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Abstract

An integral part of the design study of undulators for FELs is the study of the
impact of their errors on the FEL performance. Previous work mainly studied the
influence of random errors for each pole. Some errors, however, for instance the
girder deformation, are not random but periodic. In this report both random and
periodic errors as well as a combination are studied. The results are limited to
non-steering errors, i.e. a reduction in overlap between electrons and photon beam
has been avoided throughout this study.
Key words: tolerance, undulator, XFEL

1 Introduction

In the European XFEL project, photons will be generated in the X-ray range of 12.4 keV
to 0.2 keV [1]. Primarily because of the mirror limitations, high power X-ray radiation
can hardly be accumulated in an optical resonator. Therefore, this facility generates high
power radiation using Self-Amplified Spontaneous Emission (SASE) [2, 3]. Simulations
show that the saturation length of SASE-XFEL is more than 100 meters [4]. Tolerances
in ΔK/K are often related to the FEL bandwidth, which is in the order of the Pierce
parameter ρ. In case of the XFEL, this is about 10−4. In order to remain within this
bandwidth, the variation in undulator gap should smaller than 1μm and the temperature
variation should be limited to 0.08oC.

To satisfy the tolerance requirement given by ρ is very difficult. Therefore more
careful tolerance simulations must be performed in order to achieve the requirements with
a relaxed tolerance budget. We distinguish between two kinds of undulator field errors.
One kind is random error, for example because of the inhomogeneous field of magnet
blocks. When its impact is calculated, random errors are induced to each undulator pole
[6, 7, 8, 9]. Another kind of error changes along undulator as periodic function. This
kind of error occurs for example because of girder deformation or temperature variations.
Previous tolerance simulations concentrated mainly on the first kind of error. Therefore,
this report mainly takes into account the latter one.

The European XFEL facility supplies 0.1 nm to 0.4 nm radiation by two devices
which are called SASE1 and SASE2. The undulator gap for SASE1 is fixed and gener-
ates 0.1 nm radiation with 17.5 GeV electrons. The undulator gap for SASE2 can be
changed, so 0.1 nm to 0.4 nm radiation can be generated at this same energy. On the
other hand, SASE1 can also generate 0.4 nm radiation by changing the electron energy.
We therefore simulate SASE1 with two settings: 0.1 nm radiation at 17.5 GeV for an
undulator parameter Krms = 3.3 and 0.4 nm with 8.75 GeV with the same undulator
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parameter. SASE2 is calculated for three settings: 0.1 nm radiation at 17.5 GeV with
Krms = 2.8, 0.4 nm at 8.75 GeV electron and same Krms value, 0.4 nm radiation for
17.5 GeV and Krms = 6.1. In the next sections, results are shown for SASE1. The
results for SASE2 as well as details of simulations in general are shown at the end of this
report.

2 Description of error types and their simulation mod-

els.
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Figure 1: Girder deformation due to magnetic forces. For one specific undulator gap, the
field can be made homogeneous. For any other gap, a deformation can be expected which
is close to a periodic sinusoidal shape.

Figs. 1 and 2 show the girder deformation and gap tilt as sinus, triangle, sawtooth
and (piecewise) constant error, respectively. The code Genesis 1.3 is used to simulate
the error impact [10]. Because Genesis 1.3 uses the undulator parameter Krms instead of
gap to express the undulator field, we should discuss how the parameter Krms changes
because of these gap errors. As can be seen from Figs. 1 and 2, the error sources discussed
here have a much longer period than the undulator period.

The peak magnetic field B0 of a hybrid undulator depends on the undulator gap g,
its period λu and constants a1,a2 and a3 which depend on the undulator technology used
[11]:

B0 = a1 exp

[
a2

g

λu
+ a3

(
g

λu

)2
]

. (1)

Thus

dB0 = B0

(
a2

λu
+

2a3

λ2
u

g

)
dg ≈ B0

(
a2

λu
+

2a3

λ2
u

g0

)
dg , (2)

where g0 is the nominal undulator gap. Therefore, in this approximation the undulator
field error is proportional to the gap error.

Considering the vector potential Ax (∇ × B = A), the transverse velocity of an
electron is:

ẋ =
−eAx

γm
= − e

γm

∫
[B0 + δB(z)] cos(kuz)dz =

√
2cK(z)

γ
sin(kuz) , (3)
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Figure 2: Other gap variations simulated in this report have a triangle (a), sawtooth (b)
or piecewise constant (c) distribution.

with ku = 2π/λu, −e and m are the electron charge and mass, respectively, c is the speed
of light and γ is the Lorentz factor.

Thus, the undulator parameter K(z) is:

K(z) sin(kuz) = − e√
2mc

∫
[B0 + δB(z)] cos(kuz)dz . (4)

2.1 Sinus field error

The field error of a sinusoidal shape is described by δB(z) = δB0 cos(kδz), with ku >> kδ.
Therefore

∫
δB(z) cos(kuz)dz =

1
2
δB0

[
sin(ku + kδ)z

ku + kδ
+

sin(ku − kδ)z
ku − kδ

]

= δB0
ku sin(kuz) cos(kδz) − kδ cos(kuz) sin(kδz)

k2
u − k2

δ

. (5)

With the approximation ku >> kδ ⇒ k2
u − k2

δ ≈ k2
u, it is reasonable to neglect the

term kδ cos(kuz) sin(kδz) (see Fig. 3). So the integration of Eq. (5) is:∫
δB0 cos(kδz) cos(kuz)dz ≈ sin(kuz)

ku
δB0 cos(kδz) . (6)
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Figure 3: Illustration of the effect of neglecting the term kδ cos(kuz) sin(kδz) in Eq. (5).
The largest impact is due to the smallest error period in our simulation, λδ/λu = 10.
One can see neglecting this term has little impact on Eq. (5).

.

Therefore the undulator parameter K(z) can be expressed as:

K(z) = −e [B0 + δB0 cos(kδz)]√
2cmku

= K0 + ΔK cos(kδz) . (7)

This equation shows that for sinus gap error, the undulator parameter K also has sinus
error.

2.2 Linear field error (sawtooth and triangle).

Triangle and sawtooth field errors are linear errors δB(z) = δB0kδz,

Figure 4: Illustration of the effect of neglecting term cos(kuz) in Eq. (8). One can see
this approximation is reasonable.

∫
δB0kδz cos(kuz)dz = kδδB0

kuz sin(kuz) + cos(kuz)
k2

u

≈ δB0 · kδz

ku
sin(kuz) , (8)
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where the approximation kuz tan(kuz) >> 1 has been used. This is valid for all but the
zero crossings of the sin-function. Fig. 4 shows the effect of neglecting the term cos(kuz)
in Eq. (8). So the undulator parameter K(z) can be expressed by:

K(z) = K0 + ΔK · kδz (9)

Eq. (9) means for the triangle or sawtooth gap error, the undulator parameter K also
varies as triangle or sawtooth function.

3 Periodic error phase shake calculation.

Some papers have already investigated the impact of undulator field errors on the FEL
performance [12, 13, 14, 15]. The error effect can be divided into beam wander and
phase shake. Beam wander describes the reduced transverse overlap between electrons
and radiation. Phase shake means the electron ponderomotive phase variation. Earlier
studies show that large beam wander or phase shake can increase the saturation length
and reduce the power. For different error distributions with similar rms beam wander
and phase shake, the power at a fixed point should be similar.

In this report only non-steering errors are taken into account, so the phase shake is
the only cause for power degradation.

K1

K2

K3

K4 Z

B

u/2

Figure 5: Undulator parameter as used by Genesis 1.3. The K parameter is set for
each half undulator period K1, K2, . . . , Ki. The beam kick in one half undulator period
corresponds to Ki − Ki−1.

The undulator magnet field can be described as:

B(z) = Bi cos(kuz) , (10)

where the subscript i denotes the magnet field for each half period. The change in
transverse velocity for the i-th half undulator period is

Δβ⊥i = (−1)i+1

√
2(Ki − Ki+1)

γ
, (11)

where Ki on each half undulator period is defined as:

Ki =
eBi√
2mcku

. (12)
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Therefore the transverse velocity at the position of i-th half undulator period, which is
an accumulation of all previous kicks, can be described as

β⊥i =
√

2
γ

i∑
j=1

(−1)j+1(Kj − Kj+1) . (13)

On the other hand, the phase change is

ϕ′ =
ku

β0
− ks

1 + p2
x + p2

y + K2 + fcK(u exp(iϕ) − c.c)
2β0γ2

, (14)

where u denotes to the optical field. When we calculate the phase shake, this term
normally can be neglected.

Because of the assumption that the beam remains on axis, the transverse velocity is
very small. Therefore the term of p2

x, p2
y can be neglected in Eq. (14). Comparing the

term of K2, the term of fcK(u exp(iϕ)− c.c) is also small and can be neglected too. The
average electron velocity β0 ≈ 1. Thus the phase change can be expressed as:

ϕ′ = ku − ks
1 + K2

2γ2
. (15)

The undulator parameter K can be written as K(z) = K0 + ΔK · f(z), where K0 is the
nominal value, ΔK · f(z) denotes the undulator error, ΔK expresses the error strength
and |f(z)| ≤ 1 expresses the error shape.

Therefore the phase at a position z is the integral of Eq. (15) :

ϕ(z) =
(

ku − ks(1 + K2
0 )

2γ2

)
z − Δϕ(z) . (16)

The phase shake Δϕ generated by the undulator error is

Δϕ(z) =
ku

1 + K2
0

z∫
0

(
(K0 + ΔK · f(z′))2 − K2

0

)
dz′ . (17)

Normally the field error is much smaller than the field itself, ΔK << K0, so the
phase shake is:

Δϕ(z) ≈ ku

1 + K2
0

z∫
0

2K0ΔK · f(z′)dz′ . (18)

If f(z) is a periodic function, f(z) = f(z + λδ), we can use x = z/λδ, 0 < x ≤ 1 to
normalize z. Thus

Δϕ(x) =
ku

1 + K2
0

2K0 · ΔK · λδ

∫ x

0

f(x′)dx′ =
ku

1 + K2
0

2K0 · ΔK · λδ · g(x) . (19)

According to earlier work, the radiation power degradation is correlated to the rms
value of phase shake Δϕ.

σΔϕ =

√
1
L

∫ L

0

(Δϕ(z′) − 〈Δϕ〉)2 dz′ , (20)
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where L is the entire undulator length. For a periodic function, the L = nλδ can take
the period length, L = λδ, i.e. an integral over L or λδ gives the same result. On the
other hand, the optimized wavelength of SASE-FEL always guarantee that 〈Δϕ〉 = 0 so
the rms phase shake is:

σΔϕ =
ku

1 + K2
0

2K0 · ΔK · λδ

√∫ 1

0

g2(x)dx = α
ΔK

K0
λδ . (21)

Note that the rms phase shake is not only proportional to the error strength ΔK/K
but also to the error period length λδ. To illustrate this analysis more carefully, Fig. 6
shows some simulation with sinus undulator field error. One can see that ΔK of the
black sinus error is five times larger than the red error, while the error period λδ of the
black error is ten time shorter than the red error. From Eq. (21) the red error has larger
rms phase shake. Therefore the power growth with the black error undulator is better
than the red one. The blue dot line is the power growth with ideal undulator field.

Figure 6: Impact of two different sinus errors on power degradation. The ΔK of the
black sinus error is five times larger than the red error, but the error period λδ of the
black error is ten time shorter. From Eq. (21) the red error has a larger rms phase shake.
Therefore the power growth with the black error undulator is better than the red one, as
confirmed by the simulation.

3.1 Phase shake expression for sinus error.

3.1.1 Periodic sinus error.

If the error field follows a sinus function, then:

K(z) = K0 + ΔK sin(kδz) . (22)

So the phase change can be described by

ϕ′ =
ku

β0
− ks

1 + (K0 + ΔK sin(kδz))2

2β0γ2
. (23)

The FEL resonant wavelength satisfies

ku

β0
− ks

1 + K2
0

2β0γ2
= 0 . (24)
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Figure 7: Illustration for the constant sinus error. Error period and strength are defined
as shown in this plot.

