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Abstract

This paper presents brief description of the collection of computer codes FS2R for calcu-
lations of an FEL amplifier with an axisymmetric electron beam. Program package FS2R
includes the following routines:

— Program FS2RD allows one to analyze eigenvalue problem (i.e. to find increments, field
distributions in Fresnel diffraction zone and directivity diagrams in Fraunhofer diffrac-
tion zone) for the cases of the electron beam with stepped (analytical solution), bounded
parabolic {analytical solution) and arbitrary gradient profile of current density (multilayer
approximation method). All the solutions are obtained taking into account diffraction ef-
fects, space charge fields and energy spread of electrons in the beam.

— Program FS2RL allows one to solve initial problem, i.e. to find in the linear approximation
the evolution of the electromagnetic field in the FEL amplifier at given initial conditions
at the undulator entrance. In the case of the stepped profile of the electron beam current
density the eigenvalue problem is solved analytically and in the case of an arbitrary profile
it is solved by direct integration of the self-consistent field equations.

— Program FS2RN is nonlinear simulation code.

Programs of the FS2R package are used for calculations of the parameters of SASE FEL
which is being planned to construct at the TESLA Test Facility at DESY.
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1 Introduction

R&D works on future generation linear colliders give a promise to obtain in the
nearest future high-energy, low-emittance and monochromatic electron beams which
could be used for a wide range of applications. One of the possible applications of
these beams, which is under study at DESY and SLAC, is to use them as driving
beams for SASE FEL (self amplified spontaneous emission free electron laser). Special
improvement of a quality of the electron beam from SLAC accelerator will allow, in
principle, to construct SASE FEL operating in soft X-ray range [1].

Project parameters of the TESLA Test Facility accelerator are rather promising to
use it as driving accelerator for SASE FEL [2]. Installation of bunch compressors to
decrease bunch length and to increase peak current could made such a possibility to
be realistic.

One of the problems of the SASE FEL design consists in calculation of the output
characteristics of such an FEL amplifier. To realize this we should remember distinc-
tions between SASE FEL and traditional FEL amplifier. Traditional FEL amplifier
amplifies electromagnetic radiation generated by master oscillator. The amplitude
and frequency of the input signal is controlled by experimenter. As a rule, the signal
of master oscillator has narrow bandwidth. Under these initial conditions the field
amplitude in the undulator does not depend on time and depends only on coordi-
nates. This was the main factor which has allowed to develop a wide range of reliable
theoretical approaches for calculation of characteristics of traditional FEL amplifier
[3] - [13]. These are, so called, steady-state models of the FEL amplifier.

Contrary to traditional FEL amplifier, situation with the SASE FEL is more compli-
cated. It is connected with the fact that fluctuations of the beam current density play
role of the input signal. First, these fluctuations vary in time. Second, a spectrum
of these fluctuations is “white”. To be strict, to describe such a situation, three-
dimensional time-dependent theory of the FEL amplifier should be developed.

Nevertheless, theoretical approach developed for description of traditional FEL am-
plifiers could be used to find some characteristics of the SASE FEL. First of all, such
an approach allows one to calculate rather rigorously characteristics of the radiation
modes of the SASE FEL. This is consequence of the fact that “effective” power of the
input signal in the SASE FEL is rather small with respect to the saturation power.
As a result, the only mode is survived having maximal increment. Characteristics
of this mode do not depend on the nature of input signal and are determined with
parameters of the FEL amplifier. So, the results of the steady-state theory allows one
to calculate increments, field distributions in Fresnel zone (i.e. inside the undulator)
and directivity diagrams of radiation power in Fraunhofer diffraction zone (i.e. in
experimental area). These are rigorous results which do not depend om initial con-
ditions at the amplifier entrance. Calculations of the frequency characteristic of the
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FEL amplifier allows one to estimate rather rigorously the bandwidth of the SASE
FEL. Calculation of the amplitude characteristic of the FEL amplifier allows one to
estimate influence of the fluctuations of the input amplitude on the output amplitude.

The paper is organized as follows. In sections 2 — 4 we present the basis of the the-
ory of the FEL amplifier with an axisymmetric electron beam [11-13]. Our approach
allows one to take into account diffraction effects, energy spread of the electrons in
the beam and space charge effects. On the base of this theory we have developed
program package FS2R for calculations of the FEL amplifier. The package consists of
three programs: FS2RD, FS2RL and FS2RN. Program FS2RD allows one to perform
analysis of the eigenvalue problem (finding eigenvalues (increments) of the radiation
modes and field distributions in Fresnel and Fraunhofer diffraction zones). This pro-
gram is essentially based on analytical techniques developed in refs. [11,13]. Program
FS2RL allows one to calculate evolution of the electromagnetic field amplitude in the
linear mode of the FEL amplifier operation. In the case of a stepped profile of the
beam current density the code essentially use analytical techniques and in the case
of an arbitrary gradient profile of the beam current density we use method of direct
integration of the self-consistent field equations. Program FS2RN is numerical simu-
lation code and allows one to calculate characteristics of the FEL amplifier operating
in the nonlinear mode.

In section & we present physical estimation of the “effective” power of shot noise at
the FEL amplifier entrance.

In section 6 we use the programs of the FS2R package to calculate various characteris-
tics of the FEL amplifier (6 nm and 70 nm options). On the base of these calculations
we predict characteristics of the SASE FEL which is designed at the TESLA Test
Facility. We calculate increments of the radiation modes, field distributions inside the
undulator and in experimental area and bandwidth of the SASE FEL. We also study
the influence of the emittance, energy spread and deviation of the beam current off
nominal value on the FEL amplifier operation. On the base of these calculations we
can estimate also the required length of the undulator.

2 Basic equations

The analyzed model is based on the Maxwell’s wave equations taken in the paraxial
approximation and the description of the electron beam with the kinetic equation
expressed in “energy-phase” variables. It is anticipated that electrons move (on the
average over constrained motion) only along the trajectories parallel to the undulator
axis. Such a model has proved to be very fruitful to describe the physical phenom-
ena in the FEL amplifiers and allows one to take into consideration such effects as
diffraction of radiation, space charge fields and energy spread of electrons in the beam.
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2.1 Effective Hamiltonian

Let us consider an FEL amplifier with a helical undulator. The undulator magnetic
field at the axis has the form:

Ho(2) = EcHy cos(kgz) — & Hy sin(ky2), (2.1)

where &, = 27 /Ay is the undulator wavenumber and €y are unit vectors directed
along the z and y axes of the Cartesian coordinate system (z, ¥, z). We neglect the
transverse variation of the magnetic field and assume the electrons to move along
the constrained helical trajectories parallel to the z axis. The electron rotation angle
0, = K/v (where v = &/m.c? is relativistic factor of the electron with nominal
energy &, K = eH,/m.c?&, is undulator parameter, (—e) and m. are the charge
and the mass of the electron, respectively, and ¢ is the velocity of light) is considered
to be small and the longitudinal electron velocity v, is close to the velocity of light ¢
(v, = ¢).

The electric field of the amplified wave is presented in the complex form:

Ex +1iE, = E(2,71) expliw(zfc— 1)), (2.2)

where w is the frequency of the amplified wave. The complex amplitude of the field
E does not depend on time at any space point which corresponds to the standard
formulation of the initial problem with the definite initial conditions at the undulator
entrance at z = 0. We assume the complex amplitude E(z, ) to be a slowly changing
function, i.e. | 8E/0z | Ky | E.

