TESLA-FEL Report 2004-08

LINAC BASED FREE-ELECTRON LASER

J. Rossbach
Universitdt Hamburg, Hamburg, Germany

Abstract

A basic treatment of the principle of the linac-driven free-electron laser
(FEL) is given. The first part of the paper describes the FEL in low-gain
approximation, and in the second part the high-gain FEL theory is given.
The majority of the treatment describes FELs in one dimensiona
approximation, neglecting effects by diffraction of radiation and by electron
beam emittance. Only in the final section a few remarks on these issues are
given. The ambition of the paper is by no means any progressin FEL theory
but a clear presentation of basic FEL theory concepts with explicit
derivation of the formulae from first principles.

INTRODUCTION

The basic theory of linac-driven free-electron lasers (FEL) presented in this paper is based on lectures
given for the CERN Accelerator School Course on “ Synchrotron Radiation and Free Electron Lasers’
2-9 July 2003 in Brunnen, Switzerland. The intention of the paper is neither a report on progress in
FEL theory nor a complete and in-depth treatment of the subject. It is rather an attempt to present the
basic concepts of linac-based FEL s starting from first principles and deriving formul ae explicitly step
by step so that students should be able to follow without doing long derivations and calculations by
themselves. For the sake of simplicity the FEL theory is given in one-dimensiona approximation, i.e.
only longitudinal electron motion is considered and diffraction effects of radiation are neglected. This
approximation is particularly justified for FELs operating in the VUV- or X-ray wavelength regime
because

e space charge effects are typically of less importance at ultra-relativistic energies typica for
such kind of radiation sources.

o the fundamental, coaxia mode typically dominates the radiation in the high-gain regime of
FELs, which is of particular interest for such short wavelengths.

The paper covers the material presented during the two one-hour lectures plus a few remarks
(hopefully) useful for the student, but nothing beyond. The MKSA (or “practical”) system of units
and a right-handed Cartesian coordinate system (with z being the longitudinal coordinate) are used
throughout the paper. [1, 2]

1. THEFREE-ELECTRON LASER IN LOW GAIN APPROXIMATION
1.1 Radiation power of a point-like electron distribution moving at ultra-relativistic speed

An FEL is basicaly aclassical device, i.e., with very few exceptions, all features can be derived and
described by classical electrodynamics and relativistic kinematics. Thus, as an introduction to the
principle of FELSs, it isuseful to recall some basics of classical electrodynamics|[3].

Let us consider an electric charge g moving at ultrarelativistic speed with respect to the
laboratory system. Classical electrodynamics says that any accelerated charge emits electromagnetic

radiation. The radiation power P, emitted by acharge g accelerated at V' isgiven by
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€ is the electric permittivity of vacuum and c is the speed of light. The asterisk * means that the
respective quantity is to be evaluated in a system * moving along with the charge such that its

velocity V' ismuch smaller than c.

Eqg. (1) makes the important statement that the power P, observed in any system is the same as

the power P;, calculated in the co-moving system in the way given by Eq. (1)! Thisfact makesis easy

to calculate the radiation power observed in the laboratory system in terms of quantities measured in
the lab system: We just have to express the acceleration V° by quantities measured in the lab system.

Thisisaccomplished by the Lorentz transformation of acceleration given by (see Ref. [3] p. 47 ff)

o* 3. o* 2. o 2.
V, =y, Y=y, V=Y 2

. 1 V, . . .
withy=———— and f=-2. The velocity v, of the moving system * with respect to the lab

J1- 5 c

system is assumed to be in the z-direction, see Fig. 1.

Y Y*
— —
V, V*
—p
Z*
Z

Fig. 1 Definition of a coordinate system denoted with an asterisk * moving with speed V,with
respect to the laboratory system.

It is important to realize from Eq. (1) that the component V,of acceleration paralel to the
velocity of the moving system transforms in a different way than the components perpendicular to it.
Acceleration perpendicular to the relativistic motion of the electron beam is the only one of practical
relevance, because it is achieved by the motion of the electrons in presence of an external magnetic
field. For the case of vertical acceleration, for example, Eq. (1) reads

q2
P=——yV, (3)
N X

indicating that one gains a large increase in radiation power when accelerating the electron
beam to ultra-relativistic (i.e. y >> 1) energies.

In terms of the FEL principle, the most important consequence of Eg. (1) is that the radiation

power scales quadratically with the charge. Taking into account that, in practice, the charge consists
of alarge number N of electrons with elementary charge e, Eg. (3) can be written in the form

2
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Obviously, the radiation power per electron isP,(each electron) :ﬁzﬁy vy, i.e itis N
72E,C

times larger that the radiation power of a single electron (i.e. not accompanied by many others)
2

P,(single electron) = % y™V;. This is, because the electrons moving in a bunch have to
7TE,C

perform work against the electric field generated by the co-moving electrons. This can be considered

the classical analogon to stimulated emission.

The main condition for Eq. (4) to hold is that all N electrons have to make up a “point-like”
charge distribution. For aradiating bunch of electrons moving at ultra-relativistic speed this means, in
particular, that the longitudina dimension of the bunch must be shorter than the radiated
wavelengths. For wavelengths much shorter than the visible, this is difficult (or impossible) to
achieve. In conventional synchrotron radiation sources like electron storage rings, for instance, the
radiation wavelength attractive for users is in the Nanometer range (or below), while the sizes of
electron bunches in storage rings is a few Millimeters typically. As a consequence, the radiation

power of a bunch of N electrons in a storage ring is only N-P,(single electron) : All electrons
radiate independent of each other (incoherent radiation). Obviously, there is a factor of N (which is

huge indeed) to be regained, if only there was a mechanism to rearrange the electrons on the scale of
the optical wavelength. The FEL principle provides such a mechanism.

Fig. 2 shows schematically the key components of a free-electron laser using an electron beam
accelerated by alinear accelerator.

laser

experiment

beamdump

Fig. 1 Schematic of alinac-driven free-electron laser. Major components are i) a source of electron bunches of
high charge density, ii) a linear accelerator (using superconducting technology is preferable to achieve a high
duty cycle, but is not a must), iii) a long undulator magnet generating periodically alternating deflection of the
electron beam, and iiii) a bending magnet separating the FEL radiation generated in the undulator from the
electron beam.



TESLA-FEL Report 2004-08

1.2 Electron motion in the undulator field

In the present paper, we restrict ourselves to helical undulators, because this simplifies calculations.
Extension to planar undulators can be found in the literature. It modifies some quantitative results but
it doesn’t change essentials.

In the vicinity of the axis of a helical undulator with period length A, , the magnetic field can be
expressed (to first order in the distancer to the axis) by

-sin(k,z)
B =B| cos(k,z) |+O(r?) (usingkuzgj ©)
0 A

The equation of motion of the electron in thisfield is

X X -z-cos(k,z)
my| y|=q ¥ [xB=qB -2:-sin(k2) (6)
z z x-cos(k,z)+y-sin(k,z)

One solution to this equation is a periodic, helical motion:

longitudina motion: v,= const., z= v,t= f,ct

/4

)'((t)j K (-sin(kuz)
y(t)

transverse motion on acircle: | ,or,using W= X+1y
cos(k,z)

W:ic;exp(ikuz) (7)

This can be solved easily: w:iexp(ikuz) :
e\, B
2nm,c

Here, K = K iscalled undulator parameter. It istypicaly K =1

The opening angle of helical motion is seen to be Vi 5 =
c v

o _ \
With this result, we can now determine 3, = —=:
C

et g

/4 /4
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1.3 Interaction with electromagnetic wave

We consider an external electromagnetic wave moving parallel to the electron beam, i.e. in z-
direction. Let’s assume a plane wave, which has zero z-component of the electric field vector:

cos(mt—k z—g¢,)
E, =E,| sin(ot-kz-g¢,) |, ©)
0

. - , = 1 = . .

with the magnetic field given by: B, = ——E, . @, istheangular frequency of the em. “light”wave
Co,

and the index L stand for “light”. It is certainly unnecessary mentioning that this frequency doesn’t

need to be at all in the visible range. k, = Z is the wave number. Again, complex notation is very

useful, because we have to deal with only two components of EL . We define a complex electric field
givenby E, =E_,+iE_, =E,expi(ot-k z-g,).

We now calculate the change of the electron’s energy in the combined presence of the
undulator and the em. field. It is well known, that a charged particle doesn't gain energy in any
magnetic field, since the Lorentz force is aways perpendicular to the particle’'s velocity. Thus we
have to consider the electric field only. As the em. wave has only electric field components
perpendicular to the mean electron beam (z-)direction, we now recognize the important role of the
undulator field: It generates velocity components of the electrons in the direction of the electric field
vector, i.e. in the x- and y-direction and thus makes energy transfer between the em. wave and the
€electron beam possible. The electron’s energy E is changed at arate

dE - mc2 dy
dt dt

KE, KE,

sin¥

=—qc sin{(k, +k )z— o t+¢,} =—qc

Here we have used Eq. (7) and the “ ponderomotive phase” defined as W = (k, +k ) z— o t+ ¢, . If

weuse z=V,t = f,ct, we can write

W, Z

¥=(k,+k )z- ﬂicﬂpo (10)

and %:—Msin‘{’ . (12)
dz W,

The energy dE is taken from or transferred to the radiation field. For most frequencies, dE/dt
oscillates very rapidly. A significant energy transfer will only be accumulated if the phase difference
between particle motion and e.m. wave stays constant with time. Thus, there is a resonance condition

d¥ 1) k
ivebyW =const. > —=(k, +k)——==0 .Usingw, =ck vyiedsk +k ——==0.
g Y dz (ku L) ﬂC g @&, Ly ku L ﬁ

z z
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Solving for A, = kz we get the resonance condition
L

1_ﬂz

A=A )

zﬂu(l—ﬂz)z%(l+ K?) (12)

It is important to realize that the resonant wavelength 4, is identical to the on-axis, first harmonic
wavel ength spontaneously radiated by the undulator.

