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Abstract

The TESLA Test Facility (TTF) linear accelerator
(linac) at DESY has been extended to drive a new Free
Electron Laser facility (VUV-FEL) in the wavelength
range from the vacuum-ultraviolet (VUV) to soft X-
rays. With the upgraded photo injector and increased
electron beam energy up to 1 GeV, wavelengths down
to 6 nm can be achieved. During the commissioning
phase of the VUV-FEL the emphasis is on lasing with
a wavelength of 30 nm.
A high quality electron beam is required for the las-
ing process. At the VUV-FEL the design values are
2mmmrad normalized transverse emittance, 2500 A
peak current, and 0.1% energy spread.
In order to understand and optimize the electron beam,
precise measurements of the beam properties are es-
sential. In this diploma thesis, measurements of the
transverse emittance during the commissioning of the
VUV-FEL are presented. The transverse beam distrib-
ution is measured using optical transition radiation at
four positions along the linac. The emittance is de-
termined from the measured distributions using two
methods: a fit of the Twiss parameters together with
the emittance to the measured beam sizes, and as a
second method, the tomographic reconstruction of the
phase space density distributions using the Maximum
Entropy Algorithm.

Zusammenfassung

Um eine neue Freie-Elektronen Laser Anlage zu be-
treiben, ist der Linearbeschleuniger der TESLA Test
Anlage (TTF) am DESY erweitert worden. Mit dem
verbesserten Photoinjektor und einer erhöhten Strahl-
energie von bis zu 1GeV kann FEL-Strahlung im Wel-
lenlängenbereich vom Vakuum-Ultraviolett (VUV) bis
zu weicher Röntgenstrahlung (6 nm) erzeugt werden.
Während der Inbetriebnahme des VUV-FEL wird ein
Laserbetrieb mit einer Wellenlänge von 30 nm ange-
strebt.
Eine hohe Strahlqualität ist wichtig für den Laserpro-
zess. Am VUV-FEL liegen die Designwerte der nor-
mierten transversalen Strahlemittanz bei 2 mmmrad,
des Spitzenstroms bei 2500A und der Energiebreite bei
0.1%.
Für das Verständnis und zum Optimieren des
Elektronenstrahls sind präzise Messungen der
Elektronenstrahl-Eigenschaften essentiell. Im Rah-
men dieser Diplomarbeit werden Messungen der
transversalen Strahlemittanz während der Inbetrieb-
nahme präsentiert. Die transversale Strahlverteilung
wird an vier Positionen im Beschleuniger mit Hilfe
von optischer Übergangsstrahlung gemessen. Aus
diesen Verteilungen wird die Strahlemittanz über
zwei verschiedene Methoden bestimmt: aus einem
Fit der Twiss Parameter und der Strahlemittanz
an die gemessenen Strahlbreiten und zum ande-
ren aus der tomographischen Rekonstruktion der
Phasenraum-Dichteverteilung unter Benutzung des
Maximum-Entropie-Algorithmus.
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1 Introduction

Synchrotron radiation is a powerful diagnostic tool ap-
plied in many different disciplines ranging from physics,
chemistry, and biology to material sciences, geophysics, and
medical diagnostics. It offers a broad spectrum, ranging
from the infrared to the hard X-ray regime. For many ex-
periments the relevant figure of merit of a synchrotron light
source is the brilliance, which is defined for transversely co-
herent radiation sources as

brilliance =
spectral flux�

λ
2

�2 . (1.1)

Synchrotron radiation is generated when high energy
electrons are deflected in magnetic fields. In the first gener-
ation of light sources the synchrotron light was generated in
bending magnets. Higher brilliances can be reached using
wigglers and undulators1 instead of bending magnets.

In free electron lasers (FEL), often considered to be the
fourth generation of light sources, the electrons radiate co-
herently. This yields an increase of many orders of magni-
tude in brilliance. An overview of the brilliance for differ-
ent types of synchrotron light sources is given in Fig. 1.1.
The radiation field generated inside an undulator magnet
interacts with the electron beam. This interaction can be
achieved in two different ways. In a low-gain FEL an opti-
cal cavity similar to that in a classical laser is used to am-
plify the synchrotron light in many reflection cycles. This
works only for wavelengths in the infrared, visible, and
soft ultraviolet regime. For shorter wavelengths no suit-
able backward reflecting mirrors are available. Therefore,
FELs in the X-ray regime need to achieve laser amplifica-
tion and saturation within a single pass of the electron beam
through the undulator (high-gain FEL). The interaction
of the undulator radiation with the electron bunches pro-
duces a longitudinal charge density modulation inside the
electron bunches, called microbunching. Many electrons in
these microbunches start to radiate coherently, which leads
to an exponential growth of the radiation intensity along
the undulator.

One way to initialize the lasing process is through Self-
Amplified Spontaneous Emission (SASE). Spontaneous un-
dulator radiation with a wavelength λph fulfilling the reso-
nance condition of the undulator

λph =
λu

2γ2
rel

�
1 +

K2

2

�
with K =

eBuλu

2πmec
(1.2)

is amplified along the undulator. Here λu is the period
length of the undulator, γrel = E/mec

2, E the electron
energy, e the elementary charge, c the speed of light in
vacuum, and Bu the peak magnetic field in the undula-
tor. Equation (1.2) shows that the photon wavelength λph

can easily be tuned by changing the energy of the electron
beam.

The lasing process in a high gain FEL depends critically
on the quality of the driving electron beam. The gain G
of an external electromagnetic wave travelling along the
undulator is defined as (high gain definition)

G =
field energy at exit

initial field energy
.

1 Structures with periodically alternating transverse magnetic fields.

Energy [eV]

Figure 1.1: Comparison of the peak brilliance of conven-
tional synchrotron radiation sources with SASE free elec-
tron lasers.

In case of a mono-energetic electron beam matching the res-
onance energy and neglecting three dimensional effects, the
gain G increases exponentially along the undulator [SSY99]

G(z) ∝ exp

�
z

LG

�
for z � LG (1.3)

and the gain length LG is proportional to

LG ∝
�
σ2

t

I0

� 1
3

. (1.4)

The quantity σt denotes the transverse rms beam size and
I0 is the peak current. We can realize that a high peak
current and a small transverse beam size are needed to
obtain a short gain length. As we will see later, the beam
size is proportional to the square root of the transverse
beam emittance ε, a quantity describing the occupied area
in the transverse phase space.

In a real accelerator, however, the beam is not mono-
energetic and three dimensional effects like the beam emit-
tance cannot be neglected. A beam energy spread induces a
longitudinal velocity spread, which drastically increases the
gain length [SSY99]. The transverse beam emittance leads
to an additional longitudinal velocity spread, since particles
with the same energies but different angles with respect to
the design orbit have different longitudinal velocities. This
velocity spread can be considered as an additional contribu-
tion to the energy spread. Assuming a Gaussian transverse
phase space distribution, this contribution is proportional
to the square of the emittance [SSY99]. Therefore, an elec-
tron beam with a small energy spread and a small trans-
verse emittance is needed to drive a free electron laser.

1



1 Introduction

(Seeding section)
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Figure 1.2: Schematic layout of the VUV-FEL. The electron source is an RF photo-injector. The electrons are accelerated
in five modules (ACC1 to ACC5) up to an energy of 800MeV. In order to reach energies of up to 1 GeV two additional
modules ACC6 and ACC7 can be added at a later stage. The bunches are longitudinally compressed in two bunch
compressors BC2 and BC3. The locations of the diagnostic sections dedicated to emittance measurements (BC2 and
SUND diagnostic section) are indicated in the figure. The total length is about 250m.

The high demands on the beam quality make accurate
beam diagnostic tools essential for the understanding and
optimization of the machine. Within this diploma thesis
measurements of the transverse emittance at the VUV-
FEL at DESY during the commissioning of the machine
are presented. The measurements are performed using a
four screen method. At optical transition radiation screens
at four different positions along the beam line the spatial
beam distribution is measured. From these measurements
the emittance is determined in two different ways: by a
fit of the Twiss parameters and the emittance to the mea-
sured beam sizes, and from the tomographic reconstruction
of the phase space density distribution using the Maximum
Entropy Algorithm.

1.1 The VUV-FEL

The VUV-FEL2 [The02] is a new SASE FEL user facility
at DESY (Hamburg). It is an upgrade of the TESLA Test
Facility (TTF) linac3, which was operated until November
2002 to perform various tests related to the TESLA4 Lin-
ear Collider Project [B+01] and to drive a SASE FEL at
a wavelength range of 120 nm to 80 nm [A+02a],[A+02b].
With an upgraded photo injector and an increased elec-
tron beam energy (up to 1GeV) wavelengths down to 6 nm
will be achievable in the future. During the commissioning
phase of the VUV-FEL the emphasis was on lasing with a
wavelength of 30 nm.

The VUV-FEL consists of a laser driven photocathode
RF gun, five accelerator modules (ACC1 to ACC5) each
having eight superconducting 9-cell niobium cavities with
a resonance frequency of 1.3GHz, two magnetic chicane
bunch compressors (BC2 and BC35), and an undulator sec-
tion composed of six 4.5m long undulator segments. Two
additional accelerator modules (ACC6 and ACC7) can be

2 Vacuum ultra-violet free electron laser
3 linear accelerator
4 TeV Energy Superconducting Linear Accelerator
5 To be compatible with the TTF1 nomenclature, the numeration

begins with two.

installed at a later stage. The total length of the linac is
about 250 m. A schematic layout is shown in Fig. 1.2.

The RF gun generates bunch trains with a nominal
charge of 1 nC per bunch. The maximum length of the
bunch train is 800µs and the bunch spacing is 1µs (1MHz).
A 9MHz operation is in preparation. The repetition rate
of the bunch trains is 1 to 10Hz.

In the first bunch compressor BC2, where the beam en-
ergy is about 130MeV, the initial bunch length (about
2mm) can be reduced by a factor of eight. The second
bunch compressor (BC3) can reduce the bunch length by
an additional factor of five [Stu04]. During the first com-
missioning phase the electron beam has been compressed
mainly in the first bunch compressor.

The electron energy for a FEL wavelength of 30 nm
amounts to 450MeV. This energy is achieved using re-
duced gradients in the accelerator modules. In order to
reach the minimum photon wavelength of 6 nm a beam en-
ergy of 1GeV, a peak current of 2500A, and a normalized
transverse emittance of less than 2 mmmrad are needed.

The commissioning of the new facility started in the be-
gin of 2004. First lasing with a wavelength of 32 nm was
achieved in January 2005.

2



2 Linear beam dynamics and beam parameters

In this chapter, we give an introduction to linear beam
dynamics and consider parameters and concepts required
for emittance calculations. Furthermore, we will introduce
different definitions of the emittance.

2.1 Transfer matrix formalism

In this section, we introduce the transfer matrix formalism,
which allows the description of the movement of particles
along the beam line in a simple way. A more detailed dis-
cussion can be found in [Wie03a], [RS93], or [Bro82].

The motion of a particle in the accelerator can be char-
acterized in canonical phase space by a six-dimensional
canonical vector X̂ = (x,p) with the spatial coordinates
x = (x, y, s) and the momentum vector p = (px, py, ps).
Here x and y denote the transverse displacement from the
design orbit and s is the coordinate along the reference or-
bit. Instead of the canonical phase space, it is common in
accelerator physics to use the geometrical coordinates X.
In this geometrical phase space, also called trace space, the
coordinates describing the particle motion are

X(s) =

0
BBBBBB@

x
x′
y
y′
l
δ

1
CCCCCCA , (2.1)

where x and y denote the horizontal and vertical displace-
ment from the reference orbit, and l is the longitudinal
displacement from the reference particle. The coordinates
x′ = dx/ds and y′ = dy/ds describe the horizontal and the
vertical slopes with respect to the reference trajectory,
δ = ∆p/p is the relative momentum deviation from the
reference momentum. If the momentum of the particles is
constant also these coordinates are canonically conjugated.

A sketch of the coordinate system is shown in Fig. 2.1.
This coordinate system is orthogonal, right-handed (x,y,s),
and it follows the reference particle along the design orbit.

In order to guide a beam of charged particles through a
beam line and to change the particle energy we make use
of the Lorentz force (SI-system)

F = q(E + v ×B), (2.2)

where q is the charge of the particle, v its velocity, and E
and B are the electric and magnetic field vectors. Electric
fields are used to accelerate the particles, while magnetic
fields are used to deflect and to focus the beam. In the fol-
lowing, we will concentrate on the effect of magnetic fields
on the particle motion.

Since the equation of motion for a charged particle under
the influence of an arbitrary distribution of electromagnetic
fields cannot be solved explicitly, some simplifications and
restrictions have to be used in order to derive mathematical
tools to describe the motion of particles in the accelerator.

If the beam line consists only of drift spaces, dipole, and
quadrupole magnets, the magnetic fields depend linearly
on the deviation of the particle from the reference path.

s

y

x

reference particle
at time t0

reference
trajectory

x

y

l

individual particle
at time t0

trajectory of
individual particle

Figure 2.1: Accelerator coordinate system

Then the equations of horizontal and vertical motion can
be written by

u′′(s) +Ku(s)u(s) =
δ

ρu(s)
, (2.3)

where u(s) stands for x(s), y(s), respectively. The para-
meter ρu(s) denotes the bending radius of the reference
trajectory at the position s and Ku(s) is defined as

Kx(s) = −k(s) + 1
ρ2

x(s)

Ky(s) = k(s) + 1
ρ2

y(s)

with k(s) =
qg(s)

p
. (2.4)

Here g(s) is the gradient of the magnetic field in the quadru-
pole. For the magnets, the so called hard-edge model is
used: we assume that the magnetic field starts and ends
abruptly at the beginning and end of the magnet and that
the field gradient is constant inside the magnet.

Inside a quadrupole the left hand side of Eq. (2.3) sim-
plifies to the form of a harmonic oscillator. The principal
solutions of this homogeneous equation are

Cu(s) = cos (
√
Kus)

Su(s) = 1√
Ku

sin (
√
Kus)

�
for Ku > 0

Cu(s) = cosh (
√
Kus)

Su(s) = 1√
Ku

sinh (
√
Kus)

�
for Ku < 0. (2.5)

Together with a particular solution ui of the inhomogeneous
equation we can formulate the general solution of Eq. (2.3)
as

u(s) = u0Cu(s) + u′0Su(s) + δηu(s)

u′(s) = u0C
′
u(s) + u′0S

′
u(s) + δη′u(s) (2.6)

with

ηu(s) =
ui

δ
.

The terms δηu(s) and δη′u(s) describe the momentum de-
pendent part of the motion and the function ηu(s) is called
the dispersion function. The constants u0 and u′0 are the
initial parameters of the particle trajectory. It can be shown

3



2 Linear beam dynamics and beam parameters

that the dependence of the dispersion trajectory ηu(s) on
Cu(s) and Su(s) has the following form [RS93]:

ηu(s) = ηu0Cu(s) + η′u0Su(s) + Su(s)

Z s

s0

1

ρ(τ)
Cu(τ) dτ

− Cu(s)

Z s

s0

1

ρ(τ)
Su(τ) dτ, (2.7)

where ηu0 and η′u0 denote the initial conditions of the dis-
persion function. Equation (2.7) states that outside of
bending magnets the dispersion function propagates like
any other particle trajectory and therefore, outside of bend-
ing magnets we cannot distinguish the motion caused by
dispersion from the ’normal’ particle motion.

The longitudinal displacement l of an arbitrary particle
with respect to the reference particle transforms according
to [Bro82]

l = x0

Z s

s0

Cx(τ)

ρx(τ)
dτ| {z }

R51

+x′0

Z s

s0

Sx(τ)

ρx(τ)
dτ| {z }

R52

+y0

Z s

s0

Cy(τ)

ρy(τ)
dτ| {z }

R53

+ y′0

Z s

s0

Sy(τ)

ρy(τ)
dτ| {z }

R54

+δR56 + l0, (2.8)

where l0 denotes the initial longitudinal deviation from the
reference particle. The matrix element R56 is defined as
the change of the orbit length ∆L divided by the relative
momentum deviation of the particle:

R56 =
∆L

δ
=

Z s

s0

ηx(τ)

ρx(τ)
dτ +

Z s

s0

ηy(τ)

ρy(τ)
dτ. (2.9)

Equations (2.6) and (2.8) can be combined to a matrix
equation0
BBBBBB@

x
x′

y
y′

l
δ

1
CCCCCCA =

0
BBBBBB@

R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66

1
CCCCCCA

| {z }
R

0
BBBBBB@

x0

x′0
y0
y′0
l0
δ0

1
CCCCCCA , (2.10)

where the transfer matrix R is

R =

0
BBBBBB@

Cx Sx 0 0 0 R16

C′
x S′x 0 0 0 R26

0 0 Cy Sy 0 R36

0 0 C′
y S′y 0 R46

R51 R52 R53 R54 R55 R56

0 0 0 0 0 1

1
CCCCCCA . (2.11)

The matrix elements R16 and R36 characterize the disper-
sion, and the elements R26 and R46 represent the angular
dispersion generated by the magnet described by the trans-
fer matrix R in the x-, y-plane, respectively:

R16 = Sx(s)

Z s

s0

1

ρ(τ)
Cx(τ) dτ − Cx(s)

Z s

s0

1

ρ(τ)
Sx(τ) dτ

R26 = S′x(s)

Z s

s0

1

ρ(τ)
Cx(τ) dτ − C′

x(s)

Z s

s0

1

ρ(τ)
Sx(τ) dτ

R36 = Sy(s)

Z s

s0

1

ρ(τ)
Cy(τ) dτ − Cy(s)

Z s

s0

1

ρ(τ)
Sy(τ) dτ

R46 = S′y(s)

Z s

s0

1

ρ(τ)
Cy(τ) dτ − C′

y(s)

Z s

s0

1

ρ(τ)
Sy(τ) dτ.