We describe the motion of the electrons using “energy-phase” variables with the phase
) = kg2 +w(z/c—1) as canonical coordinate and P = £/w as canonical momentum.
In this representation coordinate z is independent variable. When transverse motion
of the particles is defined by the undulator field ant not with the radiation field, i.e.
| E | (1 - v,/c) < Hy, hamiltonian is of the form [13]:

o _ € lre oy 7 2 2 4]1/2
’H_w(nw+w/c) C[E e’ | Aw | —mict| +
2 _’- A —_ -
M[‘gz —e? | Au |? —mzc“] 1/2 + f"jd%/)Ezo (2.3)
c w
Here A.w(z) = —€, x [ I_fwdz is vector potential of the undulator field, A is vector po-

tential of the electromagnetic wave (E = c19A/56t) and E, is longitudinal component
of the space charge field.
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The canonical equations of motion have the form

dy/dz=0H /9P,
dP/dz = —0H[8¢. (2.4)

At small deviations of the electron energy £ from the nominal one &, hamiltonian
(2.3) takes the form:

~ w

Fiw = H(P,,2) = CF + 57

[ dvek., (2.5)

P — (Ue" +Ue™) (1 - P/&) +

where P = £—&, C = kw—w/(2c7]) is the detuning of the electron with the nominal
energy &, U/ = —eb.E(z,7)/(2¢) is the complex amplitude of the effective potential
of the particle interaction with the electromagnetic wave, and

0, = eHy/(Eokw), 7 2=7140%  g==&/(med).
2.2  Self-consistent equations of the linear theory

In exposing the linear theory the main emphasis is put on finding analytic solutions
of the self-consistent field equations. An interaction process of the electron beam with
electromagnetic wave in an undulator in the linear mode of operation can be described
by a unique integro-differential equation. The solution of the latter under stated
initial conditions at the entrance into the interaction region allows to determine a
relationship between wave field amplitude and undulator length and thus to calculate
the output characteristics of the FEL amplifier. These analytic solutions serve as a
reliable basis for the development of numerical methods. The analysis of nonlinear
processes refers to the problems solvable only numerically by a computer. On the
other hand, testing of the numerical simulation codes would be difficult without the
use of rigorous results of the FEL amplifier linear theory as a primary standard.

To obtain general form of self-consistent equations of linear theory, we use the fol-
lowing approximations:

a) electrons move only in the z direction,

b) complex amplitude of the electric field E is the slowly changing function, i.e.
|OE/0z | € ww | B |;

c) the transverse electron beam dimension is rather large, i.e. rf > 2% /w?;

d) the electron beam at the undulator entrance is modulated neither in velocity nor
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density.

These approximations allow us to derive from kinetic equation and Maxwell’s equa-
tions the self-consistent field equations describing the linear mode of the FEL amplifier
operation. These equations could be written as for the field amplitude as well as for
the first harmonic of the beam current density. The corresponding equation for the
amplitude of the electromagnetic field has the form {11]:

V2 E+ erﬁgg =
c Oz

i0(7L) / dz [-2-1'—66sz(2 n)ﬁE [V2E+zz‘ig-§n x

_[o apL = exp[ (c+ Ech) (z'—z)l, (2.6)

where F(P) is the function describing the energy distribution and is normalized to
the unity.

The corresponding integral equation for the first harmonic of the beam current density

71(z,71)* has the form [11]:

el - dme -~ -
.71(3 "'"J.)"UO L /dz { 2i ext(zf,r-l-)‘l' 731(317 rL)_

e 7 & iw | -7 2

_Z de exp [ (C + 72,280‘313) (' — z)l ) 2.7)

When the energy spread is negligibly small (F(P) — 6(P), where §(P) is the delta
function), this equation is reduced to:

d2 d 47r6 ~
djzl +2i C ~ l T Jo(TL) — ]Jl =

w ., ) el = - efiw PodY .
nyfgoJO(rJ_){gEext(zarJ_)‘f‘ 2 J m/dﬂ_h(z',ﬁ)x

Lja = —jo(fL) + Jrexp™ +C.C.
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exp [’3“’ 7=y '2] } . (2:8)

2¢(z — 2)

So, the self-consistent field method in the linear approximation enables one to get
from the kinetic equation and Maxwell’s equations the only equation either for the
field amplitude of amplified wave (2.6) or for the modulation amplitude of the beam
current density (2.7). Both of the ways lead to the same results but for the analyt-
ical calculations it is preferable to use the equation for the wave field: in this case
the mathematical apparatus is always connected with more conventional differential
equations. At the same time the situations with the computer simulations is proved
to be reversed and the method using the equation for the modulation amplitude of
the beam current density is more convenient.

2.8 Self-consistent equations of the nonlinear theory

The analysis of nonlinear processes refers to the problems solvable only numerically
by a computer. We use standard approach for constructing numerical algorithm for
the FEL amplifier operation. We simulate the real particles of the beam with a finite
number of macroparticles which move in the given electromagnetic field in accordance
with the canonical equations of motion (2.4). Then we calculate the current and the
charge density produced by these macroparticles and find electromagnetic fields from
Maxwell’s equations thus providing self-consistent solution of the problem .

3 Linear theory of the FEL amplifier with an axisymmetric electron beam

In this section we present brief description of analytical and numerical techniques
implemented in the programs FS2RD and FS2RL to calculate the linear mode of
operation of the FEL amplifier with an axisymmetric electron beam. An FEL model
is used wherein diffraction effects, space charge fields and energy spread of electrons
in the beam are taken into account. We have shown in section 2 that in the linear
approximation the self-consistent field method makes possible to get from the kinetic
and Maxwell’s equations the only integro-differential equation for the radiation field
amplitude. We use this equation to solve the eigenvalue problem. To find the eigen-
values and eigenfunctions we use the condition of the quadratic integrability of the
eigenfunction and the continuity conditions of the eigenfunction and its derivative
at the beam boundary. The obtained solutions allow one to calculate increments of
the eigenmodes, find the field distributions in the Fresnel and Fraunhofer diffraction
Zones.

The next problem of the linear theory is the initial-value problem consisting in the
finding of the evolution of the amplified wave under given conditions at the undulator
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entrance. We solve the initial problem for the practically important case with the un-
modulated electron beam and electromagnetic radiation from the master oscillator at
the entrance into the undulator. When the electron beam profile is stepped, the initial
problem is solved analytically with the Laplace transform technique. The asymptotic
formulae for the high gain limit are derived taking into account diffraction of radia-
tion, space charge fields and energy spread of the electrons in the beam. When the
electron beam has the arbitrary gradient profile there is no possibility to obtain the
rigorous analytical solution of the initial problem. For this case we have developed
the algorithm of numerical integration of the self-consistent field equations.

We consider two profiles of the beam current density:

bounded gradient profile:

i) = IS(r/ro) lQW‘{rS(r/ro)dr] at  r<ro, (3.1a)

0 at T > 1o,

(here I is the beam current, S(r/ro) is the function describing the gradient profile
and rg is radius of the beam);

gaussian profile:

HOE 2:0_2 exp(—r?/202), (3.1b)

r

where o, is the width of the gaussian distribution.

8.1 Solution of the eigenvalue problem

Let us consider the electron beam with the bounded gradient profile of the beam
current density given by eq. (3.1a). Using polar coordinates {r,, z), in the high-gain
limit we shall seek the solution of eq. (2.6) in the form:

Bleryg) = a(met | 9] (32)

sin(ne)

where n is integer, n > 0. Substituting expressions (3.2) into eq. (2.6) we get:
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Region 1, (# < 1):

&2 1d 2iDS(#) n? s .
[dﬁz + i i——:w e + 2iBA| ®,.(F) =0, (3.3a)

Region 2, (# > 1):

2 rS
[ il + 1d _n + Qz'BA] ®,(#) =0, (3.3b)

" Fd P

where the following notations have been introduced:

3=Tz, f=rfro, A=MT, (=0T,
A§=4cz(05r0w)_2, AZ = A3 /T2, B = Triw/e,
A=< (AE? > W (dAED)
1 —171/2
= [ﬂﬁeg (QIAczfyffyj{S(f)df) ] ,
) Q
D=i / exp [-ARe?/2 — (A +iC))] ede. (3.4)
0

For definiteness we assume the energy spread of the electrons in the beam to be
gaussian.

In the case of stepped and bounded parabolic profile of the beam current density
eqs. (3.3) could be solved analytically. In the case of an arbitrary profile of the beam
current density the eigenvalue problem is solved semi-analytically with application of
multilayer approximation method.