Normally ΔK << K0 , so the phase error is

Δϕ(z) = −ksK0

β0γ2

∫ z

0

ΔK sin(kδz
′)dz′ = − ksK0

β0γ2kδ
ΔK(1 − cos(kδz)) . (25)

For the phase shake, the constant term can be neglected. therefore, the rms phase
shake is:

σΔϕ =
ks

β0γ2

K0ΔK

kδ

√
1

nλδ

∫ nλδ

0

cos2(kδz)dz =
ks

β0γ2

K0ΔK√
2kδ

=
√

2K2
0

λu(1 + K2
0)

ΔK

K0
λδ .

(26)
Eq. (26) illustrates that the phase shake is proportional to the error strength and error
period. Because the FEL power growth along the undulator is related to the phase as
well, the power at a fixed longitudinal position within the undulator should show a similar
correlation with the error strength and period.

Figure 8: Undulator parameter K and the corresponding phase as given by Eq. (25) for
a periodic sinusoidal error.

Fig. 8 gives K and the phase distribution along the undulator according to Eq. (25).
The parameters for calculation are taken from SASE1 at 0.1nm.

3.1.2 Random sinus error.

So far the analysis only takes into account a periodic sinus function. In reality the
undulators are separated into many segments. Also the sinus error does not neccesarily
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Figure 9: Undulator parameter K and the corresponding phase as given by Eq. (29) for
a sinusoidal error with random amplitude but constant period λδ.

have a constant amplitude. Therefore, the effect of a sinus with random amplitude on
the phase shake is studied. Fig. 9 illustrates the random undulator parameter and the
phase along the undulator. One can see that the period is fixed but the sinus error has
randomly different amplitude Ki for each period.

One question is how to compare the random to periodic error distributions. As men-
tioned above, the phase shake is the key reason for the power degradation, so naturally
we compare the random to the periodic error having the same phase shake.

For a random field error, the undulator parameter can be represented as:

Ki(z′) = K0 + ΔKi sin(kδz
′) . (27)

The subscript i means the ith error period. The corresponding phase error can be
expressed as

Δϕi(z) = − ksK0

β0γ2kδ
ΔKi(1 − cos(kδz)), (i − 1)λδ < z < iλδ . (28)

From Eq. (28), it is easy to see that when z = nλδ, the phase ϕ = 0. So the phase error
in ith error period ϕi can be expressed as:

Δϕi(z) = − ks

β0γ2

z−(i−1)λδ∫
0

K0ΔKi sin(kδz
′)[1 − cos(2kuz′)]dz′

≈ − ks

β0γ2

K0ΔKi[1 − cos(kδz)]
kδ

. (29)

From Eq. (28), in each error period, the average phase error is

Δϕ̄i = − ks

β0γ2

K0ΔKi

kδ
. (30)

With ΔKi homogeneously distributed in the range [−κ, +κ], the average phase along
the undulator should be zero.

So the phase shake is given by
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Δσϕ =
ks

β0γ2

K0

kδ

√
1

nλδ

∫ nλδ

0

ΔK2
i [1 − cos(kδz′]2dz′

=
ks

β0γ2

K0

kδ

√√√√ 3
2n

n∑
i=1

ΔK2
i (31)

Because ΔKi is homogeneously distributes in the range [−κ, +κ],

1
n

n∑
i=1

ΔK2
i =

1
2κ

∫ κ

−κ

x2dx =
κ2

3
(32)

Therefore, the rms phase shake expressed by Eq. (31) is

σΔϕ =
ks

β0γ2

K0

kδ

√√√√ 3
2n

n∑
i=1

ΔK2
i =

ks

β0γ2

K0κ√
2kδ

=
2ku

1 + K2
0

K0κ√
2kδ

. (33)

Comparing Eq. (33) to Eq. (26), to guarantee that the phase shake of random and
periodic cases are the same, κ = ΔK.

On the other hand, we also want to set κ to a value that the RMS error of periodic
and random cases can be the same. This corresponds to:√

1
nλδ

∫ nλδ

0

ΔK2
i cos2(kδz′)dz′ =

√
1

nλδ

∫ nλδ

0

ΔK2 cos2(kδz′)dz′

⇒ 1
n

n∑
i=1

ΔK2
i = ΔK2 ⇒ 1

2κ

∫ κ

−κ

x2dx =
κ2

3
= ΔK2 ⇒ κ =

√
3ΔK (34)

From κ = ΔK and Eq. (34), one can see that if the RMS error value is same, then
the phase shake of the random error is larger, and the power correspondingly smaller.

3.2 phase shake expression for triangle error.

3.2.1 Periodic triangle error.

1

z

K

K

2

Figure 10: Illustration for the periodic triangle error. Error period and error strength
are defined as it is shown in this plot.
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From Fig. 2, in case of a triangle error shape, for each undulator segment the pa-
rameter K changes linearly. Similar to the sinus error shape, first we analyse the phase
shake of this kind of error. In each error period, the K value can be described as:

K(z) =

⎡
⎣ −4ΔK

λδ
(z − nλδ) + ΔK + K0, nλδ ≤ z < (n + 1/2)λδ

4ΔK
λδ

(z − nλδ) − 3ΔK + K0, (n + 1/2)λδ ≤ z < (n + 1)λδ

(35)

So the phase error variation is:

Δϕ′ =

⎡
⎣ − ks

β0γ2 K0ΔK
[
1 − 4

λδ
(z − nλδ)

]
, nλδ ≤ z < (n + 1/2)λδ

− ks

β0γ2 K0ΔK
[
−3 + 4

λδ
(z − nλδ)

]
, (n + 1/2)λδ ≤ z < (n + 1)λδ

(36)

It can be easily proven that the phase change after each error period is zero. Therefore,
the phase error is

Δϕ =

⎡
⎣ − ks

β0γ2 K0ΔK
[
z − 2

λδ
z2
]
, 0 ≤ z < 1/2λδ

− ks

β0γ2 K0ΔK
[
−3z + 2

λδ
z2 + λδ

]
, 1/2λδ ≤ z < λδ

(37)

Fig. 11 shows K and the corresponding phase.

Figure 11: Undulator parameter K and the phase for a periodic triangle error field.

The average phase error is zero.

Δϕ̄ =
1
λδ

∫ λδ

0

Δϕ(z′)dz′

= − ks

β0γ2
K0ΔK

(∫ λδ/2

0

z′ − 2
λδ

z′2dz′ +
∫ λδ

λδ/2

−3z′ +
2
λδ

z′2 + λδdz′
)

= 0 (38)

Thus the phase shake is

σΔϕ =
ks

β0γ2

√
1
λδ

∫ λδ

0

ϕ2(z′)dz′

=
ks

β0γ2
K0ΔK

√
1
λδ

∫ λδ/2

0

(
z′ − 2

λδ
z′2
)2

dz′ +
1
λδ

∫ λδ

λδ/2

(
−3z′ +

2
λδ

z′2 + λδ

)2

dz′
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=
ks

β0γ2

√
1

120
K0ΔKλδ =

4πK2
0

λu(1 + K2
0 )

1√
120

ΔK

K0
λδ (39)

From Eq. (39), it can be seen that as with the sinus error shape, for the triangle error
the phase shake is proportional to the error strength and the period.

3.2.2 Random triangle error

Figure 12: Undulator parameter K and the phase for a random triangle error field.

Then we take into account the phase shake induced by the random error. Inside ith
error period, the phase error change is

Δϕ′ =

⎡
⎣ − ks

β0γ2 K0ΔKi

[
1 − 4

λδ
(z − iλδ)

]
, iλδ ≤ z < (i + 1/2)λδ

− ks

β0γ2 K0ΔKi

[
−3 + 4

λδ
(z − iλδ)

]
, (i + 1/2)λδ ≤ z < (i + 1)λδ

(40)

The integration of Eq. (40) over one error period is zero, so the phase doesn’t change
after one complete error period. Therefore it can be described as

Δϕi(z) =

⎡
⎣ − ks

β0γ2 K0ΔKi

[
z − 2

λδ
z2
]
, 0 ≤ z < 1/2λδ

− ks

β0γ2 K0ΔKi

[
−3z + 2

λδ
z2 + λδ

]
, 1/2λδ ≤ z < λδ

(41)

It can be easily proven that the average phase error is zero, resulting in

σΔϕ =
ks

β0γ2

1√
120

√√√√ 1
nλδ

n∑
i=1

∫ λδ

0

ϕ2
i (z)dz =

ks

β0γ2
K0λδ

1√
120

√√√√ 1
n

n∑
i=1

K2
i (42)

It is assumed that ΔKi is homogeneously distributed in the range [−κ, +κ],

1
n

n∑
i=1

ΔK2
i =

1
2κ

∫ κ

−κ

x2dx =
κ2

3
.

Therefore, the RMS phase shake is

σΔϕ =
ks

β0γ2

1√
120

κ√
3
K0λδ =

2ku

1 + K2
0

1√
120

κ√
3
K0λδ . (43)

Comparing Eq. (43) to Eq. (39), the phase shake of constant and random error are
the same. This is different for the sinus case as shown before. Therefore, when the RMS
error is the same, so is the phase shake.
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3.3 phase shake expression for sawtooth error

3.3.1 Periodic sawtooth error

1 2

z

K

K

Figure 13: Illustration for the periodic sawtooth error. Error period and strength are
defined as shown in this plot.

The error field shown in Fig. 13 can be described as

K(z) = K0 +
2ΔK

λδ
(z − nλδ) − ΔK, nλδ < z < (n + 1)λδ . (44)

The corresponding change in phase error is

Δϕ′(z) = − ks

β0γ2
K0ΔK

(
2
λδ

(z − nλδ) − 1
)

, nλδ < z < (n + 1)λδ . (45)

So after one error period the phase error changes zero∫ λδ

0

ϕ′(z)dz = − ks

β0γ2
K0ΔK

∫ λδ

0

(
2
λδ

z − 1
)

dz = 0 . (46)

Thus, the phase error is

Δϕ(z) = − ks

β0γ2
K0ΔK

(
(z − nλδ)2

λδ
− (z − nλδ)

)
, nλδ < z < (n + 1)λδ . (47)

The average phase error is:

Δϕ̄ =
1
λδ

∫ λδ

0

ϕ(z)dz =
ks

β0γ2

K0ΔKλδ

6
(48)

Finally, the RMS phase shake is

σΔϕ =
ks

β0γ2
K0ΔK

√
1
λδ

∫ λδ

0

(
z2

λδ
− z +

λδ

6

)2

dz =
ks

β0γ2

√
1

180
K0ΔKλδ

=
4πK2

0

λu(1 + K2
0 )

1√
180

ΔK

K0
λδ . (49)

As before, the phase shake is proportional to the error strength and error period.
Fig. 14 shows K and the phase along the undulator.
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Figure 14: Undulator parameter K and the phase for a periodic sawtooth error field.

3.3.2 Random sawtooth error

Then we analyse the random case. The phase error in ith error period is:

Δϕi(z) = − ks

β0γ2
K0ΔKi

(
(z − iλδ)2

λδ
− (z − iλδ)

)
, iλδ ≤ z < (i + 1)λδ . (50)

Figure 15: Undulator parameter K and the phase for a random sawtooth error field.

Fig. 15 plots the random error and the phase along the undulator for SASE1 pa-
rameters. We assume that ΔKi homogeneously distributes in the range [−κ, κ] , so the
average of the phase error is zero. The phase shake is

σΔϕ =
ks

β0γ2
K0

√√√√ 1
nλδ

n∑
i=1

ΔK2
i

∫ λδ

0

(
z2

λδ
− z

)2

dz =
ks

β0γ2

K0λδ√
30

√√√√ 1
n

n∑
i=1

ΔK2
i . (51)

With ΔKi homogeneously distributed in the range [−κ, κ], the phase shake is

σΔϕ =
ks

β0γ2

κK0λδ√
3

1√
30

=
2ku

1 + K2
0

κK0λδ√
3

1√
30

(52)

Comparing Eq. (49) to Eq. (52), in order for the phase shake to be the same κ =
ΔK/

√
2.
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3.4 phase shake expression for a piecewise constant error

3.4.1 Periodic constant error

1

z

K

K

2

Figure 16: Illustration for the periodic, piecewise constant error.

Figure 17: The value distribution of undulator parameter K and phase ϕ(z) along the
undulator. The error amplitude is constant for different error period.

