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1 Introduction

The standard approach to determine variation of the transverse beam orbit (trans-
verse jitter) at some location in a (transversely uncoupled) transport line is based
on the analysis of beam position measurements. If the optical model of the beam
line and BPM resolutions are known, the typical choice is to let difference orbit
parameters be a solution of the weighted linear least squares problem. This least
squares problem, in the next turn, can be solved analytically resulting in the well
known formulas for both, estimates of the difference orbit parameters and covariance
matrix of the errors of these estimates (see, for example [1, 2]).
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Nevertheless, although analytical solutions are available, their direct usage as a
tool for designing of a “good measurement system” does not look to be fairly straight-
forward. One of the reasons is their dependence from position of the reconstruction
point.

In this paper, first, considering propagation of the estimate of the difference orbit
parameters and propagation of the covariance matrix of the errors of this estimate
along the beam line as the position of the reconstruction point changes, we will
introduce error Twiss parameters and invariant error emittance, which will allow us,
up to large extend, to separate the role of the optics between BPM locations and the
effects coming from the choice of the position of the reconstruction point.

In our approach, the problem of designing new or estimating properties of the
existing measurement system can be formulated using the usual accelerator physics
concepts of emittance and betatron functions. The magnitude of the reconstruc-
tion errors is defined by error emittance and the needed balance between position
and momentum reconstruction errors in the point of interest has to be achieved by
matching error Twiss parameters in this point to the desired values.

Second, taking into account that for devices as SASE FELs we are mainly in-
terested not in the beam jitter at the device entrance itself, but in the resulting
trajectory derivation form some golden orbit along the whole device, we introduce
Courant-Snyder invariant as estimator of the reconstruction errors of the difference
orbit parameters.

As it could be expected, the reconstruction errors, when measured using Courant-
Snyder invariant, do not depend on the position of the reconstruction point, but
depend not only on the error emittance but also on the design betatron functions
(although our simple BPM readings model do not take information about beam sizes
at BPM locations into account). The figure of merit for the quality of the measure-
ment system is now not the error emittance alone, but the product of error emittance
and mismatch between error and design Twiss parameters. Large mismatch can spoil
the properties of the measurement system even for the case when the error emittance
is small.

2 Standard Least Squares Solution

In this section we will review the standard approach to the problem of determi-
nation of difference orbit parameters using readings of beam position monitors under
assumptions that the optical model of the beam line and BPM resolutions are known.
We will assume that the transverse particle motion is uncoupled in linear approxi-
mation and will use the variables �z = ( x, p )� for the description of the horizontal
beam oscillations. Here, as usual, x is the horizontal particle coordinate and p is the
horizontal canonical momentum scaled with the kinetic momentum of the reference
particle. As orbit parameters we will understand values of x and p given in some
predefined point in the beam line (reconstruction point with longitudinal position
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s = r ) and would like to obtain estimates of these parameters by fitting BPM data
to the known linear model of the beam transport. Because unknown BPM offsets,
non-zero corrector strengths and misaligned quadrupoles make the absolute orbit de-
viate from a simple betatron oscillation, the fit should, in general, work better when
fitted not to an absolute orbit, but to a difference orbit. So, again as usual, we will
assume that some “golden trajectory” x̄ and p̄ is given and, instead of the problem
of estimating of absolute orbit parameters, will consider the problem of estimating
parameters of the difference orbit δ�z = ( x− x̄, p− p̄ )� in the reconstruction point.

