
X-FEL Report 2004-04

DSP Integrated, Parameterized, FPGA Based
Cavity Simulator & Controller for UV-FEL

SCCav SIMCON
version 1.0 rev. 1, 04.2004

USER’S MANUAL

Krzysztof T. Pozniak, Tomasz Czarski, Ryszard S. Romaniuk
pozniak@mail.desy.de; tczarski@ntmail.desy.de; rrom@mail.desy.de

Institute of Electronic Systems, Warsaw University of Technology

ELHEP Group
Nowowiejska 15/19, 00-665 Warsaw, Poland

ABSTRACT

The note describes integrated system of hardware controller and simulator of the
resonant superconducting, narrowband niobium cavity, originally considered for the TTF and
TESLA in DESY, Hamburg (now predicted for the VUV and X-Ray FEL). The controller
bases on a programmable circuit Xilinx VirtexII V3000 embedded on a PCB XtremeDSP
Development Kit by Nallatech. The FPGA circuit configuration was done in the VHDL
language. The internal hardware multiplication components, present in Virtex II chips, were
used, to improve the floating point calculation efficiency. The implementation was achieved
of a device working in the real time, according to the demands of the LLRF control system for
the TESLA Test Facility. The device under consideration will be referred to as
superconducting cavity (SCCav) SIMCON throughout this work.

The following components are described here in detail: functional layer, parameter
programming, foundations of control of particular blocks and monitoring of the real time
processes. This note may be accompanied in some future by the one describing the DOOCS
interface for the described hardware system. The interface is under preparation.

While giving all necessary technical details required to understand the work of the
integrated hardware controller and simulator and to enable its practical copying, this
document is a unity with other TESLA technical notes published by the same team on the
subject. Thus, some modeling and other subjects were omitted, as they were addressed in
detail in the quoted references.

Keywords: Super conducting cavity, cold option, cavity simulator, cavity controller, linear
accelerators, FPGA, FPGA-DSP enhanced, VHDL, FEL, TESLA, TTF, UV-FEL, Xilinx,
FPGA based systems, LLRF control system of third generation, electronics for UV-FEL, X-
Ray FEL and TESLA.

-1-

CONTENTS

1 CAVITY SIMULATOR AND CONTROLLER ALGORITHM................................... 4
1.1 CAVITY SIMULATOR ALGORITHM ... 4
1.2 CAVITY CONTROLLER ALGORITHM... 5
1.3 SIMULATION PROCEDURE ... 5

2 GENERAL DESCRIPTION OF SIMCON SYSTEM.. 8
2.1 HARDWARE STRUCTURE... 8
2.2 FUNCTIONAL STRUCTURE... 9

3 STATUS CONTROLLER BLOCK DESCRIPTION... 11
3.1 FUNCTIONAL DESCRIPTION... 11
3.2 PROGRAMMING DESCRIPTION ... 11

3.2.1 SETUP mode operation... 12
3.2.2 INTERNAL mode operation .. 12
3.2.3 EXTERNAL mode operation ... 12
3.2.4 VECTOR mode operation.. 12
3.2.5 STEP mode operation.. 13

4 TIMING CONTROLLER BLOCK DESCRIPTION... 14
4.1 FUNCTIONAL STRUCTURE... 14
4.2 CAVITY TIMING MULTIPLEXER DESCRIPTION .. 15
4.3 PROGRAMMING DESCRIPTION ... 15

4.3.1 Internal timing generation .. 15
4.3.2 Step operation process .. 16
4.3.3 Time adjustment of the trigger signals .. 17

5 INPUT PROCESSING BLOCK DESCRIPTION .. 18
5.1 FUNCTIONAL STRUCTURE... 18
5.2 PROGRAMMING DESCRIPTION ... 19

6 OUTPUT PROCESSING BLOCK DESCRIPTION.. 20

6.1 FUNCTIONAL STRUCTURE... 20
6.2 PROGRAMMING DESCRIPTION ... 20

7 PROGRAMMABLE DATA CONTROLLER .. 21
7.1 FUNCTIONAL STRUCTURE... 21
7.2 PROGRAMMING DESCRIPTION ... 22

7.2.1 Dynamic data multiplexer ... 22
7.2.2 Modulator driver ... 22
7.2.3 Cavity simulator programmable data packet.. 22
7.2.4 Cavity controller programmable data packet ... 23

8 CAVITY SIMULATOR BLOCK DESCRIPTION .. 24
8.1 FUNCTIONAL STRUCTURE... 24
8.2 PROGRAMMING DESCRIPTION ... 25

-2-

9 CAVITY CONTROLLER BLOCK DESCRIPTION .. 26
9.1 FUNCTIONAL STRUCTURE... 26
9.2 PROGRAMMING DESCRIPTION ... 27

10 DATA ACQUISITION (DAQ) BLOCK DESCRIPTION ... 28
10.1 FUNCTIONAL STRUCTURE... 28
10.2 PROGRAMMING DESCRIPTION ... 28

10.2.1 DAQ modes control ... 28
10.2.2 DAQ memory access ... 29
10.2.3 DAQ readout process .. 29
10.2.4 DAQ vector generator... 30

11 INPUT MULTIPLEXERS BLOCK DESCRIPTION .. 31
11.1 FUNCTIONAL STRUCTURE... 31
11.2 PROGRAMMING DESCRIPTION ... 32

12 OUTPUT SWITCH MATRIX BLOCK DESCRIPTION.. 33
12.1 FUNCTIONAL STRUCTURE... 33
12.2 PROGRAMMING DESCRIPTION ... 34

13 PROGRAMMABLE I/O SPECIFICATION... 35
13.1 I/O SPECIFICATION LIST BY ADDRESSES.. 35
13.2 I/O SPECIFICATION LIST BY NAMES... 48

A EPP INTERFACE.. 50

B BENONE OVERVIEW ... 52

C BENADDA OVERVIEW .. 53

D EXEMPLARY SCOPE PICTURES OF SIMCON SYSTEM OUTPUTS 54

-3-

1 CAVITY SIMULATOR AND CONTROLLER ALGORITHM
The cavity resonator modeling has been developed for the efficient testing of the control

system and for the investigation of the optimal control method. The software models allow for
testing of the hardware controller by the step operation mode. The FPGA hardware
implementation of the cavity model is intended for the real time operation.

1.1 Cavity simulator algorithm
The cavity electromechanical model including Lorentz force detuning and the beam

loading is applied for analyzing the basic features of the plant. The cavity control system
proceeds within the low-level frequency range of the complex envelope for the input current
and output voltage of the cavity. The complex envelope signal is represented by real (I – in-
phase) and imaginary (Q – quadrature) components. The discrete processing of the cavity
behavior has been developed for the digital implementation of the cavity model. The
functional diagram of the cavity simulator algorithm is presented in fig. 1.

Input
register v0

Electrical model

v = E*v + v0 – Beam
‌ v ‌ 2 = vv

v_m

w

Mechanical model

w = A*w + B*vv
∆ω = w0+w(1)+w(3)+w(5)

IF modulator:
I, -Q, -I, Q...

vv

v

∆ω

Beam Table w0

Output
register

Fig. 1. The functional diagram of the cavity simulator algorithm.

The electrical part of the cavity simulator consists of the DSP function block. The DSP
procedure is realized according to the state space relation with the state vector v representing
(I, Q) components of the cavity output envelope. The system matrix E depends on the cavity
detuning ∆ω and the cavity bandwidth only. The normalized current generator as the input
signal v0 and the beam from the table drives the DSP unit. Additionally, the non-stationary
detuning ∆ω modulates the object feature by the matrix E. The square of the cavity field
gradient |v|2 = vv drives the mechanical part of the model. The input and output registers
correspond to the time delay of the cavity environment (waveguide). The intermediate
frequency modulator converts the cavity output vector to the signal v_m of frequency 250
kHz. Therefore, the data samples, like from the down-converter, can be conveyed to the outer
digital controller.

The mechanical model of the super-conductive cavity consists of the DSP unit according
to the state space relation with the state vector w. The time-varying detuning ∆ω and its time
derivative are two state-variables for each mechanical mode. The system matrix A and the
input matrix B depend on the cavity parameters: resonance frequency, quality factor and
Lorentz force-detuning constant for each mechanical mode. Each of the mechanical modes is
driven by the square of the cavity field gradient vv generated from the electrical part of the

-4-

model. Three dominating resonance frequencies are considered in the cavity model and the
superposition of all modes, together with the initial predetuning w0, yield the resultant
detuning ∆ω.

1.2 Cavity controller algorithm
The comprehensive model of the control system has been developed to investigate

different operational conditions of the cavity. The functional diagram of the controller
algorithm is presented in fig. 2.

 GAIN
Table

M

U

X I Q

_
I/Q

detector

Set-Point
Table

Feed-Forward
Table

v_m

v0 +
Calibration +

Fig. 2. The functional diagram of the controller algorithm

The digital processing is performed in I/Q detector applying the signal v_m of
intermediate frequency 250 kHz from the cavity simulator. Additionally the (I, Q) vector can
be directly accepted by MUX switch. The resultant cavity voltage envelope (I, Q) is calibrated
in the next unit, so to compensate the measurement channel attenuation and phase shifting for
an individual cavity. The Set-Point table delivers the required signal level, which is compared
to the actual cavity voltage. The multiplier as the proportional controller amplifies the signal
error according to data from the GAIN table and closes the feedback loop. Additionally the
Feed-Forward Table is applied to improve compensation of the repetitive perturbations
induced by the beam loading and by the dynamic Lorentz force detuning. The resultant output
signal v0 can drive the cavity simulator.

1.3 Simulation procedure
The FPGA cavity simulator and controller are coupled to the MATLAB system via

communication interface. The real time tests are carried out according to the schematic block
diagram in fig. 3. The MATLAB system initiates the simulation process for the given primary
parameters. The list of parameters for user utility is combining in the table below. The
secondary, internal parameters required for the FPGA system are calculated in the beginning.
Additionally the optimal data for Set Point and Feed Forward tables are generated during the
auto calibration process. Finally, the MATLAB simulation process is verified by plot. The
resulting example, for the real operational condition, is presented in fig 4. The cavity is driven
in the pulse mode forced by the control feedback supported by the feed forward.

 Subsequently, resultant parameters and data are loaded to the FPGA memory tables.
The cavity simulator and controller can be driven independently via the external connection
applying the analog-to-digital converters (ADC– 14-bit resolution). On the other hand, the
FPGA controller can drive the FPGA cavity simulator via internal digital connection (18-bit
data resolution). Then, the FPGA system can run itself cyclically according to the given data
tables (see below). The digital-to-analog converter (DAC) conveys data from the FPGA
cavity simulator or from the FPGA controller outside the system.

-5-

Tables of the primary parameters for user utility.

CAVITY ELECTRICAL parameters CAVITY MECHANICAL modes parameters

G = [50;50]……………….……………………..... gain

c = [1,0] ……...…………….... calibration coeff. vector

FEED_FORWARD SET_POINT TABLE
PARAMETERS

f0 = 1300 [MHz]………………….resonance frequency

ρ =520 [Ω] ………………….. characteristic resistance

QL = 3·106 ………………….…… loaded quality factor

∆f = ∆ω/2π = 390 [Hz]…………..…...….pre-detuning

d1 = 0, d2 = 1 …….…………….… input, output delay

f = [235, 290, 450] [Hz].. resonance frequencies vector

Q = [100,100,100] …………….. quality factors vector

K = [0.4, 0.3, 0.2] [Hz/(MV)2]… LFD constants vector

Ib = 8 [mA] …………………………..…average beam

D1 = 509, D2 = 1300 ……..………..…start, stop beam

F = 1, (0) …….………. Feed-forward enable, (disable)

a = 25 [MV] …………………..…….. cavity amplitude

ph = 0 [rad] …………………..……….… cavity phase

D = 509 …………………………………….filling time

L = 800 ……………...……….....………….flattop time

FPGA
internal connection

FPGA
CAVITY SIMULATOR

FPGA
CONTROLLER

MATLAB
SYSTEM

BEAM TABLE

FEED-FORWARD TABLE

SET-POINT TABLE

FPGA
internal connection

DAC

DAC

ADC

ADC

Fig. 3. Functional diagram for one chip FPGA system

-6-

Fig. 4. The MATLAB results of simulation for real operation condition

-7-

2 GENERAL DESCRIPTION OF SIMCON SYSTEM
The integrated and parameterized controller and simulator system for the resonant,

superconducting, narrowband cavity of the UV-FEL (SIMCON) was implemented in a
programmable FPGA chip Virtex II V3000. The chip has inbuilt hardware DSP components
[7]. This chapter presents in a general way the functional and hardware structure of the
device.