With Eq. (12) we have achieved a condition for continuous energy transfer from the electron
beam to the em. wave. However, even if al eectrons would have exactly the right energy to fulfill
this condition when they enter the undulator, they will |eave the resonance energy quickly due to the
energy transfer to (or from) the wave. Thus, we need to investigate what happens to electrons
particles with energies dlightly off resonance. For particles slightly off resonance, the phase W will

dlip. In order to understand by how much, we note that in Eq. (10) only S, z1—2—12(1+ K?)
v

depends on energy. Writing ¥ = 7, + Ay we get

2
d_\P:(kqukL)_ “ zku+kL_L+ﬂ% -
dz L 1+ K2 ﬂz(yres)'c c Vies
C - @@
2(Ye +47) (13)
2
NS SYWI B
C ]/r&s 7(85
2
Deriving once more with respect to z yields d \,f = iﬂ
dz Vs 0Z
Using Eq. (11) in the form % = —&sin‘}’ we finaly get
dz my,c“1p5,
2 E,K . . . E,K
d \,f:— 2q2 2 K sin¥ =-Q*sin¥ with Q? :Z—qz"z—k” (14)
dz rrbc 7resﬂz rTbC }/resﬂz

This is a pendulum equation in the Ay -V phase space: electrons with little deviation from
resonance energy or from synchronous phase perform periodic oscillations, see Fig. 2. This is
equivalent to the synchrotron oscillations in storage rings, with the difference that the “ bucket” length
is now the optical wavelength. Like in synchrotron oscillation, particles within the separatrix get
bunched.

The energy lost (or gained) by an electron increases (or decreases, respectively) the field energy.
Thus, as seen from Eq. (11) and illustrated in Fig. 2, thereisgain or lossin field energy per undulator
passage depending on where the electron startsinthe Ay - ¥ phase space.
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1.3.1 The Separatrix
In order to determine the parameters of the separatrix, we look for afirst integral of Eq. (14):

Multiplying ¥ =-Q?sin¥ by 2¥’ on both sides and using 2‘P"P"=di(‘l")2 yields
z
_|'2‘I”‘I’”dz:(‘1”)2 = ZJ'—QZ sinWW¥'dz= ZI—QZ sinWd¥ = 2Q* cos ¥ + const

2
with ¥’ =k, iA;/thisreamls Lku iAyJ =2Q?cos ¥ + const , thus

res res

E,K
—————cos ¥ =const. (15)

=
=
R

ey

: ——
0018

. Ny
008 [ N NN , o

Fig. 2 In presence of the undulator field and the e.m. field, buckets are formed where electrons perform periodic
oscillation, if the deviation from resonance energy and from synchronous phase is smal. In contrast to
synchrotron oscillation buckets, the longitudinal size of our bucketsis very small, i. e. the optical wavelength.

There are two cases to be distinguished:

E, K E, K
qz—o. Then, A;/:\/const.+q2—°cos‘l’ has real solutions only
mye'k, B, myc'k, 5,

within alimited range of phases. Thisisthe case of rotation within the separatrix.

Case 1: const.<

gE, K

2
mye k. B,
consequence, the electron performs “libration” outside the separatrix. The separatrix is defined by the

Case 2: const. > . Inthis case all phases are possible, but Ay = 0 cannot be reached. Asa
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E,K
limiting case: const.= g —>—— . Thus, the separatrix is defined by the equation
meck, B,
E,K
(Ay) =—0" (14cos ). (16)
mek. S,

. L 20E, K
The height of the separatrix isgivenby: Ay, ., =AVin =.|— 55 7)

mek, /5,

i.e. it is determined by the strengths of both the external em. wave E; and of the undulator field
(through K).

1.3.2 Power Gain

In practice, an electron beam consists of many particles distributed smoothly over al phases, so that it
is not obvious from the previous analysis whether a significant over-all amplification of the em. wave
can take place at all. We are now going to determine the “power gain” of the FEL in presence of the
entire beam. Our most important assumption will be that the amplitude of the em. wave will change
only little during one passage of the electron beam, i.e. the power gain (as defined below) is much
smaller than unity: |G| < 1. Thisisthe “low gain approximation” which is the subject of this chapter.
We also assume an initially monoenergetic beam with some deviation Ay from resonance energy.

Let’s define the power gainG. dueto a particle identified by theindex i by

G - 9ainof field energy produced by electroni _ -mc®(y(z=L,)-%(0))
' total field energy iES-V
2 (18)
-mc?y_(¥/(z=L,)-%¥/(0
_ '(2 L) =¥ (0) (using Eq. (13) Ay = 2= )
& Eg-VK, 2K,

L, is the length of the undulator. Calculation of G, requires solution of the pendulum equation (14)

P =-Q?sin¥ for¥(2). Thisisdone iteratively. We start with the

ansatz ¥ (z)=¥,+ V¥, 2+ (2), (19)
where 0¥ (Z) isthe higher order term.

Stepl: 0¥ (z)=0.

Using the ansatz, afirst integral of Eq. (14) isthen:

lIJ,(;L) — \Pg —QZ JSin(\PO + \P6 . z)dz — \PE) _ QZ %I:COS \PO —COS(\PO + \1'16 : Z):| (20)
0

0
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The gain of the entire beam (consisting of Np particles) is given by
G=3G=(G), N, @

Averaging with respect to the initial phases is denoted by ( ),, and yields

<\P’(1’ _ \116>\P = <_QZ \; [cosW¥, —cos(¥,+¥,- z)]> =0 (22)

0 Yo

The important result isthat, in first order, the average gain G is zero!

Step 2: 0¥ (z) # 0, calculating &¥ (z) using the results of step 1, Eq. (20).

M (z) =-Q° \;, j[cos W, —cos (W, +¥;-2) jdz=
00 (23)
1 1 . 1 .
=-Q? z.cos¥,——sin(¥,+¥. -z2)+—sin¥
6 0 \PE) ( 0 0 ) \PE) 0

Using again the ansatz, the first integral of Eq. (14) now reads

PR

-Q° Jsin(‘l’O +Wo 2+ 0¥ (2))dz~-Q° J'[sin(‘l’o +W, - 2)+cos (W, + ¥, - 2) 0¥ (2) dz
0 0

The approximation is valid for 8% (Z) <« m which should be kept in mind when using the results.
Pluggingin 6% ( Z) and averaging with respect to phases yields

<‘P’(2)—‘P;> _qt 1 <L'T[Z‘P;cosz‘l’o~cos(‘Pg-2)—sin2‘1’0-sin(‘1’g-2)}dz> =
Yo

o o\
Q4 Lu
= g7 [[2¥;cos (W -2)-sin(¥;-2) |dz
0 o

Here we have used <COS(0{+ B)sin(a+ ,6’)>a =0 and <COSZO(>a =

N

rand <sin2a>a =

N

By partial integration® we get

! Explicitly, the partial integration reads

L L

[ 295 cos(¥;2)dz = 2%, L sin(z¥r) b - [ v, L snew2)dz

0 v Y lIlo 0 lPo
u u V) v -
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4

Lu
<\P'(2) _\P6>w :22‘,2{% sin(‘{’(’)Lu)—ZJ.sin(‘P(’) : Z)di} =
0 0 0

0

o [ . 1 :
=— | L, sin(¥L,)+2—(cos(¥,L )—1)}:
29’ b
(using sin2x = 2sin xcos x and cos 2x—1=-2sin’ x)

. WoL YL -, ol
=Q4 ];2 Lu sin 0™u s 0~u _ 2/3 2 20™u
v, 2 v, 2

co

LWL,

q sin? o
The latter expression can also be put in the form <1P’(2)_\116> =Q'— ,22
%o d¥; b 4

0

With Egs. (18) and (21), the gain can we written
2 ‘PS L

d Sin 5

M (P (2= L) -¥/(0))  mreN, ,
P £,E2-VK, g,E2-Vk,  d¥, Y

G=N

’ N
We now use the abbreviations & = ¥o L ,n =—2, L, =N,4, (with N, the number of undulator

2 PV
periods) and get the final result 2
oo FAUNIATK®N, d [sin?g (24
gme?y®  dg| &

The functions SIN°$ and d{smz 5} areplotted in Fig. 3.
¢ dg| ¢&°
Let us summarize the key assumptions made for this result: ahelical undulator, perfect overlap of
electron and radiation field, perfect electron beam (zero emittance and no momentum spread). It is
noted that the approximations don’'t assume that the beam is located inside the separatrix, i.e. the
externa e.m. field may be so weak that the separatrix covers only asmall fraction of the gain curve.