For the constant error illustrated in Fig. 16, the change in electron phase error is:

Δϕ′(z) = ±ksK0

β0γ2
ΔK (53)

For the periodic constant error shown in Fig. 17, the phase error is

Δϕ(z)

[
− ks

β0γ2 ΔK(z − nλδ/2), nλδ/2 ≤ z < (n + 1)λδ/2
− ks

β0γ2 ΔK[(n + 2)λδ/2 − z], (n + 1)λδ/2 ≤ (n + 2)λδ/2 n = 0, 2, 4, ...

(54)
The average phase error is

Δϕ̄ = − ks

β0γ2

1
2
ΔK

λδ

2
. (55)

Therefore, the phase shake is

σΔϕ =
ks

β0γ2

√
1

λδ/2

∫ λδ/2

0

(ΔKz − 1
2
ΔKλδ/2)2dz =

ks

β0γ2

1√
12

ΔK
λδ

2
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=
4πK2

0

λu(1 + K2
0)

1
2
√

12
ΔK

K0
λδ . (56)

3.4.2 Random constant error

Unlike for the other error types mentioned before, the electron phase in each error period
depends on the phase in the former error periods. So for the randomly distributed
constant error, even when the mean and RMS values of K are same, the phase shake still
may be significantly different.

Figure 18: The distribution of undulator parameter K and phase ϕ(z) along the undula-
tor. The error amplitude is random for different error periods.

3.5 Compare sawtooth and triangle error

The error of triangle and sawtooth both have a linear gap dependence. However, even
for the same error strength and period, their phase shake is not equal. For Eqs. (39)

and (49), the ration between their phase shake is
√

180
120 × 2 = 2.45, which matches the

calculation and later simulations well.

Figure 19: Comparison of phase and phase shake for triangle and sawtooth errors. The
error strength and period are the same. It is can be seen that the triangle has larger phase
shake.
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4 Numerical evaluation of the tolerance simulations.

Before performing the simulations, a number of issues have to be addressed. Since the
main interest of this report is the influence of phase shake on the FEL performance, the
electron beam has to remain on axis in order to avoid gain degradation due to reduced
overlap between electron beam and photons. This this briefly addressed in Sec. 4.1.

Another important point is the validity of the results. Because it is practically im-
possible to study the effect of errors with time dependent simulations, all results in this
report have been obtained using steady state simulations. This means that one has to
give an initial power (the shot noise power) and wavelength. The effect of choice of
wavelength is discussed in in Sec. 4.2.

Finally, the results have to be presented in a transparent way. Several methods of
representation have been used so far. The choice for this report and the reason for the
choice is addressed in Sec. 4.3.

4.1 Treatment to keep the beam on axis.

For the sawtooth and constant error as well as the random triangle error, the field is
discontinuous between two error periods. This kicks the beam and after accumulation of
these kicks, deviation of the beam center from the main axis will grow.

To compensate this kick, a point is added between two error periods on which the
undulator parameter K is the average value of the two. By this treatment the beam
can be kept on axis. Fig. 20 shows the result using a sawtooth error field as example.
Since usually the beam orbit can always be corrected at the beginning and end of each
undulator segment, this addition does not limit the validity of the results presented here.

Figure 20: Comparison of the beam wander before and after correction of K after each
error period for a periodic sawtooth error distribution. The left plot compares the error
field before and after treatment. One can see the field is the same except for one point
at the joint position of two error periods. The right plot shows the orbit before and after
correction.

4.2 Discussion of the error impact on the optimized wavelength.

Because all of the simulations in this report are steady-state, first we argue the field
error’s impact to the optimized wavelength. The wavelength shift by field error is
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Figure 21: Same correction as in Fig. 20, but this time for a random triangle error
distribution. The left plot again compares the error field before and after treatment. One
can see the field is the same except for one point at the joint position of two error periods.
The right plot shows the orbit before and after correction.

Δλs =
λu

2γ2

[
(K0 + ΔK(z))2 − K2

0

2

]
≈ λu

2γ2

[
2K0 〈ΔK〉 +

〈
ΔK2

〉
2

]
=

λu

8γ2
ΔK2 , (57)

where the average of the error 〈ΔK〉 = 0 is satisfied for all error types irrespective of
whether periodic or random error are simulated and

〈
ΔK2

〉
= ΔK2/2 for sinus and〈

ΔK2
〉

= ΔK2/3 for triangle and sawtooth.
We choose the larger

〈
ΔK2

〉
= ΔK2/2 to evaluate the wavelength deviation. So

Δλs

λs0
=

ΔK2

4(1 + K2
0/2)

<
ΔK2

2K2
0

. (58)

For SASE1 K = 3.3. When ΔK/K0 = 0.5%, which is normally a large field error,
according to Eq. (58) the wavelength shift is much smaller than the Pierce parameter.
Therefore, the impact to the optimized wavelength can be neglected. We do some simu-
lation to test the analysis above. In our case the optimized wavelength without any error
is λs0 = 9.7852× 10−11m , so the cases of wavelength shift Δλs/λs0 = ±10−5 and 0 are
calculated. The error strength is ΔK/K0 = 0.5% and the error period is λδ = 90λu .
Fig. 22 shows the result. As can be seen, the influence by the wavelength shift can be
neglected. Consequently in the simulations that follow, the optimized wavelength has
not been varied.

4.3 Choice of criterium for evaluation of error impact.

It is important to find a suitable criterium to determine the influence of the error. Nat-
ural candidates are the saturation length and saturation power. But in many cases, if
undulator error is induced, in the saturation region the power oscillates. Therefore the
saturation point is difficult to determine. However, we still try to find the saturation
point and then obtain Fig. 23. From this one can see that for a certain error strength,
the saturation length and saturation power oscillate with the error period. Therefore,
saturation power or saturation length can hardly be used as the number of merit.

Then we choose the radiation power at a fixed point as the criterium. To take into
account the magnetic field error for the whole undulator length, the fixed point should
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Figure 22: Power growth for different wavelengths. This plot illustrates that small undu-
lator field error has no apparent impact to the optimized wavelength.

Figure 23: The saturation length (a) and power (b) with different error period (sinus
error has been used). This plot shows that the changing tendency of saturation length
and saturation power with different error period is not clear. Therefore, they are not
suitable criteria to evaluate the error impact.

be close to saturation. But saturation is not a good choice because it is already beyond
the exponential gain regime. Therefore we take the 95% of the saturation length instead.

Fig. 24 illustrates the power versus error period. Apparently the oscillation is greatly
reduced compared to the choice of saturation length or saturation power. If the error
period λδ is large, some oscillations still exist. We investigate the (inverse) gain length,
which is shown in Fig. 25. One can see it oscillates as well. We know that the oscillation
period equals the error period λδ, thus if it is large, an apparent impact to the radiation
can be shown. A detailed analysis will be given in appendix B.

5 Influence of Field errors on the SASE1 performance

In this section we introduce the method of our error tolerance calculation and the results
for SASE1.

SASE1 uses 17.5 GeV electrons to generate 0.1 nm. The undulator’s gap of SASE1 is
fixed, but the wavelength can still be changed by adjusting the electron energy. Therefore
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Figure 24: The power at a fixed point. This plot shows that the changing of power at a
fixed point with different error period is much more clear than the saturation power and
saturation length.

Figure 25: Power increment with undulator deformation. The power increment along
the undulator oscillates due to the field error. This is not suitable to evaluate the error
impact.

0.4 nm radiation with 8.75 GeV electrons has also been simulated.
From the design, the SASE1 undulator segment length is about 5 meters. For these

simulations however, we do not include the intersections but simulate one long undulator
instead. The main parameters for SASE1 are listed in Table 1:

5.1 Simulation Method

As mentioned in Sec. 2, the impact of four error types (sinus, sawtooth, triangle, con-
stant) is simulated. The radiation power at a fixed point (95% of the saturation length
for an ideal undulator) is chosen to evaluate the effect. For each error type, the simula-
tion is divided into two steps: first the periodic error is simulated and then the random
error. The periodic and random errors for different types are shown in Fig. 26. From
the analysis in Sec. 3 we expect that the the rms phase shake can be changed either
by adjusting the error strength ΔK/K or the error period λδ. Because the rms phase
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Table 1: SASE1 Parameters
Wavelength Electron energy Energy spread Undulator period K parameter
0.1 nm 17.5 GeV 1.5 MeV 35.6 mm 3.3
0.4 nm 8.75 GeV 1.5 MeV 35.6 mm 3.3

shake correlates to the power degradation, each combination of ΔK/K and λδ corre-
sponds to a certain power degradation. The aim is to find the relation between the
power degradation and these two parameters. To achieve this, we choose 9 different
error strengths: ΔK/K = 0.1%, 0.15%, . . . , 0.5% and for each ΔK/K, 30 different error
periods λδ/λu = 10, 20, . . . , 300 are chosen. Thus the power growth with in total 270
combinations of ΔK/K and λδ is calculated.

As shown in Fig. 24, some oscillation still exists. Therefore, to achieve a smooth
dependence, we choose the Bolzmann function to fit the 30 points for each ΔK/K, which
can be represented as Y (x) = A2 +(A1 −A2)/(1+ exp(x−x0)/dx), where A1, A2, x0, dx
are coefficient to be determined. With this fitted curve, we can evaluate the power with
arbitrary λδ for a given error strength. Intermediate values for ΔK/K and λδ can be
obtained by interpolation.

Using the fitted curve we can evaluate the combinations of the chosen ΔK/K and
λδ which reduce the power by 10%, 20%, 30% and 40%. In order to obtain information
for all of the possible combinations of ΔK/K and λδ we should fit each of these curves
of constant power again. As mentioned in Sec. 3, the rms phase shake, which gives a
certain power reduction, is proportional to the product of ΔK/K and λδ. Therefore, we
can fit the curve with y = axb with a and b the coefficients which should be determined.
The expected value of b = −1, indicating that the power reduction is proportional to
both ΔK/K and λδ.

For the random errors, we choose three points (combination of ΔK/K and λδ) from
each curve where 10%, 20%, 30% power degradation can be expected. Thus totally 9
points are chosen. For each point, we fix the λδ and set a suitable κ for ΔK/K that if
ΔKi/K randomly varies in the range of [−κ, κ], the rms phase shake is similar to the one
of periodic error. In Sec. 3 it is already discussed how to determine the κ for different
error types. For each point 100 random simulations are done, resulting in a total of 900
random error simulations.

5.2 Simulation for SASE1 at 0.1 nm

5.2.1 Sinus error

1. Periodic sinus error
As mentioned above, the first step is to calculate the power variation for different error
periods at a given error amplitude. Fig. 28 illustrates the result. The error strength in this
example is ΔK/K = 0.1%. From the left plot one can see that the correlation between
the error period and power is good but not perfect. In general the power decreases when
the error period increases. The plot on the right shows the corresponding phase shake
and beam wander. The beam wander is kept small and the rms phase shake increases
linearly with error period. This confirms the conclusion from section 3 that the rms
phase shake is proportional to the error period. In appendix B one reason why the power
oscillates with increasing λδ will be discussed.

From the fit shown in Fig. 28 and similar curves for other error strength, one obtains
Fig. 29. It shows four curves with each point (ΔK/K and λδ) on the same curve having
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Figure 26: The periodic and random error for the four error types. In the periodic error
the error strength is the same for different error period, while in the random error, the
error strength is randomly changing for each error period.

the same power, normalized to the power P0 at the same position of 113.07 m for an
ideal undulator. From Fig. 29 one can see that a larger error period with smaller error
strength results in the same power.

22



Figure 27: The power growth for an ideal undulator for SASE1, 0.1 nm. The saturation
length Lsat. = 119 m, so the 95% of Lsat. is 113 m and this length is selected to evaluate
the power.

Figure 28: Left: Normalized power versus error period at a fixed position for an error
strength ΔK/K = 0.1%. The results are for a sinus error at 0.1 nm for SASE1. One
can see that the power decreases when the error period increases. Right: Phase shake and
beam wander versus error period. The beam wander is kept small and the phase shake
increases linearly with error period.

Fig. 30 shows the fitting result with the function y = axb. One can see that the
value of b is close to −1, confirming the linear dependence on error period and strength.
With an undulator segment length of 5 m and a four points support structure, e.g. a
deformation length of about 1.2 m, Fig. 30 shows that if 10% power degradation is
acceptable, the error strength can be as large as ΔK/K = 0.366%.