(2.12)

Using Eq. (2.10) we can calculate the transformation of the
vector X through the entire beam line by simple multipli-
cations of the transfer matrices Rj (j = 1, . . . , n) corre-
sponding to the different elements in the beam line

Xf = Rn ·Rn−1 · . . . ·R1 ·Xi, (2.13)

where the subscripts i and f denote the initial and final
position, respectively. The transfer matrices of the most
common beam line elements can be found in Appendix A.

2.2 Liouville’s theorem

We can use Eq. (2.13) to track the trajectory of each par-
ticle of the beam through the beam line. However, since
a typical beam consists of a large number of particles1, it
would be practical to describe the motion of many parti-
cles in phase space. Liouville’s theorem provides a powerful
tool to do this. Let us consider a system with the gen-
eral set of coordinates (q1(t), . . . , qN (t), p1(t), . . . , pN (t)).
Conservative systems can be described using the Hamil-
tonian H(q1, . . . , qN , p1, . . . , pN , t). The Hamilton equa-
tions are [Wie03b]

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
, (2.14)

where q̇ is the derivative of q with respect to the time t.
Let Ψ(q1, . . . , qN , p1, . . . , pN , t) be the phase space den-

sity at the time t. The total derivative of Ψ with respect
to t is given by

dΨ

dt
=
∂Ψ

∂t
+
X

i

∂Ψ

∂qi

∂qi

∂t
+
X

i

∂Ψ

∂pi

∂pi

∂t

=
∂Ψ

∂t
+
X

i

q̇i
∂Ψ

∂qi
+
X

i

ṗi
∂Ψ

∂pi
. (2.15)

Using the equation of continuity

∂Ψ

∂t
+∇(Ψv) = 0 (2.16)

with v = (q̇1, . . . , ˙qN , ṗ1, . . . , ˙pN ) it can be shown that the
total time derivative of Ψ vanishes:

0 =
∂Ψ

∂t
+
X

i

q̇i
∂Ψ

∂qi
+
X

i

ṗi
∂Ψ

∂pi
+ Ψ

X
i

�
∂q̇i

∂qi
+
∂ṗi

∂pi

�

=
∂Ψ

∂t
+
X

i

q̇i
∂Ψ

∂qi
+
X

i

ṗi
∂Ψ

∂pi

+ Ψ
X

i

�
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

�
| {z }

=0

.

This is Liouville’s theorem. It states that the phase space
density in the vicinity of an arbitrary particle stays constant
under the influence of conservative forces.

According to [Wie03a] the volume V of a phase space
element transforms as

Vf = det R · Vi, (2.17)

where Vi and Vf are the initial and final volume, and R
denotes the transfer matrix introduced above. Due to Liou-
ville’s theorem, this volume stays constant, and we obtain
the important result

det R = 1. (2.18)

This is only valid if the coordinates defined in Eq. (2.1) are
canonically conjugated, i.e. if the particle momentum is
kept constant.

1 A beam at the VUV-FEL with 1 nC charge consists of about 6·109

electrons.
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2.4 Beam matrix

2.3 Two-dimensional phase space ellipse

Thanks to Liouville’s theorem the knowledge of the phase
space area occupied by particles at a certain position in
the beam line is sufficient to determine the occupied phase
space area at any other position in the beam line. In accel-
erator physics a fraction of particles is commonly enclosed
by a so-called phase space ellipse.

In the following we will only consider the horizontal mo-
tion but all equations are equivalent for the vertical motion.

For particles with the momentum deviation δ = 0 the
equation of the horizontal motion (2.3) simplifies to

x′′(s) +Kx(s)x(s) = 0. (2.19)

The general solution of this equation is [Wie03a]

x(s) = a
p
βx(s) cos(ψx(s)− ψx0), (2.20)

where a and the phase ψx0 are constants, and the phase
function ψx(s) is given by

ψx(s) =

sZ
0

ds̄

βx(s̄)
. (2.21)

The beta function βx(s) has to fulfil the differential equation

1

2
βx(s)β′′x (s)− 1

4
β′x

2
(s) +Kx(s)β2

x(s) = 1. (2.22)

Equation (2.20) and its derivative

x′(s) =
aβ′x(s)

2
p
βx(s)

cos(ψx(s)− ψx0)

− ap
βx(s)

sin(ψx(s)− ψx0) (2.23)

can be combined to the invariant of motion a20
@1 +

β′x
2(s)

4

βx(s)

1
Ax2(s)− β′x(s)x(s)x′(s) + βx(s)x′

2
(s) = a2,

(2.24)
called Courant-Snyder invariant. With the abbreviations

αx(s) = −1

2
β′x(s) and γx(s) = (1 + αx(s)2)/βx(s)

(2.25)
Eq. (2.24) simplifies to

γx(s)x2(s) + 2αx(s)x(s)x′(s) + βx(s)x′
2
(s) = a2. (2.26)

This is the equation of an ellipse. The ellipse parameter
functions αx(s), βx(s), and γx(s), called betatron functions
or Twiss parameters, determine the shape and the orienta-
tion of the ellipse. The motion of a particle described by
Eq. (2.19) is called betatron motion, and the area enclosed
by the ellipse is given by πa2.

We see that a single particle, whose motion is described
by Eq. (2.19), moves along the contour of an ellipse given
by Eq. (2.26). The ellipse changes its form when moving
through the accelerator, but its area stays constant. This
also means that the ellipse describing the motion of a sec-
ond particle with a smaller betatron amplitude always stays
within the phase space ellipse of the first particle.

If we consider only the transverse motion described by
Eq. (2.19), the transfer matrix given by Eq. (2.11) simplifies
to a 2×2 -matrix such that the transformation is given by�

x
x′

�
=

�
R11 R12

R21 R22

��
x0

x′0

�
. (2.27)

Using Eq. (2.20) and its derivative with respect to s, we
can express the trajectory of a particle in terms of the β-
function, its derivative, and the phase function. By writing
this in a matrix form we obtain the transfer matrix from
the position s0 to s

R =

0
@

q
βx(s)
βx(s0)

(cos Φs0s + αx(s0) sinΦs0s)
αx(s0)−αx(s)√

βx(s)βx(s0)
cosΦs0s − 1+αx(s)αx(s0)√

βx(s)βx(s0)
sinΦs0sp

βx(s)βx(s0) sinΦs0sq
βx(s0)
βx(s)

(cos Φs0s − αx(s) sinΦs0s)

!
, (2.28)

which is equivalent to the matrix R in Eq. (2.27). Here the
phase advance Φs0s from the position s0 to s is given by

Φs0s = ψx(s)− ψx(s0) . (2.29)

The transformation of the phase space ellipse through
the beam line can be calculated using Eq. (2.27) which
provides the transformation of x0 and x′0 from the posi-
tion s0 to s. Substituting the two transformation formu-
las of Eq. (2.27) for x0 and x′0 into Eq. (2.26) and using
det R = 1 yields0
@βx(s)
αx(s)
γx(s)

1
A=

0
@ R2

11 −2R11R12 R2
12

−R11R21 R12R21+R11R22 −R12R22

R2
21 −2R21R22 R2

22

1
A
0
@βx(s0)
αx(s0)
γx(s0)

1
A.

(2.30)
Now, knowing the transfer matrix from the initial position
s0 to the final position s, we can transform the Twiss pa-
rameters through the beamline.

Up to now, we have only considered the motion of a
single particle within phase space. Let us now assume an
entire bunch of particles, whose trajectories fill a certain
area in the (x, x′)-phase space. As we have seen above,
when we surround an ensemble of particles by a phase space
ellipse, all particles within this ellipse always remain inside
of it while moving through the accelerator. Only the shape
of this ellipse changes while its area stays constant.

The area A of this ellipse, enclosing a certain fraction2 of
particles in phase space, divided by π, is called horizontal
emittance εx

εx =
A

π
. (2.31)

Since we have considered, so far, only the betatron mo-
tion and no dispersion, we will indicate this using the ex-
pression pure betatron emittance instead of horizontal emit-
tance [MMSS91].

Figure 2.2 shows the phase space ellipse

γxx
2 + 2αxxx

′ + βxx
′2 = εx (2.32)

indicating also the relations between the ellipse and the
Twiss parameters.

2.4 Beam matrix

The equation of the phase space ellipse can be written
in a different way by introducing the symmetric two-
dimensional beam matrix σ:

(x x′)

�
σ11 σ12

σ21 σ22

�−1�
x
x′

�
= 1. (2.33)

Since σ21 = σ12 this can be written by

σ22x
2 − 2σ12xx

′ + σ11x
′2 = detσ, (2.34)

2 There are different conventions how the enclosed fraction of par-
ticles is determined. We will introduce a statistical definition of
the emittance in Section 2.5.
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x′

x

q
εx
γx

√
εxβx

−αx

q
εx
βx

−αx

q
εx
γx

q
εx
βx

√
εxγx

A = πεx

Figure 2.2: Phase space ellipse in the horizontal plane and
meaning of the Twiss parameters.

and comparison with Eq. (2.32) yields the following rela-
tions between the Twiss parameters, the (pure betatron)
emittance, and the beam matrix:

σ =

�
σ11 σ12

σ12 σ22

�
= εx

�
βx −αx

−αx γx

�
(2.35)

εx =
√

detσ =
q
σ11σ22 − σ2

12. (2.36)

This concept can be generalized from two-dimensional
to n-dimensional phase space. Instead of an ellipse, the
particles are enclosed by an n-dimensional hyper-ellipsoid.
The equation for such a hyper-ellipsoid is given by [Wie03a]

XT
nD σnD−1

XnD = 1, (2.37)

where σnD is the symmetric n×n -beam matrix and XnD

denotes an n-dimensional coordinate vector.

The volume of this n-dimensional hyper-ellipsoid can be
expressed by

Vn = gn

√
detσnD with gn =

πn/2

Γ(1 + n/2)
, (2.38)

and an n-dimensional emittance can then be defined3 as
εnD =

√
detσnD.

In our case, a six-dimensional space is sufficient to de-
scribe the motion of the particles. The coordinate vector is
in this case defined by Eq. (2.1).

The transformation of the beam matrix from the position
s0 to s can be calculated using the identities I = R−1R =

RT RT−1
in Eq. (2.37)

XT
0 RT RT−1

σ−1
0 R−1RX0 = 1

(RX0)
T (Rσ0R

T )−1RX0 = 1

XT (Rσ0R
T )−1X = 1,

and therefore, the beam matrix at the position s is

σ = Rσ0R
T , (2.39)

where R is the transfer matrix from position s0 to s.

3 There are different conventions to define the emittance, e.g. the
volume of the hyper-ellipsoid is defined as emittance instead of the
volume devided by gn.

2.5 Statistical definition of the beam matrix

The definition of the beam matrix has a certain degree of
arbitrariness. For example, the hyper-ellipsoid enclosing
the particles can contain almost all particles of the beam or
only a certain fraction of them. Also the size, shape, and
orientation of the hyper-ellipsoid is not yet well defined.
Therefore, we need to define statistical beam parameters
which uniquely specify the hyper-ellipsoid.

This can be done using the second moments 〈uv〉 of the
beam distribution. They are defined by [MZ03]

〈uv〉 =

∞R
−∞

(u−〈u〉)(v−〈v〉)Ψ(x, x′, y, y′, l, δ) dx dx′ dy dy′ dl dδ

∞R
−∞

Ψ(x, x′, y, y′, l, δ) dx dx′ dy dy′ dl dδ

,

(2.40)

where 〈u〉 denotes the first moment of the variable u:

〈u〉 =

∞R
−∞

uΨ(x, x′, y, y′, l, δ) dxdx′ dy dy′ dl dδ

∞R
−∞

Ψ(x, x′, y, y′, l, δ) dxdx′ dy dy′ dl dδ

. (2.41)

Here u and v may be x, x′, y, y′, l, δ, and Ψ represents the
intensity distribution of the beam in six-dimensional phase
space. The second moments 〈x2〉 and 〈y2〉 are the vari-
ances of the beam distribution in the horizontal and vertical
plane. The square root of these variances defines the rms
beam sizes in the corresponding plane, i.e. xrms =

p
〈x2〉

and yrms =
p
〈y2〉.

Using these moments, the beam matrix can be written
as

σ6D =

0
BBBBBB@

〈x2〉 〈xx′〉 〈xy〉 〈xy′〉 〈xl〉 〈xδ〉
〈xx′〉 〈x′2〉 〈x′y〉 〈x′y′〉 〈x′l〉 〈x′δ〉
〈xy〉 〈x′y〉 〈y2〉 〈yy′〉 〈yl〉 〈yδ〉
〈xy′〉 〈x′y′〉 〈yy′〉 〈y′2〉 〈y′l〉 〈y′δ〉
〈xl〉 〈x′l〉 〈yl〉 〈y′l〉 〈l2〉 〈lδ〉
〈xδ〉 〈x′δ〉 〈yδ〉 〈y′δ〉 〈lδ〉 〈δ2〉

1
CCCCCCA

=

0
@ σxx σxy σxl

σT
xy σyy σyl

σT
xl σT

yl σll

1
A , (2.42)

where σxx,σyy,σll,σxy,σxl and σyl are 2×2 -matrices, e.g.

σxx =

�
〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

�
. (2.43)

In the following, we will always use this statistical definition
of the beam matrix.

The statistical emittance is commonly used for electron
accelerators. If we consider a two-dimensional Gaussian
phase space distribution in the (x, x′)-plane and only con-
sider the (2D) emittance defined by Eq. (2.36), the ellipse
determined by the second moments encloses about 39% of
the particles in the beam (1σ emittance). At proton accel-
erators traditionally the 2σ emittance is quoted.

2.6 Different definitions of the transverse
beam emittance

Let us assume the six-dimensional beam matrix is known.
Then ε6Drms =

√
det σ6D denotes the six-dimensional rms

beam emittance.

The projection of the six-dimensional hyper-ellipsoid
onto the transverse planes yields a 4×4 -beam matrix, which
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describes the dimensions of the projected beam in trans-
verse phase space

σ4D =

�
σxx σxy

σT
xy σyy

�
, (2.44)

where σxx, σyy, and σxy are 2×2 -matrices as defined above.
In the following, we always mean this projection when we
refer to the emittance, except where it is specifically indi-
cated.

When dispersion is present, the second beam moments
consist of two contributions. The first derives from the
betatron motion and the second is due to dispersion. When
separating these two parts, we can express σ4D as

σ4D =

0
BB@

〈x2
β〉+ η2

x〈δ2〉 〈xβx
′
β〉+ ηxη

′
x〈δ2〉

〈xβx
′
β〉+ ηxη

′
x〈δ2〉 〈x′β

2〉+ η′x
2〈δ2〉

〈xβyβ〉+ ηxηy〈δ2〉 〈x′βyβ〉+ η′xηy〈δ2〉
〈xβy

′
β〉+ ηxη

′
y〈δ2〉 〈x′βy′β〉+ η′xη

′
y〈δ2〉

〈xβyβ〉+ ηxηy〈δ2〉 〈xβy
′
β〉+ ηxη

′
y〈δ2〉

〈x′βy〉+ η′xηy〈δ2〉 〈x′βy′β〉+ η′xη
′
y〈δ2〉

〈y2
β〉+ η2

y〈δ2〉 〈yβy
′
β〉+ ηyη

′
y〈δ2〉

〈yβy
′
β〉+ ηyη

′
y〈δ2〉 〈y′β

2〉+ η′y
2〈δ2〉

1
CCA , (2.45)

where the horizontal dispersion function ηx = ηx(s) and
the horizontal angular dispersion function η′x = η′x(s) sta-
tistically are defined by

ηx(s) =
〈x(s)δ〉
〈δ2〉

η′x(s) =
〈x′(s)δ〉
〈δ2〉 . (2.46)

The corresponding functions in the vertical plane are equiv-
alent.

The emittance ε4Drms =
√

detσ4D, where σ4D is given by
Eq. (2.45), is called effective projected four-dimensional
transverse rms emittance. The pure betatron emittance
can be calculated by subtracting the contribution due to
dispersion from each element in the beam matrix. If the
dispersion vanishes, ε4Drms reduces to the pure betatron emit-
tance.

Typically, we are interested in the two-dimensional
transverse emittance. Also in this case, we can distinguish
the effective emittance including the dispersion contribu-
tion from the pure betatron emittance.

When we use Eq. (2.35) to calculate the Twiss para-
meters in the presence of dispersion, we have to first sub-
tract the dispersion contribution from the second moments.
Otherwise, the Twiss parameters do not describe the beta-
tron motion, but instead describe the superposition of the
betatron motion and the dispersion. One may call these
η-dependent Twiss parameters effective Twiss parameters.
They are defined by [MMSS91]

σ11 = βxεx,rms

σ12 = −αxεx,rms

σ22 = γxεx,rms. (2.47)

If the dispersion terms are zero, the effective Twiss para-
meters reduce to the ones of the pure betatron motion.