Let us assume that we have n BPMs in our beam line placed at positions
s1, . . . , sn and they deliver readings

�bc = ( bc
1, . . . bc

n )� (1)

for the current trajectory with previously recorded observations for the golden orbit
being

�bg = ( bg
1, . . . bg

n )
�

. (2)

Suppose that the difference between these readings can be represented in the form

δ�bε
def
= �bc −�bg =

⎛
⎜⎜⎝

x(s1) − x̄(s1)
...

x(sn) − x̄(sn)

⎞
⎟⎟⎠ + �ε , (3)

where the random vector �ε = ( ε1, . . . , εn )� has zero mean and positive definite
covariance matrix Vε , i.e. that

< �ε > = �0, V ( �ε ) = < �ε · �ε� > − < �ε > · < �ε >� = Vε. (4)

Note that from (3) and (4) it follows that V( δ�bε ) = V( �ε ).
Let Am(r) be a (symplectic) transfer matrix from location of the reconstruction

point to the m-th BPM location

Am(r) =

(
am(r) cm(r)
em(r) dm(r)

)
, am(r) dm(r) − cm(r) em(r) ≡ 1 . (5)

In order to find estimate δ�zε(r) = ( δxε(r), δpε(r) )� for the difference orbit
parameters in the presence of BPM reading errors one has to solve a linear system

M(r) · δ�zε(r)
def
=

⎛
⎜⎜⎝

a1(r) c1(r)
...

...
an(r) cn(r)

⎞
⎟⎟⎠ · δ�zε(r) = δ�bε . (6)

If number of BPMs is grater than two or/and rank of the matrix M is smaller
than two, the system (6) may not have classical solutions at all or may have many of
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them. In this case “solve” means to find a vector δ�zε such that M ·δ�zε is the “best”
approximation to the measured vector δ�bε . There are many possible ways of defining
the “best” solution. A choice which can often be motivated for statistical reasons
(Gauss-Markov theorem and its generalization; see, for example, [3]) and also leads
to a simple computational problem is to let δ�zε be a solution to the minimization
problem

min
δ�zε

(
M · δ�zε − δ�bε

)�
V −1

ε

(
M · δ�zε − δ�bε

)
. (7)

Let us assume that the Cholesky factorization Vε = R�
ε Rε of the covariance

matrix can be computed. Then

(
M · δ�zε − δ�bε

)�
V −1

ε

(
M · δ�zε − δ�bε

)
=

∥∥∥R−�
ε

(
M · δ�zε − δ�bε

) ∥∥∥2

2
(8)

and the minimization problem (7) becomes the weighted linear least squares problem

min
δ�zε

∥∥∥R−�
ε M · δ�zε − R−�

ε · δ�bε

∥∥∥2

2
. (9)

Here ‖·‖2 denotes the Euclidean vector norm and Rε is a (unique) upper triangular
matrix with strictly positive diagonal elements.

The problem (9) always has at least one solution and the solution with minimal
Euclidean norm (which is unique) is given by the formula

δ�zε =
(
R−�

ε M
)†

R−�
ε · δ�bε , (10)

where
(
R−�

ε M
)†

is the pseudoinverse (the Moore-Penrose pseudoinverse) of the

matrix R−�
ε M .

If the matrix R−�
ε M has full column rank, then the solution of the problem (9)

is unique. Matrix Rε is nondegenerated, that means that the rank of the matrix
R−�

ε M is always equal to the rank of the matrix M . Because due to symplecticity
of the matrices Am

a2
m + c2

m �= 0 , (11)

the matrix M always has at least n nonzero elements and therefore its rank never
can be equal to zero. So if rank(M) < 2 , then it must be equal to one, leading to
the following observation:

First, rank(M) = 1 if and only if columns of M are linearly dependent, i.e. if
there exist constants ξ and η with ξ2 + η2 �= 0 such that for all m simultaneously

ξ am + η cm = 0 . (12)
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Second, let us introduce Bmk - transport matrix from the location of the BPM
with index m to the location of the BPM with index k

Bmk =

(
æmk

11 æmk
12

æmk
21 æmk

22

)
= Ak A−1

m =

(
dm ak − em ck am ck − cm ak

dm ek − em dk am dk − cm ek

)
. (13)

From (13) one sees, that if (12) is satisfied, then all æmk
12 = 0 , meaning that the

phase advance between any pair of beam position monitors is multiple of 180◦. The
reverse statement is also true: if the phase advance between at least two BPMs is
not multiple of 180◦, then rank(M) = 2 .