To illustrate the correlation between the rms phase shake and the power, Fig. 31 shows
the normalized power versus the rms phase shake for all 270 different periodic simulations
combining different ΔK/K and λδ. The good correlation between phase shake and the
power shown in Fig. 31 is important because the phase shake of an undulator system is
easily calculated from magnetic measurements.

2. Random sinus error
Although the undulator girder deformation is homogeneous and therefore the sinus error
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Figure 29: Curves of constant power for different error period and strength for SASE1
at 0.1 nm. A sinus error shape has been simulated.

Figure 30: Fitting result for Fig. 29.

Figure 31: Correlation between the phase shake and the power for the sinus error of
constant amplitude. Parameters for SASE1 at 0.1 nm have been used.
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to large extent periodic, the random sinus error has been simulated for later comparison
with sawtooth and triangle error distributions. As mentioned in section 5.1, 9 different
error periods λδ are chosen and for each λδ 100 different random error distributions of
ΔK are simulated, such that there are 900 random simulations in total. The error period
and strength are chosen based on the curves in Fig. 29 to make the power in the range
of P/P0 = 70% to 90%. Finally, we calculate the rms phase shake and the rms beam
wander for each random simulation. Fig. 32 shows the result. One can see that for the
random sinus error, the correlation between power and rms phase shake is similar to that
for the periodic error in Fig. 31, although the spread is larger. In appendix B the results
are analyzed in more detail. Note that some of the points at small phase shake show a
larger power reduction due to a larger beam wander (black points in Fig. 32).

Figure 32: Left: the relation between the RMS phase shake and the power using random
sinus error distributions. The black points are all of the 900 simulations, the red points
show the simulations in which beam wander is less than 1 μm. Right: the relation
between the beam wander and the power. Because the beam wander is very small (≤ 6μm)
compared to the beam transverse size (≈ 30 μm), there is no apparent correlation. The
power degradation is mainly determined by rms phase shake.

5.2.2 Triangle error shape

1. Periodic triangle error
Similar to the sinus error shown in Fig. 28, Fig. 33 shows the result of ΔK/K = 0.1% for
a periodic triangle error. It can be see that the points of constant power in Fig. 34 show
a similar behaviour as for the sinus error. Fitting with the function y = axb shown on
the right therefore shows again b close to −1. Because two undulator segments construct
one triangle period and one undulator length is 5 m long for SASE1, the triangle period
is 10 m. Thus from Fig. 34 an error of ΔK/K = 0.058% reduces the power by 10%.

Similar to the case of sinus error, Fig. 35 also shows a good correlation between rms
phase shake and power degradation for a periodic error distribution.

2 Random triangle error
As analyzed in section 3, if κ =

√
3ΔK, the phase shake of periodic and random triangle

errors are the same. Here κ is the limitation for the variation range of random ΔKi of
each period (−κ ≤ ΔKi ≤ κ), ΔK is the error strength for periodic triangle error.

Fig. 36 shows the result of calculation for random triangle error. Comparing to
Fig. 35, the power spread is large. Excluding those points that have a large rms beam
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Figure 33: Left: Normalized power versus error period at a fixed position for an error
strength ΔK/K = 0.1%. The results are for a periodic triangle error of SASE1 at
0.1 nm. One can see that the power decreases when the error period increases. Right:
Phase shake and beam wander versus error period. The beam wander is kept small and
the phase shake increases linearly with error period.

Figure 34: Left: Output power versus error period and strength for SASE1 at 0.1 nm.
A triangle error shape is used. Each curve shows a different power level. Right: fitting
result for the same simulation shown on the left.

wander(> 10μm), the remaining points, shown in red, show a much better correlation.
Because in this report we only take into account the non-steering errors, the effect of
both errors simultaneously has not been studied further.

5.2.3 Sawtooth error shape

Similar to the simulation methods of sinus and triangle error, the simulation for sawtooth
error also takes into account periodic sawtooth error and random sawtooth error.

1. Periodic sawtooth error
Fig. 37 shows the power degradation with error period varying from λδ/λu = 10 to
λδ/λu = 400 and with an error strength ΔK/K = 0.1%. The result is similar to the
ones shown before for sinus and triangle error. From the right plot of Fig. 37 one can
again see the linear dependence of phase shake on error period.

By fitting the power degradation with error period λδ for different error strengths
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Figure 35: Correlation between the rms phase shake and the power for the periodic triangle
error for SASE1 at 0.1 nm.

Figure 36: Left: the correlation between the phase shake and the power for triangle errors
with random amplitude. The black point are all of the 900 simulations, the red points are
those with a beam wander less than 4μm. The correlation between the power and the phase
shake is better than the random error simulation for sinus error. Right: the correlation
between the beam wander and the power. For those points where beam wander is large
(≈ 10μm) compared to the beam size (≈ 30μm), the power reduction is determined by a
combination of phase shake and overlap. Excluding the points with large beam wander
shows a good correlation between phase shake and power.

ΔK/K, λδ and ΔK/K can be found for every power degradation. The result is shown
in Fig. 38. Similar to the method for sinus and triangle error, we fit the separated points
on the left of Fig. 38 again to obtain the curves on the right. By this fitting plot, we
can find the error tolerance for different power degradation and the certain undulator
structure.

Another interesting point is to find the correlation between the rms phase shake and
the power degradation for sawtooth error. Fig. 39 gives the result. One can see that the
correlation is still good.

2. Random sawtooth error
As shown in Sec. 3.3.2, the rms phase shake of periodic and random sawtooth error is the
same if the random variation range κ of random error strength ΔKi satisfies κ = ΔK/

√
2,
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Figure 37: Left: Normalized power versus error period at a fixed position for an error
strength ΔK/K = 0.1%. The results are for a periodic sawtooth error at 0.1 nm for
SASE1. One can see that the power decreases when the error period increases. Right:
Phase shake and beam wander versus error period. The result is similar to the corre-
sponding plots of the sinus and triangle error.

Figure 38: Left: power degradation with different λδ and ΔK/K for SASE1 at 0.1 nm
for a sawtooth error. Right: fitting curve for power degradation points shown in teh left
plot.

where ΔK is the periodic error strength.
Fig. 40 shows the random simulation result for sawtooth error. The radiation power

still decreases as the rms phase shake increases but the spread for a certain rms phase
shake is larger than that of periodic error.

5.2.4 Piecewise constant error

1. periodic ‘constant’ error
Fig. 41 shows the power degradation versus error period λδ. One can see similar results
as for the calculations for other error types. By the fitting curves shown in Fig. 41, we
can get Fig. 42, which gives the combinations of ΔK/K and λδ for which a certain power
degradation can be expected.

To find the error tolerance for the certain structure, the separated points in on the left
of Fig. 42 are fitted again to get the curves on the right. Fig. 43 shows the correlation
between the power degradation and the rms phase shake. We can again find a good
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Figure 39: Correlation between the phase shake and the power for the periodic sawtooth
error for SASE1 at 0.1 nm mode. One can see that this correlation is good.

Figure 40: Left: the correlation between the phase shake and the power with random
simulation. The black points show all of the 900 simulation, the red points the simulations
in which beam wander is less than 2μm. Right: the correlation between the beam wander
and the power.

correlation.

2. random error
Similar to the simulation for the other error types, we simulate the power degradation
with random error. The result shown in Fig. 44 is different from the corresponding plots
for the other error types. The largest power degradation and the largest rms phase shake
are much larger than the ones of the other error types. This is because the rms phase
shake for the whole undulator system is determined not only by the error strength but
also by the distribution of the error.

5.2.5 Comparison of phase shake for different distributions

We have already shown the good correlation between the rms phase shake and the power
degradation for each error type. It is also important to compare the correlations of dif-
ferent error types. Fig.45 shows the result. As can be seen from this plot, the same rms
phase shake generated by different error tpyes gives the same power degradation. There-

29



Figure 41: Left: Normalized power versus error period at a fixed position for an error
strength ΔK/K = 0.1%. The results are for a periodic ‘constant’ error at 0.1 nm for
SASE1. One can see that the power decreases when the error period increases. Right:
Phase shake and beam wander versus error period. The result is similar to the corre-
sponding plots of the sinus, triangle and sawtooth error.

Figure 42: Left: power degradation with different λδ and ΔK/K for SASE1 at 0.1 nm
for a ‘constant’ error. Right: fitting curve for points shown on the left.

Figure 43: Correlation between the phase shake and the power for the constant error for
SASE1 at 0.1 nm.
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Figure 44: Left: the correlation between the phase shake and the power with random
simulation. One can see that the phase shake has a large spread; Right: the correlation
between the power and the beam wander. Compared to all previous simulation results,
the beam wander is very small.

fore, we can consider the rms phase shake as a key parameter for the power degradation.
Because the rms phase shake can be calculated from magnetic measurements only, the
expected FEL performance can be estimated directly.

Figure 45: The power degradation with rms phase shake. One can see that the power
corresponds to the phase shake well, independent of the error shape. The error strength
is periodic here.

5.3 Simulation for SASE1 at 0.4 nm

The undulator of SASE1 has a fixed gap, which means in principle the undulator pa-
rameter can not be changed. With a 17.5 GeV electron beam, 0.1 nm radiation can be
generated. But it is also possible that SASE1 can change its operation mode to a radia-
tion wavelength of 0.4 nm by adjusting the electron energy from 17.5 GeV to 8.75 GeV.
It is important to find the error tolerance for this different beam energy. In this section
we thereore calculate the error tolerance for SASE1 with 0.4 nm. The analysis method is
the same as for SASE1 at 0.1 nm. Fig. 46 shows the power growth for an ideal undulator,
with a saturation power and length of 22.21 GW and 64.51 m, respectively. So 95% of
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the saturation length is 61.3 m which is the point used to determine the power.

Figure 46: The power growth with an ideal undulator for SASE1 at 0.4 nm.

In this section, we also analyze the tolerance for sinus, triangle, sawtooth and constant
error types. As the analysis method is introduced for SASE1 at 0.1 nm, in this section
we only list the key plots to show the results (see Fig. 47 50).

Figure 47: Left: the periodic sinus error impact for SASE1 at 0.4 nm. Middle: random
sinus error simulation for SASE1, 0.4 nm. The correlation between the phase shake
and the power with random simulation. The black points show all of the 900 simulation,
the red points the simulations in which beam wander is less than 0.2μm. Right: the
correlation between the beam wander and the power.

Figure 48: Left: the periodic triangle error impact for SASE1 at 0.4 nm. Middle: random
triangle error simulation for SASE1, 0.4 nm. The correlation between the phase shake
and the power with random simulation. The black points show all of the 900 simulation,
the red points the simulations in which beam wander is less than 2.5μm. Right: the
correlation between the beam wander and the power for the same random simulations.
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Figure 49: Left: the periodic sawtooth error impact for SASE1 at 0.4 nm. Middle:
random sawtooth error simulation for SASE1, 0.4 nm. The correlation between the phase
shake and the power with random simulation. The black points show all of the 900
simulation, the red points the simulations in which beam wander is less than 1 μm. Right:
the correlation between the beam wander and the power for the same random simulations.

Figure 50: Left: the periodic constant error impact for SASE1 at 0.4 nm. Middle: random
‘constant’ error simulation for SASE1, 0.4 nm. The correlation between the phase shake
and the power with random simulation. Right: the correlation between the beam wander
and the power. One can see the beam wander is very small.

5.4 Comparison of results at 0.1 nm and 0.4 nm for SASE1

The error tolerance is different for the 0.1 nm and 0.4 nm. From Fig. 51 one can see that
the error tolerance for 0.1 nm is tighter than for 0.4 nm mode. It can be shown that the
rms phase shake is only determined by the undulator system. This means for the same
power degradation, 0.4 nm permits larger rms phase shake than the 0.1 nm mode. We
can try to explain this phenomenon by the Pierce parameter. The pierce parameter ρ is:

ρ =
1
γ

[(
Kfcλu

8πσb

)2
Ip

IA

]1/3

(59)

In these two modes only electron energy γ and σb are different. For 0.1 nm γ =
3.4 × 104, σb = 35.7 μm; for 0.4 nm, γ = 1.7 × 104, σb = 48.3 μm. So the Pierce
parameters are 4 × 10−4 and 6.5 × 10−4 respectively for 0.1 nm and 0.4 nm. Thus ρ of
0.1 nm mode is smaller than 0.4 nm mode. Because the Pierce parameter correlates to
the SASE-FEL bandwidth, the larger bandwidth permits bigger rms phase shake.
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Figure 51: Tolerance comparison of 0.1 nm and 0.4 nm for SASE1.
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6 Simulation for combined error and temperature com-

pensation by adjusting the undulator gap

6.1 Combination different errors

In the sections before the influence of four different error types are illustrated separately.
In practice these errors are combined. Therefore, it is also necessary to investigate the
effect of a combination of errors.

