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Abstract 
 
The oxidation of the metallic vacuum chamber internal surface is an accompanying process of the chamber 
fabrication and surface treatment. This circumstance changes the electro dynamical properties of the wall 
material and as consequence the impedance of the vacuum chamber.  In this paper the results of  
longitudinal impedance for oxidised metallic vacuum chamber is presented. The surface impedance 
matching technique is used to calculate the vacuum chamber impedances. The loss factor is given for 
various oxides and oxidation thickness. The numerical results for the undulator vacuum chamber of 
European XFEL project are presented.  
 

Introduction 
 
    The knowledge of the vacuum chamber impedance in accelerators is an important issue 
to provide the stable operation of the facility from the machine performance and beam 
physics point of view [1]. The impedances of metallic type vacuum chambers have been 
studied , for example, in [2-12], including the analytical presentation of the longitudinal 
and transverse impedances for laminated walls of different materials [8-12] and finite 
relativistic factor of the particle [11,12]. The metal-dielectric vacuum chamber 
impedances have been studied in Ref [13-14]. In [14] the longitudinal and transverse 
impedances for the European XFEL [15] kicker vacuum chamber are calculated based on 
the field transformation matrix technique [12]. A general approach to evaluate the 
impedances of the multiplayer vacuum chamber is the field matching technique.  
  In this paper, the longitudinal impedance of metallic vacuum chamber with internal 
surface oxidation is studied for ultrarelativistic beam case. The explicit analytical solution 
is obtained for various thicknesses of the metallic layer and oxidation depth. Based on the 
obtained results the impedance of European XFEL undulator aluminium vacuum 
chamber is calculated for various oxidation depths. The explicit analytical solution for 
longitudinal impedance of two-layer tube is obtained. The exact formula for ultra 
relativistic point like charge moving on axis is introduced in terms of surface impedance. 
It is shown that in small oxide depth asymptotic limit the surface impedance on boundary 
with vacuum can be estimated as a sum of oxide and metal surface impedances. Based on 
this solution the monopole impedances for aluminium beam pipe with different oxide 
layer thickness are evaluated. 
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1. Reflection of electromagnetic fields on boundary of two materials 

 
Plane waves of any polarization can be described as a superposition of waves with 
perpendicular (TE-mode) and parallel (TM-mode) polarizations to the plane of incident 
[16, 17]. Let us investigate the reflection of these waves with perpendicular and parallel 
polarizations (fig.1) for the case when material has finite thickness. The case with infinite 
wall thickness can be found as a limit. For monopole beam impedance, which will be 
discussed in next the chapter, only TM-mode is relevant. So in this chapter we will 
mainly focus on TM-mode. 
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Fig.1 Reflection of plane waves with perpendicular (left) and parallel (right) 

polarizations from material surface which has finite thickness. 
 
The z-component of magnetic field for TM-mode and the same component of electrical 
field for TE-mode are 
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 Where the upper index describe the material number, down index describe the 
polarization and projection of field.                    
From Maxwell’s equation we get the transverse component of electric and magnetic 
fields for both kinds of polarizations correspondently 
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By using the view of field components we can easily find the surface impedance 
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Where TMr and TEr  are the reflection coefficients. Taking to account the wave vector view 

εµω=k  for surface impedance we get 
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The refracted wave field components for TM mode are 
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And for TE mode 
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 For surface impedance we get 
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       where       TETMTETMTETM abt ,,, /=         (2) 

 
where the upper index  (2a) shows the first boundary of second material. 
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Taking into account the boundary conditions which leads to have continuous tangential 
component of wave vector 
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Using next relation of wave vectors between two medias 
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We can easily find next result 
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Where 
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For the second boundary the surface impedance reads 
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For third material the field components for TM mode are 
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And for TE mode we have 
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And for surface impedance we get next result correspondently 
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where d  is thickness of material. Using next notation 
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In the case when 113,23,2 εµεµ >>   the 13,2 ≈α  approximation is valid. Now by matching 

the impedances ),()3(
, ϕωTETMZ with ),()2(

, ϕωb
TETMZ we find the unknown coefficients TMt  and 
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                       2,2

,

,
, 1

1
ydkj

TETM

TETM
TETM e

A

A
t −

+
−

=         where     ),()3(1

2

2
, ϕωα

µ
ε

TETETM ZA m≡         (6) 