2.1 Hardware structure
The hardware layer was realized with XtremeDSP Development Kit by Nallatech [9].

The version of the main
board (MB) was BenONE
integrated with daughter
board (DB) BenADDA (fig.5)
The DB is realizing hardware
DSP algorithms. The DB
possesses two fast 14-bit
ADC and DAC and a
programmable FPGA Xilinx
VirtexII V3000-4 chip
equipped in 18x18 bit
multiplication circuits.

Adaptation of the
XtremeDSP Development Kit
to the needs of the user in the EURO 6HE standard was realized by embedding on a dedicated
base carrier board 6HE-EURO-EPP, what was presented in fig. 6. The front-side of the board
possesses:

Fig. 5. XtremeDSP Development Kit by Nallatech

• Two analog inputs of the signals,
with the signal range ±1V. Each
channel signal is processed
nondependently by a 14-bit ADC
converter, working with 40MHz
clock;

ANALOG INPUT 2
EXTERNAL CLOC

ANALOG OUTPUT 2

• Input of an external clock, for TTL
standard;

• Two analog signal outputs with the
signal range ±1V. Each channel
signal is processed nondependently
by a 14-bit DAC converter, working
with 40MHz clock.

• Three digital inputs and three digital
outputs in TTL standard, connected
to the FPGA Virtex II via a suitable
buffer;

• Two information LEDs;
• Socket for a parallel interface in EPP

standard for communication of
FPGA Virtex II chip with a control
PC;

Fig. 6. XtremeDSP Development Kit embedded on a

carrier board EURO-6HE.

K

R

USB CONNECTOR

ANALOG OUTPUT 1

DIGITAL INPUT 1
DIGITAL INPUT 2
DIGITAL INPUT 3

DIGITAL OUTPUT 1
DIGITAL OUTPUT 2
DIGITAL OUTPUT3

LED 1
LED 2

EPP CONNECTO

ANALOG INPUT 1

-8-

• USB socket for configuration information for the FPGA.

The SIMCON card occupies two slots in the VME 6U crate. Power supply is provided
either from the VME bus or from the power unit provided with the Nallatech board.

The application of the EPP protocol to communicate with the computer is excused by
the low throughput of the proprietary USB. Ver.1. offered by the board manufacturer. The
choice of the EPP protocol is justified by its comparably high transmission speed, simplicity
and popularity in the PC computers. The EPP protocol has a simple implementation in the
FPGA chip. The hardware realization of the interface was described in detail in [2,7], and
here is quoted in chapter 13, for convenience.

2.2 Functional structure
Integrated SIMCON system was realized in the form of parameterized structure of

functional blocks in the VHDL language (Very_High_Speed_Integrated_
Circuit_Hardware_Description_Language). The implemented code was loaded in the Xilinx
VirexII V3000-4 chip on the XtremeDSP Development Kit board. There were used the AD
and DA converters situated on the BenADDA daughter board. The optional connection of the
external control to the simulator or controller of the FEL cavity is possible. The digital TTL
inputs present on the base board 6HE-EURO-EPP were used for synchronization with the
1MHz clock and 5 Hz trigger. These signals are distributed in the whole control system of the
FEL. An overall functional structure of the SIMCON, implemented in ver.1.0 was presented
in fig. 7.

Fig. 7. Multilayer functional and hardware structure of the SIMCON.

The solution applied in the SIMCON system bases on the backbone of parameterized
and programmable blocks of parallel processing.

The core is constructed of two nondependent modules CAVITY SIMULTOR and
CAVITY CONTROLLER. They were programmed inside the FPGA Virex II 3000-4 chip as

-9-

hardware DSP algorithms. The algorithms use fast internal multiplication components. The
blocks work in parallel in the real time. They are controlled by programmable parameters
provided by the PROGRAMMABLE DATA CONTROLLER block. The parameters are scalars
(like parameters of the cavity and controller) and vectors (like the feed-forward for cavity
controller, beam of cavity simulator). The set parameters stem from the algorithms described
in detail in the following papers [4,5,6].

The block of INPUT MULTIPLEXERS serves for programmable choice of the control
signals of the controller and simulator blocks. The realization of the following functions is
possible through this functionality: internal digital feedback loops, connection of external
analog signals from the AD converters, set test vectors initially programmed in the DAQ
block. The task for the OUTPUT SWITCH MATRIX block is a programmable choice of the
signals outputs for the DA converters or signal registration in the DAQ block. A suitable
configuration of the switching matrices gives appropriate analog feedback between the
modules of cavity controller and simulator

The block TIMING & STATUS CONTROLLER provides internal synchronization of
the all processes of SIMCON system. It is possible to choose the external clock signals
provided by the accelerator control system or from the external generators. The latter case
enables autonomous work of the system. Switching of the work states of the system is
possible, i.e. performing of processes in real time or in step simulation regime with reference
vectors.

The programming layer of all the blocks of SIMCON system is realized by the control
computer system with the aid of COMMUNICATION CONTROLLER block. The EPP
hardware transmission protocol was used. The information distribution bases on the Internal
Interface standard, described in detail in [2,7].

-10-

3 STATUS CONTROLLER BLOCK DESCRIPTION
The SIMCON system may work in several work states (called operation modes). It

provides possibility to realize various functionalities in a single integrated system. The work
states are: autonomous, cooperation with external timing systems, functional tests state,
diagnostic state and system programming state.

3.1 Functional description
The block STATUS CONTROLLER manages the work states of the SIMCON system.

From the operation point of view, setting of a particular work state has a superior character.
There are distinguished five system work states in the SIMCON:

• SETUP – gives the full programming access to the register space and memory blocks
through the COMMUNICATION CONTROLLER

• INTERNAL – the work in the real time mode is possible with the usage of internal timing
signals (see chapter 4.2, 4.3.1)

• EXTERNAL – the work in the real time mode is possible with the usage of external timing
signals (see chapter 4.2)

• VECTOR – the work is possible in the real time mode with internal timing signals and set
exciting vectors (see chapter 4.2, 10.2.4)

• STEP – the work is possible in the step operation mode with the usage of internal timing
and programmable set input exciting data, separately for each step (see chapter 4.2, 4.3.2)

3.2 Programming description

Fig. 8. Flow diagram for the choice options of the operation mode for the block

STATUS CONTROLLER

Fig. 8 presents a signal flow diagram which shows how to choose the system work
mode. The modes are set by the register MODE_OPER_SEL and a flag SYS_PROC_REQ. The
process of control for the system work state consists of two stages:

1. programmable choice of the register value MODE_OPER_SEL to the required work mode.
When the SETUP mode is chosen it is recommended to program the expected work state
for the real time.

-11-

2. set the value of flag SYS_SYS_PROC_REQ to the desired quantity. Acknowledgement of
the desired work state is obtained through reading of the identical logical state for the
following flag PROC_ACK. Till the time the state of both flags is not identical the system
is in switching state and has transient character.

Setting of the flag SYS_SYS_PROC_REQ=0 has a priority character and causes
nonconditional activation of the SETUP work mode. On the other hand, for the state of flag
SYS_SYS_PROC_REQ=1 the choice for work mode in the real time is defined by the current
state of the register MODE_OPER_SEL. The programming conditions for particular work states
are described below in the successive sub-chapters.

3.2.1 SETUP mode operation

The work mode SETUP offers the possibility to program all registers and memory areas.
The operations to write and to read are realized by COMMUNICATION CONTROLLER block,
in accordance with the memory area specification and data provided in chapter 13.

For the in-depth servicing of the system, it is possible to activate the functional
processes (for example module DAQ TIMER described in chapter 10.2.3). It is however
strongly not advised, for not advanced users, to do any operations going beside the
standard ones described in this technical documentation.

3.2.2 INTERNAL mode operation

In the INTERNAL work state the system is totally autonomous with the internal
triggering signals.

3.2.3 EXTERNAL mode operation

In the EXTERNAL mode of operation the outside timing signals are used in the TTL
standard (compare chapter 4.1). The signals are respectively connected to the LEMO sockets
(compare chapter 2.1):

• EXTERNAL CAVITY STROBE connected to DIGITAL INPUT 2,

• EXTERNAL CAVITY TRIGGER connected to DIGITAL INPUT 3.

From the programming steering side, the EXTERNAL operation mode is considerably
identical with the INTERNAL operation mode (compare chapter 3.2.2). Additional
functionality is the possibility to adjust external clock signals via the modules CAVITY
STROBE DELAY and CAVITY TRIGGER DEL in block TIMING CONTROLLER (compare
chapter 4.3.3).

3.2.4 VECTOR mode operation

The VECTOR mode operation uses internal memories DAQ1.. DAQ3 implemented in the
block DATA ACQUISITION as programmable input signal generators (compare chapter
10.2.4). By the choice of the channels in the block INPUT MULTIPLEXERS they are
respectively connected to the input of the cavity controller and input of the cavity simulator.
(compare chapter 11.2).

From the programming steering side, the EXTERNAL operation mode is considerably
identical with the INTERNAL operation mode (compare chapter 3.2.2). Only in the case of the
DAQ memory choice as an input generator, it requires programming with a set of signals
(compare chapter 10.2.4). The memory module working as a generator may not be used
simultaneously for data acquisition.

-12-

3.2.5 STEP mode operation

In the STEP operation mode there are used the internal registers to control and read the
results of the DSP processing from the block CAVITY SIMULATOR (see chapter 7.2.3) and
the block CAVITY CONTRLLLER (see chapter 7.2.4). A single step is realized in the module
CIVITY STROBE STEP TIMER in block TIMING CONTROLLER (see chapter 4.3.2).

The STEP operation mode is used for service purposes and tests, like emulation of
vector content TSETPOINT_I, TSETPOINT_Q, TFEEDFORWARD_I, TFEEDFORWARD_Q and
other ones. Due to this reason, the STEP operation mode may not be used in the real
time.

For the servicing purposes, the access to the read registers of signals from the DSP
processing of the cavity simulator and controller via the block COMMUNICATION
CONTROLLER may be done in an arbitrary moment of time during the SIMCON system
activity. It is recommended for the users to read from these registers after the operation
step was completely done.

-13-

4 TIMING CONTROLLER BLOCK DESCRIPTION
The block TIMING CONTROLLER processes and controls the timing signals

distributed in the whole SIMCON system. It generates internal timing signals of the
parameters set by program. The system has three basic clock signals. The time dependence
between these signals were presented in fig. 9):

Fig. 9. Time dependencies between clock signals in the block TIMING CONTROLLER

• SIMCON CLOCK – internal timing signal with the period TCLOCK=25ns (40 MHz),

• CAVITY STROBE – internal or external synchronizing signal for processing of the analog
signals in the AD and DA converters with the period TSTROBE=1µs (1 MHz),

• CAVITY TRIGGER – internal or external signal initializing the process of cavity control,
now the period of this signal for FEL is TTRIGGER=200ms (5 Hz) but may be changed on
demand.

4.1 Functional structure

Fig. 10. Functional structure of the block TIMING CONTROLLER

The functional structure of the block TIMING CONTROLLER was presented in fig. 10.
The are three processing layers in this structure:

• Choice of the clock signals, which are realized in the module CAVITY TIMING
MULTIPLEXER,

• Generators of internal clock signals; the following modules create this structure: CAVITY
STROBE GENERATOR, CAVITY TRIGGER GENERATOR, CIVITY STROBE STEP
TIMER, QUARTZ GENERATOR,

-14-

• Timing adjustment consists of the following modules: CAVITY STROBE DELAY, CAVITY
TRIGGER DELAY,

External signals EXTERNAL CAVITY TRIGGER and EXTERNAL CAVITY STROBE are
output to the digital LEMO connectors. For the diagnostic and synchronization purposes with
the external devices, the timing signals SIMCON CLOCK OUT, CAVITY TRIGGER OUT and
CAVITY STROBE OUT were output to the digital LEMO connectors.