Besides the dispersion, a coupling of the horizontal and
vertical betatron oscillations is possible, caused for exam-
ple by skew quadrupoles or by solenoidal fields. This is
described by σxy. If all the elements of σxy are equal to
zero, the beam is transversely uncoupled. In presence of
coupling it is possible to define projected (2D) emittances
in the horizontal and vertical plane. They are the square

root of the determinant of the on-diagonal 2×2 -matrices of
σ4D

εx,rms =
√

detσxx

εy,rms =
p

detσyy. (2.48)

Coupling between the (x, x′)- and (y, y′)-plane means
that the principle axes of the (4D) hyper-ellipsoid are ro-
tated with respect to the (x, x′)- and (y, y′)-planes. Us-
ing a symplectic transformation [Kub99], a new coordinate
system, in which the beam matrix is diagonalized, can be
introduced [WE00],[BL01]

UT σ4DU =

0
BB@
ε1,rms 0 0 0

0 ε1,rms 0 0
0 0 ε2,rms 0
0 0 0 ε2,rms

1
CCA , (2.49)

where ε1,rms and ε2,rms are the intrinsic rms emittances,
describing the phase space distribution in the new coordi-
nate system. More details of the symplectic transformation
and the transformation matrix U can be found in Appen-
dix B. It can be shown that the product of the intrinsic
emittances cannot be larger than the product of εx,rms and
εy,rms [Buo93]:

ε4Drms = ε1,rmsε2,rms 6 εx,rmsεy,rms . (2.50)

The two-dimensional transverse emittances εx and εy are
called geometrical emittances, since they are defined with
geometric coordinates. The geometrical emittance is pre-
served only if there is no coupling in the beam line lattice,
the particle energy is constant, and stochastic effects can
be neglected.

If the beam energy is increased, the transverse coordi-
nates (x, x′) and (y, y′) are no longer canonically conju-
gated variables. However, according to Liouville’s theorem,
the phase space density is preserved in the canonical coor-
dinates (x, px) and (y, py). During acceleration, only the
longitudinal momentum ps increases while the transverse
momenta px and py stay constant. Therefore, the slopes
x′ = px/ps and y′ = py/ps decrease proportionally to 1/p,
where p is the momentum of the beam. The decrease of the
geometric emittance with increasing beam energy is called
adiabatic damping.

When we multiply the geometric emittance by the factor
p/m0c we get a new quantity called the normalized emit-
tance

εN =
p

m0c
ε . (2.51)

The normalized emittance stays constant also during accel-
eration of the particles, in absence of coupling in the beam
lattice and of stochastic effects.
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3 Determination of the transverse emittance

In order to calculate the emittance, we need to recon-
struct the beam matrix. Since we know the transformation
of the beam matrix from an initial position s0 to another
position si, we can reconstruct the entire transverse beam
matrix σ4D from measurements and linear transformations
of the second moments 〈x2〉, 〈y2〉, and 〈xy〉 of the beam
distribution. For the reconstruction of the projected (2D)
emittances, it is sufficient to measure 〈x2〉 and 〈y2〉 after
different linear transformations.

The linear transformation from the fixed position s0 to
the position si is described by the transfer matrix R(i). A
change in this transformation can be achieved by two differ-
ent approaches. The first is to keep si fixed while changing
the optics in between the position s0 and si. This can be
done by changing the gradient of quadrupoles in between
s0 and si (quadrupole scan). The second possibility is to
use fixed optics in the accelerator and to change the po-
sition si where the measurement of the second moments
is performed. Combinations of these two approaches are
possible.

The measurements presented in this thesis are performed
using the fixed optics approach. However, the formalism
presented in this chapter is valid also for quadrupole scans.

We can reconstruct the beam matrix from the second
moments, but we do not obtain information about the
phase space density distribution. This information can be
obtained with tomographic reconstruction methods. They
offer the possibility to determine the phase space density
distribution from projections measured on different planes.

3.1 Determination of the (2D) emittance

Emittance measurements at the VUV-FEL are performed
in special diagnostic sections. In these sections, the matrix
elements R

(i)
16 and R

(i)
36 vanish, since there are no bend-

ing magnets. We will describe the equations only in the
horizontal plane. Considerations in the vertical plane are
equivalent.

According to Eq. (2.39) for vanishing R
(i)
16 elements, the

second moment 〈x2〉 is transformed by

〈x2
(i)〉 = R

(i)
11

2
〈x2

0〉+R
(i)
12

2
〈x′0

2〉+ 2R
(i)
11R

(i)
12 〈x0x

′
0〉. (3.1)

The knowledge of 〈x2
(i)〉, i.e. the square of the rms beam

size, after three different transformations described by R(i)

gives the possibility to determine the three different beam
matrix elements of σx:

0
@ 〈x2

(1)〉
〈x2

(2)〉
〈x2

(3)〉

1
A =

0
B@R

(1)
11

2
2R

(1)
11 R

(1)
12 R

(1)
12

2

R
(2)
11

2
2R

(2)
11 R

(2)
12 R

(2)
12

2

R
(3)
11

2
2R

(3)
11 R

(3)
12 R

(3)
12

2

1
CA

| {z }
A

0
@ 〈x2

0〉
〈x0x

′
0〉

〈x′0
2〉

1
A

(3.2)0
@ 〈x2

0〉
〈x0x

′
0〉

〈x′0
2〉

1
A = A−1

0
@ 〈x2

(1)〉
〈x2

(2)〉
〈x2

(3)〉

1
A (3.3)

The (2D effective) rms emittance is given by Eq. (2.48):

εx,rms =

q
〈x2

0〉〈x′0
2〉 − 〈x0x′0〉2 (3.4)

Using Eq. (2.47) the (effective) Twiss parameters are0
@ βx0

αx0

γx0

1
A =

0
@ 〈x2

0〉/εx,rms

−〈x0x
′
0〉/εx,rms

〈x′0
2〉/εx,rms

1
A . (3.5)

We see that we cannot determine the dispersion and there-
fore, we can only calculate the effective emittance, contain-
ing the contribution of the dispersion.

For measurements of the pure betatron emittance either
the dispersion function η(s) and the energy spread 〈δ2〉
must be known, or the emittance measurements must be
performed in a section with bending magnets where the
R

(i)
16 elements do not vanish. In the latter case, the trans-

formation for the second moment 〈x2〉 is given by

〈x2〉 = R
(i)
11

2
〈x2

0〉+R
(i)
12

2
〈x′0

2〉+ 2R
(i)
11R

(i)
12 〈x0x

′
0〉

+ 2R
(i)
11R

(i)
16 〈x0δ0〉+ 2R

(i)
12R

(i)
16 〈x

′
0δ0〉+R

(i)
16

2
〈δ20〉,
(3.6)

and the six beam matrix elements in Eq. (3.6) can be ob-
tained from measurements of 〈x2〉 with six different transfer
matrices R(i). This also yields the dispersion and the en-
ergy spread. However, this method is not possible in the
VUV-FEL diagnostic sections.

3.2 Fitting of the measured data

In order to be less sensitive to measurement errors, it is
preferable to measure 〈x2

(i)〉 for more than three different
transformations and then to find a solution for the beam
matrix elements which has the highest likelihood of rep-
resenting the measured data. This can be done using the
chi-square (χ2)-method, which is described in [PTVF93].
An application for emittance measurements can be found
in [HC04] and [MZ03].

According to the χ2-method the best estimates for the
second moments 〈x2

(i)〉 are obtained by minimizing the ex-
pression

χ2 =

nX
i=1

"
〈x2

(i)〉 − fi(〈x2
0〉, 〈x0x

′
0〉, 〈x′0

2〉)
σ〈x2

(i)〉

#2

. (3.7)

Here n is the number of measurements, σ〈x2
(i)〉

denotes the

error of 〈x2
(i)〉 and

fi(〈x2
0〉, 〈x0x

′
0〉, 〈x′0

2〉) = R
(i)
11

2
〈x2

0〉+ 2R
(i)
11R

(i)
12 〈x0x

′
0〉

+R
(i)
22

2
〈x′0

2〉 . (3.8)

Equation (3.7) can be written in a compact form by intro-
ducing the matrix

B =

0
BBBBBBBBBB@

R
(1)
11

2

σ〈x2
(1)〉

2R
(1)
11 R

(1)
12

σ〈x2
(1)〉

R
(1)
12

2

σ〈x2
(1)〉

R
(2)
11

2

σ〈x2
(2)〉

2R
(2)
11 R

(2)
12

σ〈x2
(2)〉

R
(2)
12

2

σ〈x2
(2)〉

...
...

...
R

(n)
11

2

σ〈x2
(n)〉

2R
(n)
11 R

(n)
12

σ〈x2
(n)〉

R
(n)
12

2

σ〈x2
(n)〉

1
CCCCCCCCCCA

(3.9)
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3 Determination of the transverse emittance

and the vectors

a =

0
@ 〈x2

0〉
〈x0x

′
0〉

〈x′0
2〉

1
A and b =

0
BBBBBBBBB@

〈x2
(1)〉

σ〈x2
(1)〉

〈x2
(2)〉

σ〈x2
(2)〉

...
〈x2

(n)〉
σ〈x2

(n)〉

1
CCCCCCCCCA
. (3.10)

With these definitions Eq. (3.7) can be expressed by

χ2 =

nX
i=1

"
bi −

3X
j=1

Bijaj

#2

. (3.11)

To find the minimum of χ2 the derivatives with respect to
the parameters a1, a2, and a3 have to vanish:0
@ ∂χ2/∂a1

∂χ2/∂a2

∂χ2/∂a3

1
A = 2

0
B@
Pn

i=1

P3
j=1BijBi1ajPn

i=1

P3
j=1BijBi2ajPn

i=1

P3
j=1BijBi3aj

1
CA

− 2

0
@
Pn

i=1 biBi1Pn
i=1 biBi2Pn
i=1 biBi3

1
A =

0
@ 0

0
0

1
A . (3.12)

These vectors can be written as a matrix product such that
Eq. (3.12) simplifies to

BT b =
�
BT B

�
a. (3.13)

Multiplying both sides of Eq. (3.13) from the left side with�
BT B

�−1
yields the searched parameter vector

a =
�
BT B

�−1

BT b. (3.14)

3.3 Error estimation of the fitted parameters

The squared error of a function g(x1, x2, . . . , xn) can be
determined by error propagation as

σ2
g =

nX
i=1

�
∂g

∂xi

�2

σ2
xi

+

nX
i=1

nX
j=1,j 6=i

∂g

∂xi

∂g

∂xj
cov(i, j) .

(3.15)
The first sum represents the variance of the function g, the
second sum is the contribution of the covariances.

We are interested in the errors of the beam matrix ele-
ments as well as the errors of βx0 , αx0 , and εx0 . The last
three quantities can be described by the function f :

f =

0
@ βx0

αx0

εx0,rms

1
A =

0
@ a1/

p
a1a3 − a2

2

−a2

p
a1a3 − a2

2p
a1a3 − a2

2

1
A , (3.16)

where the parameters a1, a2, and a3 are the components of
the vector a defined above. The variances and covariances
of a1, a2, and a3 are needed for the error calculation. The
variance of ak is

σ2
ak

=

nX
i=1

 
∂ak

∂〈x2
(i)〉

!2

σ2
〈x2

(i)〉
. (3.17)

Using Eq. (3.14) with the abbreviation C =
�
BT B

�−1
, we

can write ak as

ak =

3X
j=1

Ckj

h
BT b

i
j
, (3.18)

where B and b are given by Eq. (3.9) and (3.10), respec-
tively. The partial derivative of ak with respect to 〈x2

(i)〉 is
then

∂ak

∂〈x2
(i)〉

=
1

σ〈x2
(i)〉

3X
j=1

CkjBij . (3.19)

Inserting Eq. (3.19) in Eq. (3.17) leads to the final result
for the variance of ak:

σ2
ak

=

nX
i=1

 
3X

j=1

CkjBij

!2

=

nX
i=1

3X
j=1

3X
l=1

CkjCklBijBil

=

3X
j=1

3X
l=1

CkjCkl

nX
i=1

BijBil| {z }
[BT B]

jl
=[C−1]

lj

(3.20)

=

3X
j=1

Ckj

X
l=1

Ckl

�
C−1�

lj
(3.21)

= Ckk. (3.22)

In Eq. (3.20) we have used the fact that matrix BT B is
symmetrical, and Eq. (3.21) has been simplified using the
definition of the inverse of a matrix:

Dij =
�
CC−1�

ij
=
X
l=1

Cil

�
C−1�

lj
=

�
0 ∀ i 6= j
1 ∀ i = j

�
.

(3.23)
Equation (3.22) states that the diagonal elements of C are
the variances of the fitted parameters ai. It can be shown
that the off-diagonal elements Cij are the covariances be-
tween ai and aj . By knowing matrix B, we can determine

C =
�
BT B

�−1
, whose elements are the variances and co-

variances of the fitted parameters ai.
When we know the variances and covariances of the pa-

rameters a1, a2, and a3, we can calculate the errors of
the emittance and of the Twiss parameters by applying
Eq. (3.15) to Eq. (3.16). Another possibility is to calcu-
late the error matrix containing the squared errors of the
searched parameters as diagonal elements [MZ03]:

σ2
f = (∇af)T C(∇af) =

0
B@ σ2

βx0
. . . . . .

. . . σ2
αx0

. . .

. . . . . . σ2
εx0,rms

1
CA .

(3.24)
Both notations are equivalent. In computer codes it is often
more practical to use Eq. (3.24) for the error calculation.

3.4 Determination of the intrinsic emittance

In order to calculate the intrinsic emittance we have to
determine also the four coupling elements of matrix σxy in
addition to the beam matrices σx and σy. The quantity
that can be measured is 〈xy(i)〉. The transformation of this

beam matrix element for vanishing R
(i)
16 and R

(i)
36 is given

as

〈xy(i)〉 = R
(i)
11R

(i)
33 〈xy(0)〉+R

(i)
12R

(i)
33 〈x

′y(0)〉

+R
(i)
34R

(i)
11 〈xy

′
(0)〉+R

(i)
34R

(i)
12 〈x

′y′(0)〉. (3.25)

Since there are four unknown beam matrix elements in
Eq. (3.25), 〈xy(i)〉 must be measured under four different

transformations, described by the transfer matrices R(i).
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3.5 Tomographic phase space reconstruction

The solution of the searched beam matrix elements can be
obtained as0
BBB@

〈xy(1)〉
〈xy(2)〉
〈xy(3)〉
〈xy(4)〉

1
CCCA

| {z }
l

=

0
BBB@

R
(1)
11 R

(1)
33 R

(1)
12 R

(1)
33 R

(1)
34 R

(1)
11 R

(1)
34 R

(1)
12

R
(2)
11 R

(2)
33 R

(2)
12 R

(2)
33 R

(2)
34 R

(2)
11 R

(2)
34 R

(2)
12

R
(3)
11 R

(3)
33 R

(3)
12 R

(3)
33 R

(3)
34 R

(3)
11 R

(3)
34 R

(3)
12

R
(4)
11 R

(4)
33 R

(4)
12 R

(4)
33 R

(4)
34 R

(4)
11 R

(4)
34 R

(4)
12

1
CCCA

| {z }
K

0
BBB@

〈xy(0)〉
〈x′y(0)〉
〈xy′

(0)
〉

〈x′y′
(0)

〉

1
CCCA

| {z }
k

k = K−1l. (3.26)

If 〈xy(i)〉 has been measured for more than four different

transfer matrices R(i), the same procedure described above
can be used to fit the parameters to the measured data.

The matrix corresponding to the matrix B is

E =

0
BBBBBBBB@

R
(1)
11 R

(1)
33

σ〈xy(1)〉

R
(1)
12 R

(1)
33

σ〈xy(1)〉

R
(1)
34 R

(1)
11

σ〈xy(1)〉

R
(1)
34 R

(1)
12

σ〈xy(1)〉

R
(2)
11 R

(2)
33

σ〈xy(2)〉

R
(2)
12 R

(2)
33

σ〈xy(2)〉

R
(2)
34 R

(2)
11

σ〈xy(2)〉

R
(2)
34 R

(2)
12

σ〈xy(2)〉

...
...

...
...

R
(n)
11 R

(n)
33

σ〈xy(n)〉

R
(n)
12 R

(n)
33

σ〈xy(n)〉

R
(n)
34 R

(n)
11

σ〈xy(n)〉

R
(n)
34 R

(n)
12

σ〈xy(n)〉

1
CCCCCCCCA

(3.27)

and instead of the vector b, we use

e =

0
BBBBBBB@

〈xy(1)〉
σ〈xy(1)〉
〈xy(2)〉

σ〈xy(2)〉

...
〈xy(n)〉

σ〈xy(n)〉

1
CCCCCCCA
. (3.28)

The beam matrix elements of σxy can then be obtained
from

l = (ET E)−1ET e, (3.29)

and the error matrix corresponding to the matrix C with
the variances of the fitted parameters as diagonal elements
is

F = (ET E)−1. (3.30)

Since all elements of the transverse beam matrix σ4D are
now known, we can calculate the intrinsic emittances using
Eq. (2.49).

3.5 Tomographic phase space reconstruction

By using the second moments, we can determine the emit-
tance and the area occupied by the particles in phase space.
This method does, however, not provide information about
the density distribution within phase space. This informa-
tion is often of special interest for tuning and operation of
the accelerator.

The emittance is very sensitive to tails in the phase space
density distribution. A small fraction of particles in these
tails can cause a significant increase of the emittance. The
knowledge of the phase space density distribution offers the
possibility to calculate the emittance of the beam core (core
emittance) by neglecting a certain fraction (e.g. 10%) of
particles in the tails. Such a core emittance characterizes
the main part of the beam while being much less sensitive
to small changes in the phase space distribution.

Tomographic reconstruction algorithms offer the pos-
sibility to reconstruct multi-dimensional density distribu-
tions from measurements of different projections of these
distributions. Most algorithms need a large number of dif-
ferent projections for this reconstruction. The Maximum
Entropy (MENT) Algorithm provides a reconstruction of

the searched distribution with a minimal amount of arte-
facts from only a few projections. A detailed description
of the MENT Algorithm and of the computer code used
in this thesis can be found in [Sch04a]. This method is
also described in [Mot85], and for the four dimensional case
in [MSJ81].