In principal the girder deformation is to large extend homogeneous. Therefore, the
sinus error has been assumed periodic in this section. The triangle, sawtooth and piece-
wise constant error are all caused by inaccuracy of motor movement and are therefore
random. We assume that the girder deformation is 20 μm and the motor movement ac-
curacy is 2 μm. Fig. 52 shows the error combination. The black curve in the right plot
is the final combined K value.
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Figure 52: The illustration of combined field error. The girder deformation with an
amplitude of 20μm and a period of 1.2 m is periodic, whereas a combination of triangle,
constant and sawtooth error with an amplitude of 2μm is random.

More than 100 combined random errors are generated and the power degradation
versus the rms phase shake is shown in the Fig. 53. One can see that the largest power
degradation is around 30%.

For the point with the largest power degradation we do the time dependent simulation.
The result is shown in Fig. 54. One can see that the Gaussian-fitted peak power with
error undulator field shows around 40% reduction in power compared to the simulation
without error. A similar time-dependent simulation with a flat top current distribution
shows a 35% reduction in power, indicating that the increased reduction in power is
caused by the current distribution used.
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Figure 53: The power degradation due to combined periodic sinus and random saw-
tooth/constant error

Figure 54: The comparison of time dependent simulation results between the power with-
out error and with combined errors.

6.2 Linear temperature variation and compensation by adjusting
the undulator gap

Over the length of the undulator, which typically exceeds 100 m, a small temperature
gradient accumulates to several degrees. One degree temperature change corresponds
to 0.1% change of K which would already reduce the radiation power measurably. In
order to evaluate the impact of temperature variation, we assume that the temperature
changes linearly. Fig. 55 illustrates the impact of this kind of temperature gradient. One
can see that only 1 degree temperature gradient over 140 meters reduces the power by
more than 50%.

Because the temperature variation considered here is linear over the whole undulater,
this error variation is a sawtooth error with a 140 m period. Because of the long λδ,
even the a small error strength ΔK/K is still too large. One way to compensate the
temperature’s impact is by adjusting the undulator gap. The gap can be adjusted when
detecting temperature variation larger than 0.1 degree which is the assumed accuracy of
temperature measurement. Fig. 56 shows the result. One can see that after adjusting the
undulator gap to compensate the impact of temperature variation, the linear variation
field changes to a periodic sawtooth field. By this kind of compensation, even a 5 degree
teperature variation can be compensated.
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Figure 55: Power reduction due to a linear increase of K over the undulator length.
Left: The range over which K increases. Right: The power versus relative change in
K over the undulator length. The top scale gives a corresponding temperature scale for
comparison.

Figure 56: Same as in Fig. 55, but the K variation is compensated by adjusting the
undulator gap after each undulator where a temperature measurement shows a deviation
larger than 0.1 degree. This results in a sawtooth like K value (left) and a corresponding
recovering of the power (red curve on the right).

7 Influence of phase shifter errors for SASE1

Inside an undulator segment, the undulator magnetic field will guarantee the synchronous
relationship between electrons and field that after each undulator period the phase change
between them is φ = 2π. To keep the synchronous relationship between the electrons
and radiation in the intersection between two undulator segments, a phase shifter is
installed. Fig. 57 shows the Permanent Magnet (PM) phase shifter designed for the
European XFEL project. By adjusting the shifter gap, the field Bd(z) can be adjusted
to a suitable value.

When electrons pass a magnetic field, the travelling time is

T =
1
c

[
LD +

LD

2γ2
+

1
2

(
e

mγc

)2 ∫ LD

0

dz

(∫ z

0

Bd(z
′
)dz

′
)2
]

, (60)

where LD is the intersection length and Bd(z) is the transverse magnetic field. Compared
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Figure 57: Illustration of structure of PM phase shifter designed for European XFEL
project.

to the travelling of a photon of LD/c, the electron will fall behind the optical wave
resulting in a phase advance between undulator segments of

φ = −2πΔTc

λs
= − π

λs

[
LD

γ2
+
(

e

mγc

)2 ∫ LD

0

dz

(∫ z

0

Bd(z
′
)dz

′
)2
]

, (61)

where λs is the radiation wavelength. Using the vector potential instead Ax =
∫

Bd(z
′
)dz

′
,

Eq. (61) can be expressed as

φ = − π

λs

[
LD

γ2
+
(

e

mγc

)2 ∫ LD

0

A2
x(z)dz

]
. (62)

7.1 Phase shifter error simulation by Genesis 1.3

In order to obtain knowledge of the accuracy with which to set the phase shifter, it is
simulated with the FEL simulation code Genesis 1.3. In Genesis, a parameter KD is
used to describe the phase shifter

KD =
e

mc

√
< A2

x > =
e

mc

√
1

LD

∫ LD

0

A2
x(z)dz . (63)

Therefore Eq. (62) becomes:

φ = −2π
LD(1 + K2

D)
λs(2γ2)

, (64)

where λs denotes to the radiation wavelength, which is normally evaluated by the 1D
resonance condition λs0 = λu(1 + K2

rms)/2γ2. Nevertheless the optimized wavelength is
always shifted from this 1D resonance value λs = λs0 + Δλs, so the phase advance φ in
Eq. (64) can be expressed:

φ ≈ −2π
LD(1 + K2

D)
λu(1 + K2

rms)
+ 2π

LD(1 + K2
D)

λu(1 + K2
rms)

Δλs

λs0
. (65)

The first term in the right hand part is always used to represent the phase advance
and the second term denotes to the phase advance error because of the wavelength shift.
Normally the phase shifter parameter KD is designed to make the first term equal to
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an integer times 2π, which guarantees electrons are synchroneous with the optical field
after passing one intersection. But in practise some error is unavoidable that induces
phase shifter error Δφ0 to the system. Moreover we use δφ to represent the phase
advance shift because of wavelength variation. Therefore after one intersection between
two undulators, the phase error Δφ is:

Δφ = Δφ0 − δφ . (66)

In this equation Δφ is value of φ in Eq. (65) after subtracting 2nπ, which denotes
the phase error. Δφ0 can be directly obtained from the first term of the right hand part
in Eq. (65), which is due to the phase shifter error ΔKD. δφ denotes the phase error
because of wavelength shift. However, it should not directly taken from the second term
of the right hand part in Eq. (65). The reason is because the wavelength shift induces a
slope to the pondermotive phase along the undulator segment. The left part of Fig. 58
shows this.
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Figure 58: Illustration of phase shift for the optimized wavelength variation. Left: illus-
tration of phase versus longitudinal position before modification. Right: the phase after
modification.

Normally the slope is straightened when we calculate the pondermotive phase. Due
to the angle θ of the slope is:

α =
2π

λu

Δλs

λs
, (67)

the expression of δφ can be modifed from the second term of right hand part in Eq. (65):

δφ =
Δλs

λs

2πLD

λu

(
1 − 1 + K2

D

1 + K2
rms

)
. (68)

We use the parameters of SASE1, 0.1 nm to illustrate the value of δφ. The wavelength
calculated by the 1D resonance condition is 0.0977836 nm and the optimized wavelength is
0.097852 nm, KD = 0.383419 which guanrantees the phase match between two undulator
segments. So δφ = 5.792o So it’s difficult to evaluate the suitable value for KD if the
optimized wavelength is not known.

7.2 Two kinds of phase shift error — one direction and alternat-
ing error

We investigate the impact of a phase shifter error Δφ by changing the value of KD. If
Δφ has the same sign for each intersection, we call this kind of error one direction error.
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If Δφ has the same absolute value for all intersections but the sign is alternating, we call
this an alternating phase shift error. Fig. 59 shows these two kinds of errors. In the plot
the phase error is chosen |Δφ| = 10o as an example.

Figure 59: Illustration of two different kinds of phase shift error. Left: one direction
phase shift error. Right: alternating phase shift error.

7.2.1 One direction phase shifter error

One directional phase shift error continueously changes the phase in one direction. This
induces the variation of optimized wavelength. The analytical wavelength change is
given in Eq. (68). To show this point, we scan the radiation wavelength in a steady-state
simulation and find the optimized value for each Δφ, and then compare that value to the
number analytically calculated by Eq. (68). Fig. 60 shows the result. One can see that
the analytical number matches the the scan number well.

Figure 60: Comparison of the optimized wavelength by the analytical calculation with a
wavelength scan in the simulation.

As mentioned above, the exact number of Δφ depends on the wavelength shift Δλs/λs

while for the one direction phase shifter error, the optimized wavelength also depends on
Δφ. We iterate this to first order to evaluate this impact.

The zero order of phase error is Δφ|0, then it induces wavelength shift:

Δλs

λs
=

Δφ|0
Luku
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This wavelength shift contributes to the phase shifter error number is:

δφ =
2π

λu
LD

(
1 − 1 + K2

D

1 + K2
rms

)
Δλs

λs

So the ratio of δφ and Δφ|0 is:

δφ

Δφ|0 =
LD

Lu

(
1 − 1 + K2

D

1 + K2
rms

)
≈ LD

Lu

(
1 − 1

1 + K2
rms

)
, (69)

where Lu is the undulator segment length. Normally KD is small, so the phase shift
error change δφ is independent on the zero order phase shifter error δφ|0. For instance
for SASE1, Krms = 2.333 and LD/Lu = 0.2, the value is δφ/Δφ|0 ≈ 16.9%. To illustrate
this, Fig. 61 shows the numerical calculation result. Δφ|0 changes by adjusting the
optimized wavelength. The expected phase change is 100o, but if the wavelength changes,
Δφ = 116o, which matches the Eq. (69)

Figure 61: change of Δφ because of calculation at a wrong wavelength.

From the discussion above, power degradation relates to the RMS phase shake instead
of phase error at each intersection Δφ. The RMS phase shake can be calculated from
Δφ. It is not reasonable to directely set the RMS phase shake as the RMS value of the
stepwise shake of phase shown in Fig. 61 but first subtract a straight line. Therefore the
RMS phase shake can be calculated by:

σΔφ =

√√√√∫ Lu

0

(
Δφ
Lu

x − Δφ
2

)2

dx

Lu
=
√

1/12 |Δφ| (70)

Fig. 62 shows the result. As the discussion above, |Δφ| is 16% larger when the
wavelenght changes, so the RMS phase shake also increases by 16%.

7.2.2 alternating phase shift error

Because the sign of phase shift error alternates and the absolute value of phase shift
error is fixed at each intersection, there is no general change for the alternating phase
shift error. So we expect that the optimized wavelength doesn’t change. Fig. 63 shows
the scan result. One can see that the same wavelengh gives maximum power for all
different phase shift errors. This means it is not necessary to scan the wavelength for the
alternating phase shift error simulation.
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Figure 62: RMS phase shake for different phase shifter error Δφ.

Figure 63: Normalized power versus wavelength with different alternating phase shift
error φ.

From Fig. 59 one can see that the average value of phase error is < Δφ >= Δφ/2, so
the RMS phase shake for this alternating phase shift error is

σΔφ =
∣∣∣∣Δφ

2

∣∣∣∣ (71)

It is interesting to compare the RMS phase shake between one direction and the
alternating phase shift error. According to Eqs. (70) and (71), if the phase shift error φ
is the same, the RMS phase shake of the alternating error is

√
3 times larger than the

one directional error:

σΔφ,alternating

σΔφ,onedirection
=

√
3 (72)

Because the phase shake relates to the power reduction, the one direction error is
expected to give a smaller power reduction than alternating error by same phase shift
error value φ. The simulation result will be shown below.

7.3 Phase shifter tolerance study for SASE1 at 0.1nm

In this section the simulation result of one direction and alternating phase shift error for
SASE1 at 0.1nm is illustrated. KD is varied such that −π < φ < π.
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It has been discussed that the optimized wavelength is different for different φ. Fig. 64
compares the simulation results with and without radiation wavelength scan. If the
wavelength for an error free phase shifter is selected, the result are totally different.