For the interpretation of Eq. (24) it is useful to express & inthe form

2 Vies Vies

2 Using the same Volume V in the definition of the particle density asin the expression for the total field energy
(see Eq. (18)) means that we assume perfect overlap of electron beam and em. field.

10
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Fig. 3 In low-gain approximation, the dependency of power gain on the initial momentum (right) can be written
as the derivative of the line shape function (left) of the spontaneous undulator radiation.

Thus, we can interpret the result as follows: To first order in the iteration, there is no net gain (G=0),
because phase space motion is (almost) symmetric: As many particles move up as down. In second
order it is seen however that, for positiveAy, the motion of particles with positive phase goes more
rapidly downwards than the motion of the others goes upwards, i.e. there is positive gain if the
electron energy is slightly above resonance energy (Ay >0). Thisisillustrated schematically in Fig. 4.
Thereisno gain for particles precisely on resonance energy (Ay =0). For Ay <0, the gain is negative,
i.e. the beam extracts energy from the em. wave, i.e. it gets accelerated. A device accelerating
electrons by an e.m. wave using this mechanismis called an “inverse FEL".

—— 3 Ay
St

vy

-o.oosf

Fig. 4 If the electron energy is dightly above resonance energy (red broken line), some particles lose, some gain
energy. In average, electron energy is pumped into the em. wave (positive power gain), which is a second order
effect.

11
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1.3.3 Madey Theorem

A A
Another interpretation of Eqg. (24) makes use of the relation (see Eq. (12)) 2—(0:—}/ connecting
)

res res

Ay to the deviation of the angular frequency Aw from its resonance value , . Using this relation,

7N, —

sin? A®
Arg°NIAN, K2 d o,

we can write G=-— 5 :
gmcy  (1+K?) do ( \ ij
ﬂ- u

. Aw
sin®| ZN, —
a)res

2

Aw
7N, —
0]

res

The expression

()

res

isjust the spectral line shape function of spontaneous radiation of an undulator with

N, periods in the vicinity of the first harmonic resonance frequency @, , see the left hand side of

res’?

Fig. 3. Thus, the following statement can be made, known as the M adey-Theorem [5]:

The gain function of low gain FEL emission is the derivative of the line shape function of
spontaneous undulator radiation.

1.3.4 The Optical Cavity

The amount of radiation energy produced per undulator passage iSAE = G- E , withE; the radiation

energy before the electron bunch has passed the undulator. One might think that, for applications, a
few % power gain (i.e. alow gain FEL) is of no interest. However, it is important to realize that the
gain isindependent of the strength of the initial, external em. field, i.e. whatever theinitial field is, it
will be amplified by this gain factor. With a pair of mirrors, arranged to form an optical cavity as
shown in Fig. 5, one can accumulate the produced radiation successively, if on each round trip of
radiation there is a fresh éectron bunch available. After N round trips, the total power gain is

Gy =G" , which may be avery large number indeed, even if G is not much larger than unity.

At the end of this process, there is very much radiation energy stored in the optical cavity, so
that even few percent amplification of this energy is alarge quantity in terms of absolute numbers. In
other words, the electrons are stimulated to emit radiation due to the presence of the existing field. In
fact, the amplification process in the FEL can be described quantum-mechanically in terms of
emission and absorption of radiation quanta (photons), which justifies - together with the properties
of FEL radiation like coherence and many photons per coherence volume - the notion of a “laser”.
Many early papers on FELs were done in the framework of quantum mechanics which explains the
guantum-based terminology widely used in the FEL community. Nevertheless, the description of
FELsin terms of classical physicsis perfectly correct, with very few exceptions only relevant in rare
cases. The FEL isa*“classical device”.

Some fraction of the gained radiation energy is extracted through one of the mirrors which is
made semi-transparent. Of course, the mirror transparency must be arranged such that the total power
losses of the optical cavity by extraction or absorption don’'t exceed the power gain.

12
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»

electron beam

mirror

Fig. 5 Schematic of a free-electron laser in oscillator mode (courtesy: R. Bakker). Even if there is only a few
percent field gain per passage of an electron bunch (low-gain FEL), large radiation power can be generated if the
rediation field can be stored in an optica cavity and if many electron bunches pass the cavity at a timing
synchronized with the round-trip of radiation within the oscillator. If the power gain exceeds the accumulated
mirror losses (including the semi-transparent mirror for extraction), the stored power increases passage by
passage in an exponential way until saturation is reached.

1.3.5 Saturation
Vies

u

phase advance per undulator passage becomes large according to Eg. (13), such that the assumption
S‘P(Z) <« made for our gain calculation is violated. Also, the assumption of a quasi-

If the change of electron energy within one undulator passage becomes comparable with , the

monoenergetic electron beam is violated, i.e. the parameter £ defined in Eq. (25) varies significantly

during the undulator passage, depending on the longitudinal position within the separatrix. Thus, Eq.
(24) — anyhow not accurate any more since based on violated assumptions — becomes useless to
calculate the over-all gain. In this case, the gain must be calculated numerically.

According to Eqg. (17), the height of the separatrix grows with the radiation energy stored in the
cavity. Thus, more and more electrons get trapped within the separatrix, providing an efficient
mechanism for longitudinal bunching of the electron beam at the optical wavelength (an effect
sometimes called “micro-bunching”, to be distinguished from longitudinal bunching of the entire
electron bunch). It turns out that the gain process saturates if most of the electrons get micro-bunched,
i.e. if the electron density is almost completely modulated at the resonance wavelength. According to
Eg. (4) and the explanations given there, in this case the undulator radiation power exceeds
spontaneous radiation power by alarge factor N comparable to the number of electrons per resonance
wavelength.

In the present chapter, only the kinematic problem of the electron beam in combined presence
of agiven em. wave and an undulator field has been solved, while the gain of radiation power was
derived from an energy conservation argument: The kinetic energy taken from the electron must go

13
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into the radiation energy — where else? It is obvious, that for a more thorough analysis, one has to
solve both the kinematic problem and the electro-dynamical problem (i.e. the generation of radiation
by a modulated charge according to Maxwell’ s equations) simultaneously. Such a detailed analysis of
the FEL oscillator, including the analysis of saturation, can be found in the literature, e.g. Ref. [2]. In
the next chapter we will present a treatment of this kind for the high-gain, single-pass FEL. Indeed,
the low-gain results of the present chapter can be derived from the general result as a special case,
namely the low-gain approximation, which justifies with hindsight the low-gain treatment given
above.

Although storage-ring FELs are beyond the scope of this article, let’s conclude this section
with a remark on FEL oscillators driven by electron bunches in a storage ring. In principle, such an
arrangement is very attractive, since the electron bunch can be used many times (i.e. once per
revolution), and reliable operation can be expected due to the inherent stability of storage rings in
terms of timing and bunch population. However, there are also inherent drawbacks. As the same
electron bunch is used many times, the electron beam dynamics in the storage ring must be taken into
account. As described above, close to saturation the energy width of the electron beam is increased
considerably at each passage of the FEL. This energy broadening accumulates from turn to turn. It is
to some extent compensated by radiation damping, but the saturation process remains drastically
determined by this effect [6]. But even if one would consider using the beam of a storage ring only
once per damping time, there is a fundamental issue which makes such an electron bunch unattractive
for some cases: The product of bunch length and energy width (the so-called longitudinal emittance)
is determined by quantum fluctuation effects in a storage ring and cannot be made as small asin a
linear accelerator.

1.3.6 Sart-up from noise

In order to achieve maximum gain, & should be ~ +1, i.e. Ay = + y2nN,, . Thus, the electron beam
energy should be above resonance energy by that amount. This is easy to achieve if the initial em
field is provided by an external source: The external wavelength determines, together with the
undulator parameters, the resonance energy Yyes Of the electron beam. Therefore, we just have to set
the electron beam energy 10 Y5 + AY.

But what happens, if there is no externa radiation source? The FEL can still work, if the
spontaneous radiation of the undulator is used. Using two mirrors, this radiation has to be reflected
back to the entrance of the undulator, and it must be synchronized longitudinally with the next
electron bunch for overlap in the undulator (see Fig. 5).

Unfortunately, if we want to use the center of the spectrum of the spontaneous undulator
radiation as the “external wave”, there will be no FEL gain, because this wavelength, together with
the beam energy, exactly fulfills the resonance condition. What helps is, that the spontaneous
spectrum has the same width (see Eq. (24) and Fig. 3) as the gain curve, thus there is aways
significant power at a wavelength with high gain.
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fE3E)o

Preferable wave ength to which the
FEL resonator should be tuned

/

Spectrum of
spontaneous undul ator
radiation

Fig. 6 When starting from noise, the spontaneous radiation of the undulator serves as “externa e.m. wave” to be
amplified in the FEL. For optimum gain, the electron energy should be chosen such that it samples the gain curve
where it is positive and maximum. Since the gain curve is centered with respect to the resonance energy (rather
than w.r.t. the beam energy), this condition can be met, if the resonant wavelength of the optical cavity (yellow
line) is tuned below the electron beam energy. In this way, only the low-frequency wing of the undulator
spectrum gets amplified, but it is guaranteed by the strict relation between width of the spectrum and width of the
gain curve (see section 1.3.3) that there is sufficient radiation power in this portion of the spectrum to serve as

input signal.