In the following we will assume that the matrix M has full column rank, which
is equivalent to the condition that the matrix M�V −1

ε M is positive definite and is
equivalent to the condition that there are at least two beam position monitors with
phase advance between them different from k × 180◦. In this case the solution of
the problem (9) is unique and the pseudoinverse can be calculated using the regular
inverse of the matrix M�V −1

ε M(
R−�

ε M
)†

=
(
M�V −1

ε M
)−1

M�R−1
ε . (14)

Finally, combining (10) and (14) we obtain the following formula for the estimate
of the difference orbit parameters

δ�zε(r) =
(
M�(r)V −1

ε M(r)
)−1

M�(r) V −1
ε · δ�bε , (15)

and the covariance matrix of the errors of this estimate (which can be computed
from (15) using (4)) is given by

Vz(r)
def
= V ( δ�zε(r) ) =

(
M�(r) V −1

ε M(r)
)−1

. (16)

To finish this section let us, for the case when readings of different BPMs are
uncorrelated, i.e. when the covariance matrix Vε is a positive diagonal matrix

Vε = diag
(
σ2

1 , σ2
2 , . . . , σ2

n

)
> 0 , (17)

rewrite the expression for the error covariance matrix (16) in the more familiar (for
example, from [2]) form

Vz(r) =
1

Δ

⎛
⎜⎜⎜⎜⎝

n∑
m=1

(
cm(r)
σm

)2 − n∑
m=1

(
am(r)
σm

) (
cm(r)
σm

)

− n∑
m=1

(
am(r)
σm

) (
cm(r)
σm

) n∑
m=1

(
am(r)
σm

)2

⎞
⎟⎟⎟⎟⎠ , (18)

where

Δ =
1

2

n∑
k,m=1

(
ak(r)cm(r) − am(r)ck(r)

σkσm

)2

=
1

2

n∑
k,m=1

(
ækm

12

σkσm

)2

(19)

is independent from the position of the reconstruction point.
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3 Error Emittance and Error Twiss Parameters

The formulas (15) and (16) (and also (18) and (19)) are analytical solutions to
the problem considered, but their direct usage as a tool for designing of a “good
measurement system” does not look to be fairly straightforward. One of the reasons
is their dependence from position of the reconstruction point. In this section, consid-
ering propagation of the estimate of the difference orbit parameters and propagation
of the covariance matrix of the errors of this estimate along the beam line as the po-
sition of the reconstruction point changes, we will introduce error Twiss parameters
and invariant error emittance, which will allow us, up to large extend, to separate
the role of the optics between BPM locations and the effects coming from the choice
of the position of the reconstruction point.

Let A(r1, r2) be a matrix which transport particle coordinates from the point
with the longitudinal position s = r1 to the point with the longitudinal position
s = r2 . Using that for all BPM location

Am(r2) = Am(r1) A−1(r1, r2) (20)

we have

M(r2) = M(r1) A−1(r1, r2) . (21)

This equality, when combined with formula (15), gives us

δ�zε(r2) = A(r1, r2) · δ�zε(r1) , (22)

i.e. the estimate of the difference orbit parameters propagates along the beam line
exactly as particle trajectory as one changes the position of the reconstruction point.

This fact is more or less obvious and does not lead us to deeper conclusions. The
situation becomes less trivial, when from (21) and (16) we obtain

Vz(r2) = A(r1, r2) Vz(r1) A�(r1, r2) (23)

and see that the error covariance matrix propagates like the matrix of the second
order moments of the beam distribution. It immediately allow us to introduce an
error emittance

εε =
√

det Vz(r) (24)

and define error Twiss parameters(
βε(r) −αε(r)

−αε(r) γε(r)

)
def
=

1

εε

Vz(r) . (25)

So we see that the properties of new or existing measurement system can be
formulated using the usual accelerator physics concepts of emittance and betatron
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functions. The magnitude of the reconstruction errors is defined by the error emit-
tance, which is an invariant with respect to the choice of the reconstruction point and
depend only on transfer matrices between BPM locations and BPM resolutions, and
the needed balance between position and momentum errors in the point of interest
has to be achieved by matching error Twiss parameters in this point to the desired
values.