3.1.1 Stepped profile

Let us consider the homogeneous axisymmetric electron beam with radius ro (S(r/ro) =
1 in eq. (3.1a)). In this case equations (3.3) are Bessel equations:

P2, [dF? + A, fdF + (p?7? —n?) P, =0  at P <1, (3.5a)

P2d2®, [di? + FdD, Jdi — (g% +n2)®, =0,  at > 1, (3.5b)
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To avoid the singularity at # = 0 the solution for ®,(f) inside the beam should be
chosen in the form:

B(F) = Crda(pf),  at 7 <1,

where J,, is the Bessel function of the first kind of order n. As the field must vanish
at r — 0o, we should choose the solution for ®,(#) outside the beam in the form (we
assumne here that Re(g) > 0):

3.(7) = CoKa(gh),  at#>1,

where K, is the modified Bessel function. The continuity conditions of ®, and d®,/df
at the beam boundary give us the eigenvalue equation for the FEL amplifier with the
homogeneous axisymmetric electron beam:

11 () Kn(g) = 9Ja(p) Knia(9)- (3.6)

The field mode eigenfunction (i.e. transverse field distribution inside the undulator)
is given with the expressions:

8.(F) = Jo(p#), A at r <1 (3.7)
Ju()Kn(g7)/ Ki(g), at £ > 1.

The directivity diagram of the radiation intensity is one of the important characteris-
tics of FEL amplifier. At large distance from the amplifier exit, at z > [, the output
radiation has the form of a spherical wave. In the axisymmetric case the radiation
field amplitude depends on the observation angle § = r/z according to the expression
(we assume here the Fraunhofer diffraction approximation):

oo

=(6) = / Bo(7) Jo(67)7dF, (3.8)

0

where § = frow/c is the reduced observation angle, $(#) is the complex amplitude
of axisymmetric radiation mode at the amplifier output and Jp is the Bessel function
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of the first kind. When the FEL amplifier operates at the ground TEMge mode, using
eq. (3.7) we can write the following expression for Z(9):
2 1 - oo ”
2(6) =  Cu(B0)o(n)d¢ + T dCJoli) Ja(0) Ko(gC)/ Kolg) =
sz [070(w) () — wh (1) Jo(8)] —
L [051(8) (1) — 9Jo(B)Jo(1)K1(g)/ Ko(g)| -
g2+

Taking into account equation (3.6) we get the following expression for the radiation
power directivity diagram:

Jo(8) = 612(0)Jo(s) Kx (9)/ Kol9) ‘ (3.9)

(1+62/g%)(1 - 02/p?)

1) _ l_:_(f?_)_
1(0)

At large values of the diffraction parameter B the Fraunhofer diffraction approxi-
mation may be used when cR;/(r3w) > 1, where R; is the distance between the
observation point and the amplifier exit. When B < 1 the above condition changes
to: |A| Ri~TR > 1.

3.1.2 Bounded parabolic profile

The bounded parabolic profile is given with the function S(#) = 1 —k?#% in eq. (3.1a),
where k; > 1. As far as we know, this is the only gradient profile allowing analytical
solution of eq. (3.3a) in the limit of A2 — 0. Introducing notations

W =-2D—g% ¢ =-2BA, §=-2D8, (3.10)

we rewrite equation (3.3a) in the following standard form:

2

&.() + ~Lo,(7) + {,ﬁ - ’f—l &,.(7) = 0. (3.11)

 df 2

d

dr?

General solution of eq. (3.11) has the form:

8. () = Chf" exp(—=672/2)1 Fi(e,n + 1,67%) at £ < 1,

where  F} is confluent hypergeometric function and

e=(n+1)/2 - pu*/(45).

10
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Differential equation (3.3b) is Bessel equation, so the solution for @, outside the beam
has the form (Re(g) > 0):

®,.(F) = Cy K, (gF)at F>1,

where g2 = —2iBA, Re(g) > 0. Using continuity conditions of ®, and d®,/df at the
beam boundary, we obtain the following eigenvalue equation:

2
§K.(g) [n : B+ 1n+2,8) -1 Fen + 1,5)] +

9Kn1(g)1 Fi(e,n+1,6) =0. (3.12)

Eigenfunction of the radiation mode is given with expressions:

\ { 7" exp(—&72/2)1 F1(e,n + 1, 67%) ab r <To (3.13)

2, ((r) = :
exp(—8/2)1 Fi(e,n + 1,8)Kn(g97)/ K (g) at r < ro.

3.1.3 Avrbitrary bounded gradient profile

The approach presented above can be easily extended to the case of the electron beam
with an arbitrary gradient profile of current density. It can be performed by means
of multilayer approximation method. The similar method is used, for example, in the
optical waveguide theory (see ref. [15]). This method consists in replacing the electron
beam profile with a set of layers and in each of them the current density is supposed
to be constant. The fulfillment of the continuity conditions of the eigenfunction and
its derivative at all boundaries between the layers leads to the eigenvalue equation
(see refs. [11,16,17) for more details).

Let us divide region 0 < # < 1 into K equal parts and assume the beam current
density to be constant within each layer. Solution of eq. (3.3a} in each layer has the
form:

oY) = A;J.(1;?) + DjNu(p;?),

where (j —1)/K < # < j/K, A; and D; are constants, J, and N, are Bessel function
of the first and the second kind of order n. Parameters p; are given with

pl = ~2D8; 1 (1-iA2DS;4pp)" -4, ¢ = —2iBA,

where S;j_1j2 = S(#j-1j2) and #j_172 = (j — 1/2)/K. To avoid singularity of the
solution at # = 0, we should let D; = 0. Coeflicients A;;; and Djyy are connected

i1
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with coefficients A; and D; via the continuity conditions of ®, and d®,/df at the
boundaries between layers:

=17, j=12..K-1, (3.14)
Dj D;

where elements of matrix T} are given with expression (7; = j/K):
™. ) ) ) )
(T = 5T (185 (12575) N —1 (41 75) — tjar Jme1 (175) Non (542 75)] 5
T, . ) \ )
(Trhe = 575 (145 N (1575) Nome1 (p540175) — i1 Nemo1 (2575) Non (54075)] 5

ﬂ_ A A » ~ )
(Ti)n = =57 (I (157 )) T (54175) — tigrImo1 (p575) Tm(tt54175)] 5
vis

(T5)e2 = —57i [145 N (18575 Ty (54175) — pigt Nenoa (p575) Im (154175)] -

In the region outside the electron beam, solution of eq. (3.3b) satisfying the quadratic
integrability condition has the form ® = FyK.(g7),Re(g) > 0. At the boundary of
the last layer, at # = 1, the continuity conditions of &, and d®, /d at the boundary
leads to relations:

AgJn(pr) + Di Na(pr) = FLKq(9),

e AxcJng1 (px) + i Dg Nug1 (i) = ¢F1Kn11(9),

A A
| 4% | = p, K41 |
Dk Dy

Then we express coefficient Fy in terms of A; and D;. Multiple use of relation (3.14)
results in

TKxTK_lx...le(Al =T(A’)=F1( Kxl9) ) (3.15)
0 0 gI{n-}-l(g)

Numerical solution of eq. (3.15) allows one to find eigenvalues A, and the field distri-
bution eigenfunction is obtained by multiple use of relation (3.14).

or

12
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3.1.4 Gaussian profile

In the case of the gaussian profile of the beam current density (3.1b) there is no beam
boundary, so it is natural to perform normalization of the transverse coordinate as

# = r/y/202. The corresponding reduced variables are as follows:

:=Tz, A=a/r, <C=c0yr,
Al=28(80w), AR =AY/T?, B =2Tclw/e,
Ak =< (AE)? > W /(P&

I'= [Iw29:/(1A627:7)] i !

oG

b=i f exp [-A%¢*/2 — (A +iC)) ede. (3.16)

0

In the case of the gaussian beam we use multilayer approximation method (see section
3.1.3) for finding eigenvalues and eigenfunctions.