Figure 64: Illustration of the effect of radiation wavelength scan for the one direction
phase error simulation.

In Fig. 65 the phase shift error calculation result for SASE1 at 0.1 nm is illustrated.
For the same phase shift error φ, a one directional error reduces the power less (each time
adjusting the wavelength) than the alternating power. If the power reduction is shown
versus RMS phase shake (on the right), the curves become comparable.

Figure 65: Comparison of power degradation by one direction and alternating phase shift
error. Left: Normalized power against phase error. Right: Normalized power against
RMS phase shake.

Figs. 60 and 63 have shown a wavelength shift for the phase shift in steady state
simulations. For time dependent simulations, we choose the phase shift error φ = ±50o for
the one direction and for the alternating error φ = 50o. Fig. 66 shows the result. Table 2
compares the wavelength shift of time dependent simulation result and the analytical
calculation. One can see that the result match.

Then we compare the radiation power by steady-state simulation and time dependent
simulation with different phase shift error. From the left plot in Fig. 65 the normalized
power of φ = 50o or φ = −50o, one direction error and φ = 50o, alternating error are
respectively 0.736, 0.588 and 0.212. From Fig. 66, the normalized powers are 935, 775
and 316 respectively. Thus, the steady-state and time dependent simulations give similar
results.
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Figure 66: Time dependent simulation for one direction phase shift error (φ = ±50o)
and alternating phase shift error (φ = 50o)

Table 2: Wavelength shift for different phase shift error
φ = 50o φ = −50o φ = −50o

(one direction) (one direction) (alternating)
Δλs/λs0 0.065% −0.095% −0.013%
( simulation result)
Δλs/λs0 0.099% −0.099% 0
(analytical caculation)

It is also interesting to compare the power degradation by phase shake for the phase
shifter error with the periodic errors that have been discussed before. Fig. 67 shows the
result. The power degradation by phase shifter error and the other errors is similar.

7.4 Phase shift error simulation result for SASE1 at 0.4 nm and
for SASE2.

In this section we list the simulation results for SASE1 at 0.4 nm, SASE2 at 0.1 nm and
SASE2 at 0.4 nm by changing electron energy and undulator gap. One can see that the
results in this section are similar to the results for SASE1 at 0.1 nm.
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Figure 67: Comparison of power degradation due to RMS phase shake with different error
types.

Figure 68: Comparison of power degradation by one direction and alternating phase shift
error for SASE1, 0.4 nm. Left: Normalized power against phase error. Right: Normalized
power against RMS phase shake.

Figure 69: Comparison of power degradation by one direction and alternating phase shift
error for SASE2, 0.1 nm. Left: Normalized power against phase error. Right: Normalized
power against RMS phase shake.
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Figure 70: Comparison of power degradation by one direction and alternating phase shift
error for SASE2, 0.4 nm by changing electron energy. Left: Normalized power against
phase error. Right: Normalized power against RMS phase shake.

Figure 71: Comparison of power degradation by one direction and alternating phase shift
error for SASE2, 0.4 nm by changing undulator gap. Left: Normalized power against
phase error. Right: Normalized power against RMS phase shake.

8 Error simulation for SASE2

Table 3 lists the parameters for these three operation modes:

Table 3: SASE2 Parameters
Wavelength Electron Energy Undulator β-function K parameter

energy spread period
0.1 nm 17.5 GeV 1.5 MeV 47.9 mm 45 m 2.8
0.4 nm 17.5 GeV 1.5 MeV 47.9 mm 15 m 6.1
0.4 nm 8.75 GeV 1.5 MeV 47.9 mm 15 m 2.8

Because the gap of SASE2 undulator can be adjusted, there are 2 ways to change the
wavelength. With 17.5 GeV electron beam, 0.1 nm radiation can be generated for the
largest undulator gap and 0.4 nm radiation can be generated by the smallest undulator
gap. On the other hand, the longer wavelength 0.4 nm radiation can also be generated
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with the largest gap at a lower electron beam energy. Therefore in the simulation for
SASE2, three operation modes are: 0.1 nm radiation with largest gap and 17.5 GeV,
0.4 nm radiation with largest gap (smallest K)and change electron energy to 8.75 GeV,
0.4 nm radiation with smallest gap (largest K) and 17.5 GeV electrons. We perform the
same simulations as for SASE1. In this section we only list the key plots without the
detailed introduction.

8.1 Simulating for SASE2, 0.1 nm mode

Figure 72: Results for SASE2 at 0.1 nm. The error distribution is sinus. Left: periodic
error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error dis-
tributions. The black points show all simulations, the red points the simulations with a
beam wander less than 1 μm. Right: the correlation between the beam wander and the
power.

Figure 73: Results for SASE2 at 0.1 nm. The error distribution is triangle. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distribu-
tions. The black points show all simulations, the red points the simulations with a beam
wander less than 1 μm. Right: the correlation between the beam wander and the power.
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Figure 74: Results for SASE2 at 0.1 nm. The error distribution is sawtooth. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distribu-
tions. The black points show all simulations, the red points the simulations with a beam
wander less than 1 μm. Right: the correlation between the beam wander and the power.

Figure 75: Results for SASE2 at 0.1 nm. The error distribution is constant. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distri-
butions. Right: the correlation between the beam wander and the power.

8.2 Calculation for 0.4 nm with 17.5 GeV electron beam energy

Figure 76: Results for SASE2 at 0.4 nm. The error distribution is sinus. Left: periodic
error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error dis-
tributions. The black points show all simulations, the red points the simulations with a
beam wander less than 1 μm. Right: the correlation between the beam wander and the
power. The wavelength change has been achieved by changing K.
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Figure 77: Results for SASE2 at 0.4 nm. The error distribution is triangle. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distribu-
tions. The black points show all simulations, the red points the simulations with a beam
wander less than 1 μm. Right: the correlation between the beam wander and the power.
The wavelength change has been achieved by changing K.

Figure 78: Results for SASE2 at 0.4 nm. The error distribution is sawtooth. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distribu-
tions. The black points show all simulations, the red points the simulations with a beam
wander less than 1 μm. Right: the correlation between the beam wander and the power.
The wavelength change has been achieved by changing K.

Figure 79: Results for SASE2 at 0.4 nm. The error distribution is constant. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distri-
butions. Right: the correlation between the beam wander and the power. The wavelength
change has been achieved by changing K.
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8.3 Calculation for the 0.4 nm for 8.75 GeV electron beam en-
ergy

Figure 80: Results for SASE2 at 0.4 nm. The error distribution is sinus. Left: periodic
error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error dis-
tributions. The black points show all simulations, the red points the simulations with a
beam wander less than 1 μm. Right: the correlation between the beam wander and the
power. The wavelength change has been achieved by changing the beam energy.

Figure 81: Results for SASE2 at 0.4 nm. The error distribution is triangle. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distribu-
tions. The black points show all simulations, the red points the simulations with a beam
wander less than 1 μm. Right: the correlation between the beam wander and the power.
The wavelength change has been achieved by changing the beam energy.

8.4 Comparison for 0.1 nm and 0.4 nm of SASE2

In the section for the SASE1 simulation, we compared the error tolerance for 0.1 nm and
0.4 nm. In this section we want to do the same analysis for SASE2. The average beam
size of 0.1 nm mode is 42.5 μm, so the Pierce parameter is ρ = 0.0003857. The average
beam size of 0.4 nm mode by changing gap is 25.5 μm, so ρ = 0.00091267, the average
beam size of 0.4 nm mode by changing electron energy is 36 μm, so ρ = 0.0008617. The
0.1 nm mode has the smallest ρ, its the error tolerance is expected to be the most tight
one. Fig. 84 however shows that the error tolerance of 0.1 nm mode is looser than both
0.4 nm results which have larger ρ. By comparing to the corresponding results of SASE1,
which matches the evaluation by ρ, the only difference is that in SASE1, both modes
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Figure 82: Results for SASE2 at 0.4 nm. The error distribution is sawtooth. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distribu-
tions. The black points show all simulations, the red points the simulations with a beam
wander less than 1 μm. Right: the correlation between the beam wander and the power.
The wavelength change has been achieved by changing the beam energy.

Figure 83: Results for SASE2 at 0.4 nm. The error distribution is constant. Left: peri-
odic error distribution showing lines of constant power versus error period and amplitude.
Middle: the correlation between the phase shake and the power for random error distri-
butions. Right: the correlation between the beam wander and the power. The wavelength
change has been achieved by changing the beam energy.

Figure 84: Comparing the error influence for 0.1 nm and 0.4 nm with sinus error shape.
One can see that 0.1 nm has more loose tolerance than 0.4 nm, even though the Pierce
parameter of 0.1 nm mode is smaller.

have the same β function while in SASE2, the β-function is different for 0.1 nm and
0.4 nm: the β-function for 0.1 nm is 45 m while for the 0.4 nm is 15 m.
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Therefore in this section, first we change the β-function for 0.1 nm from 45 m to 15 m
and compare its error tolerance to the 0.4 nm case and then change the 15 m β-function
of 0.4 nm to 45 m to compare the difference in error tolerance.

8.4.1 15 m β-function for 0.1 nm mode

Fig. 85 gives the result without any errors. The saturation length is 161.42 m, the
saturation power is 3.5283 GW. The 95% saturation length is 153.35 m, the power at
this point is 2.8193 GW. The Pierce parameter is ρ = 0.00055.

Figure 85: Power growth for SASE2 0.1 nm mode without error with beta function 15 m.

Fig. 86 shows the lines of constant power degradation with different error strength
and error period. Fig. 87 gives the error tolerance comparing 0.1 nm to 0.4 nm. The
tolerance for 0.1 nm is more tough than 0.4 nm and this consistent to the analysis that
a larger Pierce parameter brings looser tolerance.

Figure 86: Impact of error period and strength to the power (SASE2, 0.1 nm with 15 m
β-function.
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Figure 87: Comparing the error impact on the power for different wavelengths for SASE2
(The β-function is 15 m for all). One can see the tolerance of 0.1 nm mode is tight which
correspond to the analysis that larger Pierce parameter requires looser tolerance.

Figure 88: Power development for 0.4 nm mode without error with β-function 45 m (Left:
changing gap, right: changing electron energy).

8.4.2 45 m β-function for 0.4 nm

In this section we fix the β-function both of 0.1 nm and 0.4 nm to 45 m. The Pierce
parameter ρ is 0.0003857, 0.0006676 and 0.0006276 respectively for the modes of 0.1 nm,
0.4 nm by changing gap and 0.4 nm by changing electron energy.

Fig. 88 illustrates the power growth for 0.4 nm for ideal undulator. For the 17.5 GeV
electron energy and the smallest undulator gap, the saturation length is 81.26 m and the
saturation power is 45.92 GW; for 8.75 GeV electron energy and largest undulator gap,
the saturation length is 88.18 m and the saturation power is 20.01 GW. Fig. 89 shows
the simulation result for 0.4 nm with 45 m β-function. Fig. 90 shows the error tolerance
comparing for 0.1 nm and 0.4 nm. One can see from Fig. 90 that the tolerance is more
serious for 0.1 nm, which is consistent to the argument that smaller Pierce parameter
brings tougher tolerance. However, for 0.4 nm the tolerance by changing gap is tougher
than by changing energy, even though the Pierce parameter by changing gap is larger.
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Figure 89: error impact to the power for 0.4 nm mode with β-function 45 m (Left:
changing gap, right: changing electron energy).

Figure 90: Comparing the error impact to the power under different wavelength for
SASE2 (The β-function is 45 m for all).
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Appendix A: Difference between simulations

By the fitting plots such as Fig. 30, the undulator error tolerance for SASE1 and SASE2
with different operation modes can be evaluated. Table 4 lists the number for the Euro-
pean XFEL undulator structure.

Table 4: Tolerance levels for SASE 1 and SASE2 at 0.1 and 0.4 nm resulting in a power
reduction of 10%. The deformation length in this table are the ones consistent with the
present design.