This can happen in two ways:

1. If the bandwidth of the optical resonator formed by the two mirrors is very large, then the
FEL will “automatically” amplify only that part of the spectrum with positive gain. This will
happen with the lower frequency part of the spontaneous spectrum, since for this wavelength
to be resonant, the beam energy would have to be smaller than it actualy is, so the actua
beam energy will be slightly above resonance, asit should be for positive gain.

2. If the bandwidth of the optical resonator is small (normal case), it should be tuned below the
center frequency of the spontaneous spectrum (same argument as before). This is illustrated

inFig. 6.
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2. THE HIGH-GAIN FREE-ELECTRON LASER

If the radiation power gained within a single passage of the electron beam through the undulator is
comparable or much larger than the input radiation power, the low-gain approximation is not
applicable any more. In this case, we have to take into account the time-dependence of the increasing
€l ectro-magnetic wave as determined by the motion of the electrons in the beam. On the other hand,
just this motion is determined by the e.m. field amplitude at any point in time and space. Thus, we
need to treat the evolution of electron kinematics and e.m. field amplitude in a self-consistent manner.

It is the purpose of this chapter to derive the key equations from first principles, motivating the
approximations and providing some realistic numbers for illustration. The treatment follows closely
the one given in Ref. [2].

2.1 Generation of electro-magnetic fields by the electron beam
We start with a derivation of the wave equation for the electric field from Maxwell’ s equation. From

Maxwell equation rotE = —aa—? we get rot rotE = grad divE— V2E = —uorotaa—:'. (26)

) - E
Next, we derive Maxwell equation rotH = | +£°aa_t once more with respect to time and get

oH o]  9°E
rot—=—+¢,—-
ot ot ot

If we further use Maxwell equations eodiVE =p, EQq. (26) can bewritten in the form

=

1 = )] 0’E : 1
?gradp—VzE:—an—Jt—eouoa?. Using u080=c—2,th|sreads
0
2% - o 1
V- E=p,—+—Vp, 27
[ czatzj oot e, P (@7

which is the well-known wave equation for the electric field. In the following, we will restrict
ourselves to a one-dimensional treatment of the FEL, i.e. we consider a purely transverse em. field.
This means, in particular, that we neglect diffraction effects, which is certainly questionable for long
R N 0°E, 10°E dj 1

wavel engths. With this approximation, Eq. (27) reads = —————=H, L+—le , (28)
dz° ¢ ot a g,

with the index L denoting the vector component perpendicular to the direction of electron
propagation.

The term —V p in Eq. (28) can be neglected, because its contribution to radiation generation is
€
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small in al practical cases’. The transverse eectric field E, of the em. wave can be written in the
form

cos(m t—k z—q9,) L

EL =E,| sin(m,t—k_z—@,) |. The magnetic field of the em. waveisthen B, =——E | .
co
0 L

In analogy to the previous chapter, we make profit of the fact that we have to deal with only two

components  of E and define a  complex electric  field given by
E=E, ,+iE, , =E,expi(ot—k z—@,). The only difference to the low-gain case is now, that

the amplitude E,and the phase ¢, (which we will cal . now) may vary with z (though slowly
compared to @ t). We thus separate the slow part from the rapidly oscillating part by
writing:E = E,(2)expi(o t—k z—y.) =E,(2)expi(o,t—k 2), with the sow part
E,(2)=E,(2)expiy. and E;(z) its complex conjugate (c.c). Eq. (28), rewritten for
E.,+iE,, =Ey(2)expi(em t—k, 2)reads

O*(EL,+iEL,) 1 °(E+IE,)
07> c? ot?

9% . . 1 9°
=—Ey(9expi(ot-k 2)-=—
azz 0() p ( L L ) C2 atz

E;(2)expi(ot—k 2) =

%{Eg(z)%exp i(o t—k_2)+expi(ot- kLz)%Eg(z)}—...

...C%%{EZ(Z)%exp i(o t—k _2)+expi(ot -k 2)—k (z)} =

%(Eg(z)) -(ik )expi(o t -k 2) +E;(2)(-k?)expi(m t—k 2) +...

. : d = . 9% =
(k) expi(ot- kLz)§E0(2)+exp (o t— kLz)gEO(z)—...

M—%Ezw(—wi)emi(th—kLz)+o
C

where we have made use of our assumption that the complex field amplitude does depend on the
longitudinal coordinate z, but not (explicitly) on time t, i.e. %EZ(Z) =0. We further neglect the

second derivative of the field amplitude with respect to z, because it is assumed to vary only slowly
and get:

% For amore detailed justification, see Ref. [2], chapter 4.1
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O*(EL(+iE,) 1 9°(E . +iEL,) _
0z c? ot?

— 2 ~
( ;‘;L)Eg(z)expi(mLt—kLz):

= —[2”& ;ZES(Z)}exp i(o t—k 2)—kZEg(2)expi(o t—k z)—

a(ji,x +i- ji,y)

0 = :
= {ZkL azEo(z)}exp (o t—k 2)=p, o

K d,
= i exp(ik,2) 2 (29)
Y ot

W,

Here we made use of =k, . Also, we were able to relate the transverse components of the current

density to its longitudina component, since we know from Eq. (7) how electrons move in the
presence of the helica undulator: Namely, because of j=rv, we were able to write
C , ] _.cK , . K . .

G+ dy) =+ vy) 2 = (R EQM) =17 expliky2)i; = 1= -exp(ky2) .

\/ z Y

Collecting the rapidly oscillating term and using W = (k, +k_)z— o t, Eq. (29) re-writes:

J ~. K 9j
—| 2k, —Ei(2) |= py— ==
|: L az O(Z)j| MO 'Y at

expi(k,z+k z—o,t) =u05812
y ot

expiv (30)

The message of the equation is pretty simple: The electro-magnetic field amplitude is generated by
the time-dependent current density.

To proceed further, we have to say something about the current density |, .

2.2 Kinematicsof electronsin phase space

j, is determined by the initial charge distribution and its evolution in presence of the em. field and
the undulator field. We know that electron dynamics is governed by the Hamiltonian

H(pz1Z,t):|:( pZC—q'AZ)2 +q2(AJ_ +AJ)2 +m2c4j|l/2 +ao.,

with A, describing the undulator field, and A,, ¢ the space charge. Applying a canonical
transformation, we can change from the canonical pair of coordinates z/p, to ¥ /vy (actualy, the pair

o,

is O ¥ /vy, but 5

myc? m,C
the electron. A consegquence of Hamiltonian mechanics is Liouville's Theorem, stating that phase
space density f along the particle’'s motion is constant. Phase space motion must be described in any
pair of canonically conjugate variables, and we choose ¥ /v. In coordinates z, v, , this theorem

reads™:

is constant), with ¥ = (k, +k_)z—,t and ym,c* the kinetic energy of

df _of of 0¥ Of dy

=22 =0, whichisalso called “Vlasov equation” (31)
dz 0z oY 9z OJyoz

* We use the longitudinal coordinate z as independent variable instead of timet, which in fact means another
canonical transformation.
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We have seen from Eq. (11), how the electron energy changes in the presence of em. field and
undulator field. In addition to Eq. (11), we now include the energy gain due to the presence of a

dy _ dEK qE,
dz  mc*yB, c’
to understand that the electrical field strength E, isn't constant any more. Therefore, we aso allow

longitudinal space charge field E,: sin(W+y:)+ Of course, we have

for aslowly varying phase of the em. field, described by . .

2
Z—T can be determined from Eg. (13): d—\P =k, +k_ it &:H K
z z

- +
d Bz (YO) -C C Yg
denotes the deviation from v, . For the sake of generality, we allow now v, to deviate slightly from

Ay, where Ay

o,

B,(1)-c’ e

C(V,,) =0. (Note: You may ask here, why the deviation from resonance energy is split into two

resonance energy 7, described by the detuning parameter C(y)=k, +k -

terms, v, and Ay. The reason will become clear below, when we will use Ay to describe the energy

o d o, 1+K?
distribution of the beam around the center v,). We get: & = C+T 5 —Ay. Eg. (31) now
Yo
reads
2
a—f+ C+&1+i< Ay a—f+ - qEOZK sin(¥+wy. )+ qEZZ a—f:O. (32)
0z C Y oY myCY, myc* ) oy

Note that from now on we use B, =1. For the phase space density f we make the Ansatz
f(z,v,¥)= f,(y)+ f(z,y)cos(¥ +vy,), i.e. we assume a density modulation at the optical
wavelength, growing with z (in a way to be calculated), see Fig. 7 for illustration. The phase of this
modulation is allowed to slowly depart from ¥ by y, (whichis, in general different from ). In
complex notation:

f,(z,7)cos(¥ +y,) =¥V 4 Ll — Ligved® 4 cc. = f,(z7)e" +c.c. The complex
amplitude fl(z, Y) = %ei% of density modulation contains the slowly varying phase y,. A similar
Ansatz is made for the space charge field E, :

E, =E,(2cos(¥Y+v,) = EZ (2)€" +c.c. , againwithits own slowly varying phase ..