3.2 Solution of the initial-value problem

To find the evolution of the electric field of the amplified wave E(z,r, ) one should
solve the self-consistent field equations under the given conditions at the undulator
entrance. In this paper we consider a specific, but practically important case of the
following initial conditions:

a) the electron beam is modulated neither in velocity nor density at the undulator

entrance; } :
b) the electric field amplitude I takes the value Eey(r, ) at the undulator entrance.

3.2.1 Stepped profile

In this section we consider the case of axisymmetric electron beamn with stepped
profile of current density. Introducing the following notations:

=Tz, F =r/rg,

B=Trlwle, A2=4e/(w0?r}),

we write eq. (2.6) in the following reduced form:

Region 1, ( < 1):

13
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lﬁ-{-rar-}-,za 2-|—2.Ba ]E(z,r,cp)_,

¢ . a2 18 1 &
- Al At 21 o
zofdz [ZE(z @) + A2 [a tigEt e

[ deab(€)/dg exp [it¢ + C)(&' - 2)]
Region 2, (1 < #):

# 19 1 8 e, .
{ﬁ_l_ §+ 725 2+2”B§"] E(3,7,¢) = 0.

Then we represent F as a Fourier series in the angle ¢:

n=+o00

fp)= 3 Bz, e,

nN=—00
The Laplace transforms of the Fourier coefficients E®

™) (p, ) = f e P B(5, 7)ds
0

are submitted to the following equations:

2 1d wt ). :
1 ) (p #) = F(p o
i | B =00, fe

- | B = fOR), A1
where notations are introduced:
p=-%D[1-ikD]” -, g =-2Bp,

_dF()/dE 2n) (2 — 9 R (M) (A
- / T O (7) = 2% BES(#).

0

az
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] E(é',ﬁ,go)l X

(3.17a)

(3.17b)

(3.18a)

(3.18b)

To find EM™ one must solve equations (3.18) with the following boundary conditions:

E(“)(p,'f') -0 at ¥ — oo,

14
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B |iypo= E® |soico,  dEM/dF |iorpo= dE™ [dF [i210 .

Equations (3.18) could be solved using the Green’s function method. To find E™)(3, #),
the inverse Laplace transformation is used. As a result, in a high-gain limit we obtain

[11,13):

E™ =% wlu(wf)exp(N2), F<1 (3.19a)
h]

f(n) _ J, (HJ s R

E Z ) — K (gif) exp(A2),  F> L (3.19b)

Here J; is the jth root of the equation (Re(};) > 0):

At (B(A) Kn (§(X)) = §(A1) Kt (3(43)) Jn (B(X;)) = 0

where notations have been introduced:

[?:f;)]deJ (™) + fda{ (GOCF™(0)

U = ;
’ L [Ednr (B) Kn(7) — gKn+1( V()] Ir=r;
—%D, . . F . dF(&)/d
p=— = -4, g =-2BY, D= /d§—~———€£)/ ¢
1 —1AZD; 4 A +i(E+O)

Each term in the right-hand sides of expressions (3.19) corresponds to the separate
radiation mode and is characterized with the unique amplitude factor, increment and
the dependence on the transverse coordinate.

In the paraxial approximation the power gain coefficient G of the radiation mode
with the azimuthal index n is given with the expression:

o0

-1
[r1EQe) e dr} :

0

G = fr | E®(z,r) 2 dr

0

When diffraction parameter B is not very large (B < 10)), one can find that the
increment of TEMgo mode is visibly greater than the increments of higher TEMg;
modes (n,k = 1,2,3,...) [11,13]. Hence, when the undulator is sufficiently long, the
contribution of TEMgo mode in expression (3.19) is much more than the contributions
of all other modes. In this case we may use the single mode approximation and write:
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-2

(B (7)Ko(@) — 3K2 (@) o)

[zt {2

[ #9017 B () + o) Koln)] j FKo(917) B (F)F

G = 4B%exp(2Re(}1)2)

X

A=y

I{Q ,U.l T)

dr+/ |Ko(g:7)| dr}

2

where ) is the reduced eigenvalue of TEMg, mode.

3.2.2 Arbitrary bounded gradient profile

We have shown above that in the case of the stepped profile of the beam current
density, the initial-value problem can be solved analytically using eq. (2.6). When
the electron beam has an arbitrary gradient profile of current density (3.1a), one
should use the numerical methods to solve the initial problem. The self-consistent field
method in the linear approximation enables one to get from the kinetic equation and
Maxwell’s equations the only equation either for the field amplitude of amplified wave
or for the modulation amplitude of the beam current density. Both of the ways lead to
the same results but for the analytical calculations it is preferable to use the equation
for the wave field (2.6): in this case the mathematical apparatus is always connected
with more conventional differential equations. At the same time the situations with
the computer simulations is proved to be reversed and the method using the equation
for the modulation amplitude of the beam current density (2.8) is more convenient.

In this section we present the algorithm of the initial problem numerical solution
using eq. (2.8). The case of axially symmetric radiation field modes is under study.
Let us consider the case of negligibly small energy spread. We assume that the field
of the master oscillator has the form of the Gaussian laser beam:

—i Bguw?(w/c)e™ "
2(z — z) —ww/e

W 2i{w/c)(z — z0)r? — (rww/c)?
exp {z C( o) + 10z — 7o) + (W]’ } (3.21)

Ey +1Ey = Eoxi(z,7) exp [iw(zfc — t)] =

with amplitude

1/2
Ey = [8Wex/(w?0)]
Here 2 and w are the position of the focus and the waist size in the focus of the
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Gaussian laser beam, respectively and W,y 1s the total power of the master oscillator.
Using standard normalization procedure, we rewrite eq. (2.8) in the form:
~ ddy

&y
o
FEAREACT:

+[A2- ¢ = %U (3.22)

where the following notations are introduced:

&1(21 T') = }1(21 T)"TT'S/I, I/li/exlf. = ext/WO,

A

1 1/2
By = |16Wen j S(F)Fdﬁ/(szz)] ,  Wo=I&Tyie/(ew),
o

£

a1 .  pa .

- N Br# 2 12

Ur = Uexs(2,7) + 2 f ,d_”'é, j S(f’)v"dﬁ’&l(é’,f’)Jn( il )exp{ iB(F*+ 7 )}
0

/3 Py 2% - #)
© i B E, 2% B(3 — 3)* — (Bi#)?
Vel®:F) = =55 3y = iBw? { 4(Z — %)? + (B&?)? (3:23)

Integro-differential equation was solved using computer code FS2RL [11]. Power gain
G is calculated with the integration of equation:

dG 1 ¢
= / Fdrat(#, 2)S(H)0; + C.C. (3.24)
z Wext | S(7)FdF 0
0

3.2.8 (aussian profile

In the case of the gaussian profile of the beam current density (3.1b) we normalize the
transverse coordinate as #* = r/,/202. The corresponding reduced variables are given

with the expressions (3.16). The only distinction of the equations is that integrals
over transverse coordinates in egs. (3.22), (3.23) and (3.24) are calculated in the
limits from 0 to oo. The function of the beam profile should be taken in the form

S(7) = exp(—7?).
3.2 Planar undulator

All the results of the linear theory obtained above refer to the case of the helical undu-
lator and circularly polarized radiation. These results can be used also for the case of
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a planar undulator and linearly polarized radiation at the following redetermination
of the parameters (for the case of the stepped profile):

[ = 42,062l B=rilu/e,

C=rke—w/2e), A} =86l AT;)™",

AL = W? < (AE)? > [(PHTEY),  Wo = I&Dc/(ew).

Here we have introduced the following notations:

6 = eH[/(Erw), W=y 462

Factor Ay; is given by the formula

Agy = {Jo(v) — Ji(v)],

where v = 0fw/(8¢ckw ), Jo and Jy are the Bessel functions.