Let us return to the practically important situation when BPM readings can be
considered as uncorrelated. In this case the error emittance is given by the following
expression

εε =
1√

1
2

n∑
k,m=1

(
ækm

12

σkσm

)2
, (26)

and the error Twiss parameters are

βε(r) = εε

n∑
m=1

(
cm(r)

σm

)2

, γε(r) = εε

n∑
m=1

(
am(r)

σm

)2

, (27)

αε(r) = εε

n∑
m=1

(
am(r)

σm

)(
cm(r)

σm

)
. (28)

What is interesting about the error Twiss parameters (27) and (28) is the fact that
they are not simply one of many betatron functions which could propagate through
our beam line, they are by themselves solutions of some minimization problem. Let
β(r), α(r) and γ(r) be some Twiss parameters given in the point s = r and let S
be a weighted sum

S (β(r), α(r), γ(r)) =
n∑

m=1

β(sm)

σ2
m

. (29)

Then, under the assumption that the phase advance between at least two BPMs
is not a multiple of 180◦, the error Twiss parameters are unique solutions to the
minimization problem

min
β(r), α(r), γ(r)

S (β(r), α(r), γ(r)) (30)

and

S (βε(r), αε(r), γε(r)) =
n∑

m=1

βε(sm)

σ2
m

=
2

εε
. (31)

The proof is straightforward and follows from analysis of the explicit representation

S (β(r), α(r), γ(r)) =
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=
n∑

m=1

(
am(r)

σm

)2

β(r) − 2
n∑

m=1

(
am(r)

σm

)(
cm(r)

σm

)
α(r) +

n∑
m=1

(
cm(r)

σm

)2

γ(r), (32)

which can easily be obtained from the equation

β(sm) = a2
m(r) β(r) − 2am(r) cm(r) α(r) + c2

m(r) γ(r) . (33)

Because the minimum in (30) can be achieved only in a single point, the equality
(31) by itself is important characteristic of the error Twiss parameters. Rewriting it
in the form

0 =

(
n∑

m=1

βε(sm)

σ2
m

)2

− 4

ε2
ε

=

=

(
n∑

m=1

βε(sm)

σ2
m

)2

− 2
n∑

k,m=1

βε(sk)

σ2
k

βε(sm)

σ2
m

sin2 (με(sk, sm)) =

=
n∑

k,m=1

βε(sk)

σ2
k

βε(sm)

σ2
m

cos (2με(sk, sm)) =

=
n∑

k,m=1

βε(sk)

σ2
k

cos (2με(r, sk)) · βε(sm)

σ2
m

cos (2με(r, sm)) +

+
n∑

k,m=1

βε(sk)

σ2
k

sin (2με(r, sk)) · βε(sm)

σ2
m

sin (2με(r, sm)) =

=

(
n∑

m=1

βε(sm)

σ2
m

cos (2με(r, sm))

)2

+

(
n∑

m=1

βε(sm)

σ2
m

sin (2με(r, sm))

)2

, (34)

where με(r, sm) is the phase advance calculated from the point s = r to the point
s = sm , we obtain that the error betatron functions (and only they) satisfy

n∑
m=1

βε(sm)

σ2
m

cos (2με(r, sm)) =
n∑

m=1

βε(sm)

σ2
m

sin (2με(r, sm)) = 0 (35)

for an arbitrary choice of the point s = r in the beam line1.