Vlasov equation (32) can now be written:
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2
of L(C+ o 1+K

AY) =+ (~
aZ C ryg )8‘{‘ (

oK sin(W+wvg)+ qEZZ oI _
MY mye®” Y

=a—f1ei\l' +£e‘i‘{' +(C+&1+ <2
0z 0z Yo
qu K i ( J(P+y,) _e—i(‘P+\|!E))
moc Yo 2

(using Eg =EqeVe)

Ay)(if e —iffe ™)+

+L2(Eze”’+|§§e‘”’) dg Iy jw I v |_

81+ (C+0)L 1+K
0z

Y 2mgc
=

_t+cc.=0
[i gEg K dE0® (‘P+\UE _e—i(LF+WE))+L2(EZeilP+é;e_iql)]%
2rrbc Yo

Ay) fL+( qEOZK + qzé a&+
Yo MyC o

myC ay
For this equation to hold for al phases ¥, the expression in brackets { } must vanish. Our next step

in approximation assumes that the modulation amplitude doesn’t depend on energy (see Fig. 7)
o,

Z1_0. Then:
dy
of,(z,y) o, 1+K? K q 9"
E =0l (33)
% +I(C+C 7 AN iz Y)Jr(l2mbCY — 2) oy

example density function: f(Z,Y,\P)
f:expuﬁcos‘l‘ ' ! =
26°
v
F—0.5
Y
ot \
AT 0
L-<thn
-10

Fig. 7: Illustration of a possible phase space density function fulfilling the assumptions made here: The density

modulation amplitude f; observed at an arbitrary location z doesn't depend on energy v, and the amount of
modulation in the core of the beam is small compared to the total density
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Eq. (33) is a differential equation in z of the type dfd(z)

+iaf (z) = g(2), which is solved by
z

f(2)= ]g(z’) explio(z' - 2)]dz". Thus:

f(zy) = jdz |qE (Z)K g (z)} 0(\Y)exp[l(c+—ﬂm()(z’—z) (34)
1 emey,  me oy cC T

and f"(z,7) =c.c. We cannow calculate the current density:

. =pv, =pc=qc [ f(zy,¥)dy=dc[f,(dy+e"qc[f(zy)dy+e™ac[f (zy)dy=
=j,+1,€" + e with ] chf(zy)dy JEtC.

With these definitions, Eq. (30) reads

~ i a + e + —|‘{’ .
—[ZKLiE*(z)}: uoﬁieﬂi’ _ “0 (Jo 11 Jl )el\{,
YO at Yo at

We use W=(k +k)z-ot and assume that |}, is “almost’ independent of time.
Then:

0 =. Kr, . . : e gt - O K- o .y . oK
_|:2kL EEO(Z)}zHo_[(_I(’)L)JleI‘P +(I('0L)Jle w]ew =1l (_JleZ‘P + Jl)zluo -

0 0 0

i

o K . J =
- It :ZkL_Eo(Z) (39)

(neglecting the rapidly term j,€”*). Equally, |ip,
Yo 0z

2.3 Self-consistent description of em. field and electron distribution

We can now combine the “field equation” (35) and the “kinematic equation” (34) to find a self-
consistent description of the evolution of the em. field and the electron density distribution:

J ~ U,eK - . Kac® s
ZE, (2) =i =1 f(z,y)dy=
e =i, =i = [h@ndy

(36)

uquC Jav Jo| 195K | g (z)} O(Y)exp{l(cﬂ’t“KZA)(z—z)
o 18| amey,  me ¢

The problem of this equation is, that it contains not only the desired complex transverse field
amplitude E, but also the longitudinal space chargefield E, . Fortunately, E, can be related to Ein

the following way: For our assumption of the space charge field E, =I§Z(Z)eiw +c.C., the

longitudinal component of the 1% Maxwell equation reads (note ai :ai =0 in our 1D treatment):
X oy
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d ) iuo

VxH) =0=j, +e,—E, o —E, (z)=-u,c%j,, thusE,(z With
( )Z Jz Oat z at z( ) HO Jz z( ) O)L Jl
Eq. (35) thisisrelated to the transverse em. field:
=i 2V iE 0o(2) thus Ez(z)z—zyociﬁo(z). Therefore Eq. (36) becomes:

WocK 0z o, K 0z

1, q°K?c? 7 e 9 =, |of, (V) o, 1+K? ,

—E _7d dZ|iE,(Z) - E,(z ex C+— AY)Z -2

D= ] jvf o) ko T ()| T, xR iCr AN -2)

Thisisan mtegro—dlfferentlal equation for the complex amplitude of the e.m. field. Only for few non-
trivial model functions of the initial energy distribution f, the solution can be found anaytically,

using Laplace transform techniques. We restrict ourselves to the most simple case, a monoenergetic
(“cold”) beam: f,(y) =n,d(Y—"7,).i.e. Ay=0, with charge density qn,, i.e.

= dc [ n,3(y—,)dy = den,.

Integration over energy can then be executed, using partiad integration:

o
I?’(Zj—yy")F(wdv [3(r— %) F)], jsw 1) W) (y” thus
EE (Z)_IHOan Kz %

0z 4y’m,

2

(z - z)]exp{l(c+c1+ K AY)(Z - z)} =

0

jdz jdvsw vo){lE(z) it )}[

_ Mg K21+ K)o,
B Hfgmyc Jd {E =)

K E) }(z —2)exp[iC(Z' - 2)] =

p a

_Fséfdz’{iéo(z’) 5550

with abbreviations:

E.(z )}(z - 2)exp[iC(Z - 2)] (37)

K21+ K? K21+ K2 . .
re = Hofbd 5( Ko _ MoK +5 Jo, I" is called gain parameter.
4ysmyC I ACY,
4
I, = il L 17kA isthe"Alven current”
H.q
4mj, (1+ K? 2 . . _—
ki = Mo+ ):F3 4702 k, is the wave number of longitudinal plasma oscillation
R o K

Note that k;, is the only reminder of taking longitudinal space charge into account.

We have ended with an ordinary integro-differential equation (37) for Eo. We now derive Eqg. (37)

22



TESLA-FEL Report 2004-08

2

d o d d 3Z 7| - = » kp d
E, —-|CEEO+F J'dz {lEo(z)—FE

2

withrespecttoz —
dz*

Eo(z’)}exp [iC(Z - 2)], where

- jdz 9(2)h(2) = [g(z) [dzh(z )} =90 [dzh(2) + g(2)h(2) ) was used.

Finally, we derive once more and get:

- d?- - kg | =l k2 d
—E, =-iC—E_+I3|iE.(2)-—=—E.(2) |-iCI'® [dZ|iE (Z)- 2 —
750 TIC BT B () -5 B [er| i€~ 5

Eo(z’)}exp [iC(Z-2)]

2 [ kK2 4 . | _ o d? -

d d . ..d
=iC— E +I3IiE (2)-—%—E.(2) |-iC((C—E, ,+—E
i (2 4 (2 ( R 0)

d? s d = d -
=-2iIC——E,+T°|iE z— —E,(2) |[+C*—E
e { o(2) e o )} prt
Rearranging, we arrive at our final result: An ordinary linear third-order differential equation for the

complex field amplitude E,: ((jj E+2IC(;j E +(k2 CZ)%E():irSEO(z) (38)

At the end of this derivation, Fig. 8 illustrates the major steps and approximations taking us to the
final result Eq. (38).

Maxwell equation

Kinematic
Il Egs. in /¥
w \ / / Space
% charge

Evolution of
current density (32)

'

Maxwell Eq.:
Space charge E; = j1 = Egpans

Vlasove Liouville

slowly varying
ampl. & phase (30)

Eq. [€9)] ff: self-consistent integro-differential
eg. for arbitrary inital energy distribution

3rd order differential Eq

Fig. 8: Major stepsto derive the 3 order differential Eq. (38) for the high-gain free-electron laser
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2.4 Solution of the high-gain FEL -equation

For the solution of Eq. (38) we make the Ansatz E, = Aexp (Az)and get the “characteristic
equation”:

A*+2ICA7+(K2 = C*) A=A (A? + 2ICA = C* +KZ) = A (A +iC)" +KZ | =T (39)

Eg. (39) has three roots, and the the general solution of Eg. (38) is constructed from three
independent partial solutions:

E,(2) = Aexp(A,z)+ A exp(A,z)+ Aexp(A,z) . (40)

The amplitudes A, A,, Ajare determined by the initial conditions. Since there are three free

parameters, we need three independent conditions. The most practical may to specify the these
2

conditions is to specify Eo(z:O),diEo(z=0),%Eo(z=0), or, taking into account Eg.
z z

d — cd - ~ -~ -~
(35):&Eooc l;, tospecify E (z=0),],(z=0), %j1(2=0)-

We write Eq. (40) in the form E, (2) = AE, (2)+ A E, (z) + A E,(2), with E, (2) =exp(A,2),
etc., and we write jﬁ =E’, etc. (note we will omit the index O to E, in the following). The
z

general solution, including its first and second derivatives, can then be written in a matrix form;

E E, E, E| (A,
E'| =|E] E, E,| -|A, |, where the index z means that the matrix elements are taken at
EII EI, E;/ E;} A3

longitudinal position z. Since A, A,, A, are known from the characteristic equation (39), all matrix

E
elements are known. Writing the initial condition in the form | E” | , we can calculate AAA
E//
z=0
~ ~ ~ -1 ~
A E, E, E; E
from | A |=|E/ E, E, E’
A BN BBV (EY)
~ ~ ~ ~ ~ ~ ~ -1 ~
E E, E, E; E, E, E; E
Thus, E|-|& & &€ & & |&
E// Ei, E;} E;/ Ei, E;} E;/ . E” .
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E E, E, E, 1 1 1Y'(E
E'| =|E] E, Ei|-|A, A, A, E’ (41)
Ev| |Er &7 Er] (A2 A2 AZ) g~

z z z=0

Using the explicit expression for the inverse matrix, Eq. (41) reads
A,A, 3 A, + A, 1