4.2 Cavity timing multiplexer description
Choice of the source for clock signals is done automatically in accordance with the state

of the register MODE_OPER_SEL. The register is situated in block STATUS CONTROLLER:

• For the operation modes of the system MODE_OPER_INTERNAL and
MODE_OPER_VECTOR the clock signals are taken from the internal generators CAVITY
STROBE GENERATOR, CAVITY TRIGGER GENERATOR,

• For the operation mode of the system MODE_OPER_EXTERNAL, there are taken external
clock signals EXTERNAL CAVITY TRIGGER and EXTERNAL CAVITY TRIGGER. They
are automatically synchronized with the signal SIMCON CLOCK,

• For the operation mode MODE_OPER_STEP, the clock signal is taken from internal
generator CIVITY STROBE SIMULATOR TIMER and signal SIMULATOR CIVITY
TRIGGER, which is programmed in block COMMUNICATION CONTROLLER.

4.3 Programming description
The extent to program the block TIMING CONTROL includes setting the parameters of

internal generators of clock signals and values of delays.

4.3.1 Internal timing generation

The usage of internal clock signals requires a priori programming of the generator
parameters CAVITY STROBE GENERATOR i CAVITY TRIGGER GENERATOR. To set the
operation mode the following registers are used:

• For the CAVITY STROBE GENERATOR the signal period CAVITY STROBE is defined as a
number of the periods of the signal SIMCON CLOCK (25 ns). The value of the rate
diminished by 1 is stored in the signal register GENER_STROBE_RANGE. The period may be
calculated using the following expression, where x is given parameter:

1)1(* −=⇒+=
CLOCK

STROBE
CLOCKSTROBE T

TxxTT ,

The nominal range of register values is confined to 0 - 63. To obtain the period equal to 1 µs
from the signal SIMCON CLOCK (25 ns) it is necessary to set the value 39.

The implemented DSP algorithms allow to set the minimum value equal to 7. The sampling
period is then 200ns, or the modulated signal reaches 1.25 MHz.

• For the CAVITY TRIGGER GENERATOR the signal period CAVITY TRIGGER is defined as
a number of the signal periods CAVITY STROBE. The rate value diminished by 1 is stored
in the signal register GENER_TRIGGER_RANGE. The period may be calculated using the
following expression, where y is set parameter:

1
)1(*

1)1(*)1(*)1(* −
+

=−=⇒++=+=
xT

T
T
TyyxTyTT

CLOCK

TRIGGER

STROBE

TRIGGER
CLOCKSTROBETRIGGER ,

-15-

The nominal range of the values for the register is from 0 to 1048575 (0xFFFFF). To obtain
the period 200 µs from the signal CAVITY STROBE (1 µs) it is to input the value 199999,
and the maximal period of the trigger signal is 1s.

4.3.2 Step operation process

The operation mode STEP OPERATION PROCESS is a dedicated method of a computer
aided DSP processes testing. The foundation of this operation mode is that the SIMCON
system works in the real time during a strictly defined period of time. The time period is set as
REAL-TIME STEP PERIOD. During the breaks in the processing, it is possible to do
computer based reading of the DSP processing results and to set new input data for next DSP
processes.

The step operation method is active when the state register MODE_OPER_SEL of the
operation mode is set for MODE_OPER_STEP. The period REAL-TIME STEP PERIOD is
generated in the module CAIVITY STROBE STEP TIMER according to the prior setting of the
parameters. The module is triggered with the signal SIMCON CLOCK. The timing diagramme
STEP OPERATON PROCESS is presented in fig 23:

Fig. 11. Time diagram for the process STEP OPERATION

• A initialization of the global conditions of the process STEP OPERATION embraces
setting of the following:

− register STEP_TIMER_LIMIT to the value equal to number of signal periods SIMCON
CLOCK in the range from 0 to 63. The given data are diminished by 1, i.e. for the
value 0 a single signal period for SIMCON CLOCK will be registered.

− register STEP_CAV_TRIG should be set to the appropriate value:
0: in the current step will not be generated STEP CAVITY TRIGGER,
1: in the current step will be generated STEP CAVITY TRIGGER.

• B initialization of the module STEP TIMER through setting STEP_TIMER_START=1.

• C activation of the module STEP TIMER through setting STEP_TIMER_ENA=1. From this
very moment, the STEP OPERATON PROCESS is automatically triggered. The counter
starts STEP_TIMER_COUNT which measures the time of the process.

• D automatic stop of the DAQ process after the counter STEP_TIMER_COUNT reaches a
value set in the register STEP_TIMER_LIMIT. The following flag is set STEP_TIMER_STOP=1.

• E checking flag reading STEP_TIMER_STOP. Reading of value 0 means that STEP
OPERATON PROCESS continues. Reading the value 1 means that the process is finished.
The flag reading may be done many times, waiting for the process to be finished.

-16-

• F stopping the work of the module STEP TIMER through setting STEP_TIMER_ENA=0.

• G introducing the module in the blocked state STEP TIMER through setting
STEP_TIMER_START=0. The flag is deleted STEP_TIMER_STOP=0 and zeroing of
STEP_TIMER_COUNT.

If the global acquisition conditions remain not changed, the next initialization of the DAQ
process may disregard the stage A.

Temporary change in the flag state STEP_DSP_RESET from the value 0 to value 1 causes
asynchronous resetting of the DSP processes in the cavity controller and simulator. For the
servicing purposes of the flag state through the block COMMUNICATION CONTROLLER
may be done in an arbitrary moment of the SIMCON system work. The SIMCON system
users are strongly advised to reset the DSP processes only in the STEP MODE
OPERATION just before doing the stage [A].

The flag state STEP_DSP_STOP=1 which means finishing of the calculation period for
both DSP processes. For the servicing purposes of the flag state through the block
COMMUNICATION CONTROLLER may be done in an arbitrary moment of the work state of
SIMCON system. The users are strongly advised to reset the DSP processes only in the
STEP MODE OPERATION just after doing the stages [E], [F] or [G].

4.3.3 Time adjustment of the trigger signals

Time adjustments of the triggering signals is done by two modules:

• Module CAVITY STROBE DELAY delays the signal CAVITY STROBE of set number of
signal periods SIMCON CLOCK (25 ns) in the range from 0 to 63. The value of delay is set
in the register CAV_STROBE_DELAY. The range of delay embraces approximately 1.5 µs, or
exceeds a single period of signal CAVITY STROBE. Taking the value 0 means no additional
delay of the signal CAVITY STROBE.

• Module CAVITY TRIGGER DELAY delays the signal CAVITY TRIGGER of set number of
signal periods CAVITY STROBE (1 µs) in the range from 0 to 2047. The value of delay is set
in the register CAV_TRIGGER_DELAY. The range of delay embraces above 2 ms, or exceeds
the longest control time of the cavity. Taking the value 0 means no additional delay of the
signal CAVITY TRIGGER.

The signals CAVITY STROBE and CAVITY TRIGGER considered in the next part of this
document are referenced only to the signals after the delay modules.

-17-

5 INPUT PROCESSING BLOCK DESCRIPTION
The block INPUT PROCESSING provides proper conversion of values between a

physical 14-bit resolution of the ADC converters and 18-bit resolution of the internal DSP
processing, input signal calibration including amplification and regulated shift of constant
voltage value, as well as initial smoothing of the input channels using a method of averaging
of a set value of samples.

5.1 Functional structure
The block INPUT PROCESSING consists of an input module for resolution conversion

INPUT RESOLUTION CONVERTER, INPUT CALIBRATION module and an averaging
module INPUT SIGNAL AVERAGING for the input signal. Its functional structure is
presented in fig. 12.

Fig. 12. Functional structure of the block INPUT PROCESSING

The module INPUT RESOLUTION CONVERTER realizes nondependently for each
input channel the change from a 14-bit U2 code obtained from particular ADC converter to
18-bit representation of U2 code for the DSP processes. The conversion process relies on
multiplication of the input signal value by the correction coefficient equal to 16, what in such
a case is equivalent to a logical shift of the input value to four places to the left.

The module of INPUT CALIBRATOR allows for fitting of the real input signal to the set
levels of signals required in the algorithms of cavity simulator and controller. The module
realizes, nondependently for each input channel a correction of the input signal. The
performed process relies on the following DSP operation for each ADC channel in the 18-bit
range:

OGxy += *

where, the G parameter is the gain, the O parameter is constant voltage shift added to the
signal.

The module INPUT SIGNAL AVERAGING realizes nondependently for each input
channel the following averaging functional operation:

K

x
KY

K

t
t

AV

∑
−

=
−

=

1

0][

where: YAV[K] expresses the averaging value of the last K samples, or the current sample
(time moment t=0), and the preceding samples, from t=(-1..-K+1) moments of time. The
timing of the samples is defined by the signal CAVITY STROBE. The averaging coefficient K
is set as: K=2N , or for the range N=0..3, there are obtained the following values K=1,2,4,8.

-18-

Fig. 13. Time dependencies for cyclical data

For the value N=0 (K=1) work of the averaging circuit is confined for transmission of
the input value to the output: YAV[1]=x0. The structure of the averaging module is presented in
fig.13.

5.2 Programming description
Programming of the block INPUT PROCESSING relies on setting of calibration

coefficients, the choice of a common, for both ADC channels, averaging coefficient.

The calibration parameters are determined by:

• For the channel ADC1, registers ADC1_GAINand ADC1_OFFSET,

• For the channel ADC2, registers ADC2_GAIN and ADC2_OFFSETT.

The choice the common averaging coefficient for both ADC channels is performed by writing
to the register ADC_AVER. The value of the averaging coefficient is in the range from 0 to 3.

For the servicing purposes, the choice of the value for the averaging coefficient through
the block COMMUNICATION CONTROLLER may be done during the arbitrary moment of
the SIMCON system work time. The users of the SIMCON system are strongly advised to
set the averaging coefficient choice register only during the SETUP MODE
OPERATION.

The current state of the both ADC converters may be done through reading:

• For the channel ADC1, the register ADC1_DATA,

• For the channel ADC2, the register ADC2_DATA.

The following reading of the ADC channels are only for service purposes. It is to
remember, that the read values may possess instable character, because they stem from the
analog character of the input signals. The sampling period of the AD converters results from
the signal period SIMCON CLOCK and equals 25ns.

-19-

6 OUTPUT PROCESSING BLOCK DESCRIPTION
The block OUTPUT PROCESSING provides proper value conversion between the

physical 18-bit resolution of the internal DSP processing and 14-bit resolution of the DAC
converters.

6.1 Functional structure
The block OUTPUT PROCESSING consists only from the output module of resolution

bits conversion OUTPUT RESOLUTION CONVERTER. Its functional structure was
presented in figure 14.

The module OUTPUT RESOLUTION CONVERTER realizes, for each input channel, no
dependently, the change of 18-bit U2 code, used in the DSP processes, to 14-bit
representation NB required by the DA converters. The performed process relies on the
dividing of the DSP signal value by the correction number equal to 16, what in this case is
equivalent to logical shift to the value to the left of 4 bits, and changing of the notation from
U2 to NB.

6.2 Programming description
The current version of the SIMCON system block OUTPUT PROCESSING does not

require any programming and does not forward any results of its actions to the block
COMMUNICATION CONTROLLER.

Fig. 14. Functional structure of the block INPUT PROCESSING

-20-

7 PROGRAMMABLE DATA CONTROLLER
The block PROGRAMMABLE DATA CONTROLLER provides programming facility and

data input to both DSP processes (for both cavity SIMULATOR and CONTROLLER) as well
as data enabling control of the DSP processes. Three kinds of data are distinguished by the
system:

1. static data – they are input in the form of constant values (cavity parameters, controller
parameters, like amplification coefficient of the cavity controller SGAIN_I and SGAIN_Q,
see chapters 1.2, 9.2),

2. dynamic data – signal tables which are input in a form of a priori preprogrammed time
dependent shape. Triggering of the beginning of the function is done by the signal
CAVITY TRIGGER, and the next changes of these values are timed by the signal CAVITY
STROBE. The example may be the values of tables TBEAM_I and TBEAM_Q of the cavity
simulator (compare chapters 1.1, 8.2),

3. control data – they are automatically generated in accordance with a priori set parameters
and given in a form of periodic functions. The example may be values of I/Q modulator
controller, which is described in the next chapter.

7.1 Functional structure

Fig. 15. Functional structure of the block PROGRAMMABLE DATA CONTROLLER

The functional structure of the block PROGRAMMABLE DATA CONTROLLER was
presented in fig. 15. The block provides separate mechanisms of data input to the both DSP
blocks, depending on the data type:

• Only the static type data are provided directly from the block registers of
COMMUNICATION CONTROLLER. Each register is 18-bit.