4 Nonlinear simulations of the FEL amplifier with an axisymmetric elec-
tron beam

In the linear mode of the FEL amplifier operation, at sufficiently low input radiation
power Wey, an increase of Wy leads to the proportional increase of the output
power Wi, When the input power is increased further, the operation of the amplifier
becomes to be nonlinear: output power increases more slowly than that input one,
and at a certain value of Wy, the output power reaches a maximum. To find the FEL
characteristics at saturation, it is necessary to solve the equations of the nonlinear
theory of the FEL amplifier. The analytical methods are limited in the description of
the saturation effects and numerical simulation codes are being used.

The main problems of the nonlinear simulations are connected with the calculation of
the radiation and space charge fields. Several different methods are used to calculate
the radiation fields: various modifications of the transverse mode spectral method (see
e.g. ref. [5]), the finite difference method [6-8] and the Green’s function method {12].
In this paper we, following by ref. [12], present an approach to constructing numerical
simulation code using Green’s function method for the radiation field calculations.

When using the numerical simulation codes the problems are usually arisen of the
reliability and the clear physical interpretation of the obtained results. The presented
approach satisfies these requirements. First, the model approximations allow one
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to check the linear stage of amplification with the rigorous solutions of the linear
theory (see section 3). Second, when writing down the final equations we use the
similarity techniques. This enables one not only to reduce the number of the problem
parameters but also to go over to the variables possessing the clear physical sense.
Each physical factor influencing the FEL operation (diffraction, space charge, energy
spread etc.) is matched with its own reduced parameter. For the effect under study
this reduced parameter is a measure of the corresponding physical effect. When some
effect becomes less important for the FEL amplifier operation, this is reflected by
the corresponding reduced parameter taking on small values and falling out of the
number of the problem parameters.

The presented FEL amplifier model allows one to take into account such effects as
the radiation diffraction, space charge fields, energy spread of the electrons in the
beam. The initial conditions are considered when one has the radiation from master
oscillator (the Gaussian laser beam) and unmodulated electron beam at the undulator
entrance. The presented code enables one to calculate the frequency, amplitude and
current characteristics of the FEL amplifier. The field distributions in the Fresnel and
Fraunhofer zones and various electron beam characteristics could be computed, too.
The code allows one to calculate all these characteristics at the constant undulator
parameters as well as at the tapering ones.

4.1 Self-consistent equations

To describe motion of electrons in the given electromagnetic field we use canonical
equations (2.4). To close the self-consistent problem of the electron beam radiation
in the undulator one should find the electromagnetic fields at the given motion of the
electrons. Let us write down the Maxwell’s wave equations for vector potential A and
scalar potential ¢ (we use the Lorentz gauge here):

1 8% - 4

2 — — i — — _-‘. ~

G A 2 atzA c j(f‘,t)

Vip — —1 ———2 = -47rep(f‘ t) (4 1)
P 2 atgp 1y 5/ .

where j ] is the beam current density and p is the beam density. The electric field E is
connected with potentials A and ¢ by relation: E= —c‘laA/ 9t — V. The solutions
of the wave equations (4.1) may be written in the retarded potential form:

r—r

A(F,t) t];‘/d-f-?(r JT‘ r |/C)

|
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p(f',t)ze/dr | ;Tllc). (4.2)

Further we shall consider only the axisymmetric radiation modes. In this case the
potentials and the modulation of the beam density do not depend on the azimuthal
angle. The integration of equations (4.2) using the paraxial approximation

- FL— |?
|r—F|zz~z’+—|2E'z_;)l ,

(4.3)

leads to the following expression for the complex amplitude of the radiation field (we
keep here only “resonant” part giving nonvanishing contribution in the Hamiltonian
after averaging over the undulator period):

To

E=FEeu+ - /r’dr’jo(r')31(z’,r’) X

o 271wl rody
c? ./

exp [M] Jo (Z(EL) , (4.4)

2¢(z — 2') z—2')

Z -2z

where J; is the Bessel function of the first kind, Fex - the complex amplitude of the
external radiation field and 6, is the rotation angle of the electron with the nominal
energy &. The reduced complex amplitude of the first harmonic of the beam current
density 7; is given with the expression:

. < O exp(—ipk) >

= k pg( 1/) ) b (45)
80

where symbol < ... > means the local averaging over the electrons of the beam, 6x

and 1y are the rotation angle and the phase of the electron.

For the longitudinal component of the electric field E, (i.e. for the space charge field)
we get the following expression:

A, OO ) T '
B, = T2 3 gine [Kg (’fy“’:) / P dran(r', 2)jo(r') o (”“”" ) +
4]

72202 n=1 z ’Tzc
1‘0 '
I (’fy“’:) / P draa (', 2)jo(r) Ko (":’: )] . (4.6)

where Ko and I, are the modified Bessel functions and complex amplitudes of the
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beam density harmonics &, are given with expression:

G, =< exp(—inyy) > . (4.7)

Here, as above, symbol < ... > means the local averaging over the electrons of the
beam and ¥, is the phase of the electron. When the transverse electron beam size is
rather large (i.e. rZ 3> 72c?/w?) expression (4.6) for the space charge field F, takes
the form:

E, = —%jo('i") f} an exp(inp) +C.C. (4.8)

n=1 n

Thus, the canonical equations of electron motion (2.4) along with the expressions
for electromagnetic field (4.4) and (4.6) describe the self-consistent process of the
electron beam radiation amplification in the undulator.

4.2 The reduced working equations

In the same way as it was done in section 3, we use the similarity techniques to write
down the working set of equations. When the undulator tapering is performed at the
constant undulator parameter K, the system of the canonical equations (2.4) may be
rewritten in the following reduced form:

dP o n . a

= i) _sA2

7= Re [e oU, zApUc]

W _o, plthP/2 (4.9)
PE (1+ APy

Here P = wPf(ey2ET), P = € = &, B = ¢v;T'/w is the efficiency parameter, 0 =
0./0:0 = (1+ BP)~" and all the reduced parameters are given with expressions (3.4).
We have neglected small term proportional to 80U, in the right-hand side of the
second equation. Normalization procedure is performed using initial parameters of

the beam and undulator at the FEL amplifier entrance.

The expression for the effective potential of the radiation field U, entering equations
(4.9) is given with expression (3.23).

The reduced complex amplitude of the first harmonic of the beam current density
(4.5) 71 = | 71 | -exp(itp1) is calculated with the macroparticles ensemble:
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y N 2 N 271/2
=+ HZ Ok) COS(¢(k)] +{ 20 Sm(‘/’(ﬂ] ]
k= k

=1

Y = —arctg [
= bk) COS(tb(k)

where NV is the local number of macroparticles.

The expression for the effective potential of the space charge fields U, is of the form:

7

U;—?fj i [I(o(nﬁ/B/ﬂ)f M (F ( \/B/ﬁ)

I, (n#\/B/B) / d' (7, é)Ko(nﬁ’\/B/ﬂ)S(f')]. (4.11)

7

When B/f > 1 (which corresponds to the one-dimensional approximation for the
space charge field: r? > ~2c?/w?) the expression for U, takes the following simple
form:

U.=5#Y e*'m”-‘i“(;;z). (4.12)
n=1
The beam density modulation harmonics &, = | &, | - exp(#1,) are calculated in the

same way as in (4.10):

| &a | = “Z cos(nt() r + [i Sin(m/)(k))] 2} "

k=1 k=1

ZkN=1 Sin(mb(k}) ]
Yo cos(nty) |

i = —arctg

The power gain coefficient G is calculated with the integration of the equation (3.24).

The field distribution in the Fresnel diffraction zone (i.e. inside the undulator) is
given with expressions (3.23) and (??). At the large distance of z from the undulator
exit, the radiation has the form of a spherical wave with the amplitude depending on
an observation angle § = r/z. The directivity diagram of the radiation intensity is
proportional to the square of the field amplitude:
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lw 1
=(6) = f ds / di#3,(3,7)S(F) exp (625 B ) Jo(67) —
0 Q

B 0?B N 022, W6?
Yy “P|T3p : |’

where fo = T'oly is the reduced undulator length and 6 = rowl/c is the reduced
observation angle.

