣ ⎦
�  

 with        ( )( )
2 3

11
1 2 1 3

M
Λ Λ

=
Λ − Λ Λ − Λ

,  etc. . 

We can now calculate the FEL gain in low gain approximation according to Eq. (57) (in 
analogy to Eq. (46)).  The numerical result presented in Fig. 16 indicates that this gain indeed 
resembles the low gain dependence on energy detuning (Madey’s theorem) shown in Fig. 3. 
The analytical calculation is left to the reader. 
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Gain x( )

x  

Fig. 16: FEL gain according to Eq. (57) vs. energy detuning, as derived from high gain theory after application 

of low gain approximation 1Ĉ x≡ � , and  using the approximate solutions Eq. (59) valid for 15x > . The 
vertical scale is arbitrary.   
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