E El Ez Es (A= A) (A= Ay) (A=A (A= As)  (AL=Ay) (A -A) E
=/ -yl =/ —7 A1A3 Al +A3 1 = (42)
E"| =|E] E, E;|- - | E
=17 Srr = (Az_Al)(Az_A3) (Az_Al)(Az_A3) (Az_Al)(Az_A3) =,
E E;” E;] E; E

z z A\ _ Ay + A 1 z=0

(A3_Az)(A3_A1) (A3_Az)(A3_A1) (A3—A2)(A3—A1)

2.5 Solution for thecaseC =k, =0
To be more specific, we now investigate the most simple case:

No detuning, i.e. al the electrons have the same energy, and this energy meets exactly the resonance
H 2
4n10(1+3K ) 0.
NS
The validity of this latter condition is a little more difficult to verify and should be considered with
care in every specific case. It can be seen that, in tendency, this condition is valid at very high beam
energy vy, . With these assumptions, the three roots of Eq. (39) are:

Ag=——T. (43)

condition: C = 0. Also, we assume negligible impact of space charge, i.e. k,f =

A =il = A, =T A, =

The general solutionisthus:

E(z)=AE,(2)+AE,(2)+AE,(2)= A exp(A,z)+ A exp(A,z)+ A exp(A,z)
i+szJ+A3exp£i _szJ

= Aexp(-iTz)+ A, exp[

Obvioudly, all contributions to this solution either vanish with increasing z, or they oscillate, except

N

for the one containing A, exp[zrz} For an undulator much longer than 1/T,, this part of the

solution will dominate.

Using A;, A,, A, from Eq. (43), Eq. (42) reads now (note 1+i4/3 = 2exp ig):
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1 i 1
E) (E E E) (3 % I E
£ <& & &L sen(qE)] hew[HX]l{E] &
E” z Ei/ E;, E;,z 1 -1 .T 1 LT E” 7=0

3 31ﬂexp(lﬁj S’I“ZeXp[ISJ

which we will evaluate in the following for two different initial conditions.

2.5.1 Seeding by external electro-magnetic wave at the undulator entrance

First, we consider the case of an external (“seeding”) electro-magnetic wave (with amplitude E_,)
existing at the undulator entrance, but no initial longitudinal modulation of the electron beam,
i.e. J;(z=0)=0.Consequently,

ext
E(z:o):Em,L(z:o):o,dij;(z=o)=o S|E| = o Ths
z -
EN O
z=0
1 [ 1 1
. .- - 3 ar 2z - - =Fec
E) (E, E, E, 30 E.) (E E E |3
=, =, =, = 1 1 . T 1 T =, =, = 1
@ o8 8 e geelig) ee[3) | o e B ]
E z El E2 E3 z 1 -1 . T 1 . T El E2 E3 z 1E
= —Zexpli=| —exp|iz 2
3 30 p( ej 3r? p( 3j 3
1 E,+E,+E, L exp(A,z)+exp(A,z)+exp(A,z)
=3 E+E,+E} |=ZE. | A exp(A,2)+ A, exp(A,z)+ A exp(A,z)
E/4EJ+EY AZexp(A,2)+Asexp(A,z)+AZexp(A,2)

Explicitly, the solution for E(z) is

E(Z)Z;Eext {exp(—irz)+exp[l+2\/§ Fz]+exp {I_Z\/él"zﬂ As mentioned before, for

2> 1T, the solutionwith A, dominates: [E(z) = ;Em exp ( (45)

i+ﬁr2]

2

2

E
The power gain, defined by G=

2

, is caculated from Eg. (45) and results in:

ext
~12
E
G=2=1 1+4coshﬁrz coshﬁrz+cos§rz . (46)
Ex 9 2 2 2
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For z>> 1T, this simplifiesto G:%exp\/él“z . (47)

The factor 1/9 describes the efficiency at which the incoming (“seeding”) electro-magnetic field
couples to the FEL gain process. Fig. 8 shows a plot of Egs. (46, 47) as afunction of I'z, indicating

that, indeed, the gain grows exponentially according to Eq. (47) for z>>1/T . The e-folding length of
radiation power is called (power) gain length L :

1 1 K% % Amcy?
[ ACY j . Using o, ey and expressing the current

L = e
© Jar VBl KA+ K)oy Ay (L+K?)

o ([ ~ . ) .
density |, =~ —— intermsof peak current | and beam cross section ncf, this can be written
o

r

1 L Ry jy

== = (48)
e V3| 4miK?
Note that some authors use, instead, the e-folding length for the field amplitude which is 2L .
Another parameter widely used is the dimensionless “ FEL -parameter” p :
AT 1 A 1 1
=—= <= (49)

4TC - 475\/:_3 E - 47'5\/§ NGain .

N..;, isthe number of undulator periods within one power gain length.

Gain

log((12)))
log(h('2))

Iz

Fig. 8: Plot of the power gain of ahigh-gain FEL, starting with a seeding em. wave, see Eq. (46). The dotted like
is the asymptotic solution Eq. (47) for z> ]/F . The vertical scaleislogarithmic.
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2.5.2 Initial longitudinal modulation of electron beam density

As a second example, we consider the case that there is no externa em. wave at the undulator
entrance but a longitudinal current modulation of the electron beam at the radiation wavelength,
which is assumed to be stationary at the beginning:

E(z=0)=0, j,(z=0)=#0, %jl(z=0)=0. Thus:

E 0 0
E’(z=o)=iu0$1’1(z=o), E”’(z=0)=0 and |E'| = iuoﬁi1 =| E; (50)
2 0 —’7 ZYO
E 0
z=0 0 720
Therefore:
1 i 1 i ~,
~ ~ ~ ~ o e =y ~ ~ ~ 7E0
E E, E, E) |3 3r 3r 0 E, E, E, 3r
—7 —7 —7 — 1 l . 1 . —7 —7 —7 7 1 . —7
€118 & &3 qew(4g) grew(43)[|8) & & &1 Len(-g)e
") BB E) |, 4 i 1 i 0) ., |E E ES) | e
- = [jiad il fiad - i— |E”
3 3reXp[' 6) 3r? eXp[' 3} sreXp(' ej 0
Explicitly, the solution for E(z) is
=, v 11 T T
E(Z)_S_FEO iexp(A,z)+exp i exp(A,z)—exp s exp(A,z) |. (51)
. o L. 1 i+/3 .
Again, for z>1/T, the solution with A, dominates: E(z > F)oc exp > I'z|,i.e wegetan

exponential growth with the same e-folding length as in the seeding case. The important result is that
we don’t need any input seeding em. wave, a current modulation at the optical, resonant wavelength
isas good for starting the process, no matter how small this current modulation is!

From Eq. (50), the radiation power as a function of zis calcul ated:

NE NE

P(2) o< ‘E(z)‘2 oc cosgl"zcosh?l"z—\/ésingl"z- sinh 7Fz+cosh Jarz. (52)

The asymptotic behavior for z>1/T is P(z) o< exp Jarz very much like in the seeding case.
Fig. 9illustrates both Eq. (52) and its asymptotic behavior.
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log( Power (I'z))
log(Asympt (T'z))

Fig. 9: Plot of the power gain of a high-gain FEL, starting with a longitudinal current modulation of the electron
beam at the radiation wavelength, see Eq. (50). The dotted like is the asymptotic solution for z > ]/F. The
vertical scaleislogarithmic.

It is interesting to note that, like in the seeding case, the exponential growth of the em. field starts
only after approx. three gain lengths, a distance often called “lethargy regime’.

2.6 Resonancewidth

In the previous section we have assumed that all the electrons have the same energy, and this energy
meets exactly the resonance condition: C = 0. Analysis of the characteristic equation (39) for kp =0

and C # 0 isaquite straight-forward algebra. It is seen that
1. The maximum gain occurs indeed for ON-resonance operation (i.e. for C=0). It is

important to point out that this behavior is fundamentally in contrast to the low gain case,
where no gain was found for particlesinitially on resonance energy, see Fig. 3.

2. The gain drops significantly when |C| is increased to values corresponding to Ar_ p.
Y

AN, Ay

=2—=2p (53)
Y

1 . . . . .
Because of A o< —, this means the bandwidith of a high-gain FEL is
Y

L

All particles outside this energy window don’t contribute to the gain process constructively.

Therefore, the relative energy spread with the electron bunch should be smaller than p: M <p.
v

This requirement is a serious technical challenge for FELs operating at low p -values. In tendency,
thisis the case for very short wavelength A, . For instance, for the LCLS X-ray FEL presently under

construction at SLAC, pis approx. 10™*. An comparison of the theoretically expected bandwidth
with measurements taken at the short-wavelength FEL at DESY isillustrated in Fig. 10.
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Fig. 10: Wavelength spectrum of the central radiation cone measured at the high-gain FEL at DESY [7], called
TTF FEL. The dotted line is the theoretically expected line width.