It should be emphasized that the system of working equations (4.9) has been derived
using Hamiltonian (2.3) and we have not done severe restrictions on the electron
energy deviation from the initial value: we have only omitted the members with the
order of 1/4? in the right-hand sides of equations (4.9). Hence, system {4.9) allows
one to simulate the FEL amplifiers with high efficiency 5 up to the unit (of course,
the final electron energy must be sufficiently large, i.e. % > 1).

4.2.1 Gaussian profile

In the case of the gaussian profile of the beam current density (3.1b) we normalize the
transverse coordinate as # = r//202. The corresponding reduced variables are given

with the expressions (3.16). The only distinction of the equations is that integrals
over transverse coordinates in egs. {??) and (4.11) are calculated in the limits from 0
to co. The function of the beam profile should be taken in the form S(7) = exp(—7?).

4.8 Simulation code FSZRN

We have realized the above described algorithm in the computer code FS2RN. The
simulation is performed with the macroparticle method. The macroparticle ensemble
is prepared as follows: the electron beam is divided into M layers over the radius and
in each layer we distribute uniformly N macroparticles over phase ¢ from 0 to 2.
The initial energy spread is simulated with the additional distribution of the particles
according to the Gaussian law:

P2l -
1 exp [— ] dP,

dw = = —T
\/ 2w A% 2A%

where A% = AZ/T? =< (AE)? > w?/(cPyAE3T?) is the energy spread parameter.

As a result we get the system of 2 X N x M ordinary differential equations (4.9) which
is integrated with the Runge-Kutta scheme. It should be noted that the standard
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numerical quadratures are not effective for the calculation of the integral over 2’ in
expression (77) as the integrand has an singularity at 2’ — 2. To calculate this integral
we have developed a special algorithm. The integration interval (0, z) is divided into
some number of subintervals and j; is approximated with the polynomials in each
of them. The Bessel function Jo(t), where t = B##'/(2 — £'), is approximated with
the polynomials at small values of ¢ and at large values of { we use the asymptotic
expansion. As a result the calculation of integral (?7) over z' is reduced to the sum
of special functions: Fresnel integrals, integral sine and cosine. The definite integral
over the transverse coordinate in expression (?7) is calculated with the standard
quadrature formulae.

We have carefully tested code FS2RN in two different ways:

i) at the linear stage of operation - with the programs of FS2R package: FS2RD (the
analysis of the eigenvalue problem) and FS2RL (the initial-value problem solution)

[11,13];

ii) at the nonlinear stage - with the programs of WG2R package developed for the
calculation of the FEL amplifier with a circular waveguide (the testing has been
performed in the asymptote of the large waveguide radius) [18].

4.4 Applicability region

The basic peculiarities of our approach are the three-dimensional representation of
the radiation and space charge fields, and the electron motion description with the
one-dimensional approximation. This model, to some extent, tends to simplify real
processes occurring in the FEL amplifiers. However, within the scope of such a model
we take into account almost all the main effects influencing the FEL amplifier oper-
ation: diffraction of radiation, space charge fields and energy spread of electrons in
the beam. It should be noted that in the framework of the presented model the beam
emittance influence on the FEL amplifier operation has been fallen out of the consid-
eration. To be strict, this effect should be taken into account in the framework of the
fully three-dimensional theory and the results, obtained with this model, should be
considered as a reliable test basis for the more complicated models. As for upgrading
the numerical simulation algorithm, it is not a physical problem but computational
one and can be easily resolved. Situation with upgrading the linear theory is much
more complicated and there is no possibility to obtain rigorous analytical results (see,

e.g. ref. {9]).

When deriving self-consistent equation {2.6) of the linear mode of operation and con-
structing the numerical simulation algorithm we have neglected betatron oscillations
of the particles. On the other hand, when moving in the undulator field, particles
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perform betatron oscillations. The wavelength of betatron oscillations is

Xy = 2V2)0,,001. (4.13)

So, the reasonable question is arisen when this model describes correctly the real
processes in the FEL amplifier. Simple physical considerations show that it takes
place in two cases. First, this model is valid when the betatron oscillation wavelength
is much more than characteristic length of the radiation field growth. In the linear
mode of operation this length is of the order of the gain length. Second situation
corresponds to such a choice of the FEL amplifier parameters which provide the
characteristic transverse size of the radiation field eigenmode to be much more than
the transverse size of the electron beam. In this cases the emittance effects can be
taken into account as follows. As a rule, the electron beam should be matched with
the focusing system of the undulator which results in the following values of the beam
radius ro and angle spread (< (A#)%>)'/? of the electrons in the beam:

ro = (Bwen/ ™) %, (<(A0)S)V? = (eaf7Puy)/ (4.14)

where 8, = V2 Ay /278, is the beta-function of the electron beam in the undulator
and €, is the normalized emittance of the beam. The presence of the angle spread
in the beam results in additional spread in the longitudinal velocities which may
be interpreted with introducing of additional energy spread. So, the inclusion of
the emittance effects is performed by substituting the real energy spread og = [<
(AE/£)?>]'/? in the energy spread parameter

A% = gRw?|(CyAE3T?)

by “effective” energy spread

op = [<(AEJEY > 42 <(A0)2>2 [4]'/%

Another limitation of the model is that the radius of the electron rotation ry in the
undulator must be much less than the radius of electron beam r¢ which results in the
following limitation on the electron beam emittance:

r2 = (0gAw/27)° K eadp/27. (4.15)

One more approximation of the model refers to the linear mode of the FEL amplifier
operation. When deriving eq. (2.6) we have neglected the reduction of the plasma
frequency due to finite transverse size of electron beam. This condition assumes the
transverse electron beam size to be rather large, r2 > 72c*/w? which corresponds to
the following limitation on the emittance value:

(1:0A/27)? & endo /277 (4.16)
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It is interesting to notice that conditions (4.15) and (4.16) are almost identical at a
large value of the undulator parameter K = eHy Ay /27mc?.

When the FEL amplifier parameters satisfy the above mentioned conditions, the
presented model provide reliable results when the emittance effects are taken mto
account in the way described above.

5 Shot noise in the FEL amplifier

Let us present simple derivation of the “effective” power of noise at the FEL amplifier
entrance. We assume that the number of electrons emitting from the cathode fluctu-
ates randomly in time near the mean value I. First, we remember that the length of
longitudinal coherence (or cooperation length) is:

le = Alg/Aw, (5.1)

where I, ~ 1/T is the gain length.

First we consider the case of thin electron beam. In this case the expansion of radiation
at the gain length is much more than transverse size of the electron beam, xl; > S,
and the number of electrons in the volume of coherence is

N ~ Il [ec, (5.2)

and amplitude of modulation of the beam current 1s

&~ 1/vVN =1//Il]ec. (5.3)

To calculate the radiation power at the gain length produced by such initial modula-
tion of the beam current, we should remember that the power of coherent radiation
is proportional to the square of the beam modulation and that the power generated
by totally bunched beam (& ~ 1) at the gain length is equal to:

Wgat ~ ﬁgo.[/e, (5.4)
where 8 = I'/k,, is saturation parameter and I' = [Iw?02/ (I Aczfyf'y)]ll ?_ Taking into
account eq. (5.3) and omitting numerical coefficient, we find that the radiation power

at the gain length produced by shot noise of the beam current is equal to:

Wi =~ elwy20%/c. (5.5)
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So, in the case of thin electron beam the "effective” power of shot noise at the FEL
amplifier entrance depends on the total beam current and not on the beam transverse
dimensions.