In the following it is assumed that there is no coupling
between the (x, x′)-, (y, y′)-, and (l, δ)-planes. The consid-
erations described here are valid for quadrupole scans as
well as for fixed optics measurements.

As seen above, the horizontal motion in absence of cou-
pling is described by�

x
x′

�
=

�
R11 R12

R21 R22

��
x0

x′0

�
. (3.31)

Let Ψ0(x0, x
′
0) be the initial density distribution of the hor-

izontal phase space. The matrix R(i) transforms this dis-
tribution to Ψi(x, x

′). The projection Gi(x) of this distri-
bution onto the x-axis can be expressed as

Gi(x) =

Z ∞

−∞
Ψ0

�
x

(i)
0 (x, x′), x′0

(i)
(x, x′)

�
dx′, (3.32)

and since det R(i) = 1, Eq. (3.31) yields for the coordinates

x
(i)
0 (x, x′) and x′0

(i)
(x, x′)

x
(i)
0 (x, x′) = R

(i)
22 x−R

(i)
12 x

′

x′0
(i)

(x, x′) = R
(i)
11 x

′ −R
(i)
21 x. (3.33)

The goal is now to invert Eq. (3.32) and to determine the
initial density distribution Ψ0(x0, x

′
0). Let us assume that

the projections Gi(x) have been measured for n different
transfer matrices R(i). Due to the limited number of mea-
surements, the inversion of Eq. (3.32) is not unique and
therefore, many different density distributions Ψ0(x0, x

′
0)

exist that reproduce all measured projections Gi(x). Out
of these distributions the one Ψ0(x0, x

′
0) with the largest

probability is the most appropriate one.
From statistical mechanics we know that the probability

of a system of N similar particles in the microscopic states
i = 1, . . . , n can be quantified by the entropy S

S = −kB

nX
i=1

ωi lnωi with ωi =
Mi

N
. (3.34)

Here Mi is the number of particles in the microscopic state
i and kB is the Boltzmann constant. We can use the same
concept to describe the probability of the phase space den-
sity distribution Ψ0. Instead of the discrete variable ωi

describing the fraction of particles in the state i, we use the
continuous function

ω(x0, x
′
0) =

Ψ0(x0, x
′
0)

N
,

where N =
R∞
−∞ Ψ0(x0, x

′
0) dx0 dx′0 is the total number

of particles in the beam. The function ω(x0, x
′
0) de-

scribes the fraction of particles in the phase space area
([x0, x0 + dx0], [x

′
0, x

′
0 + dx′0]). With this modification, we

have to replace the sum in Eq. (3.34) by an integral. When
we ignore the constants kB and N , we get the following
expression quantifying the probability of the phase space
density distribution Ψ0(x0, x

′
0)

S̄(Ψ0) = −
∞Z

−∞

∞Z
−∞

Ψ0(x0, x
′
0) ln Ψ0(x0, x

′
0) dx0 dx′0. (3.35)
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3 Determination of the transverse emittance

Since this quantity is proportional to the entropy of
Ψ0(x0, x

′
0), it is maximum for the distribution Ψ0(x0, x

′
0)

with the largest probability.
Therefore, the searched density distribution Ψ0(x0, x

′
0)

maximizes Eq. (3.35) while simultaneously satisfying all
constraints given by Eq. (3.32). In order to find the station-
ary solution of Eq. (3.35) with the contraints of Eq. (3.32),
the Lagrange multiplier technique can be used. The La-
grange function for this case is

L(Ψ0,Λ) = −
∞Z

−∞

∞Z
−∞

Ψ0(x0, x
′
0) lnΨ0(x0, x

′
0) dx0 dx′0

+

nX
i=1

∞Z
−∞

2
4 ∞Z
−∞

Λi(x)

 
Ψ0

�
x

(i)
0 (x, x′), x′0

(i)
(x, x′)

�
dx′

−Gi(x)

!#
dx, (3.36)

where Λi(x) denotes the n Lagrange multiplier functions.
The conditions for the stationary solution are

∂L(Ψ,Λ)

∂Ψ
= 0 (3.37)

∂L(Ψ,Λ)

∂Λi
= 0 for i = 1, . . . , n . (3.38)

Equation (3.38) gives

∞Z
−∞

2
4 ∞Z
−∞

Ψ0

�
x

(i)
0 (x, x′), x′0

(i)
(x, x′)

�
dx′ −Gi(x)

3
5 dx = 0

for i = 1, . . . , n, which is eqivalent to the equations for the
constraints defined by Eq. (3.32).

In order to find the solution for Eq. (3.38), we have
to first perform a coordinate transformation in the second
term of Eq. (3.36) by introducing the new coordinates (see
Eq. (3.31)):

x(i)(x0, x
′
0) = R

(i)
11 x0 +R

(i)
12 x

′
0

x′
(i)

(x0, x
′
0) = R

(i)
21 x0 +R

(i)
22 x

′
0. (3.39)

Since det R(i) = 1 this yields

L(Ψ0,Λ) = −
∞Z

−∞

∞Z
−∞

Ψ0(x0, x
′
0) ln Ψ0(x0, x

′
0) dx0 dx′0

+

nX
i=1

∞Z
−∞

2
4 ∞Z
−∞

Λi

�
x(i)(x0, x

′
0)
� 

Ψ0

�
x0, x

′
0

�
dx′0

−Gi

�
x(i)(x0, x

′
0)
�!#

dx0, (3.40)

and Eq. (3.37) can then be expressed as

−
∞Z

−∞

∞Z
−∞

"
1 + lnΨ0(x0, x

′
0)

−
nX

i=1

Λi

�
x(i)(x0, x

′
0)
�#

dx0 dx′0 = 0. (3.41)

Therefore, the condition for the stationary solution is

lnΨ0(x0, x
′
0) =

nX
i=1

Λi

�
x(i)(x0, x

′
0)
�
− 1 (3.42)

Ψ0(x0, x
′
0) = exp

"
nX

i=1

Λi

�
x(i)(x0, x

′
0)
�
− 1

#
, (3.43)

and with the definition

Hi (x) = exp

�
Λi (x)− 1

n

�
(3.44)

the searched distribution Ψ0(x0, x
′
0) can be written as a

simple product

Ψ0(x0, x
′
0) =

nY
i=1

Hi

�
x(i)(x0, x

′
0)
�
. (3.45)

Combining Eq. (3.45) and Eq. (3.32) gives the constraint
integral

Gi(x) =

Z ∞

−∞

nY
j=1

Hj

�
x(j)(x

(i)
0 , x′0

(i)
)
�

dx′. (3.46)

Reference [Min79] shows that Hi(x) can always be factored
out of Eq. (3.46):

Gi(x) = Hi(x)

Z ∞

−∞

nY
j 6=i

Hj

�
x(j)(x

(i)
0 , x′0

(i)
)
�

dx′. (3.47)

The last equation represents an iteration law for Hi(x)
which can be solved, for example, with a non-linear Gauss-
Seidel algorithm (see [Sch04a]).

The power of the MENT Algorithm is shown in Fig. 3.1
for two examples: a two-dimensional distribution consisting
of three Gaussian profiles of different widths and heights,
and a single asymmetric Gaussian profile. In both cases the
initial distributions have been transformed by using simple
rotation matrices

Rrot(αi) =

�
cosαi sinαi

− sinαi cosαi

�
(3.48)

with a rotation angle αi = 0°, 45°, 90°, 135°as transfer
matrices R(i) . From these transformed distributions, the
projections Gi are calculated, and used for the MENT Al-
gorithm.

The reconstruction quality can be quantified using the
mean-square deviation δ of the reconstructed solution
Ψrec(x, x

′) from the original value Ψ0(x, x
′) (see [Sch04a])

δrec =

vuuuuuut
∞R

−∞

∞R
−∞

[Ψrec(x, x′)−Ψ0(x, x′)]
2 dxdx′

∞R
−∞

∞R
−∞

[Ψrec(x, x′)]
2 dxdx′

. (3.49)

In our examples in Fig. 3.1 this deviation is δrec = 6.62%
for the distribution consisting of three two-dimensional
Gaussian distribution and δrec = 1.23% for the single two-
dimensional Gaussian distribution.

We can see that the amount of reconstruction artefacts
is very low even if only four projections are used. Com-
pared to other tomographic reconstruction algorithms, like
the filtered back-projection algorithm [Gei99], this is a big
advantage.

12



3.5 Tomographic phase space reconstruction

x [mm]

x
′
[m

ra
d
]

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

x [mm]

x
′
[m

ra
d
]

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

x [mm]

x
′
[m

ra
d
]

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

x [mm]

x
′
[m

ra
d
]

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

Figure 3.1: Example of MENT reconstruction from four projections Gi (Rrot(0°, 45°, 90°, 135°)) for two different two-
dimensional density distributions. Top: density distribution consisting of three two-dimensional Gaussian profiles of
different widths. Input distribution (left) and reconstructed distribution (δrec = 6.62%) (right). Bottom: density
distribution consisting of a single rotated two-dimensional Gaussian profile. Input distribution (left) and reconstructed
distribution (δrec = 1.23%) (right).
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4 Experimental setup

There are two sections dedicated to emittance measure-
ments in the VUV-FEL beam line. The first one, called
BC2 section, is located downstream of the first bunch com-
pressor BC2. The second one, called SUND section, is
placed directly in front of the undulator section. It is a
temporary beam line reserved for the upcoming seeding
undulator. The positions of the two diagnostic sections are
shown in Fig. 1.2. Both sections consist of three FODO1

cells and four OTR2 stations for beam distribution mea-
surements. In the BC2 section additional wire scanners are
installed for beam profile measurements.

4.1 Injector

The injector is the key component of a low emittance accel-
erator. A laser driven RF photo injector is used at the
VUV-FEL. The laser is a Nd:YLF-laser converted to a
wavelength of 262 nm [Sch04b]. Electron bunches with a
nominal charge of 1 nC are generated on a Cs2Te cathode
and accelerated in a 1.5 cell cavity operating at a frequency
of 1.3GHz (an RF gun) [Sch04b]. In order to counter-
act emittance growth induced by internal Coulomb forces,
the electron beam is focused by a solenoid magnet (main
solenoid). A second solenoid is used to reduce the magnetic
field on the cathode surface to zero.

At present, the longitudinal laser pulse profile is
nearly Gaussian shaped with a length of σz = (4.4 ±
0.1) ps [Sch04b]. However, in order to obtain a small trans-
verse emittance a transversally and longitudinally flat laser
pulse profile is preferred. At PITZ3 a laser pulse-shaper
producing longitudinally flat laser pulses with a length of
about 20 ps [K+04] has been tested and the measured trans-
verse emittance has consequently been reduced by a factor
of two [MAA+04]. A similar pulse-shaper can be installed
in the VUV-FEL laser system at a later stage.

In the first accelerator module (ACC1) consisting of 8
superconducting cavities [Wei03] the beam energy is in-
creased to about 130MeV. To avoid strong focusing and the
resulting increased space charge forces, the first four cavi-
ties are operated with a moderate gradient of 12MV/m.
The last four cavities accelerate with the full gradient
(∼ 20MV/m).

The longitudinal shape of the electron bunches has been
measured with a streak camera using synchrotron light from
the last dipole of the bunch compressor. Without compres-
sion the bunches are longitudinally Gaussian shaped with
a bunch length of σz = (1.7± 0.2)mm [Sch04b].

A schematic of the injector and the BC2 section is shown
in Fig. 4.1.

4.2 First bunch compressor section (BC2
section)

The BC2 section is located after the first accelerator mod-
ule ACC1 where the electron energy is about 130MeV. It
consists of a bunch compressor, a diagnostic section dedi-
cated to emittance measurements, and two groups of five

1 A pair of focusing and defocusing quadrupoles.
2 optical transition radiation
3 Photo Injector Test Facility at DESY Zeuthen

magnet magnetic length [mm] Cmag [ T
A m

]

Q5DBC2 269.11 0.1299
Q6DBC2 270.08 0.1301
Q7DBC2 269.02 0.1299
Q8DBC2 270.26 0.1299
Q9DBC2 268.73 0.1300
Q10DBC2 269.64 0.1300

Table 4.1: Calibration constants and magnetic lengths of
TQA type quadrupoles

quadrupoles, the first one upstream of the bunch compres-
sor and the second one downstream of it (see Fig. 4.1). The
quadrupoles are intended to match the beam to the design
optics inside the bunch compressor and the diagnostic sec-
tion.

The functional principle of a bunch compressor is indi-
cated in Fig. 4.1: In ACC1 an energy modulation is pro-
duced by positioning the bunch on the positive slope of the
fundamental harmonic RF wave in the cavities. This yields
a higher energy of the particles in the bunch-tail compared
to those in the bunch-head. In the bunch compressor, the
path length of particles with higher energy is shorter than
that of particles with a lower energy. The bunch is therefore
shortened, and the compression strength can be adjusted
by the phase of the RF wave in ACC1. The RF wave in-
duces a curvature in the energy-phase plane after accelera-
tion, which leads to a high peak current and a long tail in
the longitudinal bunch structure [S+02a]. To compensate
for this curvature a superconducting third harmonic cav-
ity [S+02b] will be installed at a later stage (see Fig. 4.1).

All quadrupoles in the matching section downstream of
the bunch compressor as well as the quadrupoles in the
FODO cells are TQA type magnets produced by the Efre-
mov Institute in Saint-Petersburg, Russia. The field gra-
dient as function of the current is determined from field
gradient measurements [Efr02] done at 50 A. The maxi-
mum current of the quadrupoles is 298A. We can assume
that at a current of about 10.5A, as it it used in the di-
agnostic section, the field gradient depends linearly on the
current:

g

�
T

m

�
= Cmag · I [ A] , (4.1)

where Cmag is a constant. The value of Cmag as well as
the magnetic length Lmag for the magnets in the FODO
cells is given in Table 4.1. In the calculation of the field
gradient we have not considered remanent fields and higher-
order contributions. Based on measurements of one of the
TQA type magnets [Hol05], we estimate that the systematic
error of the quadrupole field gradients is 6%. Appropriate
cycling procedures have been applied to ensure that always
the same branch of the hysteresis circles of the quadrupoles
is used.

Using Eq. (4.1), we can numerically calculate the k-value
(see Eq. (2.4)) of the quadrupoles as [RS93]

k
�
m−2� = 0.2998

g [ T/m]

p [ GeV/ c]
. (4.2)

The rest mass of the electron can be neglected for high en-
ergies, yielding p = E/c. Here E denotes the beam energy.
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Figure 4.1: Schematic layout of the injector and the BC2 section.
The functional principle of the bunch compressor is indicated. Particles with a higher energy (dotted) are deflected less
in the magnetic chicane and therefore have a shorter orbit through the chicane than the particles with lower energy
(dashed). An appropriate chirp in the beam energy distribution leads to a compression of the bunch.

The quadrupoles Q4DBC2 to Q10DBC2 (see Fig. 4.1)
are powered by a common power supply. The polarity for
the nominal setup is chosen so that the first quadrupole
after each screen is focusing in the horizontal plane and the
second one is defocusing.

The three FODO cells in the diagnostic section have a
length of 2L = 1.9m, L being the distance between the
centres of two successive quadrupoles. For the periodic
(matched) solution the beta function has the same value
in the centre of all focusing quadrupoles. This is fulfilled
both in the x- and y-plane. Reference [Cas03] shows that
for the setup used here the error of an emittance measure-
ment is smallest with a phase advance of 45◦ inside each
FODO cell. This can be understood easily, since the recon-
struction of the phase space ellipse is a kind of tomography.
For a phase advance of 45◦ = 180◦/4, the four projections
differ from each other by the largest amount.

The periodic solution for a 45◦ phase advance per cell is
shown in Fig. 4.2. At the positions of the screens the beta
function is about 2.5m in both planes. Therefore, we ex-
pect round beams on the screens for equal (2D) emittances
in both planes. The nominal Twiss parameters at the OTR
screens for a phase advance of 45◦ are given in Table 4.2.

4.3 SUND diagnostic section

The SUND diagnostic section is located directly in front
of the first undulator at a position, where at a later stage
a seeding undulator can be installed. It consists of three
FODO cells, a matching section with five quadrupoles, and
four OTR screens. A fifth screen is available in front of
the FODO lattice, between the two last quadrupoles of the

BC2 (45◦) SUND (45◦) SUND (76.5◦)

βx,D [m] 2.47 11.91 7.64
αx,D -1.19 1.12 1.32

βy,D [m] 2.51 11.67 7.36
αy,D 1.21 -1.10 -1.28

Table 4.2: Twiss parameters for matched optics in the BC2
and SUND diagnostic sections at the OTR screens in the
FODO lattice. The phase advance in the FODO cells is
indicated in brackets.

matching section. Since these quadrupoles are used for the
matching inside the FODO lattice, the phase advance be-
tween this screen and the others can be varied. A sketch
of the diagnostic section is given in Fig. 4.3. The length of
the FODO cells is 2L = 8.9802m, where L is the distance
between the centres of the quadrupoles. The quadrupoles
used in the matching section and in the FODO cells are of
the same type as those in the BC2 section (TQA).

During commissioning, a phase advance of 76.5◦ instead
of 45◦ was used. The Twiss parameters for matched optics
with 76.5◦ and 45◦ phase advance in the FODO cells are
given in Table 4.2. The periodic solution for 76.5◦ phase
advance is presented in Fig. 4.4.