Type λs rms phase λδ ΔK/K Δg ΔT
shake (mm) (oC)

SASE1, sinus 0.1nm 0.146 1.2m 0.366% 0.030 3.66
SASE1, triangle 0.1nm 0.156 10m 0.058% 0.005 0.58
SASE1, saw 0.1nm 0.165 5m 0.148% 0.013 1.48
SASE1, constant 0.1nm 0.183 5m 0.043% 0.004 0.43
SASE1, sinus 0.4nm 0.200 1.2m 0.501% 0.042 5.01
(energy change)
SASE1, triangle 0.4nm 0.199 10m 0.074% 0.006 0.74
(energy change)
SASE1, sawtooth 0.4nm 0.199 5m 0.179% 0.015 1.79
(energy change)
SASE1, constant 0.4nm 0.203 5m 0.048% 0.004 0.48
(energy change)
SASE2, sinus 0.1nm 0.160 1.2m 0.571% 0.071 5.71
SASE2, triangle 0.1nm 0.149 10m 0.078% 0.001 0.78
SASE2, saw 0.1nm 0.144 5m 0.185% 0.023 1.85
SASE2, constant 0.1nm 0.167 5m 0.055% 0.007 0.55
SASE2, sinus 0.4nm 0.174 1.2m 0.518% 0.056 5.18
(gap change)
SASE2, triangle 0.4nm 0.153 10m 0.068% 0.007 0.68
(gap change)
SASE2, saw 0.4nm 0.184 5.0m 0.198% 0.021 1.98
(gap change)
SASE2, constant 0.4nm 0.174 5.0m 0.049% 0.005 0.49
(gap change)
SASE2, sinus 0.4nm 0.156 1.2m 0.554% 0.069 5.54
(energy change)
SASE2, triangle 0.4nm 0.151 10m 0.079% 0.010 0.79
(energy change)
SASE2, sawtooth 0.4nm 0.177 5.0m 0.227% 0.028 2.27
(energy change)
SASE2, constant 0.4nm 0.152 5.0m 0.052% 0.006 0.52
(energy change)
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Appendix B: Discussion on the influence of position

choice of the point of evaluation

Figure 91: The normalized power when evaluated for SASE1 at 113.07 m (Black points,
corresponding to 95% of the saturation length), at 106.8 m (Red points, corresponding
to 90% of the saturation length) and at a position close to 106.8 m which is an exact
multiple of the deformation length (Blue points).

For the evaluation of the error impact on the FEL performance, we have chosen a
position along the undulator before saturation is reached, namely 95% of the saturation
length. The main reason to choose this method has been explained in Sec. 4.3. Here
we address the issue why to take this position along the undulator and not another.
For this, one has to consider the following. In order to be able to compare to linear
theory, one has to take a value away from saturation (in the exponential gain regime).
One can take the points which coincides with 95% of the saturation length, as done in
this report, or 90%. The actual choice is to large extent arbitrary. Because the power
growth will oscillate along a deformation length, one should in principle always take a
point which is a multiple of this deformation length in order to avoid artefacts in the
results. Since this would make automation of the procedure difficult, this has not been
done. In Fig. 91, these three different options are illustrated. The black squares show the
nomalized power at the original 95% of the saturation length, which is z = 113.07 m for
different error periods. The red point also shows the normalized power but the position
is changed to a shorter length which is 90% of the saturation length: z = 106.8 m. The
blue triangle shows the normalized power at the position around z = 106.8 m but the
length changes to an integer times the error period λδ. First it can be seen from Fig. 91
that the normalized power at position of 106.8 m is smaller than the normalized power
at 113.07 m. This maybe because at 95% of the saturation length, non-linear effects due
to energy loss of the beam already start to play a role. Another interesting thing is that
we can see that at the large λδ range, the normalized power oscillates as the λδ increases,
while the oscillation of the red points is much weaker and for the blue curve it is almost
gone. Because the curves in the end will be fitted, the oscillations are averaged out of the
final results. The remaining deviations are small and do not effect the general results.
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Appendix C: Discussion on the relatively large spread

in power for random errors

Fig. 32 and similar plots showing the power reduction due to random error distributions
have a larger variation in power than those for the periodic error distribution. Even
though there is a clear correlation with the same average power reduction for the same
RMS phase shake, in this section we try to find some reasons for this.
1. Analysis for the sinus error

Figure 92: Two special cases of random sinus errors. Left: random error strength for a
constant, positive sign of the sinus. Right: random sign but same error strength for each
sinus period.

Figure 93: Four different correlations between phase shake and power for a sinus eror
distribution: periodic error (green triangle), random with error strength and sign (pink
square), random error strength and same sign (red circle), random sign and same error
strength (blue triangle). One can see that the random error simulation has worse corre-
lation than the periodic error. Both the random strength and random coefficient sign can
degrade the correlation between phase shake and power, and the random sign has even
more influence.

Fig. 92 shows two kinds of random sinus error. On the left the error strength differs
randomly while the sign of the sinus is always the same. On the right the absolute error
strength is the same but the sign is random. Both of these random errors generate phase
shake. We analyze the two kinds of random sinus error separately.
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Fig. 93 compares four different correlations of phase shake and power: periodic simu-
lation, random error both with error strength and sign, random error strength and same
sign, random sign and same error strength. Comparing the spread in the case of the same
sign, which is shown by red points, to the spread of periodic and totally random simula-
tions, one can see that altough the spread is still larger than the periodic simulation, it
is smaller than that of totally random simulation. We are more interested in the result
of random sign but same error strength because the rms phase shake value concentrates
around a certain value and the spread is large. So we carefully compare these simulation
results to the periodic results. Therefore, we choose 61 periodic sinus error points where
the phase shake is around 0.22 rad, and calculate the power. The result is showed in
Fig. 94. The radiation power spread is still small than the random error result.

Figure 94: Comparison of correlation of phase shake and power by periodic error and
random error simulation. This time the periodic error phase shake is fixed around 0.22
radians.

Figure 95: Mean value and variation range of power and phase shake at different position
for 100 random simulations with sign but the same strength.

Then we compare the simulation the blue points in Fig. 93 and the red point in
Fig.94. This time the power and rms phase shake at different position along the undu-
lator are illustrated. The rms phase phase shake at each point is calculated out by the
undulator parameter which is from the begining of the undulator to the choosen point.
By comparing the results shown in Figs. 95 96 one can see that at each point the spread
of random error is larger than that of periodic error. By comparing the rms phase shake
distribution, the spread of rms phase shake is homogeneous at each point for the periodic
error. For the random error, the spread in rms phase shake is large at the the first several
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Figure 96: Mean value and variation range of power and phase shake at different position
for 61 periodic sinus error simulation.

points, at the longer distance along the undulator, the spread is small and close to the
spread of periodic error. It seems that at the beginning of the undulator, the spread is
large because the phase shake changes significantly for different random simulations. We
assume that the local rms phase shake plays an important role for the spread when the
deformation length becomes comparable to the 3D gain length of SASE1 (7.96m). The
error period λδ utilized in Fig. 95 is 3.2m. Consequently, there is a large phase shake
within a gain length.

To test this assumption, we make the error period λδ from 3.2m to 0.32m. So in one
gain length, enough error periods are included. To guarantee the rms phase shake is the
same, we increase the error strength ten times larger. The simulation result is illustrated
in Fig. fig:39. One can see that the power spread of this shorter λδ is close to the value
of periodic error.

Figure 97: Comparison of mean power and power deviation for a periodic and ran-
dom sinus error. Black: periodic error; Red: random sign but same strength λδ =
3.2 m, ΔK/K = 0.2%; Green: random sign but same strength λδ = 0.32m, ΔK/K = 2%.
One can see that the mean values are close to each other because the phase shake is sim-
ilar, but the power spreads are different. The random sign error with longer error period
has larger values.

2. Brief analysis of triangle error
Similar to the analysis for sinus error, we also divide the random error into to two

random types: constant sign with random error strength and constant error strength
with random sign. Fig. 98 shows the different error.
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One can see that in Fig. 98, for the same absolute error strength and random error
sign, the power spread is very small. We can explain this that if the absolute error
strength is same, no matter how the sign is, the rms phase shake is homogenous for each
period. Thus in the range of one gain length, the rms phase shake is also homogeneous.

Figure 98: Two random triangle error types. Left: random error strength for different
error period, but he sign is the same. Right: random sign but same error strength for
different period.

Figure 99: Four different correlation of phase shake and power for a triangle error:
periodic simulation (green triangle), random with error strength and sign (pink square),
random error strength and same sign (red circle), random sign and same error strength
(blue triangle). One can see that the random error simulation has worse correlation than
the periodic error simulation, while random sign doesn’t degrade the correlation between
phase shake and power, the main reason is random error strength.

3. Brief analysis of sawtooth error
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Figure 100: Four different correlations of phase shake and power for a sawtooth error:
periodic simulation (green triangle), random with error strength and sign (pink square),
random error strength and same sign (red circle), random sign and same error strength
(blue triangle). One can see that the random error simulation has worse correlation than
the periodic error simulation, while random sign doesn’t degrade the correlation of phase
shake and power.
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Appendix D: Details for the random error simulation

for different error types

In the sections before for the random error simulation, we only show the plot of correlation
of power degradation and rms phase shake. As it has been mentioned, for each kind of
error type, we choose 9 combinations of ΔK/K and λδ which contribute three different
power degradation: P/P0=90%, 80%, 70%. Thus for each radiation power degradation,
three combinations of ΔK/K and λδ are simulated and for each combination, we calculate
the result of 100 random error distributions. The detailed results for each of these
simulations are shown in this appendix.

Table 5: Result presented in this appendix
Number Undulator Wavelength (nm) Error shape K or Energy change
1 SASE1 0.1 sinus
2 SASE1 0.1 triangle
3 SASE1 0.1 sawtooth
4 SASE1 0.4 sinus Energy
5 SASE1 0.4 triangle Energy
6 SASE1 0.4 sawtooth Energy
7 SASE2 0.1 sinus
8 SASE2 0.1 triangle
9 SASE2 0.1 sawtooth
10 SASE2 0.4 sinus K
11 SASE2 0.4 triangle K
12 SASE2 0.4 sawtooth K
13 SASE2 0.4 sinus Energy
14 SASE2 0.4 triangle Energy
15 SASE2 0.4 sawtooth Energy

62



1. SASE1 at 0.1 nm for a sinus error

Figure 101: Results of simulations for SASE1 at 0.1 nm wavelength for a random sinus
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.

Table 6: Summary of the results shown in the Figure above. The rows correspond to the
results read from left to right (long to short deformation length, which is equivalent to
small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected at
this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Constant Mean power
0.15% 88 13.763 14.03 5.66% 0.00145 0.156
0.3% 43 13.763 13.191 6.65% 0.00286 0.157
0.45% 27 13.763 14.065 2.69% 0.00429 0.144
0.15% 147 12.234 12.749 9.82% 0.00145 0.216
0.3% 61 12.234 12.406 7.22% 0.00286 0.216
0.45% 40 12.234 12.538 5.74% 0.00428 0.213
0.15% 147 10.704 11.500 14.19% 0.00146 0.260
0.3% 75 10.704 11.110 9.97% 0.00286 0.266
0.45% 50 10.704 11.023 7.96% 0.00429 0.266
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2. SASE1 at 0.1 nm for a triangle error

Figure 102: Results of simulations for SASE1 at 0.1 nm wavelength for a random triangle
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.

Table 7: Summary of the results shown in the Figure above. The rows correspond to the
results read from left to right (long to short deformation length, which is equivalent to
small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected at
this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Constant Mean power
0.15% 108 13.763 13.787 4.12% 0.002 0.157
0.3% 53 13.763 12.798 7.18% 0.004 0.164
0.45% 36 13.763 13.333 4.40% 0.006 0.159
0.15% 151 12.234 11.264 16.45% 0.002 0.242
0.3% 88 12.234 11.096 13.94% 0.004 0.232
0.45% 51 12.234 11.154 10.70% 0.006 0.236
0.15% 183 10.704 9.447 28.42% 0.002 0.296
0.3% 93 10.704 9.808 11.91% 0.004 0.269
0.45% 62 10.704 10.837 6.14% 0.006 0.269
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3. SASE1 at 0.1 nm for a sawtooth error

Figure 103: Results of simulations for SASE1 at 0.1 nm wavelength for a random saw-
tooth error distribution. The results from left to right correspond to the same power level
of 90% (top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or de-
creasing deformation length λδ such that the rms phase shake according to Eq. (17) is
constant.