• For the dynamic data, the module INDEX COUNTER calculates the current address of the
cells DATA MEMORY. From the moment of signal trigger CAVITY TRIGGER, the
successive cells in the memory table are input to the particular DSP process. The change of
index has a periodic nature from 0 to 2047, till the next value of 0. The signal CAVITY
STROBE means next steps of the process. The time dependencies of this process were
shown in fig. 17.

-21-

Fig. 16. Time dependencies for cyclic data.

The dynamic data are remembered in a form of tables of the dimensions 18-bits for 2048
cells. In this way, the change dynamics is provided for 1µs for the period of time 2048µs,
which embraces the whole period of cavity control by the controller.
The choice of data of dynamic or static type (variant advice only in the STEP MODE
OPERATION) is done through the control of the module DATA MUX.

• Control data for the modulation are generated with the aid of a cyclic generator working in
the range from 0 to 3 in the module DRIVER MODULATOR. The signal CAVITY TRIGGER
initializes cyclic generator to the initial value (S), but the change of his value is triggered by
the signal CAVITY STROBE. The time dependencies were shown in fig. 16 for the
initializing value S=2.

Fig. 17. Time dependencies for dynamic data

7.2 Programming description
The programming of the block PROGRAMMABLE DATA CONTROLLER relies on the

input of static data (writing of 18-bit register) and dynamic data (filling the memory areas of
2048 cells 18-bit each) and on the choice of the channel in the module DATA MUX. The
details of programming of particular components are described in the chapters below.

7.2.1 Dynamic data multiplexer

The flag DATA_TAB_ENA controls the choice of the multiplexer channel DATA MUX:
• Channel 0: chooses all static data,
• kanał 1: chooses all dynamic data,

7.2.2 Modulator driver

The module MODULATOR DRIVER requires programming of the initial value in the
register VM_DRV_START in the range from 0 to 3.
Physical writing of the value VM_DRV_START to the module MODULATOR DRIVER is done
through performing write operation of an arbitrary value to the register VM_DRV_COUNT.

For the servicing purposes, there is a possibility to read the current value of the module
MODULATOR DRIVER via the register VM_DRV_COUNT. This value has, however, a
nonstable character, because it changes periodically in the range from 0 to 3 every 1µs. The
stable value is obtained in the STEP MODE OPERATON or SETUP MODE OPERATON.

7.2.3 Cavity simulator programmable data packet

The block CAVITY SIMULATOR, in accordance with the algorithm described in
chapter 1.1 requires setting of the following data:

-22-

• BEAM (dynamic data): is represented by a table TBEAM_I and TBEAM_Q or alternatively by
the registers SBEAM_I and SBEAM_Q,

• ROTATION MATRIX [C] (static data):C are expressed in succession by the

parameters CAL1 and CAL2.









=

2

1

c
c

• MATRIX_A1_21 and MATRIX_A1_22 – individual coefficients of the matrix [A1],

• MATRIXES [A1], [A2], [A3] (static data): are expressed by the following

parameters:









==

2221

12
3,2,1

1
aa
a

An

o MATRIX_A12 – common coefficient a12 for all three matrixes,

o MATRIX_A1_21 and MATRIX_A1_22 – individual coefficients of the matrix [A1],

o MATRIX_A2_21 and MATRIX_A2_22 – individual coefficients of the matrix [A2],

o MATRIX_A3_21 and MATRIX_A3_22 – individual coefficients of the matrix [A3],

• MATRIXES [B1], [B2], [B3] (static data): []013,2,1 bBn == the are expressed by the following
parameters b1 appropriately for the successive matrixes: MATRIX_B1_1, MATRIX_B2_1 and
MATRIX_B3_1,

• COEFFICIENT „H” (static data): is expressed by the PARAM_H,

• COEFFICIENT „P” (static data): is expressed by the PARAM_P.

7.2.4 Cavity controller programmable data packet

The block CAVITY CONTROLLER, in agreement with the algorithm described in the
chapter 1.2 requires setting the following data:

• SET POINT (dynamic data): is represented by the tables TSETPOINT_I and TSETPOINT_Q or
alternatively by the registers SSETPOINT_I and SSETPOINT_Q,

• FEED FORWARD (dynamic data): is represented by the tables TFEEDFORWARD_I and
TFEEDFORWARD_Q or alternatively by the registers SFEEDFORWARD_I and
SFEEDFORWARD_Q,

• GAIN (dynamic data): is represented by the tables TGAIN_I and TGAIN_Q or alternatively by
the registers SGAIN_I and SGAIN_Q,

-23-

8 CAVITY SIMULATOR BLOCK DESCRIPTION
The block CAVITY SIMULATOR performs, in the real time, the algorithm of the

superconducting cavity behaviour, in agreement with the requirements of the LLRF system
(see chapter 1.1). An 18-bit fixed point algorithm was implemented with the use od the DSP
components present in the FPGA chip Xilinx VirtexII-V3000.

8.1 Functional structure
The block CAVITY SIMULATOR consists of the synchronous numerical processing

module DSP CAVITY ALGORITHM, from the modules of signal delays INPUT DELAY and
OUTPUT DELAY and from the modulator module of I/Q I/Q MODULATOR. Its functional
structure was presented in figure 18.

Fig. 18. Functional structure of the block CAVITY SIMULATOR

The module DSP CAVITY ALGORITHM processes the signal vector for cavity control
CAV_IN_I and CAV_IN_Q, which is provided from the block INPUT MULTIPLEXER (see
chapter 11) in accordance with the parameters provided from the block PROGRAMMABLE
DATA CONTROLLER (see chapter 5). There are the following signals obtained at the output
of this block:
• Basic signals from the cavity (CAV_OUT_I and CAV_OUT_Q),
• Modulated signal I/Q (CAV_VMOD),
• Detuning signal from the cavity mechanical model (CAV_DETUN),
• Six signals of the state vector [W] of the mechanical model (CAV_MODE(1..3,1D..3D)).
• Signal of the square value for the high power EM field gradient v2 (CAV_VV),

The module I/Q MODULATOR realizes modulation process for the signals I and Q from
the cavity. The modulator control is provided by the module MODULATOR DRIVER situated
in the block PROGRAMMABLE DATA CONTROLLER (see chapter 7.1).

The modules of delay of the input and output DSP data (INPUT DELAY and OUTPUT
DELAY) allow to simulate the physical delays introduced by the transmission lines
(waveguides). A single step of the delay defines the timing of the signal CAVITY STROBE,
which is currently equal to 1µs.

-24-

8.2 Programming description
The programming of the work of the block CAVITY CONTROLLER relies on:

• Setting of proper parameters in the block PROGRAMMABLE DATA CONTROLLER (see
chapter 7.2.4). These are the following parameters: BEAM, matrixes [A1], [A2], [A3], [B1],
[B2], [B3], coefficients „H” and „P”,

• Setting of the modulation phase realized in the module I/Q MODULATOR in reference to
the demodulation realized in the cavity controller (compare chapter 7.1 and 7.2.2). The
phase change is determined by the register VM_DRV_OFFSET in the value range of 0 - 3,

• Setting of the delays for the input and output signals, respectively via the programming of
the registers CAV_DELAY_IN and CAV_DELAY_OUT. Each of the registers allows to write the
values from 0 to 15. In this way, the range of delays is provided up to 15µs with a step of
1µs. Setting the value of 0 means no additional delay introduced.

In the operation mode STEP OPERATON PROCESS the following registers are made
available for computer based writing via the block COMMUNICATION CONTROLLER. The
registers have the same eigen-names with the source signals for the cavity simulator DSP
processing:

• registers CAV_IN_I and CAV_IN_Q controlling directly the signals CAV_IN_I and CAV_IN_Q.

In the operation mode STEP OPERATON PROCESS, for the computer based reading,
via the block COMMUNICATION CONTROLLER, there are made available the following
current values of the cavity simulator DSP processing results, via the registers with the eigen-
names equal to the relevant signals:

• signals CAV_OUT_I and CAV_OUT_Q respectively through the registers CAV_OUT_I and
CAV_OUT_Q,

• signal CAV_VMOD via the register CAV_VMOD,

• signal CAV_DETUN via the register CAV_DETUN,

• six signals of mechanical modes CAV_MODE(1..3,1D..3D) via the registers:

o CAV_MODE1 – the first mechanical mode is accessible in the register CAV_MODE1,

o CAV_MODE1D – derivative of the first mechanical mode is accessible via the register
CAV_MODE1D,

o CAV_MODE2 – the second mechanical mode is accessible in the register CAV_MODE2,

o CAV_MODE2D – derivative of the second mechanical mode is accessible via the
register CAV_MODE2D,

o CAV_MODE3 – the third mechanical mode is accessible via the register CAV_MODE3,

o CAV_MODE3D – derivative of the third mechanical mode is accessible via the register
CAV_MODE3D.

• The signal CAV_VV via the register CAV_VV,

For the servicing purposes, the access to the read registers of the signals from the cavity
simulator DSP process, via the COMMUNICATION CONTROLLER, may be done in the
arbitrary moment during the work time of the SIMCON system. The users are strongly
recommended to read these registers only during the SETUP MODE OPERATION.

-25-

9 CAVITY CONTROLLER BLOCK DESCRIPTION
The block CAVITY CONTROLLER performs, in the real time, a control algorithm for

the superconductive cavity, in agreement with the requirements of the LLRF system design
parameters (compare chapter 1.2). There was implemented an 18-bit fixed point algorithm,
with the usage of the DSP components integrated into the FPGA Xilinx VirtexII-V3000 chip.

9.1 Functional structure
The block CAVITY CONTROLLER consists firm the synchronous module of numerical

processing (DSP CONTROLLER ALGORITHM) and from synchronization module of I/Q
detection (DRIVER MODULATOR). Its functional structure was presented in figure 19.

Fig. 19. Functional structure of the block CAVITY CONTROLLER

The module DSP CONTROLLER ALGORITHM processes the appropriate modulated
input signals provided from the block INPUT MULTIPLEXER (see chapter 11) in
accordance with the parameters provided by the block PROGRAMMABLE DATA
CONTROLLER (see chapter 5). The output of the module gives two output vectors:
• Basic control signal for vector modulator of the klystron (CTRL_I, CTRL_Q),
• Auxiliary signal after the detection (CTRL_DET_I, CTRL_DET_Q)

The module CONTROLLER GATE allows to activate the block CAVITY
CONTROLLER only during the active state of the time gate, and during the rest of time the
output data from the block have 0 value. The signal CAVITY TRIGGER initializes the gate for
a set period of time by the time range (R). The gate is timed with the signal CAVITY STROBE.
The time dependencies of these processes are presented in fig. 20.

Fig. 20. Time dependencies of signals for the time gate of the cavity controller

-26-

9.2 Programming description
The programming of the block CAVITY CONTROLLER relies on:

• Setting of appropriate parameters in the block PROGRAMMABLE DATA CONTROLLER
(see chapter 7.2.3). These are the following parameters: SET POINT, FEED FORWARD and
GAIN.

• Setting of the choice variant for control signals through the value CTRL_IQ_ENA:

o 0: choice of modulated signal CTRL_VMOD,

o 1: choice of pair of signals CTRL_IN_I and CTRL_IN_Q

• setting of activity time for the time gate in the register CTRL_ACTIVE in the range from 1 to
2047 periods of the signal CAVITY STROBE (or nominally every 1µs).
Setting the value to 0 in the register CTRL_ACTIVE is reserved only to the servicing purposes
– it keeps the gate active all the time, or the cavity controller DSP process is all the time
zeroed.

In the operation mode STEP OPERATON PROCESS, for the computer reading, via the
block COMMUNICATION CONTROLLER, the following register is made available with the
name identical as the cavity controller DSP processing source signal:

• register CTRL_VMOD controlling directly the signal CTRL_VMOD.

In the operation mode STEP OPERATON PROCESS, for the computer reading, via the
block COMMUNICATION CONTROLLER, the following current values of the DSP
processing are made accessible, via the registers of the names identical as the cavity controller
DSP signals:

• signals CTRL_I and CTRL_Q respectively through the registers CTRL_OUT_I and
CTRL_OUT_Q,

• signals CTRL_ DET_I and CTRL_ DET_Q respectively through the registers CTRL_DET_I
and CTRL_DET_Q,

For the servicing purposes, the access to the reading registers of the cavity controller
DSP process signals is available, via the block COMMUNICATION CONTROLLER. The
access may be done during the arbitrary moment of the SIMCON system activity. The
SIMCON users are strongly recommended to read these data from these registers only
during the SETUP MODE OPERATION.