A different formulation of the same factsis as follows:
. : e . A®
A high-gain FEL acts as a narrow-band amplifier with bandwidth — < 2p .
(0]

2.7 Laser Saturation

The exponential growth of radiation power will not proceed forever. It comes to an end latest when
the electron beam current is perfectly modulated at the optical wavelength. The precise behavior of
the high-gain FEL in this saturation regime cannot be treated within our analysis because our linear
approximation is based on the assumption |;—1|<< 1. Some typical features of the saturation regime
0

are as follows: The electrons lose so much energy that they fall out of the resonance condition. Due
the bunching and motion in phase space, the em. field may even pump back some energy to the
electron beam. A potential cure against this is undulator tapering, i.e. increasing the K-parameter to
compensate for the loss of electron energy. Also, the energy spread of the electron beam increases
(thus the frequency spread of radiation). In any case, the analysis of the non-linear saturation behavior
needs numerical simulation and is beyond of the scope of this paper.

However, we are able to perform a simple estimate of the radiation power at saturation: Let's
assume |J~1| = Jo , i.e. full modulation. With Eq. (35) we estimate the field amplitude at saturation by

the assumption that the major part of radiation is generated within the last gain length:

= d - cK . , . ,
‘Eo(z: LG)‘ zEEO(LG)X [ zuoz joLe Plugging Ly infrom Eq. (48) yields
0
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_ege

- 7
P =" ‘E‘ZxAreaz SOCGFZEsat2~MOC{I 2|AKku] _ (54)

2 120, o,

It is interesting to note that, within this approximation, the saturation power doesn’'t depend on
neither beam energy y nor radiation wavelength A, very much in contrast to the power of

spontaneous undulator radiation. Typical numbers may be:
| =1000 A, K=1, A,=0.03m o6, =01mm—> P_=2GW

Fig. 12 illustrates onset of FEL saturation at a power level of 1 GW observed at the TTF FEL at
DESY/Hamburg with parameters close to these values.

The amount of electron beam power converted to FEL output radiation is called power

efficiency andisgivenby: | Pee — P _ ol e itisjust given by the FEL parameter p.

Pbeam Yo n'bCZ IA/q

As arule of thumb, saturation sets on after 20 power gain lengths. For the most challenging high gain
FEL projects aiming at sub-nanometer wavelengths (e.g. LCLS/'SLAC, and the European

XFEL/DESY), L, will be aslong as 100-200 m.

2.8 Start-up from noise: Self-Amplified Spontaneous Emission (SASE)

It was found in section 2.5.2 that an arbitrarily small current modulation of the electron beam current
at the entrance of the undulator will be sufficient to start the exponential FEL process. Of course, this

modulation must be at the resonant radiation wavelength A, , determined by the electron energy and

undulator parameters A, K, see Eq. (12). For very short wavelengths, (say micrometers or

nanometers), this is very difficult to achieve. In fact, because of the narrow-bandpass property
described in the previous section, it would be sufficient if the longitudinal electron bunch profile
would contain Fourier components at A, . However, for normal electron bunch lengths of some 1 mm

and A, well below amicrometer, thisis (practically) not the case.

A very elegant way out is making use of the fact that the electron beam is actually made up of
many point-like charges (i.e. electrons) randomly distributed in space and time®. Such a random
distribution generates a white noise spectrum of current modulation, which always contains some
spectral contribution within the FEL bandwidth. This principle was proposed first by Kondratenko
and Saldin in 1980 [8] and is widely called the “Sdf-Amplified Spontaneous Emission” mode
(SASE) of high-gain FELs. It is most attractive for very short wavelengths, where no mirrors are
available to construct an optical cavity, and no external lasers are available to produce a sufficiently
powerful input wave. Tuning of FEL output wavelength is extremely simple in the SASE mode: You
just change the electron energy (or, if you prefer, the undulator K-parameter) accordingly, and the
SASE process “automatically” selects the correct modulation wavelength from shot noise.

® There is a simple proof that this random distribution really exists: It is the basis for the spontaneous undulator
rediation. As long as the observed characteristics of spontaneous undulator radiation agree with theoretical
expectations, we can safely assume that electrons are distributed randomly.
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A characteristic property of SASE FELs is that the output radiation spectrum is noisy, because
the FEL amplifies a part of the shot noise spectrum. Fig. 11 illustrates an extreme case of such anoisy
output spectrum. The frequency width A® of the individual spikes in the output spectrum is

, , 2nc
determined by the length of the electron bunch |, according to Aw= T
bunch

, i.e. the Fourier

transform limit given by the bunch length.

Another important quantity is the number Ng =7»i of undulator periods within one gain

length. Since the radiation pulse slips by one wavelength per undulator period with respect to the
electron bunch, it is this quantity N; which determines the number of wavelengths where coherence

is expected within the FEL process. The quantity |, = N -A, is called coherence length. Using

coh

Eq. (49), it can be written |, = ﬁ (note the factor m comes from a more detailed analysis, Ref.
p

[2]). We would expect that the quantity I}L—L = 1tp should determine the relative bandwidth of the

coh
FEL, which is indeed the case, see Eq. (53). If this quantity is larger than A, it determines the
envel ope spectrum containing M spikes in statistical average. In terms of | it is the number of the

coh !

I
coherence lengths |, within the bunch length that determines the average number M = —bunch - of
coh

spikes within the FEL output spectrum. M is called the number of longitudinal modes.

08

dW/d{Ae/a) (mJd/%)

Imensity @b, units]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 a4 as [+ ary an og
Y Wavekength [nm]

Fig. 11: Since SASE FELs start from shot noise, also the output radiation spectrum is expected to be noisy. In
the extreme case of the numerical simulation shown on the left hand side, there is a very large number of spikes
(large number of “longitudinal modes”) which will fluctuate from electron bunch to electron bunch in intensity
within the bandwidth of the FEL. The plot on the right hand side shows measurement at TTF FEL of a single

shot spectrum with mode number M = 6. The envelope of this spectrum corresponds to about A ~0.015, in

ph

agreement with Fig. 10.
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How can we calculate the initial conditions the FEL process is subjected to by the shot noise?

AL
One way is to estimate the effective current modulation within the bandwidth e 2p and use
ph
this value as “initial longitudinal current modulation” in the analysis described in section 2.5.2.
Another way is to calculate the equivalent input power generated within the first gain length by shot
noise and use this value as an external “seed wave” in section 2.5.1. This “effective input power”

3 PR (seeRef. [2], Eq. (6.95)). (55)

N, /mIn N,

Here, B, is the electron beam power and N, is 0.5 times the number of e ectrons within the

coherence length. The power gain of a SASE FEL at saturation can be estimated from Egs. (54,55)
P R 1

at: Gg, = st Ploean _ =
Psh Psh

cooperation length. The quantity P, isrelevant in two ways:

P,, of shot noise can be estimated at P,, =

N./mINN, , i. e itisroughly given by the number of electronsin the

10-45 T T T T T T T

numerical
simulation

mw>»w

10 12 14

Z— >0

Equivalent shot noise
input energy 0.3 pJ

#

Fig. 12: Energy in the radiation pulse as a function of longitudinal position in the undulator measured at the
SASE FEL at DESY at A, = 98 nm (dots). The vertical scale is logarithmic. The solid line is the theoretical
expectation. If the exponential gain curve is (exponentially) extrapolated down (blue arrow) to the beginning of
the undulator, it hits the vertical axis at avalue very much in agreement with Eq. (55).

1. Having an estimate for P,, available makes it possible to compare the theoretical SASE

model with measurements. Fig. 12 shows the exponential gain observed at the SASE FEL at
DESY. Within the first five gain lengths, the measured radiation power is dominated by the
spontaneous undulator radiation, so that the start-up process and the lethargy regime cannot
directly be observed. However, if the exponential gain curve is (exponentially) extrapolated
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down to the beginning of the undulator it hits the vertical axis at a value very much in
agreement with Eq. (55). Since P, is the power amplified by the high-gain FEL, Fig. 12
indicates a total power gain by 8 orders of magnitude, which is indeed about the number of
electrons in the cooperation length. Note that this does not mean that the FEL output power
exceeds the power of spontaneous undulator radiation by this factor. In contrast, the power of
spontaneous undulator radiation may even be comparable to FEL saturation power, but is
radiated into a much wider spectrum and opening angle.

2. If one plans to improve the spectral purity of the FEL by using a seeding laser, Eq. (55)
provides a lower limit of its required power. If the seed laser power would not exceed P, ,

the output radiation would still be determined by shot noise rather by the seed laser spectrum.

2.9 3D effects

Analysis of effects due to the finite transverse size of both the radiation and the electron beam
goes beyond the scope of this article. However, some 3D effects have a tremendous practical
relevance and will be summarized here in a semi-quantitative way.

2.9.1 Transverse overlap between electron beam and em. radiation

The most prominent 3D issueisthat the FEL gain process requires complete transverse overlap
between the electron beam and the radiation beam during the complete passage of the undulator to
ensure that the interaction between e.m. wave and the electron beam takes place as described. Taking
into account that, for short-wavelength FEL, the transverse rms beam size is 100 um or less (see
below), this means that the electron orbit must not depart from a perfectly straight line by more than
some 10 um over several gain lengths. This puts stringent tolerances on undulator field errors and is
technically difficult both to realize and to verify.