1In fact, it is sufficient to check that the equalities (35) are correct only for one particular value
of r , then for all other values they will be satisfied automatically.
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It seems that the error emittance and error Twiss parameters could be very
useful tools for the interpretation of the analytical solution for the covariance matrix
(16) in terms of usual accelerator physics notions. In the end of this section, let
us give one more example of such interpretation. Namely, let us give an expression
for the nonzero singular values λ± of the matrix R−�

ε M entering the least squares
minimization problem (9)

λ±(r) =

√√√√√√ 1

εε

⎛
⎜⎝βε(r) + γε(r)

2
±
√√√√(βε(r) + γε(r)

2

)2

− 1

⎞
⎟⎠, λ−λ+ =

1

εε
. (36)

From (36) one sees that these singular values are nothing else as reciprocals of the
lengths of the half-axes of the one sigma error ellipse

γε(r) x2 + 2αε(r) xp + βε(r) p2 = εε . (37)

4 Courant-Snyder Invariant as Error Estimator

Taking into account that for such devices as, for example, SASE FELs we are
mainly interested not in the beam jitter at the device entrance itself, but in the
resulting trajectory derivation form some golden orbit along the whole device, it
seems almost natural to estimate errors of the reconstruction of the difference orbit
parameters not with the help of the covariance matrix (16), but using a single number
- the expected value of the Courant-Snyder invariant after substitution into it as
arguments the deviation of the estimate of the difference orbit parameters δ�zε from
true difference orbit parameters δ�z0 .

Let β0(r), α0(r) and γ0(r) be the design betatron functions and

Ix( r, x, p ) = γ0(r) x2 + 2α0(r) xp + β0(r) p2 (38)

be the corresponding Courant-Snyder invariant. The calculation of the desired mean
value becomes straightforward, if one takes into account the definition of the error
Twiss functions (25) and the property that δ�z0 = 〈δ�zε〉 , namely we have

〈 Ix( r, δxε − δx0 , δpε − δp0 ) 〉 = 〈 Ix( r, δxε − 〈δxε〉 , δpε − 〈δpε〉 ) 〉 =

= εε ( γ0(r) βε(r) − 2α0(r) αε(r) + β0(r) γε(r) ) = 2εε mp(βε, β0) , (39)

where

mp(βε, β0) =
γ0(r) βε(r) − 2α0(r) αε(r) + β0(r) γε(r)

2
(40)

is the parameter characterizing mismatch between design and error betatron func-
tions (mismatch parameter).
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As it was expected, the reconstruction errors, when estimated using Courant-
Snyder invariant, do not depend on the position of the reconstruction point, but
depend only on the error emittance, the error Twiss parameters and the design
betatron functions. The figure of merit for the quality of the measurement system is
now not the error emittance alone, but the product of error emittance and mismatch
between error and design Twiss parameters. Large mismatch can spoil the properties
of the measurement system even for the case when error emittance is small.

Let us give an explicit formula for the mismatch parameter for the case when
BPM readings can be considered as uncorrelated. In order to obtain this formula we
will use the fact that the design and error betatron functions at the BPM locations
can be connected through the relation

β0(sm) = βε(sm) ·
(

mp(βε, β0) +
√

m2
p(βε, β0) − 1 · cos (2με (r, sm) − 2θ)

)
, (41)

where θ = θ(r, βε, β0) is the mismatch phase. Summing up both sides of (41) over
all BPMs with weights σ−2

m we have

n∑
m=1

β0(sm)

σ2
m

= mp(βε, β0) ·
n∑

m=1

βε(sm)

σ2
m

+

+
√

m2
p(βε, β0) − 1 ·

(
n∑

m=1

βε(sm)

σ2
m

cos (2με (r, sm) − 2θ)

)
. (42)

Because due to (35) the second term in the right hand side of (42) is equal to zero, the
mismatch parameter can be expressed through design and error betatron functions
and BPM resolutions as follows

mp(βε, β0) =

n∑
m=1

β0(sm)
σ2

m

n∑
m=1

βε(sm)
σ2

m

=
εε

2

n∑
m=1

β0(sm)

σ2
m

. (43)

So, in the case when BPM readings can be considered as uncorrelated, we have

〈 Ix( r, δxε − δx0 , δpε − δp0 ) 〉 = 2εε

n∑
m=1

β0(sm)
σ2

m

n∑
m=1

βε(sm)
σ2

m

= ε2
ε

n∑
m=1

β0(sm)

σ2
m

. (44)