4.4 OTR monitors

The transverse beam distribution is measured with imaging
devices based on optical transition radiation (OTR). We
give a short summary of the main properties of the optical
transition radiation and describe the OTR monitors.
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for an electron crossing a metallic foil with an energy of
E = 125MeV and E = 445 MeV, respectively. The angle
θ is defined with respect to the direction of specular re-
flection (backward radiation) or to the particle trajectory
(forward radiation).

4.4.1 Optical transition radiation

Whenever a charged particle crosses a boundary between
two media with different dielectric properties, transition ra-
diation is emitted. This was first predicted by Ginzburg
and Frank in 1945 [GF45]. The transition radiation is emit-
ted in the forward and backward direction with respect to
the boundary surface.

Assuming a perfectly reflecting metallic surface, the
emitted energy per solid-angle dΩ and per frequency-in-
terval dω by a single electron can be approximated by a
simple expression [Gei99]

I(θ, ω) =
d2W

dω dΩ
≈ e2

4π3ε0c

β2 sin2 θ

(1− β2 cos2 θ)2
. (4.3)

The angle θ is defined with respect to the direction of spec-
ular reflection for the backward radiation and with respect
to the particle trajectory for the forward radiation (see
Fig. 4.6). At ultra relativistic energies, the angular dis-
tribution given by Eq. (4.3) is symmetric with a peak of
the angular distribution at

θmax =
1

γrel
. (4.4)

Figure 4.5 shows the angular distribution for electrons with
two different energies (125MeV and 445MeV).

Optical transition radiation is the part of the transi-
tion radiation with wavelengths in the visible spectrum
(≈ 400 nm to 800 nm). Since the angular distribution
does not depend on the wavelength of the radiation in this
range, OTR can be used for beam distribution measure-
ments without the necessity of frequency-dependent cor-
rections.

4.4.2 OTR monitors

For the beam distribution measurements we use screens
mounted with an angle of 45◦ with respect to the design
orbit. The backward transition radiation is emitted at an
angle of 90◦ with respect to the design orbit and, there-
fore, it is easy to guide it out of the beam pipe through
a window (see Fig. 4.6). By imaging this radiation onto a
CCD camera we obtain an image of the transverse density
distribution of the beam. The OTR phenomenon is fast

(∼ 0.1 ps) and by using a fast-gated camera measurements
within the bunch train are possible. We, however, use nor-
mal CCD cameras that integrate the signal over the whole
bunch train. Single-bunch measurements are possible with
bunch trains of one bunch only. This is a big advantage
compared to wire scanners, especially when there is a jit-
ter in the electron beam orbit. In addition, not only the
beam profiles can be measured, but the projected trans-
verse beam distribution information is available. This is
especially useful for the calculation of the coupling elements
〈xy〉 in the beam matrix.

The VUV-FEL OTR system has been designed and
constructed in a collaboration between DESY and INFN-
LNF/Roma2 (Italy). It is described in detail in [HBF+03]
and in [CCC+04]. A total of 24 OTR monitors are installed
along the accelerator. A sketch of a standard OTR monitor
is shown in Fig. 4.7. The remotely controlled system offers
the possibility to use two different screens: a 350µm thick
polished silicon screen and a polished silicon screen with a
40 nm aluminium coating. The latter has a higher reflec-
tivity in the optical wavelengths, providing a stronger light
signal. However, since the silicon screen has a higher ther-
mal resistance, it is better suited for high charge densities.
Calibration marks on the screen-holder help to calibrate
the optical system.

The optical transition radiation is extracted out of the
beam pipe through a fused silica window (DUV-200) [Isi]
which is resistant to X-rays and provides a good transmit-
tivity for visible wavelengths. The OTR light is reflected
downwards using a mirror. This has two advantages: di-
rect X-rays from the screen cannot reach the camera and
the camera can be mounted near the floor, where the over-
all radiation level is lower. Three lenses can be remotely
moved in or out of the optical axis of the system. Only one
lens is inserted at any time. The lenses are achromats hav-
ing a focal lengths of 250mm, 200mm, and 160mm. They
provide nominal magnifications of 1.0, 0.39, and 0.25, re-
spectively. Three neutral density filters with transmissions
of 10%, 25%, and 40% can be used to attenuate the light
signal. The complete system is shielded against scattered
light. The CCD camera has a lead shield to protect it
against X-rays.

As CCD cameras we use Basler A301f cameras [Bas02].
They have squared pixels with a size of 9.9µm and a dy-
namic range of 8 bit. These cameras offer a non-interlaced
data transfer, can be triggered, and are equipped with a
remote gain and shutter control. The cameras are con-
nected using IEEE1394 (firewire) links to compact indus-
trial personal computers located inside the accelerator tun-
nel. These computers are connected via local ethernet to
an image server located in the control room. The image
server controls the complete camera system. The camera
control software, both on the image server and on the com-
puters in the tunnel, is based on LabVIEWTM [Lab]. A
detailed description of the camera read-out system can be
found in [C+05].

Due to diffraction effects caused by the limited angular
acceptance of an imaging system, the image of a point-like
source is not a point anymore but a more complicated struc-
ture called Point Spread Function (PSF). Imperfections of
the lenses cause aberrations [Wet80] which may also de-
grade the image. In our optical system, the effects of geo-
metrical aberrations are reduced by using a diaphragm on
the lens [HBF+03]. The resolution of the system has been
determined by measuring the edge profile of a rectangu-
lar object on a calibration target. We can determine the
rms width of the Gaussian shape PSF characterizing the
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Figure 4.6: Schematic of transmitted transition radiation in forward and backward direction for normal incidence (left)
and incidence under an angle of 45◦ (right).
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system from the measured profile [HBF+03]. The average
rms-resolution measured with the highest magnification is
11 µm [CCC+04].
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5 Systematic errors

In this chapter we analyse the dependence of the deter-
mined emittance on errors in parameters needed for the
emittance calculation. We will see that the resulting error
for the emittance depends sensitively on the matching of
the beam inside the FODO lattice. Only the BC2 diagnos-
tic section is discussed but the following consideration are
also valid for the SUND diagnostic section, since the layout
of these two sections is similar.

5.1 Mismatch parameter

The Twiss parameters in the diagnostic section are periodic
only if they are matched to the design values (see Table 4.2).
If they differ from these values, the beam is mismatched. A
parameter ξ is commonly used to quantify the mismatch.
It is defined as [MZ03]

ξ =
1

2
(βγD − 2ααD + γβD), (5.1)

where subscriptD denotes the design values. For a matched
beam the mismatch factor is ξ = 1.

A graphical way to represent the mismatch is to plot
the design phase space ellipse given in Eq. (2.32) at a cer-
tain position in the lattice (we choose here the OTR screen
4DBC2) using normalized coordinates [MZ03] 

up
βu,D

,
αu,Du+ βu,Du

′p
βu,D

!
with u = x, y. (5.2)

Within these coordinates the design ellipse is a circle, and
we normalize it such that its radius is unity. Plotting the
actual (measured) ellipse by using the same coordinates
shows the degree of the mismatch. The area of the actual
ellipse compared to the design ellipse shows the deviation
in the emittance.

The quality of the emittance measurement can be indi-
cated in these mismatch plots by tracking or backtracking
the measured beam sizes to the position used in the plot
(OTR 4DBC2). The beam sizes are plotted as lines in the
graph by using the same coordinates as above. An exam-
ple is given in Fig. 5.1 for two different ξ. The mismatch
is induced by changing αx on the first screen (4DBC2) ac-
cording to

αx = αx,D −
p

2ξ − 2 (5.3)

while fixing βx to its design value βx,D.

5.2 Dependence of the determined emittance
on the mismatch for different errors in the
beam sizes

The dependence of the determined emittance on beam size
measurement errors differs strongly in cases of a matched
and a mismatched beam. Figure 5.2 shows the results of
Monte Carlo simulations using 20000 random number seeds
for different degrees of mismatch and for different uncer-
tainties in the rms beam sizes. A Gaussian distribution is
used to describe the probability distribution of this error.
Only the results for the (2D) rms emittance in the horizon-
tal plane are presented. The normalized emittance used in

the simulations is 2 mmmrad and the energy is 125MeV.
The mismatch is induced as described above.

We can see from Fig. 5.2 that the probability-
distribution obtained from the Monte Carlo simulations is
almost symmetric (top right) for a matched beam. The rms
width of the emittance distribution increases strongly with
an increasing ξ (top left). For a matched beam (ξ = 1) the
error in the calculated normalized emittances is the same
as that of the beam sizes. With increasing ξ the probability
distribution gets a long tail towards smaller emittances (see
Fig. 5.2, right side). This yields a decreased mean value of
the distribution (middle left). For large ξ and large beam
size errors the reconstructed beam matrix may become neg-
ative, yielding imaginary emittances. The fraction of these
non-physical solutions is given in the bottom left plot in
Fig. 5.2. Since the imaginary solutions are not included in
the calculation of the mean value, the two curves for larger
beam size errors in the middle left plot begin to increase at
a certain value of ξ.

We can see from Fig. 5.2 that accurate emittance mea-
surements are only possible if the induced mismatch is small
(ξ ≈ 1). As expected, the error in the emittance estimated
from Monte Carlo simulations (rms width of the distribu-
tion) agrees with the error we obtain from the χ2-fit (see
chapter 3.3) when assuming the same uncertainties in the
beam sizes.

So far we have chosen the mismatch induced by Eq. (5.3)
quite arbitrarily. The dependence of the emittance error on
errors in the beam sizes can be considered more generally
by calculating the emittance error for a large range of possi-
ble Twiss parameters inside the FODO section. Figure 5.3
shows the relative emittance error in the horizontal plane as
a function of the Twiss parameters αx and βx on the first
screen (4DBC2) in the BC2 diagnostic section. For the
beam sizes at the four screens an error of 5% is assumed.
The emittance error is evaluated by using the χ2-fit (see
chapter 3.3).

We can see that the design values of the Twiss parame-
ters αx and βx are chosen in a way that the error in the
emittance has a small value. However, the region in the pa-
rameter space having a small emittance error is quite large,
so other working points are possible as well. If only a beam
size error is considered, a working point at larger beta func-
tions would be even better, since the increase of the emit-
tance error would be smaller when deviating slightly from
this working point.

5.3 Dependence of the determined emittance
on energy errors

Another possible error source in the emittance mea-
surement is an uncertainty in the beam energy. How-
ever, [Cas03] shows that for a matched beam the normalized
emittance is independent of energy errors.

The energy E is used for the calculation of the quadru-
pole k-values. According to Eq. (4.2) the perturbed k-value
for the energy E = E0(1 + ∆) is

k =
k0

1 + ∆
, (5.4)

21



5 Systematic errors

-2

-1

0

1

2

-2 -1 0 1 2

(α
x

,D
x

+
β

x
,D

x
′ )

/
p

β
x

,D

x/
p

βx,D

ξ = 1

4DBC2
6DBC2
8DBC2

10DBC2

-2

-1

0

1

2

-2 -1 0 1 2

(α
x

,D
x

+
β

x
,D

x
′ )

/
p

β
x

,D

x/
p

βx,D

ξ = 2

4DBC2
6DBC2
8DBC2

10DBC2

Figure 5.1: Graphical representation of the phase space ellipse in normalized coordinates. The left plot shows a matched
beam and the right plot is a mismatched beam with ξ = 2. The dotted ellipse represents the design ellipse, the solid
ellipse is an example for a hypothetic measurement. The normalized (2D) emittances of the design ellipse and the
’measured’ one are 2 mmmrad and 3 mmmrad, respectively. The lines represent the beam sizes on the different screens.

0

10

20

30

40

1 2 3 4 5

rm
s(

ε
N

,x
)

m
e
a
n
(ε

N
,x

)
[%

]

ξ

beam size error = 10%
beam size error = 5%
beam size error = 1%

0

200

400

600

800

0 1 2 3

N

εN,x

ξ = 1
beam size error = 5%

90

100

110

120

130

140

150

160

1 2 3 4 5

m
e
a
n
(ε

N
,x

)
ε
N

,x
,0

[%
]

ξ

beam size error = 10%
beam size error = 5%
beam size error = 1%

0

100

200

300

400

0 1 2 3

N

εN,x

ξ = 2
beam size error = 5%

0

10

20

30

40

1 2 3 4 5

n
o

so
lu

ti
o
n

fo
u
n
d

[%
]

ξ

beam size error = 10%
beam size error = 5%
beam size error = 1%

0

50

100

150

200

0 1 2 3

N

εN,x

ξ = 3
beam size error = 5%

Figure 5.2: Results of Monte Carlo simulations of (2D) emittance measurement in the BC2 diagnostic section. The
normalized input emittance is εN,x,0 = 2 mmmrad. Right hand side: Probability distribution of the measured emittance
for three different values of the mismatch parameter ξ. The assumed beam size error is 5%. The input emittance is
indicated as dotted line. Top left: relative emittance error as function of ξ. Middle left: deviation of the mean value
from the input emittance. Bottom left: fraction of cases where no solution was found.

22



5.4 Simulation of the (2D) phase space reconstruction with the MENT Algorithm in the BC2 section
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Figure 5.3: Relative error in the horizontal emittance as a function of the Twiss parameters αx and βx on the first screen
(4DBC2) in the BC2 diagnostic section. A beam size error of 5% is assumed at all four screens. The colour black
indicates a relative emittance error larger than 50%.

where ∆E0 is the error in the energy. For a periodic solu-
tion in the FODO cells the beta function is inversely pro-
portional to k and therefore

β = β0(1 + ∆). (5.5)

Since we know the beta function for the matched solution,
we can calculate the (2D) emittance for the unperturbed
case by

ε0 =
〈x2〉
β0

, (5.6)

and for the perturbed case by

ε =
〈x2〉
β

=
〈x2〉

β0(1 + ∆)
=

ε0
1 + ∆

. (5.7)

The geometrical emittance has therefore an error of (1 +
∆)−1. In the normalized emittance, this error cancels out:

γrelε = γrel,0(1 + ∆)
ε0

1 + ∆
= γrel,0ε0 (5.8)

This is the case, if the beta function is periodic. If the
beam is not matched to the periodic solution, also the nor-
malized emittance may depend strongly on the energy er-
ror. Figure 5.4 shows the relative deviation of the horizon-
tal normalized emittance for two different deviations (+5%
and -5%) of the beam energy as a function of the Twiss
parameters αx and βx on the first screen (4DBC2) in the
BC2 diagnostic section. Errors of the beam sizes are not
included.

We can see that for our design values of αx and βx the
energy dependence of the normalized emittance is negli-
gible. At this working point the normalized emittance is
most insensitive on energy errors when deviating slightly
from the design values αx,D and βx,D.

5.4 Simulation of the (2D) phase space
reconstruction with the MENT Algorithm
in the BC2 section

The power of the MENT Algorithm to reconstruct the
phase space distribution from four beam profiles at the
OTR screens is shown in Fig. 5.5. A phase advance of 45◦

and a beam energy of 125MeV is used for the reconstruc-
tion. The pixel size of the profiles is 10µm/pixel, which
is similar to that of the OTR monitors. Two different
phase space distributions Ψ0 at the position of the first
OTR screen are assumed. The first one consists of three
two-dimensional Gaussian profiles of different widths, and
the second one is chosen as

Ψ0(x, x
′) ∝ exp

 
− x2

2βx,Dεx
− xx′

αx,D

βx,Dγx,Dεx
− x′

2

2γxεx

!
,

(5.9)
corresponding to a Gaussian distribution in phase space,
which is rotated in a way that the beam is matched (ξ = 1)
in the BC2 diagnostic section. These phase space distri-
butions are transformed, using the transfer matrices be-
tween the four screens, to calculate the distribution on each
screen. Then the profiles of these four distributions are used
as input for the MENT Algorithm. The difference to the
MENT reconstruction shown in Fig. 3.1 is that here we use
real transfer matrices, instead of a simple rotation. There-
fore the phase space distribution is not only rotated but
also sheared.

We observe a very good reconstruction of the phase
space distribution even if only four projections are used
(see Fig. 5.5). The initial and reconstructed normalized
emittances as well as the mean square deviations of the
reconstruction δrec are presented in Table 5.1.
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5 Systematic errors
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Figure 5.4: Relative deviation of the normalized horizontal emittance as a function of the Twiss parameters αx and βx on
the first screen (4DBC2) in the BC2 diagnostic section. The energy deviation from the correct energy is +5% (top) and
-5% (bottom). Errors in the beam sizes are not included. The colour black indicates a relative error in the normalized
emittance larger than 50%.

εN,x,ini εN,x,rec δrec
[mmmrad] [mmmrad] [%]

Three (2D) Gaussian distributions 11.21 11.22 5.18
One (2D) Gaussian distribution 2.003 2.001 1.23

Table 5.1: MENT simulation in the BC2 section: initial and reconstructed emittances together with the mean square
deviations δrec.
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Figure 5.5: Example for MENT reconstruction in the BC2 diagnostic section for two different two-dimensional phase space
density distributions. Upper graph: density distribution consisting of three two-dimensional Gaussian profiles of different
widths. Left: simulated distribution, right: reconstructed distribution. Lower graph: density distribution consisting of a
matched (ξ = 1) two-dimensional Gaussian distribution. Left: simulated distribution, right: reconstructed distribution.
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6 Image analysis

As we have seen in the previous chapter, the accurate re-
construction of the rms beam sizes is important. The mea-
surement of the spatial beam distribution with the OTR
monitors delivers images consisting of 640 (hor)× 480 (ver)
pixels. Background images are subtracted in order to re-
move darkcurrent1, to correct the offset generated by noise
in the camera system and by X-rays, and to remove the in-
fluence of damaged pixels. In order to reduce fluctuations,
the average of typically 20 background images is used.