-27-

10 DATA ACQUISITION (DAQ) BLOCK DESCRIPTION
The block DATA ACQUISITION (DAQ) allows for current monitoring of the most

important signals in the system. These may be input signals, as well as output, internal results
from the DSP processing in the algorithms of the cavity simulator and controller. It may
additionally fulfill the function of a programmable signal generator for tests of input and
output signals.

10.1 Functional structure
The block DAQ realizes parallel, synchronized registration of four data streams. Its

functional structure is presented in figure 21.

Fig. 21. Functional structure of the block DATA ACQUISITION

The choice of the source data streams is done in the block OUTPUT SWITCH
MATRIX. The block DAQ bases on four memory modules. Each memory (DAQ1 .. DAQ4) has
2048 words per 18-bits each. The acquisition process is controlled by the DAQ TIMER, in
agreement with the a priori set parameters. Triggering of the acquisition process is done by
the signal CAVITY TRIGGER. This signal may be delayed in the module START DELAY of a
preset number of clock signals CAVITY STROBE (1 MHz). In this way, one obtains the
possibility to shift the reading time window in relation to the trigger signal, with the step of
1µs.

Additionally, the block DAQ realizes the functions of programmable input test vectors in
the operation mode VECTOR_OPERATION. The data from the memory DAQ1 .. DAQ3 are
transmitted via the block INPUT MULTIPLEXERS respectively to a single input of the
cavity controller and to two inputs of the cavity simulator.

10.2 Programming description
The programming of the block DATA ACQUISITION allows to set operation modes,

for direct access to the memory areas, programming the conditions of the acquisition in the
real time and control of the status of the data acquisition process.

10.2.1 DAQ modes control

The basic operation modes of the DAQ block are set with the flag DAQ_PROC_REQ.

-28-

Fig. 22. Flow diagram for the choice of the operation mode of the DAQ block.

Acknowledgement of the required operation mode is obtained by reading of the identical
logical state of the flag DAQ_PROC_ACK. Till the time, both flags have the same states, the
DAQ block is in the state of switching and has no defined state. The block DAQ may be set in
one of three different operation modes, what was presented in fig. 22. The choice of the
operation mode in the real time is forced by the current state of the register MODE_OPER_SEL.
The particular operation modes are described in details in the next sub-chapters.

10.2.2 DAQ memory access

For the flag value DAQ_PROC_REQ=0 (and acknowledgement via setting of the value of
flag DAQ_PROC_ACK=0) the direct access to the memory DAQ1..DAQ4 is obtained in the write
or read mode. The base addresses are determined by the parameters DAQ1..DAQ4_MEM. Each
memory represents a continuous area of 2048 relative address positions counted from the
value of 0 till 2047 and including 18-bit words.

10.2.3 DAQ readout process

The operation mode DAQ_READOUT_PROCESS is obtained after programming the
value of the flag DAQ_PROC_REQ=1 (confirmed by setting the value of the flag
DAQ_PROC_ACK=1) and after fulfilling the condition, that no operation mode
OPER_MODE_VECTOR was programmed for the system in the register MODE_OPER_SEL.

Fig. 23. Time diagram of the data acquisition process in the block DAQ

-29-

The debated operation mode allows for parallel data acquisition of four data streams. It is
performed automatically, according to the a priori preset parameters. The key stages of the
control process for the data acquisition are presented in figure 23:
• A initialization of the global parameters for the acquisition process embraces setting of the

following parameters:
− flag DAQ_STROBE_ENA respectively to the value:

0: data will be registered with the speed of the system clock 40MHz (every 25ns),
1:data will be registered with the speed of the FEL clock 1MHz (every 1µs)

− register DAQ_TIMER_LIMIT to the value of successive number of data registered in the
DAQ memories in the range of from 0 to 2047. The set values are diminished by 1,
i.e. for the value 0 the registration of a single data is done.

− register DAQ_ DELAY to the value of signal delay CAVITY TRIGGER. The deley
means the number of clock signals of 1MHz, or a single step is 1µs. Assuming the
value of 0 means no additional delay for the signal CAVITY TRIGGER.

• B module initialization DAQ TIMER via setting DAQ_TIMER_START=1.

• C module activation DAQ TIMER via setting DAQ_TIMER_ENA=1. From this moment on,
the block waits for the signal CAVITY TRIGGER, which synchronously triggers the data
acquisition process.

• D automatic triggering of the delay process for the signal CAVITY TRIGGER. The delay
value is determined by the value of the register DAQ_DELAY

• E automatic triggering of the data acquisition process delayed by the signal CAVITY
TRIGGER. The counter starts DAQ_TIMER_COUNT which counts the amount of the
registered data.

• F automatic ending of the data acquisition process, after the counter DAQ_TIMER_COUNT
reaches the value set in the register DAQ_TIMER_LIMIT. The flag is set DAQ_TIMER_STOP=1.

• G checking reading of the flag value DAQ_TIMER_STOP. Reading of the value 0 means, that
the data reading process still lasts. Reading the value 1 means , that the DAQ process was
finished. Reading of the flag state may be done many times, waiting for the end moment of
the DAQ process.

• H stopping of the work of the module DAQ TIMER via setting DAQ_TIMER_ENA=0.

• I introduction of the module in the blocked state DAQ TIMER via setting
DAQ_TIMER_START=0. The flag is deleted DAQ_TIMER_STOP=0. In this operation mode of
the DAQ TIMER it is possible to switch the operation modes of the block DAQ, for example
to read the contents of the memories DAQ1..DAQ4 during operation mode
DAQ_MEMORY_ACCESS (see chapter 10.2.2).

If the global DAQ conditions remain unchanged, at the next initialization of the DAQ process,
the stage A may be omitted.

10.2.4 DAQ vector generator

The work in operation mode DAQ_VECTOR_GENERATOR relies on periodic
generation of the of the memory contents DAQ1.. DAQ3 synchronously with the signal CAVITY
TRIGGER. In the operational sense, the generators are acting identically as
CONTROL_DATA_TABLES. It requires only previous data loading in the operation mode
DAQ_MEMORY_ACCESS (see chapter 10.2.2).
The operation mode DAQ_VECTOR_GENERATOR is now in the testing period.

-30-

11 INPUT MULTIPLEXERS BLOCK DESCRIPTION
The input multiplexers allow for nondependent programmable choice of the input

control signals for the blocks CAVITY SIMULATOR and CAVITY CONTROLLER. Choice
of the multiplexer input signals provides the realization of the feedbacks (external analog,
internal digital) between the DSP blocks and nondependent control of the particular DSP
blocks (external analog, internal testing digital).

11.1 Functional structure
The block INPUT MULTIPLEXERS provides simultaneous choice of the two input

signals for the block CAVITY SIMULTOR and a single signal for the block CAVITY
CONTROLLER. Both multiplexers have 4 variants for the choice of the inputs. . The
functional structure of the block INPUT MULTIPLEXERS was presented in figure 24.

Fig. 24. Functional structure of the block INPUT MULTIPLEXERS

For each of the multiplexers, the following types of the input signals are distinguished:

• channel 0: realization of full resolution (18-bit) of the digital feedback between the DSP
blocks of the cavity controller and simulator,

• channel 1: digital simulation of the analog (14-bit) feedback, respectively between the DSP
blocks of cavity controller and simulator, simulating the resolution of the AD and DA
converters,

• channel 2: connection of respective signals from the AD converters from blocks DAC1 and
DAC2,

• channel 3: connection of blocks DAQ1..DAQ3 with the choice of the VECTOR operation
mode (see chapter 3.2.4) or zeroing the inputs for the rest of the operation modes.

-31-

11.2 Programming description
The choice of the source channel (compare figure 21) is done for each multiplexer

nondependently. The number of the chosen channel in the range of from 0 to 3 is programmed
in the block COMMUNICATION CONTROLLER:

• For the module CAVITY INPUT MUX in the register MUX_IN_CAVITY

• For the module CONTROLLER INPUT MUX in the register MUX_IN_CONTRL

For the servicing purposes the choice of the active multiplexer channel, via the block
COMMUNICATION CONTROLLER may be done during an arbitrary moment of the SIMCON
activity. The users are strongly recommended to set the registers only during the SETUP
MODE OPERATION.

-32-

12 OUTPUT SWITCH MATRIX BLOCK DESCRIPTION
The switching matrix realized in the block OUTPUT SWITCH MATRIX allows for

nondependent programmable choice of the output signals from the blocks PROGRAMMABLE
DATA CONTROLLER, CAVITY SIMULTOR, CAVITY CONTROLLER, ADC1 and ADC 2
and from the module TEST GENERATOR to the inputs of the blocks DAQ1..4 i DAC1..2.
The choice possibility for input signals of multiplexers provides realization of monitoring of
particular signals and choice of signals output in the analog form from the SIMCON syste to
the outer world, via the DAC converters.

12.1 Functional structure
The block OUTPUT SWITCH MATRIX is a switching matrix of 23 inputs to 6 outputs.

It enables a simultaneous choice of the output signals for four DAQ blocks and for two DAC
channels. All 23 input signals may be nondependently connected to each output. The
functional structure of the block OUTPUT SWITCH MATRIX is presented in figure 25.

The module TEST GENERATOR generates a rising saw-like signal initialized by the

signal CAVITY TRIGGER. The initialization of the generator causes its setting to 0 value and
next each clock of the signal SIMCON CLOCK increases this value by 1. The generator gives
18-bit values in a periodic way.

Fig. 25. Functional structure of the block INPUT MULTIPLEXERS

For each input channel there are distinguished the following kinds of the input signals of
18-bit in resolution:
• channel 0: test signal from module TEST GENERATOR,
• channel 1: external signal CAV_ OUT_I (compare chapter 8.1),
• channel 2: internal signal CAV_ OUT_Q (compare chapter 8.1),
• channel 3: internal signal CAV_ DETUN (compare chapter 8.1),

-33-

• channel 4: internal signal CAV_VMOD (see chapter 8.1),
• channel 5: internal signal CTRL_DET_I (compare chapter9.1),
• channel 6: internal signal CTRL_DET_Q (compare chapter9.1),
• channel 7: internal signal CTRL_I (compare chapter9.1),
• channel 8: internal signal CTRL_Q (compare chapter9.1),
• channel 9: internal signal TGAIN_I (compare chapter7.1),
• channel 10: internal signal TGAIN_Q (compare chapter7.1),
• channel 11: internal signal TSETPOINT_I (compare chapter7.1),
• channel 12: internal signal TSETPOINT_Q (compare chapter7.1),
• channel13 : internal signal TFEEDFORWARD _I (compare chapter7.1),
• channel 14: internal signal TFEEDFORWARD _Q (compare chapter7.1),
• channel 15: internal signal TBEAM _I (compare chapter7.1),
• channel 16: internal signal TBEAM _Q (compare chapter7.1),
• channel 17: internal signal CAV_MODE1 (compare chapter 8.1),
• channel 18: internal signal CAV_MODE1D (compare chapter 8.1),
• channel 19: internal signal CAV_MODE2 (compare chapter 8.1),
• channel 20: internal signal CAV_MODE2D (compare chapter 8.1),
• channel 21: internal signal CAV_MODE3 (compare chapter 8.1),
• channel 22: internal signal CAV_MODE3D (compare chapter 8.1),
• channel 23: input signal ADC1 (compare chapter5.1),
• channel 24: input signal ADC2 (compare chapter5.1),

12.2 Programming description
The choice of the source channel (compare figure 21) is done for each output of the

switching matrix nondependently. The number of the input channel in the range of from 0 to
22 is programmed in the block COMMUNICATION CONTROLLER:

• for the block DAQ1 for the register MUX_OUT_DAQ1,

• for the block DAQ2 for the register MUX_OUT_DAQ2,

• for the block DAQ3 for the register MUX_OUT_DAQ3,

• for the block DAQ4 for the register MUX_OUT_DAQ4,

• for the block DAC1 for the register MUX_OUT_DAC1,

• for the block DAC2 for the register MUX_OUT_DAC2.

The choice of improper channels numbers from the range 23-31 automatically switches the
channel 0. The users are strongly advised not to set the improper channel values.