5 Worst Case Errors

In the two previous sections we have shown that the statistical properties of the
BPM measurement system (the error covariance matrix (16) and the mean value
(39) of the Courant-Snyder invariant (38)) can naturally be expressed in terms of
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error emittance, error Twiss parameters and mismatch between design and error
betatron functions, and in this section we will show that factors entering estimates
of deviation of reconstructed difference orbit parameters from true difference orbit
parameters through the norm of the error vector of BPM readings can also be written
using the same quantities. Note that we will make such estimates not with respect
to the norm of the error vector �ε , but with respect to the norm of the normalized
error vector

�η = R−�
ε · �ε , (45)

which also has zero mean, but whose covariance matrix is equal to the identity matrix
and, therefore, whose components could be considered as “being better balanced in
the order of magnitude”.

According to (10) the deviation of the reconstructed difference orbit parameters
from true difference orbit parameters has the form

δ�zε − δ�z0 =
(
R−�

ε M
)†

R−�
ε ·

(
δ�bε − δ�b0

)
=
(
R−�

ε M
)† · �η , (46)

and estimates of the norm of this deviation can be obtained using singular values
(36) of the matrix R−�

ε M as follows

‖ δ�zε(r) − δ�z0(r) ‖2 ≤ 1

λ−(r)
· ‖ �η ‖2 = εελ+(r) · ‖ �η ‖2 =

=

√√√√√√εε

⎛
⎜⎝βε(r) + γε(r)

2
+

√√√√(βε(r) + γε(r)

2

)2

− 1

⎞
⎟⎠ · ‖ �η ‖2 . (47)

For the case when the Courant-Snyder invariant is used as error estimator, we
have

Ix( r, δxε − δx0 , δpε − δp0 ) = (δ�zε − δ�z0)
� Σ(r) (δ�zε − δ�z0) =

= �η�
((

R−�
ε M

)†)�
Σ(r)

((
R−�

ε M
)†)

�η . (48)

Representing matrix Σ in the form of the product T�T

Σ =

(
γ0 α0

α0 β0

)
=

(
1/
√

β0 0
α0/

√
β0

√
β0

)� (
1/
√

β0 0
α0/

√
β0

√
β0

)
def
= T�T (49)

and introducing matrix

K = T
(
R−�

ε M
)†

= TVzM
�R−1

ε (50)
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we can rewrite (48) as

Ix( r, δxε − δx0 , δpε − δp0 ) = �η�K�(r)K(r)�η . (51)

From (51) it is clear that, in order to obtain the desired estimate, we have to calculate
the largest eigenvalue of the matrix K�K . This matrix is n by n matrix, but because
all its nonzero eigenvalues coincide with the nonzero eigenvalues of the 2 by 2 matrix

K(r)K�(r) = T (r)Vz(r)T
�(r) , (52)

the calculations become almost trivial. Namely, we have

μ± =
tr
(
KK�

)
2

±
√√√√(tr (KK�)

2

)2

− det (KK�) , (53)

where

tr
(
KK�) = 2εεmp (βε, β0) , det

(
KK�) = ε2

ε . (54)

Substituting (54) into (53) we obtain the explicit representation for two nonzero
eigenvalues of the matrix K�K through error emittance and mismatch between
design and error betatron functions in the form

μ± = εε

(
mp (βε, β0) ±

√
m2

p (βε, β0) − 1
)

, (55)

and the desired estimate for deviation measured using Courant-Snyder invariant get
the following final form

Ix( r, δxε − δx0 , δpε − δp0 ) ≤ εε

(
mp (βε, β0) +

√
m2

p (βε, β0) − 1
)
· ‖�η‖2

2 . (56)

Note that both, (47) and (56), are exact upper estimates, i.e. for certain error
vectors �η they become equalities, and it is the reason for us to name these estimates
as estimates of worst case errors.