Situation with the wide electron beam is much more complicated. In this case expan-
sion of radiation at the gain length is much less than transverse size of the electron
beam, Xl < Sp. First, we see that there is no total transverse coherence of the shot
noise at the entrance of the undulator. Using simple physical assumptions, we can
suppose that in the initial stage the process of the amplification develops indepen-
dently inside clusters with transverse square:

I 2. 471/3
Su ~ [7—”’] | (5.6)

Jow*0?

where jo = I/Sp. Total current in each cluster is [y ~ ISq/Sy. Using the same
considerations, as it was presented above, and omitting numerical coefficient, we
obtain the value of the "effective” power of input signal in the cluster:

Wan o elqwy26?/c, (5.7)

In conclusion we should note that simple qualitative considerations give reliable esti-
mation (5.5) for mean "effective” power of the shot noise in the case of thin electron
beam. In the case of wide electron beam situation is much more complicated. We can
suppose only that the process of amplification from shot noise develops independently
in clusters and can only estimate "effective” power of shot noise in the cluster. As for
the further development of the process, we can suppose that there could be a situa-
tion when some cluster begin to swallow up his neighbors. As a result, the square of
transverse coherence will be increased and finally it could occupy all cross-section of
the beam. Nevertheless, simple qualitative consideration can not describe this process
and three-dimensional numerical simulations should be performed in the same way
as it was done in one-dimensional model (see ref. [19] and references therein).

6 Calculations of the SASE FEL

In this section we present the results of calculations with FS2R program package of
the SASE FEL characteristics. General parameters of the 6 nm and 70 nm options
of the SASE FEL are presented in Table 1. We assume the transverse phase space
distribution of the particles in the beam to be gaussian and the beam is matched
with the magnetic system of the undulator. The beam current density is given by eq.
(3.1b) and the rms beam size and rms angle spread of the electrons in the beam are
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given by the expressions:
Oy =4/ fnﬂf/"fv Tg =/ fn/ﬂt”h

where B is beta-function and e, is the rms normalized emittance.

We assume the energy spread to be the gaussian:

B exp(—&%/20%)

dw = \/%_&g

d€.

When effects of the space charge field and energy spread are negligible:

41/ (vI4BBY?) < 1, < (AEJE)? > [(B2B~%3) « 1, at B> 1, (6.1)
I/ (71.BB) < 1, < (AEJE? > IB2 < 1, at B<1,

the main characteristics of the FEL amplifier could be expressed in terms of the gain
parameter I', diffraction parameter B and saturation parameter 8 [11,12]:

Maximal value of the increment:

Re(A) LB at B>1 (6.2)
e(A) ~ .
r at B £1,

Efficiency at the saturation fsa; = Peat/Pream’

B1/3 tB>1
Teat {ﬁ o= (6.3)

B at B < 1.

So, we see that to obtain maximal efficiency and shorter undulator length, it is nec-
essary to focus the electron beam to provide the value of the diffraction parameter
B ~ 1. At decreasing the size of the electron beam, the requirements on the value of
the energy spread become to be less severe:

0.53B~1/2 t B>1
A¢ { p ar= (6.4)

& 0.58 at B,
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while the requirements on the value of the emittance become to be more severe:

< 0.5xB1/3 at B>1 (65)
€S .
0.5xB/? at B<1

Due to technical reasons the values of the external beta-function have been chosen
to be B¢ = 300 cm and B¢ = 90 cm for 6 nm and 70 nm options, respectively [20]. At
chosen value of the external focusing the value of the space charge parameter for the
both cases is significantly less than 0.1, so the influence of the space charge fields on
the process of the field amplification is negligible. Nevertheless, we see from Table 1
that in the both cases the value of the energy spread parameter A is rather large
and there is no significant safety margin with respect to the energy spread of the
electrons in the beam.

In calculations we have simulated initial conditions for the input signal as gaussian
laser beam. The value of “effective” power of the input signal due to fluctuations of
the beam current density has been chosen in accordance with (5.5):

Wi ~ ely202w/c

6.1 Influence of the emittance

Figs.1-4 allow one to trace the influence of the emittance on the operation of the
FEL amplifier. We see that for the both cases the project value of the emittance is
within the safe bounds. Even a significant increase of the emittance could not destroy
the FEL operation. Decrease of the FEL output power with the emittance increase is
defined mainly with diffraction effects. The corresponding increase of the longitudinal
velocity spread gives a small contribution to the efficiency decrease.

6.2 Influence of the energy spread

In Figs.5-8 we illustrate the influence of the energy spread of the particles in the
beam on the FEL amplifier operation. Analysis of these plots indicates that there is
no significant safety margin for the energy spread. In the both cases, an increase of
the energy spread by a factor of 3 almost destroy the FEL amplifier operation.
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6.3 Influence of the beam current deviation

The plots presented in Figs.1-8 have been calculated at the nominal values of the peak
beam current. The plots presented in Fig.9 allow one to formulate the requirements
on the beam current deviation from the nominal value.

6.{ Output characteristics

The plots in Figs.2 and 5 present the dependencies of the peak output power versus the
undulator length. The plots in Fig.10 present axial distribution of the peak radiation
power and the plots in Fig.11 - the average output power versus the length of the
undulator.

In Fig.12 we present the frequency characteristics of the FEL amplifier. Remembering
that the input signal has appearance of the “white” noise, we can conclude that in

the both cases the spectral width of the SASE FEL will be AA/A ~ 0.5 %.

The plots in Fig.13 present the transverse field distribution inside the undulator and
Fig.14 presents the directivity diagrams of the radiation in the Fraunhofer diffraction
zone.

As the input signal has appearance of the shot noise, its amplitude fluctuates near
average value according to Poisson statistics. Thus, a reasonable question arises about
fluctuations of the output power. Analysing plots, presented in Fig.15, we can con-
clude that there is very simple method to suppress the influence of the fluctuations
of the input signal on the output power. First, we calculate the saturation length of
the undulator at the nominal value of the input signal. Then we choose the undulator
length to be approximately by two e-fold lengths greater than this value. As a result,
we obtain that in the wide region of the fluctuations of the input power (four orders
of magnitude) the fluctuations of the output power are of about 20 %.

7 Discussion

In conclusion we should like to discuss the validity of performed calculations. First, we
did not mentioned the problem of transverse and longitudinal coherence of the output
radiation of the SASE FEL. Strictly speaking, the steady-state approximation can not
provide quantitative description of this phenomenon. Nevertheless, we can perform
some simple physical estimations. As for the length of the longitudinal coherence, it
is of the order of cooperation length: I, = Alg/\y, where Iz 2 1/T" is the gain length.
So, if the length of the electron beam o, is significantly greater than the cooperation
length, there will be temporal dependence of the frequency and amplitude of the
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output radiation within each pulse. The number of spikes in each pulse is of the
order of o,/l.. While the fluctuations of the amplitude of these spikes could be done
rather small, the wavelength will fluctuate from one spike to another one within the
bandwidth given by the plots in Fig.12. The results obtained in the framework of the
one-dimensional model confirm these simple physical considerations [19].

Situation with the transverse coherence of the output signal is somewhat complicated.
We have mentioned in section 5 that in the case of the small diffraction parameter
(B £ 1), there is total transverse coherence of the input signal from the very beginning
of undulator. As a result, we will obtain total transverse coherence of the output
signal. The case of the 70 nm option of the SASE FEL meets this condition, so we
can conclude that all the results of calculations in the framework of steady-state
model could be applicable to the case of the SASE FEL.

In the case of 6 nm option, the value of the diffraction parameter is B ~ 10 and
there is no total transverse coherence of the input signal at the amplifier entrance.
With respect to this, the calculations of the 6 nm option could be referred to the
SASE FEL very carefully. All the calculations have been performed for the input
radiation with the total transverse coherence. In the real situation the input condi-
tions are quite different. The process of amplification develops from several clusters
with different frequencies and amplitudes. Even in the case when some cluster will
swallow up all his neighbors, we can not estimate carefully the length at which this
competition process takes place. As a result, there could be an error in estimation
of the required length of the undulator. As for another output characteristics of the
radiation (frequency bandwidth, field distribution, the value of the output radiation
power), they are predicted rather carefully by the steady-state calculation if there is
settled total transverse coherence in the end of the undulator.