For the servicing purposes, the choice of the active channels via the block COMMUNICATION
CONTROLLER may be done during an arbitrary moment of the SIMCON activity. The users
are strongly advised to set the choice for the multiplexer channel numbers only during
the SETUP MODE OPERATION.

-34-

13 PROGRAMMABLE I/O SPECIFICATION
This chapter presents the specification for the I/O space of the SIMCON system, which

is made accessible for the priority computer control via the block COMMUNICATION
CONTROLLER.

13.1 I/O specification list by addresses

CHECKSUM (0000H)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHECKSUM

CHECKSUM (RO) – contains constant hexadecimal control value: 00283DF5H.

CREATOR (0001H)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CREATOR

CREATOR (RO) – contains constant ASCII symbol which identifies the constructor (group
„ELHEP-WARSAW”): „EHWA”, what in the hexadecimal reading means the value:
45485741H.

IDENTIFIER (0002H)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDENTIFIER

IDENTIFIER (RO) – contains constant ASCII symbol identifying the system: „SIMC”, what
in the case of hexadecimal reading means: 53494D43H.

VERSION (0003H)

31 3029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIN_VERSION SUB_VERSION REV_VERSION

Packet VERSION – contains constant identifier of the version expressed hexadecimally:
• MAIN_VERSION (RO): contains value 01H,
• SUB_VERSION (RO): contains value 00H,
• REV_VERSION (RO): contains value 0001H,

USER_REG1 (0004H)

31 3029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USER_REG1

USER_REG1 (RW) – control-test register designed solely for the user.

-35-

USER_REG2 (0005H)

31 3029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USER_REG2

USER_REG2 (RW) – control-test register designed solely for the user.

STATUS (0006H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_IQ_ENA

 DATA_TAB_ENA
 SYS_PROC_ACK
 SYS_PROC_REQ
 MODE_OPER_SEL

Packet STATUS contains global components of the control of SIMCON system:
• MODE_OPER_SEL (RW): see chapter 3.2,
• SYS_PROC_REQ (RW): see chapter 3.2,
• SYS_PROC_ACK (RW): see chapter 3.2,
• DATA_TAB_ENA (RW): see chapter7.2.1.

STEP (0007H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 STEP_DSP_STOP

 STEP_DSP_RESET
 STEP_CAV_TRIG
 STEP_TIMER_ENA
 STEP_TIMER_STOP
 STEP_TIMER_START

Packet STEP contains components for the step control of the SIMCON system:
• STEP_TIMER_START (RW): see chapter4.3.2,
• STEP_TIMER_STOP (RO): see chapter 4.3.2,
• STEP_TIMER_ENA (RW): see chapter 4.3.2,
• STEP_CAV_TRIG (RW): see chapter 4.3.2,
• STEP_DSP_RESET (RW): see chapter 4.3.2,
• STEP_DSP_STOP (RO): see chapter 4.3.2.

-36-

DAQ (0008H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ_STROBE_ENA

 DAQ_PROC_ACK
 DAQ_PROC_REQ
 DAQ_TIMER_ENA
 DAQ_TIMER_STOP
 DAQ_TIMER_START

Packet DAQ contains control components for the DAQ process of the SIMCON system:
• DAQ_TIMER_START (RW): see chapter10.2.3,
• DAQ_TIMER_STOP (RO): see chapter10.2.3,
• DAQ_TIMER_ENA (RW): see chapter10.2.3,
• DAQ_PROC_REQ (RW): see chapter10.2.1,
• DAQ_PROC_ACK (RO): see chapter 10.2.1,
• DAQ_STROBE_ENA (RW): see chapter10.2.3.

SIGNAL_MUX (0009H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MUX_OUT_DAC2

 MUX_OUT_DAC1
 MUX_IN_CAVITY
 MUX_IN_CONTRL

Packet SIGNAL_MUX contains control components for input DSPs and DACs signal:
• MUX_IN_CONTRL (RW): see chapter11.2,
• MUX_IN_CAVITY (RW): see chapter 11.2,
• MUX_OUT_DAC1 (RW): see chapter12.2,
• MUX_OUT_DAC2 (RW): see chapter 12.2.

DAQ_MUX (000AH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MUX_OUT_DAQ1

 MUX_OUT_DAQ2
 MUX_OUT_DAQ3
 MUX_OUT_DAQ4

Packet DAQ_MUX contains control components for multiplexers for DAQ blocks:
• MUX_OUT_DAQ1 (RW): see chapter 12.2,
• MUX_OUT_DAQ2 (RW): see chapter 12.2,
• MUX_OUT_DAQ3 (RW): see chapter12.2,
• MUX_OUT_DAQ4 (RW): see chapter 12.2.

-37-

STEP_TIMER_LIMIT (000BH)

31302928 27 26 24 2325 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 STEP_TIMER_LIMIT

Register STEP_TIMER_LIMIT (RW) – see chapter4.3.2.

STEP_TIMER_COUNT (000CH)

31302928 27 26 24 2325 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 STEP_TIMER_COUNT

Register STEP_TIMER_COUNT (RO) – see chapter4.3.2.

DAQ_TIMER_LIMIT (000DH)

31302928 27 26 24 2325 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ_TIMER_LIMIT

Register DAQ_TIMER_LIMIT (RW) – see chapter 10.2.3.

DAQ_TIMER_COUNT (000EH)

31302928 27 26 24 2325 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ_TIMER_COUNT

Register DAQ_TIMER_COUNT (RW) – see chapter 10.2.3.

VM_DRV_START (000FH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 VM_DRV_START

Register VM_DRV_START (RW) – see chapter 7.2.2.

VM_DRV_COUNT (0010H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 VM_DRV_COUNT

Register VM_DRV_COUNT (RW) – see chapter 7.2.2.

VM_DRV_OFFSET (0011H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 VM_DRV_OFFSET

Register VM_DRV_OFFSET (RW) – see chapter8.2.

-38-

ADC1_GAIN (0012H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ADC1_GAIN

Register ADC1_GAIN (RW) – zob. rozdz.5.2.

ADC2_GAIN (0013H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ADC2_GAIN

Register ADC2_GAIN (RW) – zob. rozdz.5.2.

ADC1_OFFSET (0014H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ADC1_OFFSET

Register ADC1_OFFSET (RW) – zob. rozdz.5.2.

ADC2_OFFSET (0015H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ADC2_OFFSET

Register ADC2_OFFSET (RW) – zob. rozdz.5.2.

ADC_AVER (0016H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ADC_AVER

Register ADC_AVER (RW) – see chapter5.2.

ADC1_DATA (0017H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ADC1_DATA

Register ADC1_DATA (RO) – see chapter5.2.

ADC2_DATA (0018H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ADC2_DATA

Register ADC2_DATA (RO) – see chapter5.2.

-39-

CAV_STROBE_DELAY (0019H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_STROBE_DELAY

Register CAV_STROBE_DELAY (RW) – see chapter4.3.3.

CAV_TRIGER_DELAY (001AH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_TRIGGER_DELAY

Register CAV_TRIGGER_DELAY (RW) – see chapter4.3.3.

DAQ_DELAY (001BH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ_DELAY

Register DAQ_DELAY (RW) – see chapter4.3.3.

CTRL_ACTIVE (001CH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_ACTIVE

Register CTRL_ACTIVE (RW) – see chapter9.2.

SSETPOINT_I (001DH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SSETPOINT_I

Register SSETPOINT_I (RW) – see chapter 7.2.4.

SSETPOINT_Q (001EH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SSETPOINT_Q

Register SSETPOINT_Q (RW) – see chapter 7.2.4.

CAL1 (001FH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAL1

Register CAL1 (RW) – see chapter7.2.3.

-40-

CAL2 (0020H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAL2

Register CAL2 (RW) – see chapter 7.2.3.

SGAIN_I (0021H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SGAIN_I

Register SGAIN_I (RW) – see chapter 7.2.4.

SGAIN_Q (0022H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SGAIN_Q

Register SGAIN_Q (RW) – see chapter 7.2.4.

SFEEDFORWARD_I (0023H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SFEEDFORWARD_I

Register (RW) SFEEDFORWARD_I– see chapter 7.2.4.

SFEEDFORWARD_Q (0024H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SFEEDFORWARD_Q

Register SFEEDFORWARD_Q (RW) – see chapter 7.2.4.

CTRL_DET_I (0025H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_DET_I

Register CTRL_DET_I (RW) – see chapter9.2.

CTRL_DET_Q (0026H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_DET_Q

Register CTRL_DET_Q (RW) – see chapter9.2.

-41-

CTRL_VMOD (0027H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_VMOD

Register CTRL_VMOD (RW) – see chapter9.2.

CTRL_IN_I (0028H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_IN_I

Register CTRL_IN_I (RW) – see chapter9.2.

CTRL_IN_Q (0029H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_IN_Q

Register CTRL_IN_Q (RW) – see chapter9.2.

CTRL_OUT_I (002AH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_OUT_I

Register CTRL_OUT_I (RW) – see chapter9.2.

CTRL_OUT_Q (002BH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CTRL_OUT_Q

Register CTRL_OUT_Q (RW) – see chapter9.2.

CAV_DELAY (002CH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_DELAY_IN

 CAV_DELAY_OUT

Packet CAV_DELAY contains control components for the delays of input and output signals of
the DSP process of the cavity simulator:
• CAV_DELAY_IN (RW): see chapter 8.2,
• CAV_DELAY_OUT (RW): see chapter 8.2,

MATRIX_A12 (002DH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_A12

Register MATRIX_A12 (RW) – see chapter 7.2.3.

-42-

MATRIX_A1_21 (002EH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_A1_21

Register MATRIX_A1_21 (RW) – see chapter 7.2.3.

MATRIX_A1_22(002FH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_A1_22

Register MATRIX_A1_22 (RW) – see chapter 7.2.3.

MATRIX_A2_21 (0030H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_A2_21

Register MATRIX_A2_21 (RW) – see chapter 7.2.3.

MATRIX_A2_22 (0031H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_A2_22

Register MATRIX_A2_22 (RW) – see chapter 7.2.3.

MATRIX_A3_21 (0032H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_A3_21

Register MATRIX_A3_21 (RW) – see chapter 7.2.3.

MATRIX_A3_22 (0033H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_A3_22

Register MATRIX_A3_22 (RW) – see chapter 7.2.3.

MATRIX_B1_1 (0034H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_B1_1

Register MATRIX_B1_1 (RW) – see chapter 7.2.3.

-43-

MATRIX_B2_1 (0035H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_B2_1

Register MATRIX_B2_1 (RW) – see chapter 7.2.3.

MATRIX_B3_1 (0036H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MATRIX_B3_1

Register MATRIX_B3_1 (RW) – see chapter 7.2.3.

PARAM_H (0037H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 PARAM_H

Register PARAM_H (RW) – see chapter 7.2.3.

PARAM_P (0038H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 PARAM_P

Register PARAM_P (RW) – see chapter 7.2.3.

SBEAM_I (0039H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SBEAM_I

Register SBEAM_I (RW) – see chapter 7.2.3.

SBEAM_Q (003AH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 SBEAM_Q

Register SBEAM_Q (RW) – see chapter 7.2.3.

CAV_IN_I (003BH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_IN_I

Register CAV_IN_I (RW) – see chapter8.2.

-44-

CAV_IN_Q (003CH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_IN_Q

Register CAV_IN_Q (RW) – see chapter8.2.

CAV_OUT_I (003DH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_OUT_I

Register CAV_OUT_I (RO) – see chapter8.2.

CAV_OUT_Q (003EH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_OUT_Q

Register CAV_OUT_Q (RO) – see chapter8.2.

CAV_VMOD (003FH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_VMOD

Register CAV_VMOD (RO) – see chapter8.2.

CAV_DETUN (0040H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_DETUN

Register CAV_DETUN (RO) – see chapter8.2.

CAV_MODE1 (0041H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_MODE1

Register CAV_MODE1 (RO) – see chapter8.2.

CAV_MODE1D (0042H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_MODE1D

Register CAV_MODE1D (RO) – see chapter8.2.

-45-

CAV_MODE2 (0043H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_MODE2

Register CAV_MODE2 (RO) – see chapter8.2.

CAV_MODE2D (0044H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_MODE2D

Register CAV_MODE2D (RO) – see chapter8.2.

CAV_MODE3 (0045H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_MODE3

Register CAV_MODE3 (RO) – see chapter8.2.

CAV_MODE3D (0046H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_MODE3D

Register CAV_MODE3D (RO) – see chapter8.2.