2.9.2 Diffraction

Due to diffraction, even a perfectly coherent plane wave grows in transverse size after awhileif it is
2

collimated to a transverse radius of o, . The distance L = MO after which the radiation beam is
L

grown by approx. a factor of 2 is caled Rayleigh-length and provides an estimate of the opening

angle o, of theradiation: 6, = 20, . L
Ly 2o,

An equivalent estimate comes from the transverse phase space volume covered by a perfectly
A A

coherent source knowntobe 6,6, =—=,thus 6, = 2—L .

(o]

r

Typical numbers for the LCLS project are A, =107°°m, 6, =30 um, yielding 6, = 2 urad. It is

interesting to note that this value is much smaller than the characteristic opening angle of undulator

radiation 1 ~ 30 urad! The reason is that FEL radiation is no single-charge radiation but is a
Y

product of coherent superposition of radiation coming from many electrons distributed in longitudinal
direction, very much like an array of antennas is able to generate a directional characteristic of radio
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wave emission.

Within our FEL analysis we have implicitly assumed that the em. wave is transversely
coherent during the entire process. Thisis certainly not the case for SASE. The SASE FEL starts with
many transverse optical modes. Since the axial mode achieves the highest gain, it reaches saturation
first, so that at saturation “normally” the radiation is amost fully coherent.

2.9.3 Emittance of the electron beam

The emittance of the electron beam introduces a longitudinal velocity spread in the electron
beam very much like energy spread does. Thus, in terms of FEL gain, electron emittance is equivalent
to addition energy spread. The equivalent energy spread is

Ay v

————— (P isthe Twiss parameter of electron focusing).
V0w B(1+K?)

With the condition ﬂ<p derived from Eg. (53) this gives a limit for the beam emittance:

B(1+2K ) Ay <B(1+K )p1 (56)
Yoo 2y

eff

€=

where the factor 2 makes sure the emittance contributes |ess than 50% of the effective energy spread
budget (if the latter is defined such that it contains both contributions by emittance and momentum
spread).

A second condition comes from the diffraction effect: We want to maintain both complete
overlap of electron beam and radiation (calling for long L; thuslarge 6, ) AND maximum possible

gain (caling for smal o,, thus small Lg) . The best compromise is L,=L_,° thus

ro

2
1
=10 e 1 A \yithithe help of Eq (56), p can be eliminated, yielding
A AL 4m/3 p
AL A Al . - .
E<————=—, € <—t| isarather challenging condition for A, in the nanometer range.
2(3)%,1; 4n 4n

Fig. 13: Sketch of the growth of the transverse size of the radiation beam due to diffraction within a distance
called Rayleighlength L.

® Note that this condition also enables development of transverse coherence in case the process starts from noise
(i.e. from atransversely incoherent source like in the SASE case), because it provides transverse mixing of
radiation fields originating from different portions of the electron beam.
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2.10 V€ ocities

When we introduced the complex field amplitude Eo(z) =E,(2)expiy. in Sect. 2.1, we have
intentionally introduced an additional phase Y. This slowly varying phase describes the slippage of
the e.m. phase with respect to a free wave propagating at phase velocity c. We can determine COS Wy
by (see. Fig. 14):

COS(FZ)+ZCOS(I—;)COSI‘{\/;FZJ
COS Y, :E: . For z>1/T this reads
1+4cosh@1“z coshﬁrz+cos§1“z
2 2 2
- E){exp[“”/él“zJ r
i . z
coswE:E: :mexp['rzjzcosrz, ie yo=— forz>1/T.
exp I'z
2
5 3 T T T T T
2 -
phase(I'z)
phasdimit(rz)
1- -
0 o | | | | |
1 2 3 4 5 6

Fig. 14: Development of the slowly varying phase ¢ as afunction of the longitudinal coordinate z, normalized

to the gain parameter I'. Y describes the slippage of the e.m. phase with respect to a free wave propagating at
phase velocity c.

We can now calculate the phase vel ocity of the em. wave during the FEL process:

r r

Vph:Q: ® ,i.e.itisreduced by C—Vphzc:—2 1-— |=——c withrespectto afree
k k+£ K. 2k, L

2

L

e.m. wave.
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In a similar way, we can calculate the phase velocity of density modulation. Due to Eg. (35), and
using Eq. (44):

L 23,1 i
;= ot Jle‘*’ +C.C.= JO_ILLO%?’;EM AzeXD(AZZ)e‘F+c.c.=
= j, +const.exp \/ézrz-expi{(g+ku +ijz—mt}+c.c.

Thus, the phase velocity of the density modulation is given by

® [0 ) r . Q)
Vp=—"= T = ———cC. Since
keff ku_|_k + ku+kL 2k|_ ku+kL
L2

resonant electrons, it is seen that the growing density modulation slowly slips backwards with respect
to the bunch center.

is the mean longitudinal velocity of the

Finally, the group velocity of em. wave packets during the FEL processis of interest:

2
Analyzing how A, dependson C showsthat v, = Z—Cko = c(l— 1; f J
Yo

In conclusion, we can distinguish 4 characteristic velocity slippages with respect to ¢ in the high-gain
FEL:

C—Vy= c% with v, the phase velocity of e.m. wave during gain process.
L

° 3
1+ K?
SRV

with v, the group velocity of em. wave during gain process.

with v, the longitudinal velocity of the electron bunch
(i.e. of resonant particles, "kinematical slippage”).
_ (1+K* T . . . . . .
c-v,=c +—— | with v, the phase velocity of density modulation during gain process.

2y, 2k,

From these relations, we can calculate the slippageVv, — Vv, of radiation wave packages (“spikes’ in

time domain) with respect to the electron bunch. It is 3 times smaller than the kinematic slippage:
V.-V, 1
9 z _

c-v, 3
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3. APPENDIX
3.1 How torecover thelow gain result from high gain solution

Since the low gain FEL isjust a specid case of the high gain FEL, it should be possible to recover the
properties of low gain FELS, in particular the Madey Theorem (see Section 1.3.3), from high gain
solutions. To do so, we present a semi-analytically treatment, closely following J.B. Murphy and C.
Pellegrini [9]. It comesin three steps:

1

38

~ 2

_Ee=1)

high gain (E(Z _ O))2
gan a dl. In contrast, the gan defined for Ilow gan FELs s

~ 2
) \E(z: LU)\ ~(E(z=0))’
low gain (E(Z _ 0))2

result, we must investigate G

For the high gain FEL, gain is defined by G 0 G =1 if thereisno

high gain

, see Eq. (18). Thus, if we want to recover the low gain

=G —1 (57)

low gain high gain

In order to recover Madey's Theorem, we must consider a finite deviation of the electron
energy from resonance condition, i.e. the case of non-zero detuning. For simplicity, we
assume k, = 0. Thus we must investigate the characteristic equation A(A+ iC)2 =ir?,
see Eq. (39). Since we are seeking for a solution for significant detuning Ay/y but a very

small gain parameter T', it is reasonable to define dimensionless, reduced parameters C= %

A

and A= % thus rewriting the characteristic equation
~ . 2 -
A(A+|C) =i . (58)

We will look for a solution valid for C 1. If we interpret Ay as the energy deviation from
resonance energy Y, and observe the definition of C aong with Eq. (13), we see that

Yo I A Y% PY%
correspondsto p < Ay/7y . Approximate solutions to Eq. (58) are given by

~ 4~ 1 A ~ [ 1 2
A== A,=i|—-C| ; Ay=i|—-C 59
1 C2 2 [\/E ] 3 { \/E J ( )

We now demonstrate that these solutions are indeed good for C>1 by calculating
F(é): 1A\i3+2iéf\i2 —ézfxi —i (i = 1,2,3). This quantity should be zero for all /A\i

Thus, our assumption C>1

satisfying Eq. (58). Indeed, as seen from Fig. 15, F (é) approaches zero for all f\i ,aslong

~ C
asC=—>15.
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Fig. 15: Plots of F(é) as a function of C for A, = A, A,,A,. Notethat, in thisplot, X = C and f(x), 9(x),
h(x) stand for F(x) with A, = A;,A,,A,, respectively. While the real parts are zero anyhow, the imaginary
~ C
parts approach zero for x=C = F >15, thus indicating that A, = A, A,, A, as given by Eq. (59) are the
three independent solutions to Eq. (58) in this regime.

3. Wenow use A, =A,,A,,A, asgiven by Eq. (59) to construct the solution E(z) according to

section 2.4. In terms of initial conditions, the low gain FEL corresponds to the case “Seeding by
external electro-magnetic wave at the undulator entrance” treated in section 2.5.1, i.,e.

E E,.
E’ =| 0 |. Accordingto Eq. (42) we get
E// 0

z=0

E(2) =Eoo [ My, €Xp (Ay2) + My exp (A ,2) + My exp (A,2) |

Aghs

(A —A) (A —Ay) &%

with My, =

We can now calculate the FEL gain in low gain approximation according to Eq. (57) (in
analogy to Eq. (46)). The numerical result presented in Fig. 16 indicates that this gain indeed
resembles the low gain dependence on energy detuning (Madey’s theorem) shown in Fig. 3.
The analytical calculation isleft to the reader.
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Gain(x)

X

Fig. 16: FEL gain according to Eq. (57) vs. energy detuning, as derived from high gain theory after application

of low gain approximation C = X>1, and using the approximate solutions Eq. (59) valid for x >15. The
vertical scaeisarbitrary.
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