Finally, we can conclude that the steady-state model provides a firm base for calcula-
tions of the SASE FEL in the case of the small diffraction parameter and calculation
of the 70 nm option of the SASE FEL could be performed in this way. As for the
case of 6 nm option, a three-dimensional time-dependent code should be developed
to obtain more correct results.
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Table 1

General parameters of 6 nm and 70 nm SASE FEL

TESLA FEL-Report 1995-02

Electron beam
Energy, £

Peak current, I

Normalized rms emittance (Gaussian), €,

rms energy spread (Gaussian), og/&

rms bunch length, o,

Bunch separation

Number of bunches per train

Repetition rate

External S-function, 5;

rms beam size in the undulator, o,
Undulator

Type

Period, A,

Peak magnetic field, H,

Undulator parameter, K
Radiation

Wavelength, A

Effective power of shot noise

Reduced parameters

Gain parameter, I
Diffraction parameter, B
Space charge parameter, f&g
Energy spread parameter f&?r

Saturation parameter, 3

6 nm option

1000 MeV
2500 A

10~% cm rad
0.1%

5x 1073 cm
125 ns

6400

10 Hz

300 cm

4%x1073% ecm

Planar
2.73 cm
4.972 kGs
0.896

6.421 nm
1 kW

2.33x 1072 cm™!
7

8.6 x 1073

0.11

0.005

70 nm option

300 MeV

600 A

2 x 10~* cm rad
0.17 %

2x 1072 em
125 ns

6400

10 Hz

90 cm

5.5%x 107% cm

Planar
2.73 cm
4.972 kGs
0.896

71.2 nm
50 W

2.09 x 102 em™?
1.13

4.7 x 1072

0.14

0.0045
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(a) 6 nm option. Here og/€ = 0.1 %.

Gp, dB/m

O 1 1 L L 1 i
2 4 6 8

£n, mm*mrad

(b) 70 nm option. Here og/€ = 0.17 %.

10 ¥ T
9t ]
BV‘
Tt
= 61
& 5]
o
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&)
3-
2
1_
0 1 1 1 " ] " 1

6 8 10 12

£n, Mm#*mrad

[yv]
o

Fig. 1. Dependence of the maximal power gain in the high-gain limit on the value of the
normalized emittance.
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(a) 6 nm option. (1): €, = 107* cm rad, (2): € = 2 x 107* cm rad, (3): &, =
4 x 10™* cm rad. Here og/€ = 0.1 %.

10.0 —

AR
// SN
YA

0 o 10 15 20 25 30

zZ, m

P, GW

(b) 70 nm option. (1): & = 2 x 107™* cm rad, (2): & = 4 x 107* cm rad, (3):
€n = 8 x 10™* cm rad. Here og/€ = 0.17 %.

0.8 —_——
L 1 ]
0.6 /\A /\ /\\/\
| , N/ \_"
| 2 J
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Fig. 2. Dependence of the output power on the undulator length.
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(a) 6 nm option. Here op/€ = 0.1 %.

10.0 . T

0.0!

2 4 6 8
£n, mm*mrad

(b) 70 nm option. Here og/E = 0.17 %.

0.8 -

Pmax, GW

0.0 n 1 Z i s 1

2 4 6 8 10 12

£n, mm*mrad

Fig. 3. Dependence of the maximal output power on the value of the normalized emittance.
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(2) 6 nm option. Here og/€ = 0.1 %.

60
50 f
40|

30}

- Zsat, IN

20 f

2 4 6 8

&n, mm+*mrad

(b) 70 nm option. Here og/& = 0.17 %.

40- T v T ¥ T T T

Zsat, IN

0 [ L 1 " 1 L 1 L L L
2 4 6 8 10 12

&n, mm*mrad

Fig. 4. Saturation length versus emittance.
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(a) 6 nm option. Here €, = 107 cm rad.
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(b} 70 nm option. Here &, = 2 x 10™* cm rad.
12 .
10 \x\
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B \
26
o \
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2 ™
\
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Fig. 5. Dependence of the maximal power gain in the high-gain limit on the value of the

energy spread.
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(a) 6 nm option. (1): og/€ = 0.1 %, (2): og/€ = 0.2 %, (3): o/E = 0.3 %. Here

€, = 10~* cm rad.

10.0
8.0} A *
[ ' 1/ \\/\ 1
- 6.0" /
(4] I
4.0}
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| / / ]
0 5 10 15 20 2H 30
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(b) 70 nm option. (1): og/E = 0.17 %, (2): oe/€ = 0.25 %, (3): o/ = 0.35 .
Here ¢, = 2 x 10™* cm rad.

0.8 ——— ——
. | { N\ N~ ]
g L
© 0.4 .
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Fig. 6. Dependence of the output power on the undulator length.
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(a) 6 nm option. Here €, = 107 cm rad.
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(b) 70 nm option. Here €, = 2 x 107* cm rad.
1.5
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5 1.0 [
5
£
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Fig. 7. Dependence of the maximal output power on the value of the energy spread.
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(a) 6 nm option. Here €, = 10~ cm rad.
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(b} 70 nm option. Here ¢, =2 x 1074 c¢m rad.

e e

B [
g /
X [

20

10} =

0-..,..... FPURNIY T S R S S S SR W S R S S

0.0 0.1 0.2 0.3 0.4 0.5
AE/E, 7

Fig. 8. Saturation length versus energy spread.
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(a) 6 nm option. (1): I = 2.5 kA, (2): I =2 kA, (3): I = 1.5 kA, (4): I = 1 kA.
Here ¢, = 10~* cm rad, og/€ = 0.1% .

10.0 -
8.0 | A '
| ) / \ |
: \M//N\\/’\\,z’—“\%
. 6.0] _
< ool [N
40l 2 '
| [T
2.0 / /
_ ] —
0.0 . . - _/———--'-/,(,N s ]
0 5 10 15 20 25 30

Z, I

(b) 70 nm option. (1): I =600 A, (2): 1 =480 A, (3): I = 360 A, (4): I = 240 A.
Here ¢, = 2 x 107* cm rad, o /€ = 0.17% .

0.8
1
| f S N7 l
a, !
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my _
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Fig. 9. Dependence of the output power on the ondulator length.
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(a) 6 nm option. (1): Beam current distribution, (2): Power distribution at z = 14 m,
(3): Power distribution at z = 20 m. Here ¢, = 107* cm rad, og/€ = 0.1 % .
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(b) 70 nm option. (1): Beam current distribution, (2): Power distribution at z= 11 m,
(3): Power distribution at z = 15 m. Here ¢, = 2 x 107* cm rad, og/€ = 0.17% .
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Fig. 10. Power distribution along the beam.
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(a) 6 nm option. Here ¢, = 107 ¢m rad, og/€ = 0.1% .
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(b) 70 nm option. Here €, = 2 x 107* cm rad, og/€ = 0.17% .
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Fig. 11. Dependence of the average power on the undulator length.
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(a) 6 nm option. Here &, = 10™* cm rad, og/€ = 0.1% and z = 14 m (saturation
point).
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0.4 N
: 1
0.2 2\\ \

0.0

&(r/0)/%(0), j(r/a)/j(0)

(b) 70 nm option. Here ¢, = 2 x 107 ¢m rad, og/€ = 0.17% and z = 11 m
(saturation point).
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Fig. 13. Distribution of the radiation field (1) inside the undulator (curve (2) is the beam
current density).
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(a) 6 nm option. Here ¢, = 107* cm rad, og/€ = 0.1% and z = 14 m (saturation
point).
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(b) 70 nm option. Here ¢ = 2 x 107* cm rad, og/€ = 0.17% and z = 11 m
(saturation point). :
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Fig. 14. Directivity diagram of radiation in the Fraunhofer diffraction zone.
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Fig. 15. 6 nm option. Dependence of the output power versus input power. (1): z = 12 m,
(2): 2 = 14 m, (3): z = 18 m. Here ¢, = 107* ¢m rad, 0p/& = 0.1 % and Py = 1 kW.
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