Table 8: Summary of the results shown in the Figure above. The rows correspond to the
results read from left to right (long to short deformation length, which is equivalent to
small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected at
this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Constant Mean power
0.15% 140 13.763 13.440 7.82% 0.00086 0.164
0.3% 65 13.763 13.442 7.16% 0.00165 0.158
0.45% 42 13.763 13.550 6.89% 0.00246 0.155
0.15% 188 12.234 12.728 13.16% 0.00085 0.216
0.3% 92 12.234 11.941 13.20% 0.00166 0.233
0.45% 61 12.234 11.954 10.73% 0.00246 0.218
0.15% 225 10.704 11.748 14.62% 0.00086 0.257
0.3% 113 10.704 11.298 14.25% 0.00166 0.265
0.45% 75 10.704 10.560 11.39% 0.00247 0.266
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4. SASE1 at 0.4 nm for a sinus error

Figure 104: Results of simulations for SASE1 at 0.4 nm wavelength for a random sinus
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.

Table 9: Summary of the results shown in the Figure above. The rows correspond to the
results read from left to right (long to short deformation length, which is equivalent to
small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected at
this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Constant Mean power
0.15% 119 17.843 18.041 7.92% 0.00147 0.209
0.3% 57 17.843 18.039 6.05% 0.00288 0.202
0.45% 38 17.843 17.957 4.89% 0.00428 0.202
0.15% 157 15.860 16.778 14.08% 0.00147 0.273
0.3% 79 15.860 16.387 12.81% 0.00289 0.280
0.45% 52 15.860 16.433 8.85% 0.00429 0.276
0.15% 185 13.878 15.908 13.24% 0.00147 0.324
0.3% 95 13.878 14.730 12.76% 0.00289 0.335
0.45% 62 13.878 14.823 12.35% 0.00430 0.330
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5. SASE1 at 0.4 nm for a triangle error

Figure 105: Results of simulations for SASE1 at 0.4 nm wavelength for a random triangle
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.

Table 10: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 139 17.843 17.960 8.18% 0.00205 0.207
0.3% 73 17.843 17.401 5.09% 0.004 0.215
0.45% 48 17.843 14.792 8.83% 0.0061 0.304
0.15% 189 15.860 15.475 14.86% 0.00206 0.288
0.3% 99 15.860 14.513 14.20% 0.00407 0.371
0.45% 66 15.860 15.515 5.16% 0.00604 0.288
0.15% 224 13.878 14.146 14.57% 0.00206 0.328
0.3% 117 13.878 13.446 13.46% 0.00406 0.344
0.45% 78 13.878 13.965 8.94% 0.00603 0.340
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6. SASE1 at 0.4 nm for a sawtooth error

Figure 106: Results of simulations for SASE1 at 0.4 nm wavelength for a random saw-
tooth error distribution. The results from left to right correspond to the same power level
of 90% (top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or de-
creasing deformation length λδ such that the rms phase shake according to Eq. (17) is
constant.

Table 11: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 175 17.843 18.058 13.09% 0.00089 0.200
0.3% 83 17.843 18.287 9.30% 0.00168 0.194
0.45% 57 17.843 17.955 7.08% 0.00249 0.199
0.15% 238 15.860 18.141 11.84% 0.00089 0.265
0.3% 117 15.860 16.732 14.72% 0.00168 0.271
0.45% 79 15.860 16.202 13.64% 0.00249 0.277
0.15% 280 13.878 17.089 15.39% 0.00089 0.304
0.3% 141 13.878 15.691 13.03% 0.00169 0.325
0.45% 95 13.878 15.031 13.57% 0.00249 0.332
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7. SASE2 at 0.1 nm for a sinus error

Figure 107: Results of simulations for SASE2 at 0.1 nm wavelength for a random sinus
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.

Table 12: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 96 18.259 18.452 5.38% 0.00123 0.160
0.3% 49 18.259 16.849 8.32% 0.00242 0.168
0.45% 31 18.259 18.415 2.77% 0.00365 0.157
0.15% 133 16.230 15.716 10.21% 0.00123 0.224
0.3% 67 16.230 16.544 6.99% 0.00239 0.220
0.45% 44 16.230 16.544 4.64% 0.00362 0.221
0.15% 162 14.202 14.016 14.77% 0.00123 0.366
0.3% 81 14.202 14.474 10.09% 0.00243 0.270
0.45% 54 14.202 13.582 9.55% 0.00363 0.271
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8. SASE2 at 0.1 nm for a triangle error

Figure 108: Results of simulations for SASE2 at 0.1 nm wavelength for a random triangle
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.

Table 13: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 112 18.259 18.457 2.09% 0.00172 0.154
0.3% 58 18.259 14.808 9.45% 0.00344 0.226
0.45% 40 18.259 15.869 3.94% 0.00517 0.236
0.15% 159 16.230 14.156 20.38% 0.00174 0.242
0.3% 82 16.230 12.581 14.08% 0.00345 0.325
0.45% 55 16.230 13.975 16.50% 0.00609 0.238
0.15% 194 14.202 14.314 10.44% 0.00173 0.267
0.3% 99 14.202 12.620 16.77% 0.00342 0.279
0.45% 67 14.202 7.305 21.11% 0.00517 0.407
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9. SASE2 at 0.1 nm for a sawtooth error

Figure 109: Results of simulations for SASE2 at 0.1 nm wavelength for a random saw-
tooth error distribution. The results from left to right correspond to the same power level
of 90% (top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or de-
creasing deformation length λδ such that the rms phase shake according to Eq. (17) is
constant.

Table 14: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 128 18.259 18.690 5.28% 0.00075 0.138
0.3% 65 18.259 18.698 4.75% 0.00141 0.143
0.45% 44 18.259 18.764 3.42% 0.00209 0.146
0.15% 192 16.230 16.978 10.77% 0.00075 0.205
0.3% 96 16.230 16.824 7.62% 0.00142 0.211
0.45% 65 16.230 15.678 9.61% 0.00210 0.216
0.15% 238 14.202 15.643 15.46% 0.00076 0.255
0.3% 119 14.202 14.975 12.45% 0.00143 0.261
0.45% 80 14.202 14.632 7.91% 0.00210 0.263
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10. SASE2 at 0.4 nm with changed gap for a sinus error

Figure 110: Results of simulations for SASE2 at 0.4 nm wavelength for a random sinus
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.
The wavelength change has been achieved by changing K.

Table 15: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 84 72.519 74.713 5.87% 0.00288 0.164
0.3% 43 72.519 73.276 4.86% 0.00540 0.168
0.45% 29 72.519 72.785 4.32% 0.00800 0.171
0.15% 117 64.462 69.412 8.33% 0.00287 0.224
0.3% 69 64.462 66.734 8.12% 0.00543 0.236
0.45% 40 64.462 66.951 6.77% 0.00795 0.237
0.15% 141 56.404 66.248 10.82% 0.00287 0.265
0.3% 73 56.404 60.567 13.67% 0.00544 0.285
0.45% 48 56.404 60.031 11.87% 0.00796 0.287
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11. SASE2 at 0.4 nm with changed gap for a triangle error

Figure 111: Results of simulations for SASE2 at 0.4 nm wavelength for a random triangle
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.
The wavelength change has been achieved by changing K.

Table 16: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 103 72.519 72.628 4.70% 0.00388 0.167
0.3% 53 72.519 66.275 8.30% 0.00754 0.257
0.45% 36 72.519 72.094 1.87% 0.01100 0.177
0.15% 143 64.462 65.473 9.80% 0.00390 0.239
0.3% 74 64.462 58.909 13.91% 0.00759 0.309
0.45% 50 64.462 48.956 17.21% 0.01100 0.360
0.15% 172 56.404 59.568 14.86% 0.00387 0.280
0.3% 89 56.404 52.452 15.56% 0.00769 0.340
0.45% 61 56.404 43.174 20.59% 0.01100 0.417
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12. SASE2 at 0.4 nm with changed gap for a sawtooth error

Figure 112: Results of simulations for SASE2 at 0.4 nm wavelength for a random saw-
tooth error distribution. The results from left to right correspond to the same power level
of 90% (top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or de-
creasing deformation length λδ such that the rms phase shake according to Eq. (17) is
constant. The wavelength change has been achieved by changing K.

Table 17: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 140 72.519 74.990 6.76% 0.00190 0.173
0.3% 68 72.519 73.041 5.64% 0.00321 0.173
0.45% 44 72.519 72.845 5.64% 0.00467 0.173
0.15% 187 64.462 72.052 8.59% 0.00193 0.229
0.3% 94 64.462 66.039 12.84% 0.00323 0.236
0.45% 62 64.462 67.514 9.63% 0.00464 0.237
0.15% 222 56.404 71.110 9.98% 0.00192 0.265
0.3% 113 56.404 63.038 16.05% 0.00322 0.285
0.45% 75 56.404 60.124 11.92% 0.00468 0.285
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13. SASE2 at 0.4 nm with changed electron energy for a sinus error

Figure 113: Results of simulations for SASE2 at 0.4 nm wavelength for a random sinus
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.
The wavelength change has been achieved by changing the beam energy.

Table 18: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 83 22.831 23.308 7.44% 0.00132 0.136
0.3% 44 22.831 23.260 5.00% 0.00246 0.145
0.45% 29 22.831 23.182 4.51% 0.00367 0.146
0.15% 121 20.294 21.522 12.25% 0.00133 0.197
0.3% 63 20.294 21.100 10.25% 0.00249 0.210
0.45% 43 20.294 21.108 6.34% 0.00366 0.214
0.15% 149 17.758 21.431 13.21% 0.00131 0.235
0.3% 78 17.758 19.807 13.53% 0.00247 0.254
0.45% 53 17.758 19.256 10.40% 0.00364 0.260
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14. SASE2 at 0.4 nm with changed electron energy for a triangle error

Figure 114: Results of simulations for SASE2 at 0.4 nm wavelength for a random triangle
error distribution. The results from left to right correspond to the same power level of 90%
(top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or decreasing
deformation length λδ such that the rms phase shake according to Eq. (17) is constant.
The wavelength change has been achieved by changing the beam energy.

Table 19: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 110 22.831 22.918 6.20% 0.00179 0.162
0.3% 57 22.831 20.977 7.98% 0.00345 0.277
0.45% 38 22.831 20.470 5.04% 0.00516 0.216
0.15% 154 20.294 19.966 13.42% 0.00178 0.208
0.3% 81 20.294 18.830 9.49% 0.00344 0.269
0.45% 54 20.294 20.292 5.04% 0.00510 0.221
0.15% 187 17.758 17.219 24.98% 0.00182 0.261
0.3% 99 17.758 17.077 14.39% 0.00345 0.272
0.45% 66 17.758 17.541 9.22% 0.00518 0.274
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15. SASE2 at 0.4 nm with changed electron energy for a sawtooth error

Figure 115: Results of simulations for SASE2 at 0.4 nm wavelength for a random saw-
tooth error distribution. The results from left to right correspond to the same power level
of 90% (top), 80% (middle) and 70% (bottom) with increasing error level ΔK/K or de-
creasing deformation length λδ such that the rms phase shake according to Eq. (17) is
constant. The wavelength change has been achieved by changing the beam energy.

Table 20: Summary of the results shown in the Figure above. The rows correspond to
the results read from left to right (long to short deformation length, which is equivalent
to small to large ΔK/K) and top to bottom (90%, 80% and 70% of the power expected
at this position without undulator errors).

ΔK/K λδ/λu P (GW) P (GW) σP /P σK σφ

Periodic Mean power
0.15% 153 22.831 23.501 4.92% 0.00087 0.156
0.3% 79 22.831 21.962 10.01% 0.00148 0.169
0.45% 50 22.831 22.974 6.81% 0.00213 0.163
0.15% 206 20.294 22.868 12.02% 0.00088 0.203
0.3% 108 20.294 21.188 12.87% 0.00148 0.228
0.45% 70 20.294 20.885 11.60% 0.00214 0.227
0.15% 248 17.758 21.709 17.28% 0.00087 0.243
0.3% 128 17.758 19.820 18.77% 0.00147 0.270
0.45% 85 17.758 18.735 13.44% 0.00217 0.274
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