Even after the background subtraction, Eq. (2.40) can-
not directly be used to calculate the second moments of
the beam distribution from the entire beam image. The
second moments depend very sensitively on small offsets
in the intensity. These offsets occur due to small back-
ground fluctuations and may change the second moments
significantly. Therefore, a stable offset correction has to be
applied.

Even if we use the highest magnification of the OTR
monitors, a typical measured beam distribution covers only
a small part of the entire image. The remaining part of the
image contains only noise, decreasing the signal to noise
ratio. Therefore, it is advantageous to evaluate only a small
region on the image that includes the entire beam. This
part of the image used for the beam size calculations is
called region-of-interest (ROI). The signal to noise ratio
of the measured beam distribution is increased using this
method and in addition we get the possibility to determine
the offset with higher accuracy from the remaining part of
the image outside the ROI.

Figure 6.1 shows the dependence of the calculated beam
sizes on the size of the ROI for a measured beam distribu-
tion. From a single beam image we subtract the averaged
background image. Then, as a starting ROI, a circle with a
radius of 10 pixels is selected. The maximum of the beam
profiles in both planes is defined as the centre. The part
of the image outside of the ROI is used to calculate the
average value for the offset. This offset is subtracted from
the entire image. For the calculation of the rms beam sizes,
only the fraction of the image inside the ROI is used. The
next regions-of-interest, indicated by an index i in Eq. (6.1),
are ellipses that are chosen so that the half-axis in the x-
direction, ax, increases continuously while the half-axis in
the y-direction, ay, is scaled with the ratio of the rms beam
sizes calculated for the previous, smaller ROI, indicated by
the index i− 1:

a(i)
y = a(i)

x · x
(i−1)
rms

y
(i−1)
rms

= a(i)
x ·

q
〈x2

(i−1)〉q
〈y2

(i−1)〉
. (6.1)

In each step, a different offset resulting from the average
intensity outside the ROI is subtracted from the entire im-
age.

Increasing the size of the ellipse for a small ROI that
does not contain the entire beam results in a steep increase
of the rms beam sizes (see Fig. 6.1). At a certain ellipse
size the determined rms beam sizes become insensitive to

1 Due to the electric fields in the gun and the accelerator modules,
electrons may be released from the cavity surface by field emission
and accelerated to high energies. These electrons are outside the
regular bunches and generate a continuous current which is called
darkcurrent.
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Figure 6.1: Dependence of the reconstructed beam sizes on
the size of the region-of-interest. Plotted is the horizon-
tal half-axis ax (see text). The dotted line shows ax for
the ellipse resulting from the algorithm described in sec-
tion 6.1.

small changes in the ellipse size. The ROI contains now the
entire beam and also the offset is well estimated. After fur-
ther increasing the ellipse size, the rms beam sizes become
instable again. The reason for this is that for very large
regions-of-interest only a few pixels are left to calculate the
offset. Therefore, small fluctuations in these pixels have
strong influence on the rms beam sizes.

6.1 Image analysis algorithm to reconstruct
the second moments of the entire beam

The considerations above show that a necessary condition
for a stable reconstruction of the rms beam sizes and the
second moments of the beam distribution is to choose the
size of the ROI so that we are in the stable region of the plot
in Fig. 6.1. Let us consider a two-dimensional Gaussian
distribution with the variances σx and σy. The contour
lines are ellipses. The fraction P of the distribution inside
an ellipse with the half-axes of ax = cσx and ay = cσy is
given as [Com94]

P = 1− exp

�
− c

2

2

�
. (6.2)

For the measurements presented in this thesis, an algorithm
converging at c = 5 is used (P > 0.999996). Due to the
small dynamic range of the CCD camera (8 bit) long tails of
the Gaussian distributions are cut. Therefore, using c = 5,
the ROI is determined so, that the entire detected beam
intensity is included in the ellipse.

The algorithm works as follows:

• Subtract the average over typically 20 background im-
ages from a single beam image.

• Select a circular starting region-of-interest (ROI) with
the centre at the maximum of the beam profile in both
planes. Calculate the offset as an average of the pixels
outside this ROI and subtract the offset from the entire
image. Use pixels inside the ROI to calculate the rms
beam sizes.
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6 Image analysis

• Select an elliptical ROI with the centre at the first mo-
ments (〈x〉, 〈y〉) of the previous ROI. The half-axes of
the ellipse ax and ay are selected as ax = 5xrms and
ay = 5yrms, where xrms and yrms are the results using
the previous ROI. The offset is determined and sub-
tracted as above. The rms beam sizes are calculated
using this new ROI.

• Repeat the previous step, until the rms beam sizes
converge towards constant values. Calculate 〈xy〉 for
the last ROI.

• Repeat the entire procedure for each beam image.
Typically 20 images for each of the four OTR screens
are evaluated.

The half-axis ax of the resulting ROI is indicated in Fig. 6.1
as a dotted line. The effect of the ROI on the projections
can be seen in Fig. 6.2. Three steps of the algorithm are
shown in Fig. 6.3.

Since the beam position may jitter from shot to shot
(typically around 20µm to 40µm rms at the OTR position),
the calculation has to be applied to each single beam image.
Averaging over the beam images would result in overesti-
mated beam sizes, since the beam position jitter produces
an additional beam size contribution. As the final value
for the rms beam size (second moments, respectively), we
use the mean value of the beam sizes determined from the
single beam images.

For the calculation of the emittances, the error of this
mean value has to be estimated. Sources for fluctuations
in the beam sizes may be: jitter of the darkcurrent, noise
in the camera system (X-rays, noise of the CCD), jitter
of the beta functions for example due to fluctuations in
the magnet power supplies, or jitter of the emittances for
example due to a fluctuating laser shape on the cathode
from shot to shot. In order to estimate the error in the
beam sizes, the error for a single measurement is used. This
is a conservative estimate, but it allows for the possibility
that the beam size may fluctuate due to a jitter in the
emittances from shot to shot.

6.2 Beam intensity cut to calculate the core
emittance

As we have mentioned above the emittance depends sen-
sitively on tails in the phase space distribution. A small
fraction of particles can cause a significant increase of the
emittance. Furthermore, fluctuations in these tails have a
large influence on the emittance. Therefore, in addition to
the emittance of the entire phase space distribution, the
emittance of the high density core of this distribution is
of interest. We can calculate such an emittance by cut-
ting away a small fraction of particles in the tails in phase
space. This cut can be done by applying a threshold proce-
dure in the phase space, which means that the phase space
distribution must be known.

When we calculate the emittance from the measured sec-
ond moments, such a procedure is not possible, since we do
not know from the spatial coordinates if a certain particle
is in a tail of the phase space distribution. However, com-
parisons with the reconstructed phase space distributions
using the MENT Algorithm show that an intensity cut as
described below yields realistic results.

In order to estimate the emittance of the beam core con-
taining a fraction f of the entire beam distribution, the
part of the measured two-dimensional spatial distribution
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Figure 6.3: Example images to demonstrate the image
analysis algorithm. From the single beam image (top)
the averaged background is subtracted (middle). In the
bottom image the ROI used for the calculation of the
beam sizes is shown.
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6.4 Determination of MENT profiles
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Figure 6.2: Projection of the measured 2D distribution onto the y-axis for the entire image and for the region-of-interest.

with the lowest intensity is cut away. In our final ROI from
the algorithm described above the offset is chosen in a way
that we have symmetric noise fluctuations around the base-
line in areas inside the ROI with inexistent beam intensity.
These positive and negative contributions compensate each
other and do not contribute to the beam sizes. If we apply
a simple threshold procedure to estimate the core of the
beam, this balance is distorted and only the positive distri-
butions are left, blowing up the rms beam sizes. Therefore,
we use a slightly modified algorithm.

The algorithm works as described below.

• As an initial image, the ROI described above is used.
The total intensity in this image corresponds to 100%
of the beam distribution.

• A simple low pass filter, which substitutes the intensity
of each pixel by the average of the 11×11 -pixel area
surrounding this pixel, is applied to the initial ROI.

• A threshold procedure is applied to this filtered image.
Every pixel with an intensity lower than the threshold
is set to zero, every pixel with a higher intensity is set
to one. This results in a mask which is multiplied with
the initial ROI. The ratio f of the total intensity of
this new image and the intensity of the initial ROI is
calculated.

• The previous step is repeated and the threshold is
changed until the remaining intensity fraction is the
desired fraction f .

• From the final image the rms beam sizes (the second
beam moments, respectively) are calculated.

The same algorithm is applied to the reconstructed phase
space distribution from the MENT Algorithm to estimate
the core emittance. In Fig. 6.4 the intensity distribution
of the image in Fig. 6.3 is shown after a cut of 10% of the
beam intensity.

6.3 Noise reduction with filters

Although the use of a region-of-interest reduces the noise in
the density distribution significantly (see Fig. 6.2), a further
noise reduction is possible by applying appropriate filters
to the images.

Filtering in the spatial coordinates offers only reduced
possibilities. Since the noise consists mainly of high fre-
quencies, a common filter technique is first to perform a
two dimensional Fourier transformation of the image, then
to suppress the high frequencies and finally to transform the
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Figure 6.4: An example image demonstrating the intensity
cut performed to calculate a core emittance. As an initial
image the same image as shown in Fig. 6.3 is used. The
remaining intensity ratio after the cut is f = 90%.

distribution back to the spatial coordinates. This method,
however, does not only remove the noise but also, since the
high frequencies are missing, smears out the sharp edges in
the measured beam density distribution.

A more efficient filtering can be achieved by using a
wavelet transformation [Lin01] instead of the Fourier trans-
formation. The use of an appropriate threshold technique
in the wavelet domain reduces the noise while rarely chang-
ing the density distribution. In this thesis a wavelet package
provided by the Rice University is used [BCF+02]. The fil-
ter is applied after subtracting the background but before
searching the ROI. Figure 6.5 shows the difference in the
profiles with and without a wavelet filter and in Fig. 6.6 an
image before and after applying an wavelet filter is shown.
For all measurements presented in this thesis such a filter
is applied.

6.4 Determination of MENT profiles

In the MENT reconstruction of the phase space distrib-
ution we use the beam profiles of the selected ROI. The
images are filtered before searching the ROI. In order to
benefit from the repetition of the measurement (typically
20 times) the profiles are averaged. However, when the
beam position jitters, a simple averaging results in a broad-
ened profile. Therefore, the measured profiles are rebinned
and the centre of all profiles is moved to the same position
before averaging the profiles. The averaged profile is then
used as input profile for the MENT reconstruction.
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6 Image analysis
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Figure 6.5: Projection of the region-of-interest onto the y-axis with and without applying a wavelet filter.
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Figure 6.6: Difference between an original (top) and a wavelet filtered image (bottom). Both images show only the
region-of-interest.

30



7 Measurements

7.1 Calibration of the OTR monitors

The calibration of the OTR monitors is done by using the
calibration marks scratched onto the screen holders. The
calibration marks are separated by 2 mm in both planes
with an uncertainty of 3% [Cia05]. When using the highest
magnification of the OTR monitors, there are only two cal-
ibration lines visible in the vertical plane and three to five
in the horizontal plane.

The screen holder is illuminated and an image of the cal-
ibration marks is recorded (see Fig. 7.1, top). From this im-
age the projections onto the horizontal and vertical planes
are calculated. In the horizonal plane, the camera is looking
at the calibration marks with an angle of 45◦. Therefore,
the marks appear to be quite narrow. Only the reflections
of the light at the marks are visible, leading to sharp spikes
in the horizontal profile. In the vertical plane, the marks
are visible in the profiles as shadows (see Fig. 7.1, middle).

From these profiles a baseline is subtracted. After ap-
plying a threshold procedure only the spikes or shadows of
the calibration marks are visible in the profiles (see Fig. 7.1,
bottom). In the horizontal plane the centre of each spike
is calculated using Eq. (2.41). The mean value of the dis-
tances between the single spikes is then used to calculate a
horizontal calibration factor COTR,x. Here we have to take
into account that the screen is mounted with an angle of
45◦. In the vertical plane a Gaussian profile is fitted at the
edges of the shadows in the profile using 5 pixels of each
side (see Fig. 7.1, bottom right). For the calculation of the
vertical calibration factor COTR,y the distance between the
centres of the two Gaussian fits is used.

The calibration factors for the screens in the BC2 di-
agnostic section are given in Tab. 7.1. The error in the
horizontal plane is the statistical error resulting from the
three to five calibration marks visible on the calibration im-
ages. This error is small compared to the uncertainty in the
distance between the calibration marks. Therefore, a 3%
error in the calibration factors is used as systematic error
in the emittance calculations.

7.2 Emittance measurements

We present here only results of measurements in the BC2
diagnostic section. Some measurements have been also per-
formed in the SUND section. Here however, further inves-
tigations and improvements are still needed, since, for ex-
ample, the light intensity on two of the OTR screens is very
low and synchrotron light originating in a dipole magnet in
the collimator section can disturb the measurements.

As mentioned above, only effective emittances are calcu-
lated, since contributions due to dispersion are not known.
We only present the normalized (2D) emittances εN,x and
εN,y.

The results for the intrinsic emittances need to be fur-
ther investigated since we get imaginary values for some set-
tings of the accelerator. Possible reasons for this are small
alignment errors in the camera system or slightly skewed
quadrupoles in the diagnostic section.

For all measurements, the nominal charge was 1 nC and
the beam energy 127MeV. The beam energy was deter-
mined from the current of the dipole magnets of the first

bunch compressor (BC2) when the beam was centred in
the middle of the OTR screen in the dispersive section of
the bunch compressor. Only one bunch per bunch train
was used. During all measurements the beam was guided
through the bunch compressor, but most of the measure-
ments were performed without compression.

The measurements presented here were performed on dif-
ferent days. Therefore, the machine status and parameters
like the laser profile on the cathode, the RF settings, and
the guidance of the beam through the first accelerator mod-
ule may be different. This may produce differences in the
emittance measured on different days. The injector was not
optimized for minimal emittances in all measurements.

The shown results have been obtained by two different
methods: the fit (see Section 3.2) and the tomographic
phase space reconstruction using the MENT Algorithm.
In both cases we provide two normalized emittances: the
rms emittance for the entire measured beam intensity (in-
dicated here as 100% value) and the emittance of the beam
core containing 90% of the beam intensity (indicated here
as 90% value). The choice of cutting away 10% is quite ar-
bitrary. However, one can see from the difference between
those two numbers how strongly the tails contribute to the
emittance.

For the results from the fit we present two kinds of er-
rors. The first one is the statistical error resulting from the
different beam sizes obtained for the different beam images
(typically 20 images per screen). It is calculated using the
error propagation presented in Section 3.3. The second er-
ror is the systematic error of the measurement. We have
assumed the following systematic errors:

• 3% error of the beam sizes due to uncertainties of the
calibration factors COTR,x and COTR,y of the OTR
monitors

• 5% error of the beam energy

• 6% error of the gradient of the quadrupoles in the BC2
FODO section

The systematic error is calculated using Monte Carlo sim-
ulations. Rectangular error distributions are used with a
width of two times the assumed error. The distributions
are centred around the measured values. From the results
of the Monte Carlo simulation the systematic error is deter-
mined as the rms value of the distribution. The plots below
show only the statistical error. However, in the tables of
Appendix C both the statistical and systematic errors are
presented. No error estimation is performed for the results
of the MENT Algorithm .

7.2.1 Matching of the Twiss parameters in the
BC2 diagnostic section

As we have seen in Chapter 5, the matching of the Twiss
parameters inside the FODO lattice is very important for
accurate emittance measurements. To match the Twiss pa-
rameters to the design values, first an initial emittance mea-
surement is performed. From this measurement we obtain
the Twiss parameters at the first screen in the FODO lattice
(4DBC2). By using Eq. (2.30) we track the Twiss parame-
ters upstream of the matching section, in front of the FODO
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Figure 7.1: Calibration of the OTR monitors. Top: image of the calibration marks. Middle: projection of the calibration
image onto the x- and y-plane. Bottom: projections after baseline subtraction and threshold procedure. In the vertical
plane also the Gaussian fits are shown (dashed line).

4DBC2 6DBC2 8DBC2 10DBC2

COTR,x [ µm
pixel

] 8.874± 0.015 9.869± 0.059 10.035± 0.092 10.018± 0.054

COTR,y [ µm
pixel

] 9.036 9.980 9.932 9.949

Table 7.1: Calibration factors for the OTR monitors in the BC2 diagnostic section. Only the values for the highest
magnification are presented.
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7.2 Emittance measurements

matching iteration ξ90%x ξ90%y ξ100%x ξ100%y

initial optics 1.316 1.319 1.275 1.210
first iteration 1.027 1.025 1.055 1.001

second iteration 1.002 1.009 1.024 1.013

Table 7.2: Example for a matching procedure in the BC2
diagnostic section. The measured Twiss parameters from
the fit for 90% beam intensity are used to calculate a new
optics.

lattice, and calculate a new optics within the matching sec-
tion to obtain matched Twiss parameters. When starting
with a mismatched beam, two or three iterations might be
necessary to obtain a well matched beam, because not only
the error of the measured emittance may be large but also
the error of the Twiss parameters.

Typically, we calculate the Twiss parameters from the
beam core containing 90% of the beam intensity. This
avoids that tails in the phase space dominate the resulting
values. However, in most cases also the Twiss parameters
for 100% beam intensity are well matched when using the
90% values for the matching.

Table 7.2 gives an example of the quality of the match-
ing. Two matching iterations have been performed using
90% of the beam intensity. In these examples, already the
first iteration leads to a small mismatch in both planes.
The effect of this procedure on the matching of the entire
beam (100% beam intensity) is also presented.