By matching ),()2(
, ϕωa
TETMZ  with ),()1(

, ϕωTETMZ  we find the reflection coefficients for both 

polarized fields independently 
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In the case when the third material is perfect conductor 0),()3( ≈ϕωZ  for surface 
impedance formula is simplified 
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Where the y-component of wave vector in second material has the next view 
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In thin oxide depth (d<<1) limit surface impedances will reads 
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For non-magnetic materials this formula is simplified 
 

                               
 
Where εr is relative dielectric permeability. For incident angle 2/πϕ =  we get 
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Let rewrite this equations in next form 
 

                                                 
 
Since the units of parameters TETML ,  are the same as for inductance, the thin dielectric 

coating impact on beam impedance can be considered as influence of inductor 
impedance.   
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Taking into account notation in eq.(6) after some manipulations for surface impedance on 
boundary between vacuum and first material we get 
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The coefficients TETMA ,   we right in next form 
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For thin dielectric (d<<1) the asymptotic formula will reads 
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Finally taking into account notations in eq.(7) and smallness of dielectric layer thickness 
we get 
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Where meaning of the indexes L  and κ are inductor and conductor correspondently. 
 
 

2. Beam Impedance 
 

  Consider the relativistic point chargeQ moving with speed of light along the z  axis of 
uniform, circular-cylindrical two-layer tube of inner radius R  (Fig.2).  The charge 
distribution is then given by )()()(),,( vtzrQzrQ −= δϕδδϕ . The second layer has 
infinite thickness while the thickness of first one isd .  

The cross section of the tube is divided into three concentric regions: 1) Rr ≤≤0  
(vacuum), 2) dRrR +≤≤  (first layer), 3) ∞<≤+ rdR (second layer). 
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                                                              Fig 2. Geometry of the problem 

In general, when the charge has non-zero offset, due to current axial asymmetry the fields 
radiated in the tube have all six components zz HE , , ϕϕ HE , , and rr HE ,  while in 

particular case when it is on axis only three components are excited zr EHE ,, ϕ  and they 

are independent on azimuthal coordinate ref [4]. The Maxwell’s equations in frequency 
domain ( )(~, tczjeHE ωω − ) for TM mode will reads 
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From equation (11.1) and (11.3) follows that the longitudinal component of electric field 
is constant 
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Substituting to the second equation we get 
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Let us rewrite above equation in next form 
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Taking into account the relation between current and current density  
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The beam impedance will be 
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The unknown coefficient A should be found from boundary condition. 
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The surface impedance on first boundary could be found using matching technique.                                            
In terms of surface impedance for this coefficient it is easy to get following expression 
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Where surface impedance can be found using the formulas derived in previous chapter 
where should be taken into account that the electromagnetic field excited by ultra-
relativistic charge has only transverse components which leads of 2/πϕ =  incident 
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This formula coincides with thin coating asymptotic limit of exact solution for beam 
impedance of two layer tube derived in ref [10,12]. 
 
 

3. Numerical results 
 
In this section we present results of influence of thin oxide layer on loss factor and energy 
spread. Wake potential of a Gaussian bunch with mb µσ 25=  rms length was calculated 

for aluminium ( s157
0 101.7,1072.3 −⋅=Ω⋅= τκ ) beam pipe with 5mm radius. To evaluate 

loss factor and energy spread next formulas have been used 
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Fig 3. Loss factor and energy spread versus oxide thickness for different kind of oxides. 

 
In figure 3 are plotted loss factor and energy spread versus oxide layer thickness. The 
calculations are done for three type of oxides with relative dielectric permittivity 2, 5 and 
10.  
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Fig 4. Loss factor and energy spread versus oxide dielectric permittivity for different thickness. 

 
In figure 4 are plotted loss factor and energy spread versus oxide relative dielectric 
permittivity. As we see from both figures (3, 4) the influence of oxide layer in a worst 
case when 10=rε  already at 50 nm thickness increases the loss factors more than 60%.  
Since it is unknown the properties and thickness of oxide layer which is appearing during 
manufacturing of accelerator parts in next figure we make investigation for the worst 
oxide 10=rε .   In figure 5 is plotted the loss factors versus oxide thickness for different 
beam pipe radiuses. 
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Fig 5. Loss factor and energy spread versus oxide thickness for different beam pipe radiuses. 

 
In European XFEL project the undulator sections are designed with aluminium vacuum 
chambers with elliptical cross sections. The ellipse diameters in both planes are 15mm 
and 8.8mm correspondently. Losses in that section can be estimated by round beam pipe 
model with radius 4.4mm. As we can see from figure 5 already at 60nm oxide thickness 
the losses increases two times with respect to ideal case (no oxide).      
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