6 Two BPM Case

Let us consider two BPMs separated in the beam line by a transfer matrix

B12 =

(
r11 r12

r21 r22

)
, r12 �= 0 (57)

and assume that these BPMs deliver uncorrelated readings with rms resolutions σ1

and σ2 respectively. The error emittance of this simplest measurement system is
given by

εε =
σ1 σ2

|r12| , (58)
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and the error Twiss parameters at BPM locations can be calculated as follows

βε(s1) =
σ1

σ2
|r12| , αε(s1) =

σ1

σ2
sign (r12) r11, (59)

βε(s2) =
σ2

σ1

|r12| , αε(s2) = −σ2

σ1

sign (r12) r22. (60)

Representing the r12 coefficient of the matrix B12 in the form

r12 =
√

βε(s1) βε(s2) sin (με (s1, s2)) = |r12| sin (με (s1, s2)) , (61)

we obtain that the sine of the error phase advance is always equal to plus or minus
one

sin (με (s1, s2)) = sign (r12) = ±1 , (62)

that means that the error phase advance itself is always equal to an odd multiple of
90◦.

If we assume that

|tr (B12)| < 2 , (63)

then the matrix B12 allows periodic beam transport with the periodic betatron
function being

βp =
|r12|√

1 −
(

r11+r22

2

)2
=

r12

sin (μp (s1, s2))
, (64)

where μp (s1, s2) is the corresponding phase advance. Calculating according to (43)
the mismatch between the error and the periodic Twiss parameters we obtain

mp (βε, βp) =
1

2

(
σ1

σ2
+

σ2

σ1

)
· sin (με (s1, s2))

sin (μp (s1, s2))
. (65)

From this formula we see, for example, that if BPMs have different resolutions,
the usage of periodic betas as design betas will not lead to optimal measurement
conditions when using Courant-Snyder invariant as an error estimator even in the
case when periodic beam transport has a phase advance odd multiples of 90◦.

7 Error Emittance in Periodic Systems

In this section we will consider a measurement system constructed from n identical
cells assuming that the cell transfer matrix allows periodic beam transport with phase
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advance per cell μp corresponding to the periodic betatron function βp being not a
multiple of 180◦. Additionally, we will assume that BPMs placed in our beam line
deliver uncorrelated readings, all with the same rms resolution σbpm.

Let us first consider the case when we have one BPM per cell (identically posi-
tioned in all cells) with the periodic betatron function at the BPM locations equal
to βp(s1). In this situation the formula for the error emittance is rather simple and
is given by the following expression

εε =
2σ2

bpm

nβp(s1)
· mp(βε, βp) , (66)

where

mp(βε, βp) =

⎛
⎝ 1 −

(
1

n
· sin(nμp)

sin(μp)

)2
⎞
⎠

− 1
2

(67)

is the mismatch between the error and the periodic betatron functions (even so we
do not assume, in general, periodic betatron functions being the design betatron
functions matched to our beam line).

The expressions for the error Twiss parameters at the BPM locations are given
below

βε(sk) =

(
1 − 1

n
· sin(nμp)

sin(μp)
cos ((n + 1 − 2k) μp)

)
mp(βε, βp) · βp(s1), (68)

αε(sk) = mp(βε, βp) · αp(s1) +

+
1

n
· sin(nμp)

sin(μp)
mp(βε, βp) (sin ((n + 1 − 2k) μp) − αp(s1) cos ((n + 1 − 2k) μp)) , (69)

and one sees that while the error beta function always have mirror symmetry

βε(sk) = βε(sn+1−k) , k = 1, . . . , n, (70)

the error alpha function will be mirror antisymmetric

αε(sk) = −αε(sn+1−k) , k = 1, . . . , n (71)

only in the case when αp(s1) = 0. Note, for completeness, that the mean values of
error beta and alpha functions always satisfy the following, quite similar relations