7.2.2 Dependence of the emittance on the main
solenoid current

An important component at the RF gun is the main
solenoid. It is used to counteract space charge induced
emittance growth. A small emittance is achieved, when
the solenoid focuses the beam such that the beam waist
is positioned at the first accelerator cavity of ACC1. The
gradient of ACC1 is chosen such that the focusing of the
beam during acceleration is small and a waist at the exit
of ACC1 is produced.

Figure 7.2 shows the measured normalized emittances
for different solenoid currents. Since the focusing of the
beam depends on the main solenoid current, the optics in
the matching section needs to be adjusted for each setting
of the main solenoid in order to get a matched beam in-
side the diagnostic section. The consistency between the
results from the fit and from the phase space tomography
is very good. We see that for small emittances, the differ-
ence between the 100% values and the 90% values is almost
a factor of two. The results are shown in Tables C.1 and
C.2 in Appendix C.

In the horizontal plane we obtain a minimum emittance
for a main solenoid current around 277A to 278A. In the
vertical plane the minimum is shifted by 1A to lower cur-
rents. The product of the two emittances has its minimum
at a current of 277 A. This current is used for the operation
of the machine.

The solid curve in Fig 7.2 shows ASTRA [AST] simula-
tion results [Kim05]. A normalized emittance of 2mmmrad
for the minimum is used in this simulation. We see that the
simulation describes the tendency of the measurement very
well.

In Fig. 7.3 and 7.4 the reconstructed phase space distri-
butions at the first screen (4DBC2) are shown. We can see
also here that the occupied phase space area has a minimum
around 277 A. The orientation of the phase space distribu-
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Figure 7.2: Normalized emittance versus the current of the
main solenoid. Top: horizontal plane, bottom: verti-
cal plane. The results of the fitting method (fit) and
the tomographic phase space reconstruction (MENT) are
shown both for 100% and 90% beam intensity.

tions is the same for all solenoid currents. This also shows,
that the matching of the Twiss parameters works well.

7.2.3 Dependence of the emittance on the ACC1
off-crest phase

The phase of the first accelerator module ACC1 specifies
the compression strength inside the first bunch compres-
sor (BC2). If this phase is chosen in such a way that the
bunches are accelerated on the crest of the RF wave, the
bunches are not compressed. For smaller phases, the com-
pression strength increases.

Figure 7.5 shows the dependence of the normalized emit-
tance on the phase of the ACC1 RF wave. Only for the
on-crest phase the beam energy is 127MeV. For smaller
phases the beam energy is given by E = 127MeV · cosφ,
where φ is the off-crest phase. At the beginning of the emit-
tance measurements, the on-crest phase was determined by
measuring the beam size on a screen inside the dispersive
section of BC2. The minimum beam size corresponds to
the minimum energy spread and we considered it as the
on-crest phase. During the emittance measurements the
on-crest phase has not been monitored. Later, we found
that the ACC1 phase may drift about ±1◦ within about
half an hour.

We can see that in the vertical plane, the normalized
emittance is almost independent of the ACC1 phase. In
the horizontal plane, we see a steep increase of the normal-
ized emittance for large compressions. There are several
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Figure 7.3: Reconstructed phase space distributions (horizontal plane) for different currents of the main solenoid.
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Figure 7.4: Reconstructed phase space distributions (vertical plane) for different currents of the main solenoid.
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possible explanations for this, like coherent synchrotron ra-
diation generated in the bunch compressor dipoles, or resid-
ual dispersion, but the reason for this emittance growth in
the horizontal plane is not yet understood. It would be
interesting to repeat this measurement and to measure the
emittance also for decompressing phases φ. In that case
the coherent synchrotron radiation can be neglected. In
case of residual dispersion, however, we would expect the
same behaviour of the measured emittance as we would for
compressing phases φ, since the generated energy spread is
the same.

In Fig. 7.6 and 7.7 the reconstructed phase space dis-
tributions at the first screen (4DBC2) for different ACC1
phases are shown. We can see that in the vertical plane
the distribution is almost independent on the ACC1 phase.
In the horizontal plane we see an increased fraction of the
intensity in the tails of the distribution for increasing com-
pression strength. In presence of dispersion, the transfor-
mation assumed in the tomographic reconstruction would
be wrong, since no energy dependence is considered, and
the tails in phase space could be reconstruction artefacts.
We can also see that the shape of the high density core of
the horizontal phase space distribution changes at a high
compression strength. The reason is that we have matched
the Twiss parameters to the design values for each setting
of the ACC1 phase, using the results of the fit for 90%
beam intensity. At low ACC1 phases, more than 10% of
the beam intensity is in the tails of the phase space distri-
bution, leading to a different matching for the beam core.

The measured normalized emittances are given in
Tab. C.3 and C.4 in Appendix C.

7.2.4 Reproducibility of the emittance
measurements

In order to analyse the reproducibility of the measured
emittance, the measurement has been repeated ten times
within a period of about an hour. The settings of the accel-
erator parameters have not been changed during the ex-
periment. The results are shown in Fig. 7.8 and Tab. C.5
and C.6. The normalized emittance is stable during the
measurements. The fluctuations in the horizontal plane
are stronger (0.10mmmrad rms, fit 100%) than in the ver-
tical plane (0.05mmmrad rms, fit 100%). This may be
caused by orbit fluctuations in the bunch compressor due
to small fluctuations in the beam energy. The normalized
emittance for 90% beam intensity is roughly the same for
both planes. However, the normalized emittance for 100%
beam intensity is about 0.5mmmrad larger in the horizon-
tal plane than in the vertical plane which may be a hint for
residual dispersion in the horizontal plane.

7.2.5 Smallest emittances measured

The smallest normalized emittances we have measured so
far are shown in Tab. 7.3. For these measurements, 10 beam
images and background images per screen were recorded.
These measurements show that the normalized design emit-
tance of 2mmmrad has been achieved. As discussed in
Section 4.1, measurements at PITZ indicate, that the emit-
tance could even decrease by a factor of two when flat lon-
gitudinal and transverse laser profiles are used. This could
not be measured here because such a laser beam is not yet
available at the VUV-FEL.
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Figure 7.5: Normalized emittance versus the phase of the
accelerator module ACC1. A phase of 0 corresponds to
the on-crest phase. Top: horizontal plane, bottom: ver-
tical plane. The results of the fitting method (fit) and
the tomographic phase space reconstruction (MENT) are
shown both for 100% and 90% beam intensity.

21.02. εN,x ± stat.
err. ±

syst.
err. ξx εN,x

2005 [mmmrad] [mmmrad]

time Fit 100 % MENT 100%

4:23 1.82± 0.05± 0.18 1.128 1.83
4:31 1.61± 0.05± 0.14 1.073 1.70
4:47 1.63± 0.04± 0.12 1.069 1.68

Fit 90 % MENT 90%

4:23 1.08± 0.03± 0.08 1.116 1.08
4:31 1.01± 0.03± 0.08 1.025 1.00
4:47 1.03± 0.02± 0.07 1.026 0.98

21.02. εN,y ± stat.
err. ±

syst.
err. ξy εN,y

2005 [mmmrad] [mmmrad]

time Fit 100 % MENT 100%

4:23 1.95± 0.08± 0.11 1.033 1.97
4:31 1.88± 0.07± 0.10 1.002 2.03
4:47 1.86± 0.04± 0.11 1.005 1.98

Fit 90 % MENT 90%

4:23 1.17± 0.06± 0.08 1.037 1.15
4:31 1.13± 0.06± 0.07 1.016 1.16
4:47 1.17± 0.03± 0.08 1.032 1.16

Table 7.3: Smallest emittances measured. Top: normalized
rms emittances in the horizontal plane, bottom: normal-
ized rms emittances in the vertical plane. The results for
both 100% and 90% beam intensity are shown.
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Figure 7.6: Reconstructed phase space distributions (horizontal plane) for different phases of the accelerator module ACC1.
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Figure 7.7: Reconstructed phase space distributions (vertical plane) for different phases of the accelerator module ACC1.
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Figure 7.8: Reproducibility of the measured emittance. The measurement has been repeated ten times during 75 minutes.
Top: horizontal plane, bottom: vertical plane. The results of the fitting method (fit) and the tomographic phase space
reconstruction (MENT) are shown both for 100% and 90% beam intensity.
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8 Conclusion

An electron beam with a small emittance and a high
peak current is needed to drive a SASE FEL. For the un-
derstanding and optimization of the electron beam, precise
measurements of the beam parameters are essential. At the
VUV-FEL, the emittance is calculated from beam distrib-
ution measurements using optical transition radiation. At
four screens in a FODO lattice images of the spatial beam
distribution are recorded. We use two different methods for
the determination of the emittance: In the first method,
we fit the Twiss parameters and the emittance to the mea-
sured beam sizes and in the second method we perform a
tomographic reconstruction of the phase space density dis-
tributions with the Maximum Entropy Algorithm.

It has been shown that the error of the measurement
depends sensitively on the choice of the design Twiss pa-
rameters inside the FODO lattice. In addition, the precise
knowledge of the beam profiles and beam widths is needed.
By neglecting only a small fraction of particles inside the
tails of the beam distributions, the determined emittance
changes significantly. Therefore, an image analysis method
was developed, which is insensitive to noise in the images
and which is especially suited for the reconstruction of the
tails in the beam profiles. In order to see how strongly the
emittance is dominated by tails in the phase space distri-
bution, not only the emittance of the entire beam is cal-
culated, but also an emittance for the high density beam
core. This core emittance is defined by cutting away 10%
(arbitrary choice) of the beam intensity in the tails of the
phase space distribution yielding a 90% emittance. This
core emittance together with the emittance of the entire
beam provides additional information for the optimization
of the electron beam.

The experimental results from the fitting and the tomo-
graphic method agree well for both the emittance of the
entire beam (100%) and for the core emittance, contain-
ing 90% of the beam intensity. By using the measured
Twiss parameters, we were able to match the beam to the
design optics successfully. The reproducibility of the mea-
surements is very good. The measured emittances as a
function of the main solenoid current have been compared
to simulation results which describe the tendency of the
measurements very well. For optimal settings of the accel-
erator parameters, normalized emittances below the design
value of 2mmmrad have been measured in both planes.

Outlook

The measurements presented within this thesis are per-
formed in a diagnostic section downstream the first bunch
compressor (BC2 section). In this section wire scanners can
also be used for beam profile measurements. A comparison
of the beam distributions measured with OTR monitors to
those from wire scanners needs to be done.

We have only presented emittances containing the contri-
butions of the dispersion (effective emittances). Determina-
tion of the dispersion is needed to determine pure betatron
emittances.

In principle, we can also measure the correlations be-
tween the (x, x′)- and (y, y′)-phase spaces. Intrinsic emit-
tances can be used to describe the occupied phase space
area in such a case. We found that for some settings of the

accelerator parameters we obtain imaginary values for the
intrinsic emittances. The reason for this has to be inves-
tigated. Possible sources are small alignment errors of the
quadrupoles in the FODO lattice and of the optical system
of the OTR monitors.

The emittance can also be measured in a diagnostic
section in front of the undulators (SUND section). Syn-
chrotron light on some of the screens and problems with the
light yield of two screens in this section should be further
investigated. A comparison between the measured emit-
tances in the two diagnostic sections would give us infor-
mation on the emittance transport through the accelerator.
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A Transfer matrices of important beam line elements

The derivation of the most common beam line elements
can be found in [RS93] and [Bro82]. Here we present only
the results. It is always assumed that the elements are
mounted in a way that they do not produce any coupling
between the (x, x′)- and (y, y′)-plane.

Drift Space is the simplest element in a beam line. In the
matrix formalism it can be described by the transfer
matrix

RDrift(l) =

0
BBBBBB@

1 l 0 0 0 0
0 1 0 0 0 0
0 0 1 l 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1
CCCCCCA , (A.1)

where l denotes the length of the drift space along the
beam line. Since 1/ρ = 0, where ρ denotes the bend-
ing radius of the reference trajectory, no dispersion is
created in a drift space (see Eq. (2.12)).

Quadrupole Magnet with a uniform magnetic field gra-
dient g can be described with help of a parameter
k = eg/p, where p is the reference momentum of the
particles. For k > 0 the transfer matrix is

RQ(k, l) =

0
BBBBBBBB@

cosh φ sinh φ√
|k|

0 0 0 0p
|k| sinh φ cosh φ 0 0 0 0

0 0 cos φ sin φ√
|k|

0 0

0 0 −
p
|k| sin φ cos φ 0 0

0 0 0 0 1 0
0 0 0 0 0 1

1
CCCCCCCCA

.

(A.2)
For k < 0 the on-diagonal 2×2 -matrices for x and y
have to be interchanged:

RQ(k, l) =

0
BBBBBBBB@

cos φ sin φ√
|k|

0 0 0 0

−
p
|k| sin φ cos φ 0 0 0 0

0 0 cosh φ sinh φ√
|k|

0 0

0 0
p
|k| sinh φ cosh φ 0 0

0 0 0 0 1 0
0 0 0 0 0 1

1
CCCCCCCCA

.

(A.3)

In both equations φ = l
p
|k|, where l is the magnetic

length of the quadrupole. For k > 0 the quadrupole
is focusing in the vertical plane and defocusing in the
horizontal plane. For k < 0 the situation is vice versa.
Since 1/ρ = 0, no dispersion is created in a quadrupole
magnet.

Sector Dipole Magnet is a dipole magnet whose end faces
are perpendicular to the central beam trajectory. The
transfer matrix of a horizontally deflecting sector di-
pole magnet with a uniform magnetic field is

RS(ρx, α) =

0
BBBBB@

cos α ρx sin α 0 0 0 ρx(1−cos α)

− sin α
ρx

cos α 0 0 0 sin α

0 0 1 ρxα 0 0
0 0 0 1 0 0

− sin α −ρx(1−cos α) 0 0 1 −ρx(α−sin α)

0 0 0 0 0 1

1
CCCCCA

.

(A.4)

Here α is the deflection angle and ρx denotes the bend-
ing radius of the beam trajectory. Since 1/ρx 6= 0,
horizontal dispersion is generated.

Rectangular Dipole Magnet is a dipole magnet with par-
allel magnet faces, i.e. its end faces are not perpen-
dicular to the central beam trajectory. If the magnet
is installed symmetrically with respect to the central
beam trajectory, it can be described introducing an
additional edge focusing matrix

F (ρx, α) =

0
BBBBBBB@

1 0 0 0 0 0
tan α/2

ρx
1 0 0 0 0

0 0 1 0 0 0

0 0 − tan α/2
ρx

1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

1
CCCCCCCA
.

(A.5)
The transfer matrix for the rectangular dipole magnet
can then be expressed as a matrix product of F (ρx, α)
and RS(ρx, α):

RRDM(ρx, α) = F (ρx, α) ·RS(ρx, α) ·F (ρx, α) . (A.6)

Since 1/ρx 6= 0, horizontal dispersion is generated.
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B Symplectic transformation to calculate the intrinsic emittances

The symplectic transformation (see Eq. (2.49)) to cal-
culate the intrinsic emittances is presented in this section.
The derivation can be found in [Kub99].

An n-dimensional transformation matrix U is called
symplectic, if it fulfils the symplecticity condition [Wie03b]

UT JnU = Jn, (B.1)

where Jn denotes the n-dimensional unit symplectic matrix

composed of n/2, n even, submatrices

�
0 1
−1 0

�
:

Jn =

0
BBBBB@

0 1
−1 0

0

. . .

0
0 1
−1 0

1
CCCCCA . (B.2)

According to [Kub99] the symplectic transformation ma-
trix U which yields the intrinsic emittances as given in
Eq. (2.49) can be calculated as described in the following.
Solving the eigenvalue problem

J4σ
4Dx = λx (B.3)

yields four imaginary eigenvalues λ(j) and four imaginary
eigenvectors x(j). The eigenvectors x(j) can be separated
into imaginary and real parts: x

(j)
i and x

(j)
r . The four

eigenvectors can be expressed as

x(1) = x(1)
r + ix

(1)
i x(2) = x(1)

r − ix
(1)
i

x(3) = x(3)
r + ix

(3)
i x(4) = x(3)

r − ix
(3)
i . (B.4)

The same separation for the eigenvalues λ(i) yields

λ(1) = iλ
(1)
i λ(2) = −iλ(1)

i

λ(3) = iλ
(3)
i λ(4) = −iλ(3)

i . (B.5)

With Eq. (B.4) the matrix U can be expressed as

U =

�
x

(1)
rq

x(1)T
Jx

(1)
i

x
(1)
iq

x(1)T
Jx

(1)
i

x
(3)
rq

x(3)T
Jx

(3)
i

x
(3)
iq

x(3)T
Jx

(3)
i

�
.