CAV_VV (0047H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CAV_VV

Register CAV_VV (RO) – see chapter8.2.

GENER_STROBE_RANGE (0048H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 GENER_STROBE_RANGE

Register GENER_STROBE_RANGE (RW) – see chapter 4.3.1.

GENER_TRIGER_RANGE (0049H)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 GENER_TRIGGER_RANGE

Register GENER_TRIGGER_RANGE (RW) – see chapter 4.3.1.

-46-

TSETPOINT_I (0800H-0FFFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TSETPOINT_I

Table TSETPOINT_I (RW) – see chapter 7.2.4.

TSETPOINT_Q (1000H-17FFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TSETPOINT_Q

Table TSETPOINT_Q (RW) – see chapter 7.2.4.

TFEEDFORWARD_I (1800H-1FFFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TFEEDFORWARD_I

Table TFEEDFORWARD_I (RW) – see chapter 7.2.4.

TFEEDFORWARD_Q (2000H-27FFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TFEEDFORWARD_Q

Table TFEEDFORWARD_Q (RW) – see chapter 7.2.4.

TGAIN_I (2800H-2FFFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TGAIN_I

Table TGAIN_I (RW) – see chapter 7.2.4.

TGAIN_Q (3000H-37FFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TGAIN_Q

Table TGAIN_Q (RW) – see chapter 7.2.4.

TBEAM_I (3800H-3FFFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TBEAM_I

Table TBEAM_I (RW) – see chapter 7.2.3.

-47-

TBEAM_Q (4000H-47FFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 TBEAM_Q

Table TBEAM_Q (RW) – see chapter 7.2.3.

DAQ1 (4800H-4FFFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ1

Table DAQ1 (RW) – see chapter10.2.

DAQ2 (5000H-57FFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ2

Table DAQ2 (RW) – see chapter 10.2.

DAQ3 (5800H-5FFFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ3

Table DAQ3 (RW) – see chapter 10.2.

DAQ4 (6000H-67FFH)

31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 DAQ4

Table DAQ4 (RW) – see chapter 10.2.

13.2 I/O specification list by names

CAV_MODE1D (0042H) ...45 ADC_AVER (0016H) .. 39
CAV_MODE2 (0043H) ..46 ADC1_DATA (0017H) .. 39
CAV_MODE2D (0044H) ...46 ADC1_GAIN (0012H) ... 39
CAV_MODE3 (0045H) ..46 ADC1_OFFSET (0014H).. 39
CAV_MODE3D (0046H) ...46 ADC2_DATA (0018H) .. 39
CAV_OUT_I (003DH)..45 ADC2_GAIN (0013H) ... 39
CAV_OUT_Q (003EH) ..45 ADC2_OFFSET (0015H).. 39
CAV_VMOD (003FH)..45 CAV_DELAY (002CH).. 42
CAV_VV (0047H) ..46 CAV_DELAY_IN in CAV_DELAY (002CH) 42
CAV_STROBE_DELAY (0019H)40 CAV_DELAY_OUT in CAV_DELAY (002CH) 42
CAV_TRIGER_DELAY (001AH)40 CAV_DETUN (0040H).. 45
CHECKSUM (0000H)..35 CAV_IN_I (003BH) ... 44
CREATOR (0001H)...35 CAV_IN_Q (003CH) ... 45
CTRL_ACTIVE (001CH) ...40 CAV_MODE1 (0041H) ... 45

-48-

-49-

CTRL_DET_I (0025H).. 41
CTRL_DET_Q (0026H) .. 41
CTRL_OUT_I (002AH) ... 42
CTRL_OUT_Q (002BH) ... 42
CTRL_VMOD (0027H) ... 42
DAQ (0008H).. 37
DAQ_DELAY (001BH) ... 40
DAQ_MUX (000AH) ... 37
DAQ_PROC_ACK in DAQ (0008H) 37
DAQ_PROC_REQ in DAQ (0008H)........................ 37
DAQ_STROBE_ENA in DAQ (0008H).................... 37
DAQ_TIMER_COUNT (000EH) 38
DAQ_TIMER_ENA in DAQ (0008H) 37
DAQ_TIMER_LIMIT (000DH)....................................... 38
DAQ_TIMER_START in DAQ (0008H) 37
DAQ_TIMER_STOP in DAQ (0008H) 37
DAQ1 (4800H-4FFFH) ... 48
DAQ2 (5000H-57FFH) ... 48
DAQ3 (5800H-5FFFH) ... 48
DAQ4 (6000H-67FFH) ... 48
DATA_TAB_ENA in STATUS (0006H) 36
GENER_STROBE_RANGE (0048H) 46
GENER_TRIGER_RANGE (0049H) 46
IDENTIFIER (0002H) 35
MAIN_VERSION in VERSION (0003H) 35
MATRIX_A1_21 (002EH) 43
MATRIX_A1_22(002FH) 43
MATRIX_A12 (002DH) 42
MATRIX_A2_21 (0030H) 43
MATRIX_A2_22 (0031H) 43
MATRIX_A3_21 (0032H) 43
MATRIX_A3_22 (0033H) 43
MATRIX_B1_1 (0034H) 43
MATRIX_B2_1 (0035H) 44
MATRIX_B3_1 (0036H) 44
MODE_OPER_SEL in STATUS (0006H) 36
MUX_IN_CAVITY in SIGNAL_MUX (0009H)
MUX_IN_CONTRL in SIGNAL_MUX (0009H) 37
MUX_OUT_DAC2 in SIGNAL_MUX (0009H) 37
MUX_OUT_DAC1 in SIGNAL_MUX (0009H) 37
MUX_OUT_DAQ1 in DAQ_MUX (000AH) 37
MUX_OUT_DAQ2 in DAQ_MUX (000AH) 37

MUX_OUT_DAQ3 in DAQ_MUX (000AH) 7
MUX_OUT_DAQ4 in DAQ_MUX (000AH) 7
PARAM_H (0037H) 4
PARAM_P (0038H) 4
REV_VERSION ERSION (0003H) 5
SBEAM_I (0039H) 4
SBEAM_Q (003AH) 4
SGAIN_I (0021H) 0
SGAIN_Q (0022H) 1
SFEEDFORWARD_I (0023H) 1
SFEEDFORWARD_Q (0024H)
SIGNAL_MUX (0009H) 7
SSETPOINT_I (001DH) 0
SSETPOINT_Q (001EH) 0
STATUS (0006H) 6
STEP (0007H) 6
STEP_CAV_TRIG TEP (0007H) 6
STEP_DSP_RESET in STEP (0007H) 6
STEP_DSP_STOP in STEP (0007H) 6
STEP_TIMER_COUNT (000CH) 8
STEP_TIMER_ENA in STEP (0007H) 6
STEP_TIMER_LIMIT (000BH) 8
STEP_TIMER_START in STEP (0007H) 6
STEP_TIMER_STOP in STEP (0007H) 6
SUB_VERSION ERSION (0003H) 5
SYS_PROC_ACK in STATUS (0006H) 6
SYS_PROC_REQ TATUS (0006H) 6
TBEAM_I (3800H-3FFFH) 7
TBEAM_Q (4000H-47FFH) 8
TGAIN_I (2800H-2FFFH) 7
TGAIN_Q (3000H-37FFH) 7
TFEEDFORWARD_I (1800H-1FFFH) 7
TFEEDFORWARD_Q (2000H-27FFH) 7
TSETPOINT_I (0800H-0FFFH) 6
TSETPOINT_Q (1000H-17FFH) 7
USER_REG1 (0004H) 5
USER_REG2 (0005H) 6
VERSION (0003H) 5
VM_DRV_COUNT (0010H) 8
VM_DRV_OFFSET (0011H) 8
VM_DRV_START (000FH) 8

...
.......................

...
..

...
...
...
...
...

...

...

...
.....................

............... 37
.............

..............

..............
...................
...................

....................3

....................3
...4
...4

 in V3
...4

..4
..4
..4

.......................................4
.....................................41

...3
..4
...4

..3
...3

 in S3
.........................3

...........................3
..................................3

..........................3
......................................3

......................3
........................3

 in V3
........................3

 in S3
..4
...4

..4
..4

..........................4
.........................4

.....................................4
...................................4

..3

..3
..3

..3
...3

...3

A EPP INTERFACE
Realization of the physical communication layer between the FPGA chip situated on the

XtremeDSP Development Kit and a PC computer, was established with the use of the EPP
communication standard (Enhanced Parallel Port) number 1.7 [10]. The used configuration
offers the maximum transfer of 500kB/s. The hardware interface to the FPGA Xilinx Virtex-II
chip bases on the standard TTL circuits was presented in figure 26.

Fig. 26. EPP - FPGA Xilinx Virtex-II chip interface circuit layout

The chip U3 (74F641) realizes a bidirectional buffer and voltage converter. The EPP standard
uses the voltage range of 0-5V, but the Vitrex-II accepts signals in the range of 0-3.3V. The
technique of open collector was used in the FPGA chip. A similar solution was applied for the
control signals, using the gates 74F07.

Via the choice of the jumper JP1 the circuit may work in two operation modes with
acknowledgement of the operation by the signal WAIT:

• autonomous, where the acknowledgement of the access is generated automatically in
the delay circuit realized on the C1 capacitor,

• programmable, where the acknowledgement signal is provided by the FPGA Xilinx.

The transmission standard bases on sending of 8-bit words or as data (active signal DATA
STROBE) or as addresses (active signal ADDRESS STROBE). Sending of more complex
packets of information to the address space of the FPGA is realized as a sequence of 8 bytes.
Two first bytes carry the information about the 16-bit address, four following bytes contain
the value of the data word (respectively write and read), next byte is a checksum, the last byte

-50-

returns the state word of the realized transmission (among others, acknowledgement of the
realized transmission by the FPGA chip). An example of the write sequence for 32 bit data of
the value 42372C21(hex) under the 16 bit address 160B(hex) was presented in figure 27.

EPP access: II Address EPP access: checking

II
 o

pe
ra

tio
n

EPP access: II Data

Fig. 27. Exemplary signal sequence for data transmission (write operation) via the EPP
interface to the II standard implemented in the FPGA Xilinx Virtex-II chip.

-51-

B BenONE Overview
The BenONE - PCI [9] is a PCI, single slot DIME-II motherboard. It is classed as an

entry-level motherboard and is capable of hosting a single width DIME-II module. The board
has no FPGA resources available to the user; all resources are addressed on an attached
module. It does however have the capability of a secondary connection to a host PC, for
example USB (primary connection being PCI). This is achieved by the addition of an IO
module on the motherboard. Another feature of the BenONE – PCI is that it can be used in
standalone solutions using Compact Flash technology. The Compact Flash is a specific option
that is not included as standard in the XtremeDSP Development Kit. The BenONE also
performs housekeeping functions of the Programmable Power Supplies and PCI bus. Finally,
connection to further Nallatech motherboards and modules is made possible by the inclusion
of a pin header connection direct to the module site.

The key features of the BenONE - PCI are:
• PCI/Control Xilinx® Spartan-II FPGA, pre-configured with PCI/Control Firmware,
• Single DIME-II module expansion slot,
• 32 bit/33MHz PCI interface with expansion to 64bit/33Mhz via firmware upgrade,
• Two on-board clock nets,
• 2 Programmable clock sources,
• 1 Fixed Oscillator socket,
• Status LEDs,
• JTAG configuration headers,
• User selectable pin headers,
• Fixed or fully programmable power supplies,
• Nallatech FUSE Software for FPGA configuration over PCI,
• Nallatech FUSE Software Library for board interfacing & control,
• USB 1.1 I/O Module interface,
• Battery Backup for Virtex-II® Encryption Keys,
• Compact Flash using Xilinx® System Ace chipset,
• External oscillator input via mini coax connector.

Fig. 28. BenONE - PCI Functional Diagram

-52-

C BenADDA Overview
The BenADDA DIME-II [9] module provides high-speed digital-to-analogue and

analogue-to-digital conversion capability. As part of the scalable DIME-II family, the
BenADDA can be easily integrated into systems, through the range of available DIME-II
motherboards and associated software/firmware.

The module contains two high-speed ADC and two high-speed DAC channels, which
allow for flexible, high-resolution data conversion for both baseband and IF applications. Key
to the BenADDA’s performance is the on-board Xilinx® Virtex™-II FPGA which provides
you with a powerful data processing resource. Some of the main application areas for the
BenADDA include mobile communications systems, infrared imaging, wideband cable
systems and multi-channel, multi-mode receivers.