1

n

n∑
k=1

βε(sk) =
βp(s1)

mp (βε, βp)
,

1

n

n∑
k=1

αε(sk) =
αp(s1)

mp (βε, βp)
. (72)
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Looking at the formulas (66) and (67) one may conclude that the error emittance
as a function of the periodic phase advance will be minimized if

sin(nμp) = 0 , (73)

i.e. when the phase advance per cell obey that “common rule stating that the optimal
phase advance must be equal 180◦ divided by n”, and when error Twiss parameters
coincide with the periodic Twiss parameters. This, of course, is true, if we are free
in choosing the cell phase advance while the beta function at the BPM location has
to stays unchanged. But it is not, in general, the case when we optimize the phase
advance of a cell with a fixed magnetic structure. To be more specific, let us consider
a thin lens FODO cell of the length L (where drift sections, not bending magnets,
separate the focusing and defocusing lenses) as a basic unit of our periodic system.
Let us also assume that the BPM is placed in the “center” of the focusing lens with
the beta function at this locations being

βp(s1) = β+ = L
1 + sin(μp/2)

sin(μp)
. (74)

In this situation the quality of our measurement system, when estimated using
Courant-Snyder invariant with periodic Twiss parameters being the design Twiss
parameters, has the form

〈Ix〉 = 2εεmp (βε, βp) =
4σ2

bpm

nL
· Ψn (μp) , (75)

where

Ψn (μp) =
sin(μp)

1 + sin(μp/2)
· m2

p (βε, βp) . (76)

All functions Ψn (μp) become unbounded when μp approaches points 0◦ and 180◦,
but inside this interval they converge (from above) to the function

Ψ∞ (μp) =
sin(μp)

1 + sin(μp/2)
(77)

as n goes to infinity. The functions Ψn (μp) for n = 2, 3, 4, 5 are plotted in figure
1 together with their values in the points

μp = k
180◦

n
, k = 1, . . . , n − 1, (78)

shown as small circles at the corresponding curves. One sees that there is nothing
really special about points (78) except, of course, trivial fact that all of them belong
to the graph of the function Ψ∞ . What could be more interesting, it is the fact that
the point of the global minimum moves closer and closer to 180◦ as n increases.
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Figure 1: Functions Ψn (μp) shown for n = 2, 3, 4, 5 (magenta, red, green and blue
curves respectively). The gray curve shows function Ψ∞ (μp) .
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Let us now turn to the situation when we have two BPMs per cell with θ being
the phase shift between the first and second BPM location. In this situation the
error emittance can be expressed as

εε =
2σ2

bpm

n (βp(s1) + βp(s2))
· mp(βε, βp) , (79)

where

mp(βε, βp) =

⎛
⎝ 1 −

(
1 − 4 sin2(θ)

βp(s1)βp(s2)

(βp(s1) + βp(s2))
2

)
·
(

1

n
· sin(nμp)

sin(μp)

)2
⎞
⎠

− 1
2

(80)

is the mismatch between error and periodic betatron functions.
For a thin lens FODO cell with BPMs placed in the “centers” of focusing and

defocusing lenses we have θ = μp/2 and the periodic beta function at the BPM
locations is equal to

β± = L
1 ± sin(μp/2)

sin(μp)
. (81)

With this assumption the formulas for the error emittance and for the mismatch
between error and periodic Twiss parameters become

εε =
σ2

bpm

n L
sin(μp) · mp(βε, βp) (82)

and

mp(βε, βp) =

⎛
⎝ 1 −

(
1 − 1

4
sin2(μp)

)
·
(

1

n
· sin(nμp)

sin(μp)

)2
⎞
⎠

− 1
2

. (83)

Again, we can write

〈Ix〉 = 2εεmp (βε, βp) =
4σ2

bpm

nL
· Φn (μp) , (84)

where

Φn (μp) = 0.5 sin(μp) · m2
p (βε, βp) . (85)

As can be seen in figure 2, the situation becomes more symmetric in comparison with
figure 1, but still nothing special can be concluded about points (78) (except for the
case when n = 2). Note also that though we are using two times larger number of
BPMs, the error resolution does not become two times better.
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Figure 2: Functions Φn (μp) shown for n = 2, 3, 4, 5 (magenta, red, green and blue
curves respectively). The gray curve shows function Φ∞ (μp) = 0.5 sin(μp) .
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