(B.6)
It can also be shown that UT σ4DU is related to the eigen-
values above as

UT σ4DU =

0
BBB@
λ

(1)
i 0 0 0

0 λ
(1)
i 0 0

0 0 λ
(3)
i 0

0 0 0 λ
(3)
i

1
CCCA . (B.7)
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C Tables with measurement results

main solenoid 30.01.2005 εN,x ± stat.
err. ± syst.

err. ξx εN,x

current [A] time [mmmrad] [mmmrad]

Fit 100 % MENT 100%

273.0 13:02 8.27± 0.22± 0.43 1.011 8.67
273.0 13:09 7.20± 0.20± 0.30 1.128 7.28
275.0 12:16 6.02± 0.16± 0.29 1.020 5.59
275.0 12:24 5.52± 0.18± 0.21 1.115 5.38
276.0 13:27 4.90± 0.11± 0.21 1.067 4.55
276.0 13:38 5.43± 0.14± 0.23 1.044 5.08
277.0 09:45 4.13± 0.18± 0.21 1.008 3.74
277.0 11:56 4.47± 0.14± 0.22 1.014 4.09
278.0 13:58 4.83± 0.20± 0.17 1.215 4.24
278.0 14:10 4.49± 0.11± 0.22 1.027 4.07
279.0 10:04 4.50± 0.14± 0.20 1.048 4.29
279.0 10:12 4.73± 0.15± 0.22 1.029 4.50
280.0 14:31 6.01± 0.23± 0.24 1.130 6.36
280.0 14:40 6.28± 0.17± 0.30 1.030 6.10
281.0 10:31 6.74± 0.21± 0.32 1.013 7.01
281.0 10:39 6.71± 0.14± 0.33 1.024 6.27
283.0 11:01 9.64± 0.21± 0.45 1.071 10.03
283.0 11:09 9.79± 0.22± 0.52 1.039 10.00
285.0 11:26 12.76± 0.39± 0.67 1.035 12.84
285.0 11:33 12.60± 0.35± 0.64 1.034 12.96

Fit 90 % MENT 90%

273.0 13:02 6.25± 0.19± 0.32 1.002 6.11
273.0 13:09 5.11± 0.16± 0.21 1.102 5.00
275.0 12:16 3.78± 0.15± 0.19 1.032 3.57
275.0 12:24 3.44± 0.10± 0.14 1.067 3.33
276.0 13:27 2.68± 0.08± 0.16 1.002 2.52
276.0 13:38 3.14± 0.10± 0.17 1.000 3.03
277.0 09:45 2.64± 0.14± 0.16 1.013 2.17
277.0 11:56 2.45± 0.11± 0.15 1.009 2.30
278.0 13:58 2.49± 0.12± 0.11 1.047 2.27
278.0 14:10 2.51± 0.09± 0.15 1.004 2.25
279.0 10:04 2.52± 0.09± 0.14 1.004 2.42
279.0 10:12 2.85± 0.12± 0.16 1.001 2.61
280.0 14:31 3.71± 0.16± 0.16 1.050 3.83
280.0 14:40 3.82± 0.16± 0.24 1.009 3.74
281.0 10:31 4.22± 0.17± 0.24 1.003 4.35
281.0 10:39 4.18± 0.12± 0.25 1.005 3.87
283.0 11:01 6.58± 0.19± 0.34 1.011 6.71
283.0 11:09 6.68± 0.18± 0.43 1.005 6.55
285.0 11:26 8.55± 0.26± 0.49 1.000 8.57
285.0 11:33 8.65± 0.17± 0.54 1.000 8.73

Table C.1: Measured normalized horizontal rms emittances for different main solenoid currents. Top: 100% beam intensity,
bottom: 90% beam intensity.
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main solenoid 30.01.2005 εN,y ± stat.
err. ± syst.

err. ξy εN,y

current [A] time [mm mrad] [mmmrad]

Fit 100 % MENT 100%

273.0 13:02 6.46± 0.10± 0.35 1.019 6.86
273.0 13:09 6.14± 0.13± 0.32 1.052 6.34
275.0 12:16 5.06± 0.11± 0.21 1.077 4.91
275.0 12:24 5.23± 0.13± 0.20 1.082 4.99
276.0 13:27 5.09± 0.10± 0.30 1.021 5.02
276.0 13:38 4.71± 0.10± 0.23 1.013 4.61
277.0 09:45 5.14± 0.15± 0.27 1.007 5.00
277.0 11:56 4.93± 0.13± 0.24 1.012 4.75
278.0 13:58 5.94± 0.13± 0.30 1.003 5.47
278.0 14:10 5.82± 0.14± 0.30 1.023 5.17
279.0 10:04 6.61± 0.16± 0.35 1.015 6.40
279.0 10:12 6.59± 0.12± 0.33 1.025 6.49
280.0 14:31 8.30± 0.15± 0.39 1.016 8.11
280.0 14:40 7.71± 0.27± 0.43 1.005 7.68
281.0 10:31 8.63± 0.26± 0.44 1.002 8.60
281.0 10:39 8.86± 0.20± 0.50 1.003 8.57
283.0 11:01 11.22± 0.53± 0.70 1.014 11.35
283.0 11:09 11.07± 0.33± 0.72 1.008 11.01
285.0 11:26 11.37± 0.42± 0.58 1.006 11.49
285.0 11:33 11.45± 0.57± 0.55 1.007 11.64

Fit 90 % MENT 90%

273.0 13:02 4.43± 0.06± 0.25 1.001 4.80
273.0 13:09 4.15± 0.08± 0.24 1.018 4.46
275.0 12:16 3.41± 0.08± 0.15 1.049 3.45
275.0 12:24 3.73± 0.09± 0.16 1.038 3.65
276.0 13:27 3.83± 0.10± 0.26 1.035 3.65
276.0 13:38 3.61± 0.11± 0.19 1.005 3.29
277.0 9:45 3.65± 0.13± 0.19 1.006 3.48
277.0 11:56 3.72± 0.13± 0.20 1.001 3.38
278.0 13:58 4.39± 0.09± 0.25 1.005 3.87
278.0 14:10 4.07± 0.11± 0.23 1.001 3.62
279.0 10:04 4.76± 0.13± 0.26 1.064 4.38
279.0 10:12 4.68± 0.09± 0.24 1.078 4.41
280.0 14:31 6.20± 0.12± 0.30 1.028 5.60
280.0 14:40 5.72± 0.25± 0.33 1.003 5.31
281.0 10:31 6.52± 0.27± 0.35 1.001 6.02
281.0 10:39 6.86± 0.17± 0.37 1.002 6.16
283.0 11:01 8.80± 0.54± 0.55 1.024 8.36
283.0 11:09 8.72± 0.36± 0.56 1.015 8.14
285.0 11:26 8.92± 0.40± 0.43 1.006 8.49
285.0 11:33 9.05± 0.53± 0.42 1.008 8.67

Table C.2: Measured normalized vertical rms emittances for different main solenoid currents. Top: 100% beam intensity,
bottom: 90% beam intensity.
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ACC1 off-crest 06.02.2005 εN,x ± stat.
err. ± syst.

err. ξx εN,x

phase [deg] time [mmmrad] [mmmrad]

Fit 100 % MENT 100%

0 11:00 3.08± 0.10± 0.18 1.039 3.13
0 11:09 3.40± 0.11± 0.19 1.012 3.48
-1 16:20 2.91± 0.11± 0.15 1.130 3.15
-1 16:37 3.87± 0.14± 0.21 1.031 4.07
-2 11:54 4.13± 0.13± 0.22 1.008 4.39
-2 12:04 4.19± 0.16± 0.20 1.010 4.34
-3 15:56 6.10± 0.30± 0.31 1.063 6.13
-3 16:04 6.25± 0.30± 0.28 1.061 6.15
-4 12:53 5.00± 0.24± 0.29 1.006 5.28
-4 13:00 4.95± 0.24± 0.26 1.029 5.06
-5 15:27 7.48± 0.36± 0.60 1.359 7.51
-5 15:37 7.03± 0.36± 0.35 1.051 7.06
-5 15:47 8.16± 0.36± 0.43 1.039 7.83
-6 13:47 7.63± 0.36± 0.45 1.008 7.68
-6 13:55 8.60± 0.54± 0.51 1.029 9.00
-7 15:18 22.5± 1.3± 1.1 1.048 22.7
-8 14:35 31.9± 1.8± 1.9 1.583 33.6
-8 14:51 27.5± 1.7± 1.8 1.074 27.2

Fit 90 % MENT 90%

0 11:00 1.65± 0.05± 0.09 1.001 1.73
0 11:09 1.85± 0.06± 0.10 1.003 1.93
-1 16:20 1.73± 0.07± 0.09 1.031 1.74
-1 16:37 2.28± 0.08± 0.14 1.007 2.35
-2 11:54 2.34± 0.09± 0.11 1.045 2.44
-2 12:04 2.30± 0.09± 0.10 1.056 2.38
-3 15:56 3.25± 0.13± 0.18 1.023 3.31
-3 16:04 3.20± 0.14± 0.15 1.031 3.25
-4 12:53 2.60± 0.12± 0.14 1.007 2.75
-4 13:00 2.56± 0.12± 0.12 1.013 2.70
-5 15:27 4.68± 0.21± 0.40 1.145 4.54
-5 15:37 3.68± 0.15± 0.22 1.020 3.73
-5 15:47 4.36± 0.18± 0.29 1.021 4.32
-6 13:47 4.62± 0.22± 0.20 1.043 4.51
-6 13:55 5.27± 0.29± 0.24 1.134 5.26
-7 15:18 13.46± 0.65± 0.53 1.151 14.35
-8 14:35 22.8± 0.9± 1.8 1.777 24.5
-8 14:51 17.4± 0.9± 1.1 1.012 17.1

Table C.3: Measured normalized rms emittances for different ACC1 off-crest phases (horizontal plane). Top: 100% beam
intensity, bottom: 90% beam intensity.
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ACC1 off-crest 06.02.2005 εN,y ± stat.
err. ± syst.

err. ξy εN,y

phase [deg] time [ mmmrad] [mmmrad]

Fit 100 % MENT 100%

0 11:00 3.35± 0.07± 0.16 1.022 3.27
0 11:09 3.50± 0.08± 0.16 1.017 3.44
-1 16:20 3.31± 0.07± 0.18 1.018 3.25
-1 16:37 3.30± 0.08± 0.19 1.017 3.23
-2 11:54 3.71± 0.07± 0.16 1.026 3.66
-2 12:04 3.74± 0.08± 0.16 1.047 3.65
-3 15:56 3.45± 0.09± 0.21 1.008 3.35
-3 16:04 3.56± 0.08± 0.20 1.009 3.45
-4 12:53 3.87± 0.09± 0.19 1.002 3.89
-4 13:00 3.76± 0.09± 0.18 1.003 3.83
-5 15:27 3.62± 0.11± 0.19 1.029 3.26
-5 15:37 3.56± 0.08± 0.19 1.007 3.49
-5 15:47 3.41± 0.08± 0.19 1.003 3.25
-6 13:47 3.97± 0.08± 0.19 1.014 4.15
-6 13:55 4.20± 0.11± 0.21 1.016 4.27
-7 15:18 3.66± 0.11± 0.18 1.008 3.39
-8 14:35 3.88± 0.19± 0.28 1.037 4.07
-8 14:51 3.60± 0.13± 0.19 1.043 3.47

Fit 90 % MENT 90%

0 11:00 2.30± 0.05± 0.12 1.003 2.24
0 11:09 2.40± 0.06± 0.13 1.002 2.33
-1 16:20 2.36± 0.05± 0.13 1.013 2.32
-1 16:37 2.36± 0.05± 0.13 1.012 2.29
-2 11:54 2.52± 0.04± 0.12 1.013 2.47
-2 12:04 2.53± 0.05± 0.12 1.012 2.46
-3 15:56 2.44± 0.05± 0.16 1.006 2.37
-3 16:04 2.53± 0.05± 0.15 1.007 2.42
-4 12:53 2.72± 0.05± 0.16 1.007 2.66
-4 13:00 2.64± 0.06± 0.14 1.002 2.61
-5 15:27 2.43± 0.05± 0.14 1.007 2.31
-5 15:37 2.59± 0.05± 0.15 1.002 2.45
-5 15:47 2.43± 0.05± 0.14 1.011 2.30
-6 13:47 2.71± 0.06± 0.15 1.022 2.77
-6 13:55 2.77± 0.06± 0.16 1.015 2.79
-7 15:18 2.39± 0.05± 0.13 1.010 2.30
-8 14:35 2.87± 0.07± 0.18 1.011 2.79
-8 14:51 2.47± 0.07± 0.15 1.023 2.34

Table C.4: Measured normalized rms emittances for different ACC1 off-crest phases (vertical plane). Top: 100% beam
intensity, bottom: 90% beam intensity.
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11.02.2005 εN,x ± stat.
err. ± syst.

err. ξx εN,x

time [mm mrad] [mmmrad]

Fit 100 % MENT 100%

4:19 2.93± 0.11± 0.14 1.036 2.94
4:27 2.99± 0.11± 0.13 1.019 3.04
4:35 2.85± 0.08± 0.12 1.020 2.90
4:43 3.01± 0.10± 0.14 1.020 3.02
4:51 2.85± 0.11± 0.12 1.030 2.89
4:59 2.94± 0.11± 0.13 1.025 2.97
5:07 2.70± 0.10± 0.13 1.030 2.81
5:16 2.74± 0.13± 0.12 1.023 2.77
5:24 2.85± 0.09± 0.13 1.029 3.02
5:33 2.80± 0.10± 0.12 1.030 2.88

Fit 90 % MENT 90%

4:19 1.63± 0.09± 0.06 1.169 1.67
4:27 1.72± 0.08± 0.07 1.110 1.77
4:35 1.62± 0.06± 0.06 1.117 1.67
4:43 1.72± 0.08± 0.07 1.117 1.76
4:51 1.59± 0.07± 0.06 1.154 1.64
4:59 1.69± 0.07± 0.07 1.121 1.71
5:07 1.54± 0.06± 0.07 1.135 1.60
5:16 1.53± 0.09± 0.06 1.129 1.57
5:24 1.67± 0.06± 0.07 1.125 1.77
5:33 1.61± 0.07± 0.07 1.140 1.66

Table C.5: Reproducibility of the emittance measurement (horizontal plane). Top: measured normalized rms emittances
for 100% beam intensity. Bottom: measured normalized rms emittances for 90% beam intensity.

11.02.2005 εN,y ± stat.
err. ± syst.

err. ξy εN,y

time [mmmrad] [mmmrad]

Fit 100 % MENT 100%

4:19 2.53± 0.07± 0.13 1.022 2.44
4:27 2.63± 0.08± 0.13 1.012 2.50
4:35 2.61± 0.08± 0.14 1.004 2.53
4:43 2.55± 0.08± 0.14 1.005 2.51
4:51 2.55± 0.06± 0.15 1.002 2.49
4:59 2.54± 0.07± 0.13 1.009 2.45
5:07 2.57± 0.06± 0.15 1.002 2.52
5:16 2.58± 0.07± 0.15 1.008 2.51
5:24 2.47± 0.07± 0.14 1.008 2.44
5:33 2.60± 0.08± 0.13 1.005 2.52

Fit 90 % MENT 90%

4:19 1.62± 0.04± 0.09 1.014 1.55
4:27 1.61± 0.04± 0.09 1.016 1.54
4:35 1.61± 0.04± 0.10 1.009 1.55
4:43 1.58± 0.03± 0.10 1.012 1.53
4:51 1.63± 0.03± 0.10 1.008 1.55
4:59 1.59± 0.04± 0.09 1.013 1.52
5:07 1.62± 0.04± 0.11 1.010 1.55
5:16 1.64± 0.03± 0.10 1.009 1.56
5:24 1.56± 0.03± 0.10 1.014 1.48
5:33 1.58± 0.04± 0.09 1.015 1.52

Table C.6: Reproducibility of the emittance measurement (vertical plane). Top: measured normalized rms emittances for
100% beam intensity. Bottom: measured normalized rms emittances for 90% beam intensity.
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reading my thesis and helping me to eliminate many errors
in the English language.

I am grateful to my colleagues Dr. Nicoleta Baboi, Bolko
Beutner, and Andy Bolzmann for many interesting discus-
sions on various physical and non-physical topics.

I would like to thank the entire VUV-FEL shift crew for
the chance to learn from them and for the measurements
they made for me.

Finally, I want to thank my family for their support in all
situations.

52


	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 The VUV-FEL

	2 Linear beam dynamics and beam parameters
	2.1 Transfer matrix formalism
	2.2 Liouville's theorem
	2.3 Two-dimensional phase space ellipse
	2.4 Beam matrix
	2.5 Statistical definition of the beam matrix
	2.6 Different definitions of the transverse beam emittance

	3 Determination of the transverse emittance
	3.1 Determination of the (2D) emittance
	3.2 Fitting of the measured data
	3.3 Error estimation of the fitted parameters
	3.4 Determination of the intrinsic emittance
	3.5 Tomographic phase space reconstruction

	4 Experimental setup
	4.1 Injector
	4.2 First bunch compressor section (BC2 section)
	4.3 SUND diagnostic section
	4.4 OTR monitors
	4.4.1 Optical transition radiation
	4.4.2 OTR monitors


	5 Systematic errors
	5.1 Mismatch parameter
	5.2 Dependence of the determined emittance on the mismatch for different errors in the beam sizes
	5.3 Dependence of the determined emittance on energy errors
	5.4 Simulation of the (2D) phase space reconstruction with the MENT Algorithm in the BC2 section

	6 Image analysis
	6.1 Image analysis algorithm to reconstruct the second moments of the entire beam
	6.2 Beam intensity cut to calculate the core emittance
	6.3 Noise reduction with filters
	6.4 Determination of MENT profiles

	7 Measurements
	7.1 Calibration of the OTR monitors
	7.2 Emittance measurements
	7.2.1 Matching of the Twiss parameters in the BC2 diagnostic section
	7.2.2 Dependence of the emittance on the main solenoid current
	7.2.3 Dependence of the emittance on the ACC1 off-crest phase
	7.2.4 Reproducibility of the emittance measurements
	7.2.5 Smallest emittances measured


	8 Conclusion
	A Transfer matrices of important beam line elements
	B Symplectic transformation to calculate the intrinsic emittances
	C Tables with measurement results
	References