The key features of the XtremeDSP Development Kit (for Virtex V3000)are:
• On-board Xilinx Virtex-II FPGA,
• Various FPGA device packages, sizes and speed grade options available,
• Compatible with Nallatech’s FUSE™ reconfigurable computing operating system,
• Two independent analogue capture channels,
• 2x 14-Bit ADC Resolution, up to 105MSPS per channel sampling rate,
• Two independent channels to extract analogue data,
• 2x 14-Bit DAC Resolution, up to 160MSPS per channel sampling rate,
• 8MB of ZBT SRAM memory, in two independent banks,
• Nallatech ZBT SRAM interfacing IP Core available,
• Multiple Clocking Options: Internal & External,
• Example designs and source code included,
• Status LEDs.

Fig. 29. BenADDA Functional Diagram

-53-

D Exemplary scope pictures of SIMCON system outputs

Fig. 30. I and Q outputs of cavity simulator driven by feedback and supported by feedforward

Fig. 31. I and Q outputs of cavity controller operated in feedback and feedforward mode

I

Q

I

Q

-54-

Fig. 32. I and Q outputs of cavity simulator driven by low gain feedback.

Fig. 33. I and Q outputs of cavity controller operated in low gain feedback mode.

I

Q

I

Q

-55-

Fig. 34. I and Q outputs of cavity controller operated in delay loop condition.

Fig. 35. I and Q outputs of cavity controller with the beam switched on during the flattop.

I

Q

BEAM

I

Q

-56-

Fig. 36. Cavity simulator output for IF modulated signal (presented in DPO scope mode).

Fig. 37. Cavity simulator output for detuning signal related to I component of envelope.

I

Detuning

-57-

-58-

1. P.Rutkowski, R.Romaniuk, K.T.Pozniak, T.Jezynski, P.Pucyk, M.Pietrusinski,
S.Simrock: “FPGA Based TESLA Cavity SIMCON DOOCS Server Design,
Implementation and Application”, TESLA Technical Note, 2003-32

3. K.T.Pozniak, T.Czarski, R.Romaniuk: “Functional Analysis of DSP Blocks in FPGA
Chips for Application in TESLA LLRF System”, TESLA Technical Note, 2003-29

5. T.Czarski, R.S.Romaniuk, K.T.Pozniak S.Simrock “Cavity Control System Essential
Modeling For TESLA Linear Accelerator”, TESLA Technical Note, 2003-08

References

2. K.T.Pozniak, R.Romaniuk, K.Kierzkowski: “Parameterized Control Layer of FPGA
Based Cavity Controller and Simulator for TESLA Test Facility”, TESLA Technical
Note, 2003-30

4. T.Czarski, K.T.Pozniak, R.Romaniuk, S.Simrock: “TESLA Cavity Modeling and
Digital Implementation with FPGA Technology Solution For Control System Purpose”,
TESLA Technical Note, 2003-28

6. T.Czarski, R.S.Romaniuk, K.T. Pozniak “Cavity Control System, Models Simulations
For TESLA Linear Accelerator ”, TESLA Technical Note, 2003-09

7. K.T.Poźniak, M.Bartoszek M.Pietrusiński: “Internal Interface for RPC Muon Trigger
electronics at CMS experiment”, Proceedings of SPIE, Photonics Applications II In
Astronomy, Communications, Industry and High Energy Physics Experiments, Vol.
5484, 2004

8. http://www.xilinx.com/ [Xilinx Homepage]
9. http:// www.nallatech.com/ [Nallatech Homepage]
10. http:// http://www.beyondlogic.org/epp/ [EPP - Enhanced Parallel Port description]

	CAVITY SIMULATOR AND CONTROLLER ALGORITHM
	Cavity simulator algorithm
	Cavity controller algorithm
	Simulation procedure

	GENERAL DESCRIPTION OF SIMCON SYSTEM
	Hardware structure
	Functional structure

	STATUS CONTROLLER BLOCK DESCRIPTION
	Functional description
	Programming description
	SETUP mode operation
	INTERNAL mode operation
	EXTERNAL mode operation
	VECTOR mode operation
	STEP mode operation

	TIMING CONTROLLER BLOCK DESCRIPTION
	Functional structure
	Cavity timing multiplexer description
	Programming description
	Internal timing generation
	Step operation process
	Time adjustment of the trigger signals

	INPUT PROCESSING BLOCK DESCRIPTION
	Functional structure
	Programming description

	OUTPUT PROCESSING BLOCK DESCRIPTION
	Functional structure
	Programming description

	PROGRAMMABLE DATA CONTROLLER
	Functional structure
	Programming description
	Dynamic data multiplexer
	Modulator driver
	Cavity simulator programmable data packet
	Cavity controller programmable data packet

	CAVITY SIMULATOR BLOCK DESCRIPTION
	Functional structure
	Programming description

	CAVITY CONTROLLER BLOCK DESCRIPTION
	Functional structure
	Programming description

	DATA ACQUISITION (DAQ) BLOCK DESCRIPTION
	Functional structure
	Programming description
	DAQ modes control
	DAQ memory access
	DAQ readout process
	DAQ vector generator

	INPUT MULTIPLEXERS BLOCK DESCRIPTION
	Functional structure
	Programming description

	OUTPUT SWITCH MATRIX BLOCK DESCRIPTION
	Functional structure
	Programming description

	PROGRAMMABLE I/O SPECIFICATION
	I/O specification list by addresses
	
	CHECKSUM (0000H)
	CHECKSUM

	CREATOR (0001H)
	CREATOR

	IDENTIFIER (0002H)
	IDENTIFIER

	VERSION (0003H)
	MAIN_VERSION
	SUB_VERSION
	REV_VERSION

	USER_REG1 (0004H)
	USER_REG1

	USER_REG2 (0005H)
	USER_REG2

	STATUS (0006H)
	CTRL_IQ_ENA
	DATA_TAB_ENA
	SYS_PROC_ACK
	SYS_PROC_REQ
	MODE_OPER_SEL

	STEP (0007H)
	STEP_DSP_STOP
	STEP_DSP_RESET
	STEP_CAV_TRIG
	STEP_TIMER_ENA
	STEP_TIMER_STOP
	STEP_TIMER_START

	DAQ (0008H)
	DAQ_STROBE_ENA
	DAQ_PROC_ACK
	DAQ_PROC_REQ
	DAQ_TIMER_ENA
	DAQ_TIMER_STOP
	DAQ_TIMER_START

	SIGNAL_MUX (0009H)
	MUX_OUT_DAC2
	MUX_OUT_DAC1
	MUX_IN_CAVITY
	MUX_IN_CONTRL

	DAQ_MUX (000AH)
	MUX_OUT_DAQ1
	MUX_OUT_DAQ2
	MUX_OUT_DAQ3
	MUX_OUT_DAQ4

	STEP_TIMER_LIMIT (000BH)
	STEP_TIMER_LIMIT

	STEP_TIMER_COUNT (000CH)
	STEP_TIMER_COUNT

	DAQ_TIMER_LIMIT (000DH)
	DAQ_TIMER_LIMIT

	DAQ_TIMER_COUNT (000EH)
	DAQ_TIMER_COUNT

	VM_DRV_START (000FH)
	VM_DRV_START

	VM_DRV_COUNT (0010H)
	VM_DRV_COUNT

	VM_DRV_OFFSET (0011H)
	VM_DRV_OFFSET

	ADC1_GAIN (0012H)
	ADC1_GAIN

	ADC2_GAIN (0013H)
	ADC2_GAIN

	ADC1_OFFSET (0014H)
	ADC1_OFFSET

	ADC2_OFFSET (0015H)
	ADC2_OFFSET

	ADC_AVER (0016H)
	ADC_AVER

	ADC1_DATA (0017H)
	ADC1_DATA

	ADC2_DATA (0018H)
	ADC2_DATA

	CAV_STROBE_DELAY (0019H)
	CAV_STROBE_DELAY

	CAV_TRIGER_DELAY (001AH)
	CAV_TRIGGER_DELAY

	DAQ_DELAY (001BH)
	DAQ_DELAY

	CTRL_ACTIVE (001CH)
	CTRL_ACTIVE

	SSETPOINT_I (001DH)
	SSETPOINT_I

	SSETPOINT_Q (001EH)
	SSETPOINT_Q

	CAL1 (001FH)
	CAL1

	CAL2 (0020H)
	CAL2

	SGAIN_I (0021H)
	SGAIN_I

	SGAIN_Q (0022H)
	SGAIN_Q

	SFEEDFORWARD_I (0023H)
	SFEEDFORWARD_I

	SFEEDFORWARD_Q (0024H)
	SFEEDFORWARD_Q

	CTRL_DET_I (0025H)
	CTRL_DET_I

	CTRL_DET_Q (0026H)
	CTRL_DET_Q

	CTRL_VMOD (0027H)
	CTRL_VMOD

	CTRL_IN_I (0028H)
	CTRL_IN_I

	CTRL_IN_Q (0029H)
	CTRL_IN_Q

	CTRL_OUT_I (002AH)
	CTRL_OUT_I

	CTRL_OUT_Q (002BH)
	CTRL_OUT_Q

	CAV_DELAY (002CH)
	CAV_DELAY_IN
	CAV_DELAY_OUT

	MATRIX_A12 (002DH)
	MATRIX_A12

	MATRIX_A1_21 (002EH)
	MATRIX_A1_21

	MATRIX_A1_22(002FH)
	MATRIX_A1_22

	MATRIX_A2_21 (0030H)
	MATRIX_A2_21

	MATRIX_A2_22 (0031H)
	MATRIX_A2_22

	MATRIX_A3_21 (0032H)
	MATRIX_A3_21

	MATRIX_A3_22 (0033H)
	MATRIX_A3_22

	MATRIX_B1_1 (0034H)
	MATRIX_B1_1

	MATRIX_B2_1 (0035H)
	MATRIX_B2_1

	MATRIX_B3_1 (0036H)
	MATRIX_B3_1

	PARAM_H (0037H)
	PARAM_H

	PARAM_P (0038H)
	PARAM_P

	SBEAM_I (0039H)
	SBEAM_I

	SBEAM_Q (003AH)
	SBEAM_Q

	CAV_IN_I (003BH)
	CAV_IN_I

	CAV_IN_Q (003CH)
	CAV_IN_Q

	CAV_OUT_I (003DH)
	CAV_OUT_I

	CAV_OUT_Q (003EH)
	CAV_OUT_Q

	CAV_VMOD (003FH)
	CAV_VMOD

	CAV_DETUN (0040H)
	CAV_DETUN

	CAV_MODE1 (0041H)
	CAV_MODE1

	CAV_MODE1D (0042H)
	CAV_MODE1D

	CAV_MODE2 (0043H)
	CAV_MODE2

	CAV_MODE2D (0044H)
	CAV_MODE2D

	CAV_MODE3 (0045H)
	CAV_MODE3

	CAV_MODE3D (0046H)
	CAV_MODE3D

	CAV_VV (0047H)
	CAV_VV

	GENER_STROBE_RANGE (0048H)
	GENER_STROBE_RANGE

	GENER_TRIGER_RANGE (0049H)
	GENER_TRIGGER_RANGE

	TSETPOINT_I (0800H-0FFFH)
	TSETPOINT_I

	TSETPOINT_Q (1000H-17FFH)
	TSETPOINT_Q

	TFEEDFORWARD_I (1800H-1FFFH)
	TFEEDFORWARD_I

	TFEEDFORWARD_Q (2000H-27FFH)
	TFEEDFORWARD_Q

	TGAIN_I (2800H-2FFFH)
	TGAIN_I

	TGAIN_Q (3000H-37FFH)
	TGAIN_Q

	TBEAM_I (3800H-3FFFH)
	TBEAM_I

	TBEAM_Q (4000H-47FFH)
	TBEAM_Q

	DAQ1 (4800H-4FFFH)
	DAQ1

	DAQ2 (5000H-57FFH)
	DAQ2

	DAQ3 (5800H-5FFFH)
	DAQ3

	DAQ4 (6000H-67FFH)
	DAQ4

	I/O specification list by names
	
	
	
	EPP INTERFACE
	BenONE Overview
	BenADDA Overview
	Exemplary scope pictures of SIMCON system outputs
	
	
	�
	�
	�
	�
	�
	�
	�
	�
	References

